JP2001280594A - Storage facility in bedrock, method of execution of work and leakage detection method - Google Patents

Storage facility in bedrock, method of execution of work and leakage detection method

Info

Publication number
JP2001280594A
JP2001280594A JP2000095297A JP2000095297A JP2001280594A JP 2001280594 A JP2001280594 A JP 2001280594A JP 2000095297 A JP2000095297 A JP 2000095297A JP 2000095297 A JP2000095297 A JP 2000095297A JP 2001280594 A JP2001280594 A JP 2001280594A
Authority
JP
Japan
Prior art keywords
storage facility
gas
rock
leak detection
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000095297A
Other languages
Japanese (ja)
Inventor
Makoto Nemoto
誠 根本
Kentaro Kimoto
憲太郎 木本
Hajime Okino
肇 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2000095297A priority Critical patent/JP2001280594A/en
Publication of JP2001280594A publication Critical patent/JP2001280594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve safety by surely implementing detection of a leakage from a hermetic material for stored gas. SOLUTION: In a storage facility, a bedrock a gas leakage detection space 4 composed of an insulation material 5 and a hermetical keeping plate 6 is formed at the outside part of a hermetical material. The space 4 is arranged vertically and horizontally along a hermetic member welding part 21 and is connected to a plurality of collection pipes 17 connected to a gas detector 18, as well as a gas collecting chamber 19 at a ground part 11 at a top part of a facility 1. Before storing natural gas 10, a detection liquid for ammonia gas leak test is applied to the hermetical material welding part 21 from the inside of the hermetical material 3. At a bottom of the facility 1, a gas inlet tube 27 is layed, and ammonia gas is filled in the space 4. When ammonia gas leaks from the hermatic material 3, the color of the detection liquid applied to the hermetical material welding part 21 changes from yellow to blue, to thereby specify a leakage part of the hermetic material welding part 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、岩盤内に高圧気体
を貯蔵する岩盤内貯蔵施設、その施工方法および気密材
の漏洩検査方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-rock storage facility for storing high-pressure gas in a rock, a construction method thereof, and a method of inspecting a hermetic material for leakage.

【0002】[0002]

【従来の技術】従来、天然ガス等の高圧気体を貯蔵する
岩盤内貯蔵施設では、気密材(容器体)によって気密性
を保持することが検討されている。
2. Description of the Related Art Conventionally, in a storage facility in a rock where high-pressure gas such as natural gas is stored, it has been studied to maintain airtightness by an airtight material (container).

【0003】そして、貯蔵されている高圧気体が裏込め
コンクリート側に漏洩した場合、漏気捕集管で捕集する
ことが考えられる。図6は、このような岩盤内貯蔵施設
101の部分断面図である。図6に示すように、掘削形
成した岩盤109の壁面には、掘削による凹凸を均すた
めに吹き付けコンクリート108を吹き付ける。吹き付
けコンクリート108の内側に、鉄筋または無筋の裏込
めコンクリート107を施工する。裏込めコンクリート
107内に、漏洩した気体を捕集する漏気捕集管106
を設ける。裏込めコンクリート107の内側には、絶縁
材105、気密材103を設ける。
If the stored high-pressure gas leaks to the backfill concrete side, it is conceivable that the high-pressure gas is collected by an air leak collecting pipe. FIG. 6 is a partial sectional view of such a storage facility 101 in rock. As shown in FIG. 6, a blown concrete 108 is sprayed on the wall surface of the rock mass 109 formed by excavation in order to smooth out unevenness due to excavation. Inside the sprayed concrete 108, a backing concrete 107 having a reinforcing steel bar or a flat steel bar is constructed. Leakage collecting tube 106 for collecting leaked gas in backfill concrete 107
Is provided. An insulating material 105 and an airtight material 103 are provided inside the backfill concrete 107.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、岩盤内
貯蔵施設101では、何らかの原因で気密材103に亀
裂等の貫通欠陥が発生し、貯蔵されている高圧気体が裏
込めコンクリート107側に漏洩した場合、漏気捕集管
106で捕集するが、100%の捕集は必ずしも確実で
はない。また、微量の漏洩では検知できない恐れがあ
る。
However, in the storage facility 101 in the bedrock, when a penetration defect such as a crack occurs in the hermetic material 103 for some reason, and the stored high-pressure gas leaks to the backfill concrete 107 side. The air is collected by the air leak collecting tube 106, but 100% collection is not always reliable. In addition, there is a possibility that a small amount of leakage cannot be detected.

【0005】また、多数の気密材103を溶接するの
で、溶接部の漏洩の検査を行いたいという要望がある。
[0005] Further, since a large number of hermetic members 103 are welded, there is a demand for inspecting leakage of a welded portion.

【0006】本発明はこのような問題に鑑みてなされた
もので、その目的とするところは、貯蔵気体の気密材か
らの漏洩検知を確実に実施し、安全性の高い岩盤内貯蔵
施設、その施工方法および漏洩検査方法を提供すること
にある。
The present invention has been made in view of such a problem, and an object of the present invention is to securely detect a leak of a stored gas from an airtight material, and to provide a highly safe storage facility in a rock. An object of the present invention is to provide a construction method and a leakage inspection method.

