JP2001289785A - Infrared laser component detector - Google Patents

Infrared laser component detector

Info

Publication number
JP2001289785A
JP2001289785A JP2000105513A JP2000105513A JP2001289785A JP 2001289785 A JP2001289785 A JP 2001289785A JP 2000105513 A JP2000105513 A JP 2000105513A JP 2000105513 A JP2000105513 A JP 2000105513A JP 2001289785 A JP2001289785 A JP 2001289785A
Authority
JP
Japan
Prior art keywords
laser beam
wavelength
detected
laser
trace gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000105513A
Other languages
Japanese (ja)
Inventor
Tomoo Fujioka
知夫 藤岡
Shigeru Yamaguchi
滋 山口
Frank Tittel
ティッテル,フランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KOGAKU KENKYUSHO
Original Assignee
OYO KOGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KOGAKU KENKYUSHO filed Critical OYO KOGAKU KENKYUSHO
Priority to JP2000105513A priority Critical patent/JP2001289785A/en
Publication of JP2001289785A publication Critical patent/JP2001289785A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a detector for optically detecting a trace gas content reduced in weight and volume to a ppb (10-9) level, by improving operability and environment resistance of the device. SOLUTION: After a first laser beam having a spectral line in a first wavelength area and a second laser beam having a spectral line in a wavelength area of a shorter/longer wavelength than the first wavelength are guided via isolators 11b and 12b and optical fibers 11a and 12a, so as to be multiplexed by means of an optical multiplexer 15, a narrow-band laser beam is produced in a intermediate infrared area (2-9 μm) by means of a difference frequency producing nonlinear optical crystal 10, and on the basis of absorption based on the trace gas constituent in the narrow-band laser beam, the trace gas constituent is detected and its quantity is determined. The wavelength area of the second laser beam is varied by means of an external controller 6 so as to be synchronized with the absorption wavelength of the trace gas content to be detected, and consequently, component detection and quantity determination can be carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、被検出ガスの吸
収域波長のレーザ光線を用いてppb(10-9)レベルの
微量ガス成分を光学的に検出する装置に関し、特に、レ
ーザ光線の波長を制御して、各波長領域に存在する特定
ガス分子の振動回転遷移の吸収域に同調したレーザ光線
の吸収効果に基づいて、各種微量ガスの特定と濃度の定
量をリアルタイムに行なうように構成したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for optically detecting a trace gas component at a ppb (10 -9 ) level using a laser beam having a wavelength in an absorption band of a gas to be detected, and in particular, to a wavelength of the laser beam. , And based on the absorption effect of the laser beam tuned to the absorption region of the vibration-rotation transition of the specific gas molecules present in each wavelength region, it is configured to identify and trace the concentration of various trace gases in real time. Things.

【0002】[0002]

【従来の技術】近年、ppb(10-9)レベルの微量ガス
の監視や検出が、環境衛生上重要になっている。例え
ば、都市・農村部・工場においてどれだけ放出されてい
るか、さらに生理学・地球温暖化に関する分野から、職
場環境の監視にいたるまで関心が集められている。
2. Description of the Related Art In recent years, monitoring and detection of trace gas at a ppb (10 -9 ) level has become important in environmental health. For example, attention has been focused on how much is released in urban, rural, and industrial areas, as well as in the fields of physiology and global warming, as well as monitoring workplace environments.

【0003】ppb(10-9)レベルの微量ガス成分の検
出方法として、従来よりガスクロマトグラフ、液クロマ
トグラフ、質量分析法、あるいはこれらを併用した微量
ガス成分を分析する装置、電気化学的な分析が知られて
いる。しかし、いずれの方法においても、定量にある程
度の時間(30分程度)を要し、また、信頼性を高めるた
めに、試料の濃縮などの前処理のリードタイム(時に10
〜20日程度)も必要であったので、リアルタイムの検出
は困難であった。
As a method for detecting a trace gas component at a ppb (10 -9 ) level, a gas chromatograph, a liquid chromatograph, a mass spectrometry, an apparatus for analyzing a trace gas component using these methods in combination, an electrochemical analysis It has been known. However, in any method, quantification requires a certain amount of time (about 30 minutes), and in order to improve reliability, the lead time of pretreatment such as sample concentration (sometimes 10 minutes) is required.
2020 days), so real-time detection was difficult.

