JP2001289151A - Structure of blade of large windmill - Google Patents

Structure of blade of large windmill

Info

Publication number
JP2001289151A
JP2001289151A JP2000142563A JP2000142563A JP2001289151A JP 2001289151 A JP2001289151 A JP 2001289151A JP 2000142563 A JP2000142563 A JP 2000142563A JP 2000142563 A JP2000142563 A JP 2000142563A JP 2001289151 A JP2001289151 A JP 2001289151A
Authority
JP
Japan
Prior art keywords
blade
wing
outer periphery
lightweight
tip part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000142563A
Other languages
Japanese (ja)
Inventor
Kanichi Ito
寛一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000142563A priority Critical patent/JP2001289151A/en
Publication of JP2001289151A publication Critical patent/JP2001289151A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems that it is impossible to thin the blade made of a lightweight material of low rigidity, such as a fiber-glass reinforced plastic or the like used as a material of the blade of a large windmill, which causes the noise by the vortex produced near a tip part of an outer periphery of a blade, particularly at a high speed, and the flattering phenomenon, the vibrational fault and the impairing of the performance by the deflection and torsion of the blade. SOLUTION: The tip part of the outer periphery of the blade is made of a metallic material having high elastic modulus and high specific gravity such as stainless steel, and connected to a blade mounting member at a hub side by means of a tension rod of lightweight and high strength such as carbon fiber. By applying this constitution, a thickness of the tip part of the outer periphery of the blade can be remarkably reduced, whereby not only the noise caused by the vortex can be reduced, but also the deflection and the torsion of the blade can be recovered as the blade is radially pulled by the weight effect (centrifugal force) of the metallic material, and the flattering phenomenon, the vibrational fault or the like caused by the turbulence of the wind can be prevented effectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、風車の大型化を
容易にするような翼の構造に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wing structure that facilitates upsizing of a wind turbine.

【0002】[0002]

【従来の技術】一般に発電設備の単位出力当りの建設費
や発電単価は大型化するほど安くなるが、大型化を阻む
因子の一つは翼の騒音及び撓みや捩れであった。即ち、
エネルギー密度の小さい風力を利用する宿命で大型風車
の直径は巨大となるため、従来の翼はガラス繊維強化プ
ラスチック(以下GFRPと称す)などの軽量材料で作
られていた。しかしこれら軽量材料の剛性(弾性率)は
鉄鋼などに比べて著しく小さく、例えばGFRPの弾性
率は鉄鋼の10分の1以下であり、翼厚を余り薄くでき
ないので、特に速度の大きい翼の外周先端部付近では翼
の腹部や後縁に生ずる渦から発生する騒音が大きくな
る。これらの渦音を弱くするために翼の出入口端を先細
りにしようとすると、翼自身が振動して騒音を発する恐
れがある。
2. Description of the Related Art Generally, the construction cost per unit output of a power generation facility and the unit cost of power generation become lower as the size of the generator increases, but one of the factors preventing the increase in size is noise, deflection and torsion of the blades. That is,
Since the diameter of a large wind turbine is enormous due to the fate of using wind power with a low energy density, the conventional wing has been made of a lightweight material such as glass fiber reinforced plastic (hereinafter referred to as GFRP). However, the rigidity (elastic modulus) of these lightweight materials is significantly lower than that of steel or the like. For example, the elastic modulus of GFRP is less than one-tenth that of steel, and the blade thickness cannot be made very thin. In the vicinity of the tip, noise generated from vortices generated at the abdomen and trailing edge of the wing increases. If the entrance and exit ends of the wing are tapered to reduce these vortex sounds, the wing itself may vibrate and generate noise.

【0003】又、翼の付根付近には風圧による過大な曲
げモーメントがかかるのみならず、翼外周先端部の撓み
が大きくなり且つ捩れも大きいので、風の乱れで翼のフ
ラッタ現象などの振動障害を起し易く、そのうえ翼の捩
れで迎え角が設計値と変化すれば当然性能の低下をきた
すことになる。
Further, not only an excessive bending moment due to wind pressure is applied to the vicinity of the root of the wing, but also the deflection at the tip of the outer periphery of the wing becomes large and the torsion is large. If the angle of attack changes from the design value due to the twisting of the wing, the performance naturally declines.

