JP2001277260A - Micro-lens array, its production method, and original board and display for producing it - Google Patents

Micro-lens array, its production method, and original board and display for producing it

Info

Publication number
JP2001277260A
JP2001277260A JP2000095427A JP2000095427A JP2001277260A JP 2001277260 A JP2001277260 A JP 2001277260A JP 2000095427 A JP2000095427 A JP 2000095427A JP 2000095427 A JP2000095427 A JP 2000095427A JP 2001277260 A JP2001277260 A JP 2001277260A
Authority
JP
Japan
Prior art keywords
lens array
master
transmitting layer
manufacturing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000095427A
Other languages
Japanese (ja)
Inventor
Atsushi Takakuwa
敦司 高桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000095427A priority Critical patent/JP2001277260A/en
Publication of JP2001277260A publication Critical patent/JP2001277260A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00298Producing lens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00307Producing lens wafers

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Liquid Crystal (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro-lens array, a method for producing the array stably in a good yield, and an original board and a display for the production of the array. SOLUTION: A process (B) in which a substrate is adhered to the original board having at least one lens array forming area and a flat area formed on the periphery of the lens array forming area on one surface through a light transmittable layer precursor, and the lens array forming area is transferred/ formed to/in the precursor and a process (C) in which the precursor is cured are included, and grooves or recessed parts are formed on a surface facing the flat area of the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロレンズア
レイ、その製造方法及びその製造用原盤並びに表示装置
に関する。
The present invention relates to a microlens array, a method for manufacturing the same, a master for manufacturing the same, and a display device.

【0002】[0002]

【従来の技術】液晶表示パネル等に使用されるマイクロ
レンズアレイの製造方法として、特開平3−19800
3号公報及び特開平5−303009号公報に開示され
る方法が知られている。これらによれば、多数の凸レン
ズに対応する多数の凹部が形成された原盤に樹脂を滴下
し、樹脂を硬化させて光透過性層を形成し、原盤を剥離
することで、凹部が転写された凸レンズを有するマイク
ロレンズアレイを製造することができる。なお、特開平
5−303009号公報には、金属板をエッチングして
原盤を作製することが記載されている。
2. Description of the Related Art As a method of manufacturing a microlens array used for a liquid crystal display panel or the like, Japanese Patent Application Laid-Open No. HEI 3-19800 is disclosed.
The method disclosed in Japanese Patent Application Laid-open No. 3 and Japanese Patent Application Laid-Open No. 5-303,093 is known. According to these, the resin was dropped on a master on which a number of concave portions corresponding to a number of convex lenses were formed, the resin was cured to form a light-transmitting layer, and the master was peeled off, whereby the concave portions were transferred. A microlens array having convex lenses can be manufactured. Japanese Patent Laid-Open No. 5-303,093 discloses that a metal plate is etched to form a master.

【0003】[0003]

【発明が解決しようとする課題】従来の製造方法では、
原盤と基板を貼り合わせた後に、樹脂が端部よりはみ出
し、欠陥の原因となり、歩留りを低下させる、または、
はみ出した樹脂の除去などの後処理に手間がかかるとい
う課題があった。本発明は、このような問題点を解決す
るもので、その目的は、安定に、かつ、歩留りの高いマ
イクロレンズアレイ、その製造方法及びその製造用原盤
並びに表示装置を提供することにある。
SUMMARY OF THE INVENTION In the conventional manufacturing method,
After laminating the master and the substrate, the resin protrudes from the edges, causing defects and reducing the yield, or
There is a problem in that post-processing such as removal of the protruding resin is troublesome. An object of the present invention is to solve such a problem, and an object of the present invention is to provide a microlens array that is stable and has a high yield, a method of manufacturing the same, a master for manufacturing the same, and a display device.

【0004】[0004]

【課題を解決するための手段】(1)本発明に係るマイ
クロレンズアレイの製造方法は、少なくとも1つのレン
ズアレイ形成領域と、前記レンズアレイ形成領域の周囲
に形成された平坦領域と、を1つの面に有する原盤に光
透過性層前駆体を介して基板を密着させ、前記レンズア
レイ形成領域を前記光透過性層前駆体に転写形成する工
程と、前記光透過性層前駆体を硬化させる工程と、を含
み、前記基板の前記平坦領域に対向する面に溝または凹
部を形成しておくことを特徴とする。
(1) In a method of manufacturing a microlens array according to the present invention, at least one lens array forming region and a flat region formed around the lens array forming region are formed in one. A step of bringing a substrate into close contact with a master having two surfaces via a light-transmitting layer precursor, transferring and forming the lens array formation region to the light-transmitting layer precursor, and curing the light-transmitting layer precursor A groove or a concave portion is formed in a surface of the substrate facing the flat region.