【0004】[0004]

【発明が解決しようとする課題】レーザ光線による、蛍
光、散乱、吸収などに基づく検出方法は、原理的に微量
ガス成分のリアルタイム検出が可能であるが、ある種の
微量ガス成分を検出する際に、物質固有の吸収域にレー
ザの出力波長を合わせることが必要である。
A detection method based on fluorescence, scattering, absorption, etc., using a laser beam can in principle detect a trace gas component in real time. In addition, it is necessary to adjust the output wavelength of the laser to the absorption range specific to the substance.

【0005】中赤外域で出力波長を変化できるレーザと
しては、鉛半導体を用いて直接中赤外域のレーザ光線を
放射するレーザ素子と、光パラメトリック発振器が知ら
れている。
[0005] As lasers whose output wavelength can be changed in the mid-infrared region, there are known a laser element which emits a laser beam in the mid-infrared region directly using a lead semiconductor, and an optical parametric oscillator.

【0006】鉛半導体を用いたレーザ素子は、77°K
程度の低い温度で動作するものであって、動作温度を調
整することにより出力波長を変化させるので、出力波長
を変化させる操作が困難で、かつ時間がかかり、実験室
において実施できても実用装置として環境計測に適用す
ることはできなかった。
A laser device using a lead semiconductor has a temperature of 77 ° K.
It operates at a temperature as low as possible, and changes the output wavelength by adjusting the operating temperature, making the operation of changing the output wavelength difficult and time-consuming. Could not be applied to environmental measurements.

【0007】また、光パラメトリック発振器は、放射す
る中赤外光線のスペクトル幅が広く、かつ装置が大型で
あって、微量ガスの正確な計測に適さなかった。
Further, the optical parametric oscillator has a wide spectral width of the radiated mid-infrared ray and a large device, and is not suitable for accurate measurement of a trace gas.

【0008】そこで、この発明は、リアルタイム測定を
行なうとともに装置の耐環境性を向上させ、重量、体積
を軽減するために、レーザ光線を発生する装置の構成部
品のうち、差周波数のレーザ光線を発生させる2つのレ
ーザ光源のうち、出力波長を変化させるレーザ光源に
は、通電電流を調整して出力波長を変化できる半導体レ
ーザ素子を用い、2つの光線を混合する素子には、広帯
域に非線形特性を有し、結晶に対する入射角度を変化さ
せる必要がない差周波発生用非線形光学結晶(例えば、
Periodically Poled Lithium Niobate:LiNbO3:周
期反転型ニオブ酸リチウム)を用い、さらに、レーザ光
線の導光に係わる部品に、通信用光ファイバーを用い
て、光学ミラーと重量の大きいマウントをできるだけ使
用しないように構成し、リアルタイム測定を可能にした
ものである。
Accordingly, the present invention provides a method for realizing a real-time measurement, improving the environmental resistance of the apparatus, and reducing the weight and volume of the apparatus. Of the two laser light sources to be generated, the laser light source that changes the output wavelength is a semiconductor laser element that can change the output wavelength by adjusting the conduction current, and the element that mixes the two light beams has a broadband nonlinear characteristic. Having a non-linear optical crystal for generating a difference frequency that does not need to change the incident angle with respect to the crystal (for example,
Use Periodically Poled Lithium Niobate (LiNbO 3 : Periodically Inverted Lithium Niobate), and use optical fibers for communication as components related to laser beam guiding. Avoid using optical mirrors and heavy mounts as much as possible. It is configured to enable real-time measurement.

【0009】[0009]

【課題を解決するための手段】この発明の赤外線レーザ
成分検出装置は、第1の波長域にスペクトル線を有する
第1レーザ光線と、第1の波長域より短波長あるいは長
波長にスペクトル線を有する第2レーザ光線とをアイソ
レーター11b、12bおよび光ファイバー11a、12aを介
して導光し、光合波器15により合波した後、差周波発生
用非線形光学結晶10により中赤外線領域(2〜9μm)で
狭帯域レーザ光線を発生させ、この狭帯域レーザ光線の
微量ガス成分による吸収に基づいて微量ガス成分を検出
し定量するものである。
An infrared laser component detecting apparatus according to the present invention comprises a first laser beam having a spectral line in a first wavelength band and a spectral line having a shorter or longer wavelength than the first wavelength band. The second laser beam is guided through the isolators 11b and 12b and the optical fibers 11a and 12a, and multiplexed by the optical multiplexer 15. Then, the non-linear optical crystal 10 for generating a difference frequency is used to generate a mid-infrared region (2 to 9 μm). Generates a narrow band laser beam, and detects and quantifies the trace gas component based on the absorption by the trace gas component of the narrow band laser beam.