【0004】[0004]

【発明が解決しようとする課題】以上に鑑み本発明は大
型風車において、翼の腹部や後縁に生ずる渦の発生を抑
えると共に翼自身の振動騒音を防止すること、ならびに
翼先端の撓みや捩れを可及的に少なくすることによって
風の乱れによるフラッタ現象などの振動障害を防ぎ且つ
翼の撓みや捩れに基ずく迎え角の変化を抑えて性能低下
を防ぐことを目的としている。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to suppress the generation of vortices on the abdomen and trailing edge of a wing and to prevent the vibration noise of the wing itself in a large wind turbine, and to warp or twist the wing tip. It is an object of the present invention to prevent vibration disturbance such as a flutter phenomenon due to wind turbulence by suppressing as much as possible, and to suppress a change in an angle of attack based on deflection or torsion of a wing, thereby preventing performance degradation.

【0005】[0005]

【課題を解決するための手段】この発明は、風車の大型
化に伴う上記の諸問題が翼材料の剛性に基因している点
に着目してなされたもので、請求項1に記載の発明は、
GFRPなどの軽量材料で製造される風車翼において、
翼外周先端部をステンレス鋼などの高弾性率高比重の金
属材料で構築したことを特徴とする、大型風車の翼の構
造である。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the fact that the above-mentioned problems associated with an increase in the size of a windmill are caused by the rigidity of the wing material. Is
In windmill blades made of lightweight materials such as GFRP,
A blade structure for a large wind turbine, characterized in that a blade outer peripheral tip is constructed of a metal material having a high elastic modulus and a high specific gravity such as stainless steel.

【0006】また請求項2に記載の発明は、請求項1に
記載の発明において、翼外周先端部をカーボン繊維など
の軽量高強度のテンションロッドでハブ側の翼取付部材
に連結したこを特徴とする、大型風車の翼の構造であ
る。
According to a second aspect of the present invention, in the first aspect of the invention, the tip of the outer periphery of the wing is connected to the wing mounting member on the hub side by a lightweight and high-strength tension rod such as carbon fiber. This is the structure of the wing of a large wind turbine.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施形態例を図面
に基ずいて説明する。図1は本発明の構成と原理を示す
説明図、図2は本発明の要部すなわち翼外周先端部付近
を示す斜視説明図、図3は図1及び図2の視矢Pから見
た説明図、図4は図2のQ−Q断面の説明図、図5は厚
肉翼出口のカルマン渦の説明図、である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing the structure and principle of the present invention, FIG. 2 is a perspective explanatory view showing a main part of the present invention, that is, the vicinity of a tip of a blade outer periphery, and FIG. FIG. 4 is an explanatory view of a QQ section of FIG. 2, and FIG. 5 is an explanatory view of a Karman vortex at the outlet of the thick wing.

【0008】本発明の風車の翼は図1、2、3、4に示
すように、従来と同一材料すなわちGFRP等の軽量材
料で作った翼本体部1と、ステンレス鋼のような高弾性
率高比重の金属材料で作った翼外周先端部2とを接着し
て構築するが、翼外周先端部2はカーボン繊維のような
軽量高強度の材料で作ったテンションロッド4でハブ3
側の翼取付部材と連結すると共に該テンションロッド4
は翼本体部1と一体化成型することにより、回転時に生
ずる翼外周先端部2の遠心力を翼本体部1とテンション
ロッド4との合張力で受ける構成になっている。なお、
図中ハブ3側の翼詳細は記載省略してある。
As shown in FIGS. 1, 2, 3, and 4, the blade of the wind turbine according to the present invention has a blade body 1 made of the same material as the conventional one, that is, a lightweight material such as GFRP, and a high elastic modulus such as stainless steel. The wing outer peripheral tip 2 made of a metal material having a high specific gravity is bonded to the wing outer peripheral tip 2. The wing outer peripheral tip 2 is formed by a tension rod 4 made of a lightweight and high-strength material such as carbon fiber.
And the tension rod 4
Is formed integrally with the wing body 1 to receive the centrifugal force of the wing outer peripheral tip 2 generated during rotation by the combined tension between the wing body 1 and the tension rod 4. In addition,
In the figure, details of the wing on the hub 3 side are omitted.