【0007】[0007]

【課題を解決するための手段】前述した目的を達成する
ために第1の発明は、岩盤内に形成された空洞内に設け
られる岩盤内貯蔵施設であって、前記岩盤内貯蔵施設の
容器体自体に漏洩検知用空間を設けることを特徴とする
岩盤内貯蔵施設。
According to a first aspect of the present invention, there is provided a rock storage facility provided in a cavity formed in a rock, wherein the container body of the rock storage facility is provided. A storage facility in rock mass, which has a leak detection space in itself.

【0008】また、第2の発明は、岩盤内に形成された
空洞内に設けられる岩盤内貯蔵施設であって、壁面が気
密材と、該気密材の外側に設けられる絶縁材とで構成さ
れ、前記壁面と前記空洞との間には裏込めコンクリート
を設けられ、前記絶縁材に漏洩検知用空間が設けられる
ことを特徴とする岩盤内貯蔵施設である。
[0008] A second invention is a storage facility in a rock mass provided in a cavity formed in the rock mass, wherein the wall surface is composed of an airtight material and an insulating material provided outside the airtight material. A backfill storage facility, wherein backfill concrete is provided between the wall surface and the cavity, and a leak detection space is provided in the insulating material.

【0009】また、第3の発明は、岩盤内に形成された
空洞内に設けられる岩盤内貯蔵施設の施工方法であっ
て、気密材と、該気密材の外側に設けられる絶縁材とで
構成される壁面を設け、前記絶縁材には漏洩検知用空間
が設けられており、前記絶縁材と前記空洞との間に裏込
めコンクリートを設けることを特徴とする岩盤内貯蔵施
設の施工方法である。
A third aspect of the present invention is a method for constructing a storage facility in a rock mass provided in a cavity formed in a rock mass, comprising a hermetic material and an insulating material provided outside the hermetic material. A method for constructing a storage facility in a rock mass, characterized in that a wall surface to be provided is provided, a leak detection space is provided in the insulating material, and backfill concrete is provided between the insulating material and the cavity. .

【0010】また、第4の発明は、請求項2記載の岩盤
内貯蔵施設の漏洩検査方法であって、前記気密材内側に
検知液を塗り、前記漏洩検知用空間にアンモニアガスを
満たし、前記アンモニアガスが前記気密材から漏洩する
と、前記検知液が変色することにより漏洩を検査するこ
とを特徴とする岩盤内貯蔵施設の漏洩検査方法である。
In a fourth aspect of the present invention, there is provided a method for inspecting leakage of a storage facility in a bedrock according to claim 2, wherein a detection liquid is applied to the inside of the airtight material, and the leak detection space is filled with ammonia gas. When the ammonia gas leaks from the hermetic material, the detection liquid is discolored and the leakage is inspected.

【0011】また、第5の発明は、請求項2記載の岩盤
内貯蔵施設の漏洩検査方法であって、前記岩盤内貯蔵施
設内部にガスを貯蔵した場合、前記漏洩検知用空間を介
して地上部に漏洩するガスを検知することを特徴とする
岩盤内貯蔵施設の漏洩検査方法である。
According to a fifth aspect of the present invention, there is provided a method for inspecting leakage of a storage facility in a rock mass according to claim 2, wherein when gas is stored inside the storage facility in a rock mass, the ground is detected via the leak detection space. This is a method for inspecting a leak in a storage facility in a rock mass, which detects a gas leaking to a part.

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて本発明の本
実施の形態を詳細に説明する。図1は、本実施の形態に
係る岩盤内貯蔵施設1および周囲施設の断面図である。
図2は、岩盤内貯蔵施設1の概略構成を示す断面斜視図
である。岩盤内貯蔵施設1は、天然ガス等の気体を高圧
で岩盤内に貯蔵することを目的とした施設である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a storage facility 1 in a rock mass and surrounding facilities according to the present embodiment.
FIG. 2 is a sectional perspective view showing a schematic configuration of the storage facility 1 in the rock. The in-bed storage facility 1 is a facility for storing a gas such as natural gas at high pressure in a bed.

【0013】図1に示すように、岩盤内貯蔵施設1は、
岩盤9に岩盤内空洞2を掘削形成し、岩盤内空洞2内に
薄肉鋼製の気密材(容器体)3を設け、この気密材3の
周囲に絶縁材5を設け、更に岩盤9との間に裏込めコン
クリート7を設けた構造である。
[0013] As shown in FIG.
A cavity 2 in the bedrock is excavated and formed in the bedrock 9, an airtight material (container body) 3 made of thin steel is provided in the cavity 2 in the bedrock, an insulating material 5 is provided around the airtight material 3, and This is a structure in which backfill concrete 7 is provided therebetween.