【0010】また、第2のレーザ光線の出力波長を外部
制御装置によって変化させ、検出すべき微量ガス成分の
吸収波長に同調させて、成分検出と定量とを実施するこ
とができる。
Further, the output wavelength of the second laser beam is changed by an external control device, and the component detection and quantification can be performed by tuning the output wavelength of the second laser beam to the absorption wavelength of the trace gas component to be detected.

【0011】[0011]

【発明の実施の形態】この発明の赤外線レーザ成分検出
器は、図1に示すように、被検知ガスの吸収線に同調し
たレーザ光線を発生するレーザ光線発生部と、このレー
ザ光線を反射鏡21、22の間を多重反射させ、被検知ガス
が充満した被検知空間2と、多重反射されたレーザ光線
の強度を検知する光電変換素子3とを具備している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, an infrared laser component detector according to the present invention has a laser beam generating section for generating a laser beam tuned to an absorption line of a gas to be detected, and a reflecting mirror for the laser beam. It comprises a detection space 2 filled with a gas to be detected by multiple reflection between 21 and 22, and a photoelectric conversion element 3 for detecting the intensity of the multiple reflected laser beam.

【0012】レーザ光線発生部は、例えば、波長λ1
1.06μmのレーザ光線を出力する第1レーザ光源11と、
波長λ2=1.57μmを中心に出力波長を変化できる第2
レーザ光源12と、これら2つのレーザ光源11、12より出
力される2つのレーザ光線を光ファイバー11a、12aお
よび光アイソレーター11b、12bを介して導かれる光合
波器15と、この光合波器15で合波されて出力されるレー
ザ光線を集束するレンズ16と、この集束されたレーザ光
線が入射し、入射した2つのレーザ光線の波長の差の波
長成分を出力する差周波発生用非線形光学結晶10と、こ
の差周波発生用非線形光学結晶10から出力される光線を
平行光線にするコリメート・レンズ17と、差周波発生用
非線形光学結晶10から出力される光線のうち、長波長成
分(2〜9μm)を通過させるフィルタ18とにより構成さ
れている。
The laser beam generating unit has, for example, a wavelength λ 1 =
A first laser light source 11 that outputs a 1.06 μm laser beam,
2nd output wavelength can be changed around wavelength λ 2 = 1.57 μm
A laser light source 12, an optical multiplexer 15 for guiding the two laser beams output from the two laser light sources 11, 12 through optical fibers 11a, 12a and optical isolators 11b, 12b, and an optical multiplexer 15 A lens 16 for converging the laser beam that is waved and output, a difference frequency generating nonlinear optical crystal 10 for receiving the converged laser beam, and outputting a wavelength component of a difference between the wavelengths of the two incident laser beams; A collimating lens 17 for converting the light beam output from the difference frequency generating nonlinear optical crystal 10 into a parallel light beam, and a long wavelength component (2 to 9 μm) of the light beam output from the difference frequency generating nonlinear optical crystal 10. And a filter 18 that allows the light to pass through.

【0013】出力波長域を変化し得る第2レーザ光源12
として、図2に示すように、円形に配列された波長可変
半導体レーザ・ダイオード素子31〜3nと、各レーザ・
ダイオード素子31〜3nの出力光線を導く光ファイバー4
1〜4nと、各光ファイバー41〜4nの先端部を順次に切
り換えて光ファイバー12aに導く光切換器4と、この光
切換器4連動して1つのレーザ・ダイオード素子に通電
する切換スイッチ(図示せず)と、通電電流を設定値に
制御する制御装置(図示せず)とにより構成されるレー
ザ光源を使用することができる。また、光切換器4を使
用する代わりに、光ファイバー12aの先端を、各レーザ
・ダイオード素子31〜3nの1つの放射口に挿し変えて
もよいのである。
A second laser light source 12 capable of changing the output wavelength range
As shown in FIG. 2, the wavelength tunable semiconductor laser diode elements 31 to 3n arranged in a circle and each laser
Optical fiber 4 for guiding output light from diode elements 31-3n
1 to 4n, an optical switch 4 for sequentially switching the leading end of each of the optical fibers 41 to 4n and leading to the optical fiber 12a, and a switch (shown in FIG. ) And a control device (not shown) for controlling the supplied current to a set value. Further, instead of using the optical switch 4, the tip of the optical fiber 12a may be replaced with one radiation port of each of the laser diode elements 31 to 3n.