【0009】以上の構成で、翼外周先端部2の重心Gと
ハブ中心からの距離をR,増加重量をm,重力の加速度
をgとし、回転速度Nrpmにおける翼外周先端部2の
増加遠心力Fと増加重力の比を求めると、F/mg=R
(πN/30)/gとなるので、公知例の2つの大型
風車の諸元を導入してこの比を概算すると、下記の値が
得られる。 1,000kWの場合:R=約27メートル、N=21
rpm, ∴F/mg=13.3 1,500kWの場合:R=約31メートル、N=1
7.3rpm,∴F/mg=10.4 即ち、増加遠心力は増加重力より一桁大きくなるので、
翼外周先端部2の増加質量の影響は重力を無視してほぼ
遠心力のみを考慮すればよいことが判る。
With the above configuration, the distance from the center of gravity G of the blade outer peripheral tip 2 to the center of the hub is R, the increased weight is m, the acceleration of gravity is g, and the increased centrifugal force of the blade outer peripheral tip 2 at the rotation speed Nrpm. When the ratio of F to the increasing gravity is obtained, F / mg = R
(ΠN / 30) 2 / g, the following values can be obtained by introducing the specifications of two large wind turbines of the known example and estimating this ratio. In the case of 1,000 kW: R = about 27 meters, N = 21
rpm, ΔF / mg = 13.3 For 1,500 kW: R = about 31 meters, N = 1
7.3 rpm, ΔF / mg = 10.4 That is, since the increased centrifugal force is one digit larger than the increased gravity,
It can be seen that the effect of the increased mass of the blade outer peripheral tip 2 can be ignored by substantially considering only the centrifugal force ignoring gravity.

【0010】一方、従来の大型風車では翼の剛性が小さ
いので、風力で発生する翼の捩りトルクTにより翼の迎
え角Θが変化して性能に影響するのみならず、風の乱れ
で生ずる捩りトルクTの変動によって翼のフラッタ現象
などの振動障害を起し易い。又、運転中の風力による翼
の撓みdは極めて大きく、公知資料によれば直径56メ
ートルの翼の外周端の撓みは定格風速時では約1.5メ
ートルに達するが、この撓みは同時に迎え角Θにも影響
を及ぼす。
On the other hand, in conventional large wind turbines, the stiffness of the blades is small, so that not only does the angle of attack Θ of the blades change due to the torsional torque T of the blades generated by wind power, but also the performance is affected, and the torsion generated by the turbulence of the wind is also increased. Fluctuations in the torque T tend to cause vibration disturbances such as blade flutter. The deflection d of the wing due to the wind force during operation is extremely large, and according to publicly known data, the deflection of the outer peripheral end of the wing having a diameter of 56 m reaches about 1.5 m at the rated wind speed. It also affects Θ.

【0011】しかしながら前記のように本発明の構成に
よれば、翼外周先端部2の金属(ステンレス鋼)の比重
はGFRPの約5倍もあり、この増加質量に基ずいて運
転中には大きな遠心力Fを生ずるため、この遠心力によ
って翼本体部1は半径方向に引張られるので、M=Fd
の曲げモーメントが風力の曲げモーメントと逆に作用し
て翼本体部1の付根付近の曲げ応力を緩和すると同時
に、翼外周先端部2の撓みdや捩りトルクTによる捩れ
を回復する作用をもたらす。その結果、翼の撓みや捩れ
に起因するフラッタ現象などの振動障害や、迎え角の変
動による性能低下などを防ぐ効果が得られる。
However, as described above, according to the configuration of the present invention, the specific gravity of the metal (stainless steel) at the outer peripheral tip portion 2 of the blade is about five times that of GFRP. Since the centrifugal force F is generated, the centrifugal force pulls the blade body 1 in the radial direction, so that M = Fd
The bending moment acts in reverse to the bending moment of the wind force to alleviate the bending stress in the vicinity of the root of the blade main body 1 and at the same time restore the torsion due to the bending d of the blade outer peripheral tip 2 and the torsional torque T. As a result, it is possible to obtain an effect of preventing a vibration obstacle such as a flutter phenomenon caused by the deflection or torsion of the wing, a performance decrease due to a change in the angle of attack, and the like.