【0005】(2)(1)のマイクロレンズアレイの製
造方法において、前記溝または凹部を前記基板の端部と
前記レンズアレイ形成領域の間に形成してもよい。
(2) In the microlens array manufacturing method of (1), the groove or the concave portion may be formed between an end of the substrate and the lens array forming region.

【0006】(3)(1)このマイクロレンズアレイの
製造方法において、前記溝または凹部を機械加工により
形成することができる。
(3) (1) In the method of manufacturing a microlens array, the groove or the concave portion can be formed by machining.

【0007】(4)(1)のマイクロレンズアレイの製
造方法において、前記溝または凹部をドライエッチン
グ、または、ウエットエッチングにより形成してもよ
い。
(4) In the method of manufacturing a microlens array of (1), the groove or the concave portion may be formed by dry etching or wet etching.

【0008】(5)(1)のマイクロレンズアレイの製
造方法において、前記溝または凹部をFIB(集束イオ
ンビーム)加工、または、レーザ加工により形成しても
よい。
(5) In the method of manufacturing a microlens array of (1), the groove or the concave portion may be formed by FIB (focused ion beam) processing or laser processing.

【0009】(6)本発明のマイクロレンズアレイ製造
用原盤は、少なくとも1つのレンズアレイ形成領域と、
前記レンズアレイ形成領域の周囲に形成された平坦領域
と、を1つの面に有し、前記平坦領域内に凸部が形成さ
れていることを特徴とする。
(6) The microlens array manufacturing master of the present invention comprises at least one lens array forming region,
And a flat region formed around the lens array forming region on one surface, and a convex portion is formed in the flat region.

【0010】(7)(6)のマイクロレンズアレイ製造
用原盤において、前記凸部を前記原盤の端部と前記レン
ズアレイ形成領域の間に形成しておいてもよい。
(7) In the master for manufacturing a microlens array according to (6), the convex portion may be formed between an end of the master and the lens array forming region.

【0011】(8)また、本発明のマイクロレンズアレ
イの製造方法は、少なくとも1つのレンズアレイ形成領
域と、前記レンズアレイ形成領域の周囲に形成された平
坦領域と、を1つの面に有する原盤に光透過性層前駆体
を介して基板を密着させ、前記レンズアレイ形成領域を
前記光透過性層前駆体に転写形成する工程と、前記光透
過性層前駆体を硬化させる工程と、を含み、前記平坦領
域内に凸部を形成しておくことを特徴とする。
(8) A method of manufacturing a microlens array according to the present invention, wherein the master having at least one lens array forming region and a flat region formed around the lens array forming region on one surface. A step of bringing the substrate into close contact with the light-transmitting layer precursor through the light-transmitting layer precursor, transferring the lens array formation region to the light-transmitting layer precursor, and curing the light-transmitting layer precursor. The method is characterized in that a convex portion is formed in the flat region.

【0012】(9)(8)のマイクロレンズアレイの製
造方法において、前記凸部を前記原盤の端部と前記レン
ズアレイ形成領域の間に形成してもよい。
(9) In the method of manufacturing a microlens array according to (8), the projection may be formed between an end of the master and the lens array formation region.

【0013】(10)本発明に係るマイクロレンズアレ
イは、上記(1)乃至(5)、(8)、(9)のいずれ
かの方法により製造されたものである。
(10) The microlens array according to the present invention is manufactured by any one of the above methods (1) to (5), (8) and (9).

【0014】(11)本発明に係る表示装置は、上記
(10)のマイクロレンズアレイを有することを特徴と
する。
(11) A display device according to the present invention includes the microlens array according to (10).