【0014】1つの波長可変半導体レーザ・ダイオード
素子の波長を変化させ得る範囲は、僅かで(0.001〜0.0
10μm程度)、1種類のガスについて、図4の吸収域A
と透過域Bとを含む波長範囲の数倍に過ぎない。したが
って、被測定ガスの種類が変わると、波長可変半導体レ
ーザ素子の種類を変更しなければならない。
The range in which the wavelength of one wavelength-variable semiconductor laser diode element can be changed is very small (from 0.001 to 0.0
About 10 μm) For one type of gas, absorption area A in FIG.
And only a few times the wavelength range including the transmission region B. Therefore, when the type of the gas to be measured changes, the type of the wavelength tunable semiconductor laser element must be changed.

【0015】そこで、複数のレーザ・ダイオード素子31
〜3nは、図3のスペクトル特性曲線図に示すように、
出力波長域が僅かづつ異なる複数のレーザ・ダイオード
素子であって、各レーザ・ダイオード素子は、通電電流
を調整することにより各隣接するスペクトル間をカバー
し得る程度に出力波長を変化させることが可能なもので
あり、連動する光切換器4および切換スイッチ5を接続
することにより、各レーザ・ダイオード素子31〜3nの
中から1つのレーザ・ダイオード素子を選択して動作さ
せ、その通電電流を調整して出力波長を変化させること
により所望波長のレーザ光線を出力させることができ
る。また、レーザ・ダイオード素子の出力波長を変化さ
せる手段として回折格子12gを設け、この回折格子12g
の光軸に対する角度を調整することにより出力波長を変
化させることができる。
Therefore, a plurality of laser diode elements 31
-3n are, as shown in the spectrum characteristic curve diagram of FIG.
Multiple laser diode elements with slightly different output wavelength ranges, each laser diode element can change the output wavelength enough to cover each adjacent spectrum by adjusting the conduction current By connecting the interlocking optical switch 4 and the changeover switch 5, one laser diode element is selected from the laser diode elements 31 to 3n to be operated, and the current supplied thereto is adjusted. By changing the output wavelength, a laser beam having a desired wavelength can be output. A diffraction grating 12g is provided as a means for changing the output wavelength of the laser diode element.
By adjusting the angle with respect to the optical axis, the output wavelength can be changed.

【0016】さらに、複数の被検出ガス成分と、各ガス
成分の検出に適した波長のレーザ光線を発光するレーザ
・ダイオード素子の番号およびその通電電流との関係を
示すデータのテーブルをコンピュータのメモリに格納し
ておき、被検出ガスの種類を入力することにより、被検
出ガスに適したレーザ・ダイオード素子を選択して、コ
ンピュータを用いた制御装置により通電電流の調整を行
なって、所望波長のレーザ光線を出力させる。
Further, a table of data showing the relationship between a plurality of gas components to be detected, the number of a laser diode element which emits a laser beam having a wavelength suitable for detecting each gas component, and a current flowing therethrough is stored in a computer memory. By inputting the type of the gas to be detected, selecting a laser diode element suitable for the gas to be detected, adjusting the energizing current by a control device using a computer, and setting the desired wavelength. The laser beam is output.

【0017】差周波発生用非線形光学結晶10は、非線形
光学結晶で、2つの高い周波数のフォトンから、1つの
低いエネルギーフォトンを生成する変換過程(λ1,λ2
→λ 3、例:1000nm−1500nm→3000nm)が生じる
ような条件を設定しておくと、第1レーザ光線(波長λ
1=1μm)と第2レーザ光線(波長λ2=1.5〜3.0μ
m)との波長を適当に選ぶことにより、中赤外線領域
(2〜9μm)で狭帯域のレーザ光線が得られ、被検出ガ
スの吸収域に同調させて光強度の変化を得ることができ
る。
The nonlinear optical crystal 10 for generating a difference frequency
Optical crystal, from two high frequency photons, one
The conversion process (λ1, ΛTwo
→ λ ThreeExample: 1000nm-1500nm → 3000nm)
By setting such conditions, the first laser beam (wavelength λ
1= 1 μm) and the second laser beam (wavelength λTwo= 1.5-3.0μ
m) by selecting the appropriate wavelength.
(2 to 9 μm), a narrow-band laser beam can be obtained,
Change in light intensity by tuning to the light absorption range
You.

【0018】なお、光アイソレーター11b、12bは、レ
ーザ光線の反射光が、レーザ光源11、12に入射して、レ
ーザ光源11、12を不安定にすることを防止するために設
けたものである。
The optical isolators 11b and 12b are provided to prevent the reflected light of the laser beam from entering the laser light sources 11 and 12 to make the laser light sources 11 and 12 unstable. .