【0014】岩盤内空洞2の掘削のために、地上部11
と岩盤内貯蔵施設1間にアクセストンネル13が設けら
れ、アクセストンネル13の先端と岩盤内貯蔵施設1と
の間に、プラグ12が設けられる。地上部11には、天
然ガス等の貯蔵気体を圧縮する圧縮機15が設けられ、
圧縮機15は、パイプ14を介して岩盤内貯蔵施設1と
連結される。また、圧縮機15には天然ガス等の貯蔵気
体が流れる都市ガス導管16が設けられる。
For excavating the cavity 2 in the bedrock,
An access tunnel 13 is provided between the storage facility 1 in the bedrock and the plug 12 is provided between the tip of the access tunnel 13 and the storage facility 1 in the bedrock. A compressor 15 for compressing a stored gas such as natural gas is provided in the above-ground unit 11.
The compressor 15 is connected to the storage facility 1 in bedrock through a pipe 14. The compressor 15 is provided with a city gas conduit 16 through which a stored gas such as natural gas flows.

【0015】岩盤内貯蔵施設1の頭頂部には集気管17
が設けられ、地上部11に、ガス捕集室19が設けられ
る。岩盤内貯蔵施設1とガス捕集室19との間は、集気
管17を介して連結される。また、地上部の集気管17
の先端に、気密材3の漏洩検査に用いられる漏洩気体を
検知するガス検知器18が設けられる。
At the top of the storage facility 1 in the bedrock, an air collecting pipe 17 is provided.
Is provided, and a gas collecting chamber 19 is provided on the ground portion 11. The storage facility 1 in the bedrock and the gas collecting chamber 19 are connected via an air collecting pipe 17. In addition, the air collecting pipe 17 above the ground
A gas detector 18 for detecting a leaked gas used for a leak inspection of the airtight material 3 is provided at a tip of the gas sensor 18.

【0016】図2に示すように、岩盤内貯蔵施設1の形
状は、円筒形の下部と半球形の上部とを有するいわゆる
サイロ型である。岩盤内貯蔵施設1内には、天然ガス1
0等の高圧気体を貯蔵する。岩盤内貯蔵施設1内に貯蔵
される天然ガス10の最高使用圧力は、一例として70
気圧〜250気圧程度である。尚、岩盤内貯蔵施設1
は、トンネル型等、他の形状でもよい。
As shown in FIG. 2, the storage facility 1 in the bedrock is of a so-called silo type having a cylindrical lower part and a hemispherical upper part. In the storage facility 1 in rock, natural gas 1
Store high pressure gas such as 0. The maximum working pressure of the natural gas 10 stored in the rock storage facility 1 is, for example, 70
Atmospheric pressure to about 250 atm. In addition, storage facility 1 in bedrock
May have another shape such as a tunnel type.

【0017】次に、岩盤内貯蔵施設1の構造及び施工方
法について詳しく説明する。図3は、岩盤内貯蔵施設1
の断面図である。図4は、岩盤内貯蔵施設1の部分断面
図である。図3、図4に示すように、岩盤9内を掘削
し、岩盤内空洞2を構築する。そして、掘削形成した岩
盤9の壁面に、支保工として吹き付けコンクリート8を
設ける。
Next, the structure and construction method of the storage facility 1 in rock will be described in detail. Fig. 3 shows the storage facility 1
FIG. FIG. 4 is a partial sectional view of the storage facility 1 in the rock. As shown in FIGS. 3 and 4, the inside of the bedrock 9 is excavated to construct the cavity 2 in the bedrock. Then, sprayed concrete 8 is provided as a support on the wall surface of the excavated rock mass 9.

【0018】吹き付けコンクリート8の内側で、気密材
3の位置の内側に型枠等を設け、気密材3を設ける。気
密材3の材質は、気密性を保つ薄肉鋼板である。気密材
3の外側に絶縁材5を設ける。絶縁材5は、気密材3に
歪を発生させる可能性のあるせん断力の伝播を阻止する
可変形の柔軟な材料である。絶縁材5には、ポリエチレ
ン、テフロン(登録商標)等の材質を用いる。
A mold or the like is provided inside the sprayed concrete 8 inside the position of the airtight material 3 to provide the airtight material 3. The material of the airtight material 3 is a thin steel plate that maintains airtightness. An insulating material 5 is provided outside the airtight material 3. The insulating material 5 is a deformable and flexible material that prevents the propagation of a shear force that may cause distortion in the airtight material 3. The insulating material 5 is made of a material such as polyethylene and Teflon (registered trademark).

【0019】気密材3外側に配置する絶縁材5は、気密
材3溶接時に熱影響を受けない位置を解析・実験等で決
定し、気密材3背面に工場で仮止めした状態で現地に搬
入する。
The insulating material 5 placed outside the hermetic material 3 is determined by analysis and experiment at a position that is not affected by heat during welding of the hermetic material 3, and is transported to the site in a state where it is temporarily fixed at the back of the hermetic material 3 at a factory. I do.