【0012】次に、従来の風車翼は剛性が小さいので図
3の一点鎖線で示すような厚肉翼1’にする必要があ
り、このため翼の腹部や後縁にはそれぞれ境界層の剥離
に起因する腹部の渦7や後縁の渦8が発生したり、また
図5に示すように厚肉翼1’の出口端にはカルマン渦9
が発生し易く、それぞれが大型風車の弱点である騒音の
原因になっていた。これらの渦を防止するために翼入口
端5や翼出口端6を先細りにしようとすると、柔軟な翼
自体が振動して笛音を発生する恐れがあった。
Next, since the conventional wind turbine blade has low rigidity, it is necessary to use a thick-walled blade 1 'as shown by a dashed line in FIG. A vortex 7 in the abdomen and a vortex 8 on the trailing edge caused by the turbulence, and a Karman vortex 9 at the exit end of the thick wing 1 'as shown in FIG.
Were easily generated, each of which was a source of noise, which is a weak point of large wind turbines. If the wing inlet end 5 and the wing outlet end 6 are tapered to prevent these vortices, the flexible wing itself may vibrate and generate whistle noise.

【0013】本発明によれば、翼外周先端部2を例えば
ステンレス鋼にした場合、剛性(弾性率)は従来のGF
RPより一桁以上大きくなる。したがって、最も騒音障
害を発生し易い翼外周先端部2の翼厚を図3に例示する
ように大幅に減らすことができ、また翼の入口端5や出
口端6を先細りにすることが容易となるので、騒音を有
効に防止することができる。なお、翼外周先端部2の形
状は図2、4に示すようにコ型に形成して、入口端5と
出口端6の先細り部分の範囲を必要に応じて増やすとよ
い。
According to the present invention, when the blade outer peripheral tip portion 2 is made of, for example, stainless steel, the rigidity (elastic modulus) is equal to that of the conventional GF.
One or more digits larger than RP. Therefore, the blade thickness of the blade outer peripheral tip 2 where noise is most likely to be generated can be greatly reduced as illustrated in FIG. 3, and it is easy to taper the inlet end 5 and the outlet end 6 of the blade. Therefore, noise can be effectively prevented. The shape of the blade outer peripheral tip 2 may be formed in a U-shape as shown in FIGS. 2 and 4, and the range of the tapered portion of the inlet end 5 and the outlet end 6 may be increased as necessary.

【0014】[0014]

【発明の効果】以上の説明で明らかなように本発明によ
れば、大型風車における高速の翼外周先端部付近に生ず
る渦や翼自身の振動に起因する騒音を低減すると共に、
翼の撓みや捩れを少なくして風の乱れによるフラッタ現
象などの振動障害を防ぎ且つ翼の迎え角の変化を抑えて
性能低下を防止するなどの諸効果があり、風車の大型化
が容易になるので大型化に伴う単位出力当りの建設費や
発電単価の低減に貢献できる。
As is apparent from the above description, according to the present invention, it is possible to reduce the noise caused by the vortex generated near the tip of the outer periphery of the high-speed blade in a large wind turbine and the vibration of the blade itself.
There are various effects such as reducing the deflection and torsion of the wing to prevent vibration disturbance such as flutter phenomenon due to wind turbulence, and to suppress the change in the angle of attack of the wing to prevent performance degradation, making it easy to increase the size of the windmill Therefore, it is possible to contribute to the reduction of the construction cost per unit output and the unit cost of power generation due to the increase in size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成と原理を示す説明図である。FIG. 1 is an explanatory diagram showing the configuration and principle of the present invention.

【図2】本発明の要部すなわち翼外周先端部付近を示す
斜視説明図である。
FIG. 2 is a perspective explanatory view showing a main part of the present invention, that is, a vicinity of a blade outer peripheral tip portion;

【図3】図1および図2の視矢Pから見た説明図であ
る。
FIG. 3 is an explanatory diagram viewed from a viewing arrow P in FIGS. 1 and 2;

【図4】図2のQ−Q断面の説明図である。FIG. 4 is an explanatory diagram of a QQ cross section of FIG. 2;

【図5】厚肉翼出口のカルマン渦の説明図である。FIG. 5 is an explanatory diagram of a Karman vortex at the outlet of a thick wing.