【0015】[0015]

【発明の実施の形態】以下、本発明の好適な実施の形態
について図面を参照にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0016】(マイクロレンズアレイ製造用原盤)図1
は、本実施の形態で使用する原盤の平面図である。原盤
10は、円盤状又は矩形の基材から形成することができ
る。原盤10は、少なくとも1つ(多くの場合複数)の
マイクロレンズアレイを一度に形成するものである。原
盤10の1つの面には、個々のマイクロレンズアレイに
対応する少なくとも1つ(多くの場合複数)のレンズア
レイ形成領域12が形成されている。各レンズアレイ形
成領域12の周囲には、平坦領域18が形成されてい
る。平坦領域18は、複数のレンズアレイ形成領域12
が間隔をあけて形成されたときの、隣同士のレンズアレ
イ形成領域12の間の領域も含む。各レンズアレイ形成
領域12には、複数の凹部16が形成されている。例え
ば、複数行複数列で、マトリクス状に複数の凹部16が
形成されている。凹部16は、マイクロレンズアレイの
個々の凸レンズに対応した形状をなしている。
(Master for Manufacturing Microlens Array) FIG. 1
1 is a plan view of a master used in the present embodiment. The master 10 can be formed from a disk-shaped or rectangular base material. The master 10 forms at least one (in many cases, a plurality of) microlens arrays at a time. On one surface of the master 10, at least one (in many cases, a plurality of) lens array forming regions 12 corresponding to individual microlens arrays are formed. A flat region 18 is formed around each lens array formation region 12. The flat region 18 includes a plurality of lens array formation regions 12.
Are formed at intervals, the area between adjacent lens array forming areas 12 is also included. A plurality of concave portions 16 are formed in each lens array forming region 12. For example, a plurality of recesses 16 are formed in a matrix in a plurality of rows and a plurality of columns. The concave portion 16 has a shape corresponding to each convex lens of the microlens array.