【0020】気密材3および絶縁材5は薄肉板状であ
り、隣接する絶縁材5の間には空間が設けられている。
図4に示すように、気密材3は多数の薄肉鋼鈑を溶接し
たものである。すなわち、現地で気密材3を気密材溶接
部21で溶接する。
The airtight material 3 and the insulating material 5 are in the form of a thin plate, and a space is provided between adjacent insulating materials 5.
As shown in FIG. 4, the airtight material 3 is obtained by welding a large number of thin steel plates. That is, the hermetic material 3 is welded on-site at the hermetic material welding portion 21.

【0021】気密材3を型枠代わりとして、吹き付けコ
ンクリート8と絶縁材5との間に裏込めコンクリート7
を設ける。裏込めコンクリート7は、鉄筋又は無筋コン
クリートである。気密材3の外側に、気密材溶接部21
に沿ってガス漏洩検知用空間4を設ける。
The airtight material 3 is used as a formwork instead of the backfill concrete 7 between the sprayed concrete 8 and the insulating material 5.
Is provided. The backfill concrete 7 is a reinforcing steel or a plain concrete. On the outside of the airtight material 3, an airtight material weld 21
A gas leak detection space 4 is provided along the line.

【0022】すなわち、前述したように隣接する絶縁材
5間には空間が設けられ、更に、この空間の後方に気密
保持板6が設けられる。気密保持板6は、気密性を確保
するものであり、気密保持板6の材質は、気密材3と同
様の鋼鈑や浸透性のないポリエチレンシート等である。
従って、気密材溶接部21、絶縁材5、気密保持板6と
でガス漏洩検知用空間4が形成される。
That is, as described above, a space is provided between adjacent insulating members 5, and an airtight holding plate 6 is provided behind this space. The airtight holding plate 6 secures airtightness, and the material of the airtight holding plate 6 is a steel plate similar to the airtight material 3 or a polyethylene sheet having no permeability.
Therefore, the gas leak detection space 4 is formed by the hermetic material welding portion 21, the insulating material 5, and the hermetic holding plate 6.

【0023】ガス漏洩検知用空間4は、気密材3の漏洩
検査に用いる。尚、気密材3表面に貯蔵気体による内圧
が負荷されるとガス漏洩検知用空間4方向に曲げられる
ため、気密材3に曲げ応力が発生するので、設計に際し
て、これを解析、実験により評価しておく。
The gas leak detection space 4 is used for a leak inspection of the airtight material 3. When the internal pressure due to the stored gas is applied to the surface of the airtight material 3, the airtight material 3 is bent in the direction of the gas leak detection space 4, so that a bending stress is generated in the airtight material 3. Keep it.

【0024】尚、吹き付けコンクリート8を施工した
後、絶縁材5の位置に型枠等を設け、裏込めコンクリー
ト7、絶縁材5、気密材3を設けるようにしてもよい。
After the sprayed concrete 8 has been applied, a formwork or the like may be provided at the position of the insulating material 5, and the backfill concrete 7, the insulating material 5, and the airtight material 3 may be provided.

【0025】図5は、気密材3の配置を示す図である。
図5に示すように、ガス漏洩検知用空間4は、気密材溶
接部21に沿って縦横に配置され、岩盤内貯蔵施設1の
頭頂部で地上部11のガス捕集室19と連結している複
数の集気管17に接続されている。このように岩盤内貯
蔵施設1は、気密材3の外側に、絶縁材5と気密保持板
6とで構成するガス漏洩検知用空間4が形成される。
FIG. 5 is a view showing the arrangement of the airtight material 3.
As shown in FIG. 5, the gas leak detection space 4 is arranged vertically and horizontally along the airtight material welded portion 21, and is connected to the gas collecting chamber 19 of the ground portion 11 at the top of the storage facility 1 in the rock. Connected to a plurality of air collection tubes 17. As described above, in the storage facility 1 in the rock, the gas leak detection space 4 including the insulating material 5 and the airtight holding plate 6 is formed outside the airtight material 3.

【0026】かかる岩盤内貯蔵施設1では、岩盤内貯蔵
施設1が完成した後、天然ガス10を貯蔵する前に、ガ
ス漏洩検知用空間4をアンモニアリーク試験用のアンモ
ニアガス通路として用いて、アンモニアリーク試験によ
る気密材3の漏洩検査を行う。
In the storage facility 1 in the bedrock, after the storage facility 1 in the bedrock is completed and before the natural gas 10 is stored, the gas leak detection space 4 is used as an ammonia gas passage for an ammonia leak test, and A leak test of the airtight material 3 is performed by a leak test.

【0027】次に、ガス漏洩検知用空間4をアンモニア
リーク試験用のアンモニアガス通路として用いた気密材
3のアンモニアリーク試験よる漏洩検査方法について詳
しく説明する。
Next, a detailed description will be given of a leak inspection method by an ammonia leak test of the airtight material 3 using the gas leak detection space 4 as an ammonia gas passage for an ammonia leak test.