【符号の説明】[Explanation of symbols]

1 翼本体部 1’厚肉翼 2 翼外周先端部 3 ハブ 4 テンションロッド 5 翼入口端 6 翼出口端 7 腹部の渦 8 後縁の渦 9 カルマン渦 REFERENCE SIGNS LIST 1 blade main body 1 ′ thick wing 2 blade outer peripheral tip 3 hub 4 tension rod 5 blade inlet end 6 blade outlet end 7 abdominal vortex 8 trailing edge vortex 9 Karman vortex

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維強化プラスチックなどの軽量
材料で製造される風車翼において、翼外周先端部をステ
ンレス鋼などの高弾性率高比重の金属材料で構築したこ
とを特徴とする、大型風車の翼の構造。
1. A wind turbine blade made of a lightweight material such as glass fiber reinforced plastic, wherein the tip of the outer periphery of the blade is constructed of a metal material having a high elastic modulus and a high specific gravity such as stainless steel. Wing structure.
【請求項2】 翼外周先端部をカーボン繊維などの軽量
高強度のテンションロッドでハブ側の翼取付部材に連結
したことを特徴とする、請求項1に記載の大型風車の翼
の構造。
2. The wing structure of a large wind turbine according to claim 1, wherein the wing outer peripheral tip is connected to a hub-side wing mounting member by a lightweight high-strength tension rod made of carbon fiber or the like.
JP2000142563A 2000-04-06 2000-04-06 Structure of blade of large windmill Pending JP2001289151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142563A JP2001289151A (en) 2000-04-06 2000-04-06 Structure of blade of large windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142563A JP2001289151A (en) 2000-04-06 2000-04-06 Structure of blade of large windmill

Publications (1)

Publication Number Publication Date
JP2001289151A true JP2001289151A (en) 2001-10-19

Family

ID=18649500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142563A Pending JP2001289151A (en) 2000-04-06 2000-04-06 Structure of blade of large windmill

Country Status (1)

Country Link
JP (1) JP2001289151A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389262C (en) * 2004-12-20 2008-05-21 李锋 Lightweight wing panels of wind energy power plant in vertical shaft
CN101936251A (en) * 2009-03-31 2011-01-05 通用电气公司 The remodeling sleeve that is used for wind turbine blade
TWI553221B (en) * 2011-12-06 2016-10-11 亞瑞華風力公司 Assembly for fixing a rotor blade of a wind energy plant
CN115855461A (en) * 2022-11-18 2023-03-28 中节能风力发电股份有限公司 System and method for abnormal noise of fan blade of wind turbine generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389262C (en) * 2004-12-20 2008-05-21 李锋 Lightweight wing panels of wind energy power plant in vertical shaft
CN101936251A (en) * 2009-03-31 2011-01-05 通用电气公司 The remodeling sleeve that is used for wind turbine blade
TWI553221B (en) * 2011-12-06 2016-10-11 亞瑞華風力公司 Assembly for fixing a rotor blade of a wind energy plant
CN115855461A (en) * 2022-11-18 2023-03-28 中节能风力发电股份有限公司 System and method for abnormal noise of fan blade of wind turbine generator
CN115855461B (en) * 2022-11-18 2023-09-05 中节能风力发电股份有限公司 Wind turbine generator fan blade noise abnormity system and method

Similar Documents

Publication Publication Date Title
JP3451085B1 (en) Windmill for wind power generation
US4083651A (en) Wind turbine with automatic pitch and yaw control
US8550786B2 (en) Vertical axis wind turbine with self-starting capabilities
EP2997263B1 (en) Axial fan
US20050249579A1 (en) Wind power generator
Reupke et al. Slatted-blade Savonius wind-rotors
JP4939252B2 (en) Wind hydraulic generator
WO2001038697A1 (en) A single or multi-bladed rotor
WO2008113349A2 (en) Slow rotating wind turbine rotor with slender blades
JP2015031227A (en) Wind mill
JP6979205B2 (en) Propeller, propeller design method, propeller design method program and information storage medium
JP3935804B2 (en) Wing and wind power generator provided with the same
JP2001289151A (en) Structure of blade of large windmill
KR100816851B1 (en) Turbine blade for wind power generation
JP2000310179A (en) Rotor for horizontal axis windmill
US20230175473A1 (en) Turbine with secondary rotors
CN212868015U (en) Blade of fan
JP2019105213A (en) Rotor
JP5147555B2 (en) Windmill
US1463556A (en) Aeronautical propeller
JP2007016661A (en) Once-through type windmill
JP3077092U (en) Large windmill wing structure
WO2002064974A1 (en) Wind power generating device
JP2004183531A (en) Wind receiving blade for vertical axis wind turbine
JPH05505438A (en) centrifugal blower