【0019】被検知空間2は、被検知ガスを充満させる
空間であって、中央部に透孔20を有する第1凹面鏡21
と、この第1凹面鏡21と対向した第2凹面鏡22とを備え
ており、第1凹面鏡21の透孔20を経て斜め方向に入射し
た中赤外線領域のレーザ光線を2つの凹面鏡21、22の間
で多重反射させたのち、第1凹面鏡21の透孔20より斜め
方向に出力させ、反射鏡23で反射させて光検知器(光電
変換素子)3へ入射させるように構成されている。
The detected space 2 is a space filled with the gas to be detected, and has a first concave mirror 21 having a through hole 20 in the center.
And a second concave mirror 22 opposed to the first concave mirror 21. The laser beam in the mid-infrared region, which is obliquely incident through the through hole 20 of the first concave mirror 21, is provided between the two concave mirrors 21 and 22. After the multiple reflections, the light is output obliquely through the through hole 20 of the first concave mirror 21, reflected by the reflection mirror 23, and made incident on the photodetector (photoelectric conversion element) 3.

【0020】次に、このように構成された赤外線レーザ
成分検出器を用いて被検知空間2に存在する被検知ガス
濃度を測定する手順について説明する。
Next, a procedure for measuring the concentration of a gas to be detected existing in the detected space 2 using the infrared laser component detector having the above-described configuration will be described.

【0021】被検知空間2は、被検知ガスを充満させ、
制御装置6のキーボードを操作して検出したいガス成分
を入力すると、入力されたガス成分に対応する第2レー
ザ光源12のレーザ・ダイオード素子を選び出し、その通
電電流を所望波長の値に設定する。
The detected space 2 is filled with the detected gas,
When a gas component to be detected is input by operating the keyboard of the control device 6, a laser diode element of the second laser light source 12 corresponding to the input gas component is selected, and the current flowing therethrough is set to a desired wavelength value.

【0022】そして、第1レーザ光源11および第2レー
ザ光源12を動作させると、例えば、第1レーザ光源11よ
り1.06μmのレーザ光線を出力し、第2レーザ光源12よ
り1.57μmを中心として波長を変化させ得る単スペクト
ルのレーザ光線を出力するから、これら2つのレーザ光
線を光ファイバー11a、12aを介して光合波器15に導い
て合波させ、合波されたレーザ光線をレンズ16で集束し
て差周波発生用非線形光学結晶10に入射させ、入射させ
た2つのレーザ光線の波長の差の波長成分のレーザ光線
を出力させる。この非線形光学結晶10から出力されるレ
ーザ光線の波長は、図4の透過スペクトル曲線図に示す
ように、被検知ガスで吸収される狭帯域の吸収域Aと一
致させたり、この吸収域Aより外れた透過域Bに変化さ
せることができる。
When the first laser light source 11 and the second laser light source 12 are operated, for example, the first laser light source 11 outputs a laser beam of 1.06 μm, and the second laser light source 12 emits a wavelength around 1.57 μm. Since these two laser beams are output to the optical multiplexer 15 via the optical fibers 11a and 12a, they are combined, and the combined laser beam is focused by the lens 16. Then, the laser beam is made to enter the nonlinear optical crystal 10 for generating a difference frequency, and a laser beam having a wavelength component corresponding to the difference between the wavelengths of the two laser beams entered is outputted. The wavelength of the laser beam output from the nonlinear optical crystal 10 is matched with the narrow band absorption region A absorbed by the gas to be detected as shown in the transmission spectrum curve diagram of FIG. It can be changed to the out-of-transmission area B.

【0023】この非線形光学結晶10から出力されるレー
ザ光線を、第1凹面鏡21の透孔20を経て被検知空間2に
入射させ、第1凹面鏡21と第2凹面鏡22との間で多重反
射させたのち、第1凹面鏡21で斜め方向に出力させ、反
射鏡23で反射させて光検知器3へ入射させる。このと
き、被検知空間2に被検知ガスが存在すると、非線形光
学結晶10から出力された吸収域Aのレーザ光線は吸収さ
れ、透過域Bのレーザ光線は吸収されないので、これら
吸収域Aおよび透過域Bにおける吸収量を光検知器3で
電気信号に変換して制御装置6に入力させ、両者の比を
得ると、この比が被検知ガスの濃度に対応する。
The laser beam output from the nonlinear optical crystal 10 is made to enter the detection space 2 through the through hole 20 of the first concave mirror 21 and is multiple-reflected between the first concave mirror 21 and the second concave mirror 22. After that, the light is output obliquely by the first concave mirror 21, reflected by the reflecting mirror 23, and made incident on the photodetector 3. At this time, if the gas to be detected is present in the detection space 2, the laser beam in the absorption region A output from the nonlinear optical crystal 10 is absorbed, and the laser beam in the transmission region B is not absorbed. When the absorption amount in the region B is converted into an electric signal by the photodetector 3 and input to the control device 6 to obtain a ratio between the two, this ratio corresponds to the concentration of the gas to be detected.