【0028】図4および図5に示される岩盤内貯蔵施設
1で、天然ガス10を貯蔵する前に、気密材溶接部21
に気密材3内側からアンモニアリーク試験用の検知液を
塗る。次に、岩盤内貯蔵施設1の底部にガス導入用チュ
ーブ27を配置してガス漏洩検知用空間4にアンモニア
ガスを挿入する。アンモニアガスが前記気密材3から漏
洩すると、気密材溶接部21に塗った検知液が、黄色か
ら青色に変色し、気密材溶接部21の漏洩個所を特定す
る。このようなアンモニアガスによる漏洩検知方法はL
NG地下式タンク等において既に用いられている方法で
ある。
Before the natural gas 10 is stored in the storage facility 1 in the bedrock shown in FIG. 4 and FIG.
A detection liquid for an ammonia leak test is applied from the inside of the airtight material 3. Next, a gas introduction tube 27 is arranged at the bottom of the storage facility 1 in the rock, and ammonia gas is inserted into the gas leak detection space 4. When the ammonia gas leaks from the hermetic seal 3, the detection liquid applied to the hermetic seal weld 21 changes its color from yellow to blue, and specifies the leak location of the hermetic seal weld 21. Such a leak detection method using ammonia gas is described in L
This method is already used in NG underground tanks and the like.

【0029】この場合、ガス漏洩検知用空間4の通路を
ブロック化することにより、ブロック23−2内のみを
アンモニアガスが導通するようにして、このブロック2
3−2のみの漏洩検査を行うようにしてもよい。そし
て、同様に別のブロック23−1の漏洩検査を行う。ま
た、底面においても漏洩検知を行う。
In this case, by blocking the passage of the gas leak detection space 4, the ammonia gas is conducted only in the block 23-2.
The leakage inspection of only 3-2 may be performed. Then, similarly, a leak inspection of another block 23-1 is performed. Also, leakage detection is performed on the bottom surface.

【0030】このように岩盤内貯蔵施設1は、気密材3
の外側に、絶縁材5と気密保持板6とで構成するガス漏
洩検知用空間4を設け、天然ガス10の貯蔵前に、この
ガス漏洩検知用空間4をアンモニアリーク試験用のアン
モニアガス通路として用いて、気密材3の漏洩検査であ
るアンモニアリーク試験を行うことができる。
As described above, the storage facility 1 in the bedrock is provided with the airtight material 3
A gas leak detection space 4 composed of an insulating material 5 and an airtightness retaining plate 6 is provided outside of the space, and before storing the natural gas 10, the gas leak detection space 4 is used as an ammonia gas passage for an ammonia leak test. Using this, an ammonia leak test, which is a leak test of the airtight material 3, can be performed.

【0031】また、岩盤内貯蔵施設1では、実際に稼動
した後、即ち天然ガス10を貯蔵中、気密材3からの漏
洩があると、ガス漏洩検知用空間4から集気管17を介
して地上部のガス検知器18により貯蔵気体である天然
ガス10を検知することにより、天然ガスの気密材3か
らの漏洩検知を行うことができる。
In the storage facility 1 in the bedrock, if there is a leak from the airtight material 3 after the actual operation, that is, while the natural gas 10 is being stored, the gas leak detecting space 4 is connected to the ground via the collecting pipe 17. By detecting the natural gas 10 as the stored gas by the gas detector 18 of the section, it is possible to detect the leak of the natural gas from the airtight material 3.

【0032】次に、天然ガス10の気密材3からの漏洩
検知を行う漏洩検査方法について詳しく説明する。図5
に示すように、ガス漏洩検知用空間4は、気密材溶接部
21に沿って縦横に配置され、岩盤内貯蔵施設1の頭頂
部で地上部のガス捕集室19と連結している複数の集気
管17に接続されている。また、図1に示すように、地
上部の集気管17の先端に、貯蔵気体を検知するガス検
知器18が設けられる。
Next, a leakage inspection method for detecting leakage of the natural gas 10 from the airtight material 3 will be described in detail. FIG.
As shown in the figure, a plurality of gas leak detection spaces 4 are arranged vertically and horizontally along the hermetic material welded portion 21 and connected to the gas collecting chamber 19 at the top of the rock storage facility 1 at the top. It is connected to the air collecting pipe 17. Further, as shown in FIG. 1, a gas detector 18 for detecting a stored gas is provided at a tip of an air collecting pipe 17 on the ground.

【0033】天然ガス10を貯蔵する場合、貯蔵岩盤内
貯蔵施設1の底部のガス導入用チューブ27からガス漏
洩検知用空間4に窒素ガスが挿入され、ガス漏洩検知用
空間4は窒素ガスで満たされる。ガス漏洩検知用空間4
は、複数のブロック23−1、23−2、…に分けるこ
とも可能である。各ブロック23毎に集気管17が接続
され、ガス検知器18が設けられた構造となっている。
When natural gas 10 is stored, nitrogen gas is inserted into gas leak detection space 4 from gas introduction tube 27 at the bottom of storage facility 1 in storage rock, and gas leak detection space 4 is filled with nitrogen gas. It is. Gas leak detection space 4
Can be divided into a plurality of blocks 23-1, 23-2,.... The air collecting pipe 17 is connected to each block 23, and the gas detector 18 is provided.