【0017】(原盤の製造方法)図2は、本実施の形態
で使用する原盤の製造工程を示す図である。まず、図2
(A)に示すように、基材20上にレジスト層22を形
成する。基材20は、原盤10に加工されるものであ
る。基材20をエッチングして、凹部16を形成する。
そのため、基材20は、エッチング可能な材料であれば
特に限定されるものではないが、シリコン又は石英は、
エッチングにより高精度の凹部16の形成が容易である
ため、好適である。レジスト層22を形成する物質とし
ては、例えば、半導体デバイス製造において一般的に用
いられている、クレゾールノボラック系樹脂に感光剤と
してジアゾナフトキノン誘導体を配合した市販のポジ型
のレジストをそのまま利用できる。ここで、ポジ型のレ
ジストとは、所定のパターンに応じて放射線に暴露する
ことにより、放射線によって暴露された領域が現像液に
より選択的に除去可能となる物質のことである。レジス
ト層22を形成する方法としては、スピンコート法、デ
ィッピング法、スプレーコート法、ロールコート法、バ
ーコート法等の方法を用いることが可能である。次に、
図2(B)に示すように、マスク24をレジスト層22
の上方に配置し、マスク24を介してレジスト層22の
所定領域のみを放射線26によって暴露する。マスク2
4は、図1に示す凹部16の形成に必要とされる領域に
おいてのみ、放射線26が透過するようにパターン形成
されたものである。放射線26としては波長200nm
〜500nmの領域の光を用いることが好ましい。この
波長領域の光の利用は、液晶パネルの製造プロセス等で
確立されているフォトリソグラフィの技術及びそれに利
用されている設備の利用が可能となり、低コスト化を図
ることができる。そして、レジスト層22を放射線26
によって暴露した後に所定の条件により現像処理を行う
と、図2(C)に示すように、放射線26の暴露領域2
8においてのみ、レジスト層22の一部が選択的に除去
されて基材20の表面が露出し、それ以外の領域はレジ
スト層22により覆われたままの状態となる。こうして
レジスト層22がパターン化されると、図2(D)に示
すように、このレジスト層22をマスクとして基材20
を所定の深さエッチングする。詳しくは、基材20にお
けるレジスト層22から露出した領域に対して、どの方
向にもエッチングが進む等方性エッチングを行う。例え
ば、ウエットエッチングを適用して、化学溶液(エッチ
ング液)に基材20を浸すことで、等方性エッチングを
行うことができる。基材20として石英を用いた場合に
は、エッチング液として、例えば、沸酸と沸化アンモニ
ウムを混合した水溶液(バッファード沸酸)を用いてエ
ッチングを行う。等方性エッチングを行うことで、基材
20には、凹部16が形成される。次に、エッチングの
完了後に、図2(E)に示すように、レジスト層22を
除去する。この原盤10は、本実施の形態では、一旦製
造すればその後、耐久性の許す限り何度でも使用できる
ため経済的である。また、原盤10の製造工程は、2枚
目以降のマイクロレンズアレイの製造工程において省略
でき、工程数の減少及び低コスト化を図ることができ
る。上記工程では、基材20に凹部16を形成するに際
し、ポジ型のレジストを用いたが、放射線に暴露された
領域が現像液に対して不溶化し、放射線に暴露されてい
ない領域が現像液により選択的に除去可能となるネガ型
のレジストを用いても良く、この場合には、上記マスク
24とはパターンが反転したマスクが用いられる。ある
いは、マスクを使用せずに、レーザ光あるいは電子線に
よって直接レジストをパターン状に暴露しても良い。ま
た、レジストの代わりに、金、クロム等の金属、あるい
はSi、SiO2 等を使用してもよい。
(Manufacturing Method of Master) FIG. 2 is a diagram showing a manufacturing process of the master used in the present embodiment. First, FIG.
As shown in (A), a resist layer 22 is formed on a substrate 20. The base material 20 is processed into the master 10. The concave portion 16 is formed by etching the substrate 20.
Therefore, the substrate 20 is not particularly limited as long as it is a material that can be etched, but silicon or quartz is
It is preferable because the recess 16 can be formed with high precision by etching. As the material for forming the resist layer 22, for example, a commercially available positive resist generally used in the manufacture of semiconductor devices, which is prepared by blending a diazonaphthoquinone derivative as a photosensitive agent with a cresol novolak resin, can be used as it is. Here, the positive resist is a substance that can be selectively removed by a developer when exposed to radiation according to a predetermined pattern. As a method of forming the resist layer 22, it is possible to use a method such as a spin coating method, a dipping method, a spray coating method, a roll coating method, and a bar coating method. next,
As shown in FIG. 2B, the mask 24 is
And only a predetermined area of the resist layer 22 is exposed by the radiation 26 via the mask 24. Mask 2
Reference numeral 4 denotes a pattern formed so that the radiation 26 is transmitted only in a region required for forming the concave portion 16 shown in FIG. The radiation 26 has a wavelength of 200 nm.
It is preferable to use light in the region of -500 nm. The use of light in this wavelength region makes it possible to use the photolithography technology established in the liquid crystal panel manufacturing process and the like and the equipment used therefor, and to reduce costs. Then, the resist layer 22 is irradiated with radiation 26.
After the development process is performed under predetermined conditions after the exposure, the exposed region 2 of the radiation 26 is exposed as shown in FIG.
Only in 8, a part of the resist layer 22 is selectively removed to expose the surface of the base material 20, and other areas remain covered by the resist layer 22. When the resist layer 22 is patterned in this manner, as shown in FIG.
Is etched to a predetermined depth. More specifically, isotropic etching is performed on a region of the base material 20 exposed from the resist layer 22 so that the etching proceeds in any direction. For example, isotropic etching can be performed by immersing the base material 20 in a chemical solution (etching solution) by applying wet etching. When quartz is used as the base material 20, etching is performed using, for example, an aqueous solution (buffered hydrofluoric acid) in which hydrofluoric acid and ammonium fluoride are mixed as an etchant. The recess 16 is formed in the base material 20 by performing the isotropic etching. Next, after the completion of the etching, the resist layer 22 is removed as shown in FIG. In the present embodiment, the master 10 is economical since once manufactured, it can be used as many times as the durability permits. In addition, the manufacturing process of the master 10 can be omitted in the manufacturing process of the second and subsequent microlens arrays, so that the number of processes and the cost can be reduced. In the above process, when forming the concave portion 16 in the base material 20, a positive resist was used. However, the area exposed to the radiation became insoluble in the developer, and the area not exposed to the radiation was exposed to the developer. A negative resist that can be selectively removed may be used. In this case, a mask whose pattern is inverted from that of the mask 24 is used. Alternatively, the resist may be directly exposed in a pattern by using a laser beam or an electron beam without using a mask. Further, instead of the resist, a metal such as gold or chromium, or Si or SiO 2 may be used.

【0018】(マイクロレンズアレイの製造方法)図3
は、本発明を適用した実施の形態に係るマイクロレンズ
アレイの製造方法を示す図である。
(Method of Manufacturing Microlens Array) FIG. 3
FIG. 3 is a diagram showing a method for manufacturing a microlens array according to an embodiment to which the present invention is applied.