【0024】制御装置6においては、一定濃度の吸収媒
質を通過するレーザ光線の吸収による強度変化が、透過
距離に対して指数関数的に減少するというLambert−Bee
rの法則に基づき、コンピュータによって、吸収域Aお
よび透過域Bにおける光検知器3から出力された電気信
号をガス濃度に変換する演算処理を行なって表示器に表
示させるか、プリンタにより印字出力させる。
In the control device 6, the Lambert-Bee that the intensity change due to the absorption of the laser beam passing through the absorption medium of a fixed concentration decreases exponentially with respect to the transmission distance.
Based on the law of r, the computer performs an arithmetic process of converting the electric signal output from the photodetector 3 in the absorption region A and the transmission region B into a gas concentration and displays the same on a display device or prints out by a printer. .

【0025】被検知ガスが未知の場合には、制御装置6
によりメモリに格納されている複数の被検出ガス成分に
対応するデータを順次に読み出し、第2レーザ光源12の
出力波長を順次変化させて、被検知空間2に存在するす
べての被検出ガスの吸収波長で走査する。そして、各波
長ごとに光検知器3から出力された電気信号をガス濃度
に変換する演算処理を行なって表示器に表示させるか、
プリンタにより印字出力させればよいのである。
If the gas to be detected is unknown, the control unit 6
Sequentially reads data corresponding to a plurality of detected gas components stored in the memory, sequentially changes the output wavelength of the second laser light source 12, and absorbs all the detected gases present in the detected space 2. Scan at wavelength. Then, an arithmetic process for converting the electric signal output from the photodetector 3 into a gas concentration for each wavelength is performed and displayed on a display,
What is necessary is just to print out by a printer.

【0026】[0026]

【発明の効果】以上の実施の形態に基づく説明から明ら
かなように、この発明によると、コンピュータ制御によ
り、所望の被検知ガスの濃度を測定することができ、ま
た、第2レーザ光線の波長を走査させて、1つのガス分
子から次のガス分子を検出するためのリードタイムは、
数秒程度と短くなるため、未知の多種類の微量ガスが存
在しても、1つの装置でリアルタイムの計測が可能とな
る。
As is clear from the description based on the above embodiment, according to the present invention, the concentration of a desired gas to be detected can be measured by computer control, and the wavelength of the second laser beam can be measured. Is scanned, and the lead time for detecting the next gas molecule from one gas molecule is
Since the time is shortened to about several seconds, even if there are various unknown trace gases, real-time measurement can be performed by one apparatus.

【0027】レーザ光源に光ファイバー結合器を取り付
けて、通信用光ファイバーを直接接続するので振動や温
度変化による光学系の位置ずれはなく、信頼性の高いも
のとなり、さらに、ファイバーの曲げ自由度の範囲内
で、レーザ光源の配置の自由度が増すので、省空間にな
るとともに、部品点数の削減による軽量化もできる。
Since the optical fiber coupler is attached to the laser light source and the optical fiber for communication is directly connected, there is no displacement of the optical system due to vibration or temperature change, and the optical system is highly reliable. Since the degree of freedom of the arrangement of the laser light source is increased, the space can be saved and the weight can be reduced by reducing the number of parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の赤外線レーザ成分検出装置の実施の
形態を示す概要図、
FIG. 1 is a schematic diagram showing an embodiment of an infrared laser component detection device of the present invention;

【図2】図1に示す装置で用いる可変波長レーザ光源の
一例を示す原理図、
FIG. 2 is a principle diagram showing an example of a tunable laser light source used in the apparatus shown in FIG.

【図3】図2に示す可変波長レーザ光源から放射される
レーザ光線のスペクトル特性曲線図、
FIG. 3 is a spectrum characteristic curve diagram of a laser beam emitted from the tunable laser light source shown in FIG. 2;

【図4】被検知ガスの波長と透過率の関係の一例を示す
スペクトル特性曲線図である。
FIG. 4 is a spectrum characteristic curve diagram showing an example of a relationship between a wavelength of a detection target gas and transmittance.