【0034】天然ガス10貯蔵中、天然ガス10が気密
材溶接部21等からガス漏洩検知用空間4に漏洩する
と、ガス漏洩検知用空間4内の窒素ガス圧力は貯蔵気体
圧力に比べて非常に低いので、天然ガス10は、集気管
17を介して上昇し、ガス検知器18により、ガスが検
知される。これにより、あるガス検知器18に対応する
ブロック23で、漏洩していることがわかる。
If the natural gas 10 leaks into the gas leak detection space 4 from the hermetic material welding portion 21 or the like during storage of the natural gas 10, the nitrogen gas pressure in the gas leak detection space 4 is much higher than the stored gas pressure. Since it is low, the natural gas 10 rises through the air collecting pipe 17, and the gas is detected by the gas detector 18. Thus, it can be seen that the gas leaks at the block 23 corresponding to a certain gas detector 18.

【0035】このように、気密材3の外側に、絶縁材5
と気密保持板6とで構成するガス漏洩検知用空間4を設
け、天然ガス10貯蔵中、ガス漏洩検知用空間4を複数
のブロック23−1、23−2、…に分け、ガス漏洩検
知用空間4から集気管17を介して接続される地上部の
ガス検知器18により天然ガス10を検知することによ
り、漏洩を検知することができ、安全性がより向上す
る。
As described above, the insulating material 5 is provided outside the airtight material 3.
And a gas leak detection space 4 comprising a gas tightness holding plate 6 and, during storage of natural gas 10, divide the gas leak detection space 4 into a plurality of blocks 23-1, 23-2,. By detecting the natural gas 10 with the above-mentioned gas detector 18 connected from the space 4 via the air collecting pipe 17, a leak can be detected, and safety is further improved.

【0036】[0036]

【発明の効果】以上、詳細に説明したように本発明によ
れば、貯蔵気体の気密材からの漏洩検知を確実に実施
し、安全性の高い岩盤内貯蔵施設、その施工方法および
漏洩検査方法を提供することができる。
As described above in detail, according to the present invention, it is possible to reliably detect leakage of a stored gas from an airtight material, and to provide a highly safe storage facility in a rock, its construction method, and a leakage inspection method. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施の形態に係る岩盤内貯蔵施設1および
周囲施設の断面図
FIG. 1 is a cross-sectional view of a rock storage facility 1 and surrounding facilities according to the present embodiment.

【図2】 岩盤内貯蔵施設1の概略構成を示す断面斜視
FIG. 2 is a cross-sectional perspective view showing a schematic configuration of a storage facility 1 in bedrock.

【図3】 岩盤内貯蔵施設1の断面図FIG. 3 is a cross-sectional view of the storage facility 1 in bedrock.

【図4】 岩盤内貯蔵施設1の部分断面図FIG. 4 is a partial sectional view of the storage facility 1 in the bedrock.

【図5】 気密材3の配置を示す図FIG. 5 is a view showing the arrangement of the airtight material 3;

【図6】 従来の岩盤内貯蔵施設101の部分断面図FIG. 6 is a partial cross-sectional view of a conventional storage facility 101 in bedrock.

【符号の説明】[Explanation of symbols]

1………岩盤内貯蔵施設 2………岩盤内空洞 3………気密材(容器体) 4………ガス漏洩検知用空間 5………絶縁材 6………気密保持板 7………裏込めコンクリート 8………吹き付けコンクリート 9………岩盤 10………天然ガス 11………地上部 13………アクセストンネル 14………パイプ 15………圧縮機 16………都市ガス導管 17………集気管 18………ガス検知器 19………ガス捕集室 21………気密材溶接部 23………ブロック DESCRIPTION OF SYMBOLS 1 ... Storage facility in rock 2 ... Cavity in rock 3 ... Sealing material (container body) 4 ... Space for gas leak detection 5 ... Insulating material 6 ... Sealing plate 7 ... … Backfill concrete 8… sprayed concrete 9… rock bed 10… natural gas 11… above ground 13… access tunnel 14… pipes 15… compressor 16… city gas Conduit 17 Air collecting pipe 18 Gas detector 19 Gas collecting chamber 21 Airtight material welded part 23 Block

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖野 肇 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 2D047 AB02 2D055 AA10 3E072 AA10 GA30  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hajime Okino 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd. F term (reference) 2D047 AB02 2D055 AA10 3E072 AA10 GA30