【符号の説明】[Explanation of symbols]

1 レーザ光線発生部 2 被検知空間 3 光検知器 4 光切換器 5 切換スイッチ 6 制御装置 10 差周波発生用非線形光学結晶 11、12 レーザ光源 11a、12a 光ファイバー 11b、12b 光アイソレーター 15 光合波器 20 透孔 21、22 凹面鏡 24 反射鏡 31〜3n レーザ・ダイオード素子 DESCRIPTION OF SYMBOLS 1 Laser beam generation part 2 Detected space 3 Photodetector 4 Optical switch 5 Changeover switch 6 Controller 10 Nonlinear optical crystal for difference frequency generation 11, 12 Laser light source 11a, 12a Optical fiber 11b, 12b Optical isolator 15 Optical multiplexer 20 Through holes 21, 22 Concave mirror 24 Reflector 31-3n Laser diode element

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G059 AA01 BB01 CC20 DD12 EE01 FF06 FF10 GG01 GG02 GG03 GG09 HH01 HH06 HH08 JJ02 JJ05 JJ11 JJ14 JJ17 JJ30 KK01 NN05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G059 AA01 BB01 CC20 DD12 EE01 FF06 FF10 GG01 GG02 GG03 GG09 HH01 HH06 HH08 JJ02 JJ05 JJ11 JJ14 JJ17 JJ30 KK01 NN05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の波長域にスペクトル線を有する第
1レーザ光線と、上記第1の波長域より短波長あるいは
長波長にスペクトル線を有する第2レーザ光線とをアイ
ソレーターおよび光ファイバーを介して導光し、光合波
器により合波した後、差周波発生用非線形光学結晶によ
り中赤外線領域(2〜9μm)で狭帯域レーザ光線を発生
させ、該狭帯域レーザ光線の微量ガス成分による吸収に
基づいて微量ガス成分を検出し定量する赤外線レーザ成
分検出装置。
1. A first laser beam having a spectral line in a first wavelength range and a second laser beam having a spectral line in a shorter or longer wavelength than the first wavelength range via an isolator and an optical fiber. After the light is guided and multiplexed by an optical multiplexer, a narrow band laser beam is generated in the mid-infrared region (2 to 9 μm) by a nonlinear optical crystal for generating a difference frequency, and the narrow band laser beam is absorbed by a trace gas component. Infrared laser component detection device that detects and quantifies trace gas components based on it.
【請求項2】 第2のレーザ光線の波長を外部制御装置
によって波長を変化させ、検出すべき微量ガス成分の吸
収波長に同調させて、成分検出と定量をする請求項1に
記載の赤外線レーザ成分検出装置。
2. The infrared laser according to claim 1, wherein the wavelength of the second laser beam is changed by an external control device so as to be tuned to the absorption wavelength of the trace gas component to be detected, and the component is detected and quantified. Component detection device.
JP2000105513A 2000-04-06 2000-04-06 Infrared laser component detector Pending JP2001289785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000105513A JP2001289785A (en) 2000-04-06 2000-04-06 Infrared laser component detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000105513A JP2001289785A (en) 2000-04-06 2000-04-06 Infrared laser component detector

Publications (1)

Publication Number Publication Date
JP2001289785A true JP2001289785A (en) 2001-10-19

Family

ID=18618843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000105513A Pending JP2001289785A (en) 2000-04-06 2000-04-06 Infrared laser component detector

Country Status (1)