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 岩盤内に形成された空洞内に設けられる
岩盤内貯蔵施設であって、 前記岩盤内貯蔵施設の容器体自体に漏洩検知用空間を設
けることを特徴とする岩盤内貯蔵施設。
1. A storage facility in a rock which is provided in a cavity formed in the rock, wherein a leak detection space is provided in a container itself of the storage facility in the rock.
【請求項2】 岩盤内に形成された空洞内に設けられる
岩盤内貯蔵施設であって、 壁面が気密材と、該気密材の外側に設けられる絶縁材と
で構成され、 前記壁面と前記空洞との間には裏込めコンクリートを設
けられ、 前記絶縁材に漏洩検知用空間が設けられることを特徴と
する岩盤内貯蔵施設。
2. A storage facility in a rock mass provided in a cavity formed in a rock mass, wherein the wall surface is composed of an airtight material and an insulating material provided outside the airtight material, wherein the wall surface and the cavity are provided. A backfilling concrete is provided between the storage material and a space for leakage detection is provided in the insulating material.
【請求項3】 前記気密材は溶接されたものであり、溶
接部に沿って前記漏洩検知用空間が設けられることを特
徴とする請求項2記載の岩盤内貯蔵施設。
3. The storage facility according to claim 2, wherein the airtight material is welded, and the leak detection space is provided along a welded portion.
【請求項4】 前記裏込めコンクリートの前記漏洩検知
用空間に接する部分には気密保持板が設けられることを
特徴とする請求項2記載の岩盤内貯蔵施設。
4. The storage facility according to claim 2, wherein an airtight holding plate is provided at a portion of the backfill concrete in contact with the leak detection space.
【請求項5】 前記漏洩検知用空間は、地上部に通ずる
集気管に接続することを特徴とする請求項2記載の岩盤
内貯蔵施設。
5. The storage facility according to claim 2, wherein the leak detection space is connected to an air collecting pipe leading to a ground portion.
【請求項6】 前記気密保持板は、剛性が高く浸透性の
ないものであることを特徴とする請求項4記載の岩盤内
貯蔵施設。
6. The storage facility in a bedrock according to claim 4, wherein the airtightness maintaining plate has high rigidity and does not have permeability.
【請求項7】 前記気密保持板は、鋼製やポリエンチレ
ンシートであることを特徴とする請求項4記載の岩盤内
貯蔵施設。
7. The storage facility in a rock mass according to claim 4, wherein said airtight holding plate is made of steel or a polyethylene sheet.
【請求項8】 前記気密材は、薄肉鋼製であることを特
徴とする請求項2記載の岩盤内貯蔵施設。
8. The storage facility according to claim 2, wherein the airtight material is made of thin steel.
【請求項9】 岩盤内に形成された空洞内に設けられる
岩盤内貯蔵施設の施工方法であって、 気密材と、該気密材の外側に設けられる絶縁材とで構成
される壁面を設け、 前記絶縁材には漏洩検知用空間が設けられており、 前記絶縁材と前記空洞との間に裏込めコンクリートを設
けることを特徴とする岩盤内貯蔵施設の施工方法
9. A method for constructing a storage facility in a rock mass provided in a cavity formed in a rock mass, comprising: providing a wall surface comprising an airtight material and an insulating material provided outside the airtight material; A space for leak detection is provided in the insulating material, and a backfill concrete is provided between the insulating material and the cavity.
【請求項10】 請求項2記載の岩盤内貯蔵施設の漏洩
検査方法であって、 前記気密材内側に検知液を塗り、 前記漏洩検知用空間にアンモニアガスを満たし、 前記アンモニアガスが前記気密材から漏洩すると、前記
検知液が変色することにより漏洩を検査することを特徴
とする岩盤内貯蔵施設の漏洩検査方法。
10. The leak inspection method for a storage facility in a bedrock according to claim 2, wherein a detection liquid is applied to the inside of the hermetic material, the leak detection space is filled with ammonia gas, and the ammonia gas is filled with the hermetic material. A leak detection method for a storage facility in a bedrock, wherein the detection liquid is discolored when leaked from the tank.
【請求項11】 請求項2記載の岩盤内貯蔵施設の漏洩
検査方法であって、 前記岩盤内貯蔵施設内部にガスを貯蔵した場合、前記漏
洩検知用空間を介して地上部に漏洩するガスを検知する
ことを特徴とする岩盤内貯蔵施設の漏洩検査方法。
11. The leak inspection method for a storage facility in a rock mass according to claim 2, wherein when gas is stored inside the storage facility in a rock mass, the gas leaking to the ground portion through the leak detection space. A leak inspection method for a storage facility in a rock mass, characterized by detecting.
【請求項12】 漏洩検知用空間をブロック化して漏洩
検査を行うことを特徴とする請求項10または請求項1
1記載の岩盤内貯蔵施設の漏洩検査方法。
12. The leakage inspection according to claim 10, wherein a leakage detection space is blocked and leakage inspection is performed.
1. The method for leak inspection of a storage facility in rock according to 1.
【請求項13】 前記漏洩検知用空間には、予め低圧の
ガスを挿入しておくことを特徴とする請求項11記載の
岩盤内貯蔵施設の漏洩検査方法。
13. The method according to claim 11, wherein a low-pressure gas is inserted in the leak detection space in advance.
【請求項14】 前記低圧のガスは、窒素ガスであるこ
とを特徴とする請求項13記載の岩盤内貯蔵施設の漏洩
検査方法。
14. The method according to claim 13, wherein the low-pressure gas is nitrogen gas.
JP2000095297A 2000-03-29 2000-03-29 Storage facility in bedrock, method of execution of work and leakage detection method Pending JP2001280594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095297A JP2001280594A (en) 2000-03-29 2000-03-29 Storage facility in bedrock, method of execution of work and leakage detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095297A JP2001280594A (en) 2000-03-29 2000-03-29 Storage facility in bedrock, method of execution of work and leakage detection method

Publications (1)

Publication Number Publication Date
JP2001280594A true JP2001280594A (en) 2001-10-10

Family

ID=18610218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095297A Pending JP2001280594A (en) 2000-03-29 2000-03-29 Storage facility in bedrock, method of execution of work and leakage detection method

Country Status (1)

Country Link
JP (1) JP2001280594A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347478A (en) * 2003-05-22 2004-12-09 Tokyo Gas Co Ltd Leakage inspection method and leakage inspection apparatus
JP2011137652A (en) * 2009-12-25 2011-07-14 Enviro Tech International Inc Method for inspecting breakage of underground buried object
KR101058163B1 (en) * 2008-09-17 2011-08-22 한국과학기술원 Welding defect detection system and detection method of liquefied natural gas storage tank
CN103987898A (en) * 2011-10-07 2014-08-13 D·A·诺尔特有限公司 Fluid containment and management system
CN113447210A (en) * 2021-06-02 2021-09-28 安徽金星钛白(集团)有限公司 Dense titanium liquid preheating tank coil pipe weeping detection device
CN113685716A (en) * 2021-07-15 2021-11-23 靳开远 Air leakage self-display type pressure container

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347478A (en) * 2003-05-22 2004-12-09 Tokyo Gas Co Ltd Leakage inspection method and leakage inspection apparatus
KR101058163B1 (en) * 2008-09-17 2011-08-22 한국과학기술원 Welding defect detection system and detection method of liquefied natural gas storage tank
JP2011137652A (en) * 2009-12-25 2011-07-14 Enviro Tech International Inc Method for inspecting breakage of underground buried object
CN103987898A (en) * 2011-10-07 2014-08-13 D·A·诺尔特有限公司 Fluid containment and management system
CN103987898B (en) * 2011-10-07 2015-12-09 D·A·诺尔特有限公司 Fluid containment administrating system
CN113447210A (en) * 2021-06-02 2021-09-28 安徽金星钛白(集团)有限公司 Dense titanium liquid preheating tank coil pipe weeping detection device
CN113447210B (en) * 2021-06-02 2024-04-19 安徽金星钛白(集团)有限公司 Concentrated titanium liquid preheating tank coil pipe weeping detection device
CN113685716A (en) * 2021-07-15 2021-11-23 靳开远 Air leakage self-display type pressure container

Similar Documents

Publication Publication Date Title
US4110947A (en) Storage tank installation
JP6650348B2 (en) Underground diaphragm wall construction method, underground diaphragm wall
JP2001280594A (en) Storage facility in bedrock, method of execution of work and leakage detection method
JPH10300620A (en) Leak detector for lining tank
CN116840062A (en) Method for evaluating safety of gas storage in lining karst cave based on physical model test
CN110258516A (en) A kind of detection of underground continuous wall groove segment seam crossing percolating water and prosthetic appliance and method
CN114183147B (en) Tunnel environment simulation model and method
JPS5921814A (en) Friction cutting method and mortar sealing device for on-site test pile
CN112431184A (en) Device and method for embedding and installing soil pressure cell through drilling and grouting
JP4403530B2 (en) Open inspection method for high pressure gas storage facility and high pressure gas storage facility
JPH05157653A (en) Welded part airtight test structure
JP3125502B2 (en) Sealing test method for rubber seams
JP4588151B2 (en) Drainage and leak detection method for bedrock storage facilities
JP3864355B2 (en) Leakage detection method in high pressure storage facilities in bedrock
JP3013912B2 (en) Double tank leak detection device
US20230288025A1 (en) Method and Process for Storing Liquid and Gaseous Fluids Under Pressure in a Vertical Subsurface Vessel
JP3469211B2 (en) Membrane tank and ammonia leak test method
CN220982590U (en) Negative pressure detection device for battery tightness
CN213773424U (en) Self-water-stop steel pipe pile foundation pit supporting earth retaining component
JP2003054720A (en) Leak position inspection method for high pressure gas storage facility and high pressure gas storage facility
CN107100173A (en) A kind of construction method reinforced to heat supply pipeline and threeway
JP5041212B2 (en) Low temperature liquefied gas storage facility in rock, its construction method and leakage inspection method
JP4394804B2 (en) Construction method of underground continuous impermeable walls
JPH02310440A (en) Detection of leaking point of buried piping
JP2948742B2 (en) Leak prevention method for underground storage tanks