Country Link
JP (1) JP2001289785A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031320A1 (en) * 2003-09-26 2005-04-07 The Kitasato Gakuen Foundation Variable-wavelength light generator and light interference tomograph
JP2006300760A (en) * 2005-04-21 2006-11-02 Tokai Univ Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various gas media
JP2009527775A (en) * 2006-02-17 2009-07-30 ザ ユーエービー リサーチ ファウンデーション Intermediate IR laser instrument for analyzing gas samples and method of use thereof
JP2009222527A (en) * 2008-03-14 2009-10-01 Mitsubishi Heavy Ind Ltd Gas concentration measuring method and apparatus
JP2012108156A (en) * 2012-02-29 2012-06-07 Mitsubishi Heavy Ind Ltd Gas concentration measurement method and device
JP2015002683A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Microalgae or metabolite concentration deciding method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232536A (en) * 1986-04-02 1987-10-13 Japan Electronic Ind Dev Assoc<Jeida> Signal processing system
JPH0545279A (en) * 1991-08-19 1993-02-23 Tokyo Gas Co Ltd Gas sensing device
JPH08240528A (en) * 1995-03-02 1996-09-17 Masanao Morimura Laser spectroscopic analyzer
JPH08338805A (en) * 1995-06-12 1996-12-24 Tokyo Electric Power Co Inc:The Method and apparatus for measuring concentration of gas
JPH09326521A (en) * 1996-06-06 1997-12-16 Mitsui Petrochem Ind Ltd Differential cyclic light generating device and infrared ray absorption and analyzing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232536A (en) * 1986-04-02 1987-10-13 Japan Electronic Ind Dev Assoc<Jeida> Signal processing system
JPH0545279A (en) * 1991-08-19 1993-02-23 Tokyo Gas Co Ltd Gas sensing device
JPH08240528A (en) * 1995-03-02 1996-09-17 Masanao Morimura Laser spectroscopic analyzer
JPH08338805A (en) * 1995-06-12 1996-12-24 Tokyo Electric Power Co Inc:The Method and apparatus for measuring concentration of gas
JPH09326521A (en) * 1996-06-06 1997-12-16 Mitsui Petrochem Ind Ltd Differential cyclic light generating device and infrared ray absorption and analyzing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031320A1 (en) * 2003-09-26 2005-04-07 The Kitasato Gakuen Foundation Variable-wavelength light generator and light interference tomograph
US7564565B2 (en) 2003-09-26 2009-07-21 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device
US7732784B2 (en) 2003-09-26 2010-06-08 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device
JP2006300760A (en) * 2005-04-21 2006-11-02 Tokai Univ Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various gas media
JP4588520B2 (en) * 2005-04-21 2010-12-01 学校法人東海大学 Gas medium analyzing apparatus and gas medium analyzing method for simultaneously detecting various kinds of gas medium
JP2009527775A (en) * 2006-02-17 2009-07-30 ザ ユーエービー リサーチ ファウンデーション Intermediate IR laser instrument for analyzing gas samples and method of use thereof
JP2009222527A (en) * 2008-03-14 2009-10-01 Mitsubishi Heavy Ind Ltd Gas concentration measuring method and apparatus
JP2012108156A (en) * 2012-02-29 2012-06-07 Mitsubishi Heavy Ind Ltd Gas concentration measurement method and device
JP2015002683A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Microalgae or metabolite concentration deciding method and system

Similar Documents

Publication Publication Date Title
US11378514B2 (en) Optical absorption spectroscopy based gas analyzer systems and methods
Dobryakov et al. Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing
CN108007901B (en) A kind of method and apparatus detecting multicomponent trace gas concentration
US5039855A (en) Dual beam acousto-optic tunable spectrometer
CN108279209A (en) A kind of more gas detecting systems of wave-length coverage and wavelength continuously adjustable
He et al. Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy
US5600444A (en) Detecting analyte light absorption utilizing degenerate four wave mixing
CN109580541A (en) A kind of optical heterodyne cavity ring-down spectroscopy measuring device and method
Yang et al. A method of reducing background fluctuation in tunable diode laser absorption spectroscopy
JP2001289785A (en) Infrared laser component detector
Whittaker et al. A DFG-based cavity ring-down spectrometer for trace gas sensing in the mid-infrared
Song et al. Broadband background-free vibrational spectroscopy using a mode-locked Cr: ZnS laser
KR20180072585A (en) Transmitting and receiving system for optical remote measurement device
JP2008134076A (en) Gas analyzer
CN103779784A (en) Semiconductor laser unit for measuring Raman spectra
CN209117581U (en) A kind of combination Raman spectrum analysis system
CN1484014A (en) Method for simutaneously measuring two kinds of gases by using one diode-laser device
Bojęś et al. Dual-band light-induced thermoelastic spectroscopy utilizing an antiresonant hollow-core fiber-based gas absorption cell
CN114235700B (en) Multi-component gas concentration detection device and method
JP4331102B2 (en) Thermal lens spectrometer
RU1795737C (en) Laser gas analyzer to meter hydrogen fluoride content in gaseous environment
Sadiek et al. Two species–one wavelength detection based on selective optical saturation spectroscopy
JP3440273B2 (en) Nonlinear susceptibility spectrum measuring method and device
CN117269111A (en) Optical cavity ring-down spectroscopy system based on dual-optical-path PDH mode locking technology
CN116124289A (en) Terahertz frequency meter with wide-range and dense graduation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209