【0019】図3(A)に示すように、光透過性層前駆
体32を、原盤10における凹部16及び平坦領域18
が形成された面に載せる。図3(B)に示すように、光
透過性層前駆体32を介して、基板34と原盤10とを
密着させることにより、光透過性層前駆体32を所定領
域まで塗り広げる。図3(C)に示すように、原盤10
と基板34の間に光透過性層前駆体32からなる層を形
成する。この層は、固化されると光透過性層40とな
る。図4(A)は、本実施の形態で使用する基板34の
平面図であり、図4(B)は、図4(A)のIB−IB
線断面図である。原盤10における平坦領域18に対向
する面に溝または凹部14を予め設けておく。溝または
凹部16は平坦領域18に対向する面であれば、どこで
も良いが、図4に示すように、基板34の端部とレンズ
アレイ形成領域12の間が望ましい。こうすることで、
図3(B)〜(C)の工程で光透過性層前駆体32を塗
り広げる際に基板34の端部からの光透過性層前駆体3
2のはみ出しを防ぐことが可能となる。光透過性層前駆
体32のはみ出しがあると、除去工程が必要になるとと
もに、汚染の原因にもなり、歩留りを低下させる。溝ま
たは凹部14の形成方法としては、機械加工を用いても
良い。また、ドライエッチング、または、ウエットエッ
チングを用いても良い。また、FIB(集束イオンビー
ム)加工、または、レーザ加工により、直接形成しても
良い。溝または凹部16の形状は、図4(C),(D)
に示すような形状でも良く、光透過性層前駆体32のは
み出しを防ぐことが可能となる。溝または凹部16の寸
法精度はあまり必要としないため、簡易的な手段で設け
ることが可能である。ここでは、光透過性層前駆体32
を原盤10上に載せたが、基板34に載せるか、原盤1
0及び基板34の両方に載せてもよい。また、原盤10
及び基板34のいずれか一方、または、両方に、予め光
透過性層前駆体32を所定領域まで塗りひろげてもよ
い。また、必要に応じて、原盤10と基板34とを光透
過性層前駆体32を介して密着させる際に、原盤10及
び基板34の少なくともいずれか一方を介して光透過性
層前駆体32を加圧しても良い。加圧することで、光透
過性層前駆体32が所定領域まで塗れひろがる時間を短
縮できることで、作業性が向上し、かつ、光透過性層前
駆体32の凹部16への充填が確実となる。ここで、光
透過性層前駆体32は、液状あるいは液状化可能な物質
であることが好ましい。液状とすることで、原盤10上
の複数の凹部16へ光透過性層前駆体32を充填するこ
とが容易となる。液状の物質としては、エネルギーの付
与により硬化可能な物質が利用でき、液状化可能な物質
としては、可塑性を有する物質が利用できる。また、光
透過性層前駆体32は、光透過性層40を形成した際
に、光透過性などの要求される特性を有するものであれ
ば特に限定されるものではないが、樹脂であることが好
ましい。樹脂は、エネルギー硬化性を有するもの、ある
いは可塑性を有するものが容易に得られ、好適である。
エネルギー硬化性を有する樹脂としては、光及び熱の少
なくともいずれか一方の付与により硬化可能であること
が望ましい。光や熱の利用は、汎用の露光装置、ベイク
炉やホットプレート等の加熱装置を利用することがで
き、省設備コスト化を図ることが可能である。このよう
なエネルギー硬化性を有する樹脂としては、例えば、ア
クリル系樹脂、エポキシ系樹脂、メラミン系樹脂、ポリ
イミド系樹脂などが利用できる。特に、アクリル系樹脂
は、市販品の様々な前駆体や感光剤(光重合開始剤)を
利用することで、光の照射で短時間に硬化するものが容
易に得られるため好適である。光硬化性のアクリル系樹
脂の基本組成の具体例としては、プレポリマーまたはオ
リゴマー、モノマー、光重合開始剤があげられる。プレ
ポリマーまたはオリゴマーとしては、例えば、エポキシ
アクリレート類、ウレタンアクリレート類、ポリエステ
ルアクリレート類、ポリエーテルアクリレート類、スピ
ロアセタール系アクリレート類等のアクリレート類、エ
ポキシメタクリレート類、ウレタンメタクリレート類、
ポリエステルメタクリレート類、ポリエーテルメタクリ
レート類等のメタクリレート類等が利用できる。モノマ
ーとしては、例えば、2−エチルヘキシルアクリレー
ト、2−エチルヘキシルメタクリレート、2−ヒドロキ
シエチルアクリレート、2−ヒドロキシエチルメタクリ
レート、N−ビニル−2−ピロリドン、カルビトールア
クリレート、テトラヒドロフルフリルアクリレート、イ
ソボルニルアクリレート、ジシクロペンテニルアクリレ
ート、1,3−ブタンジオールアクリレート等の単官能
性モノマー、1,6−ヘキサンジオールジアクリレー
ト、1,6−ヘキサンジオールジメタクリレート、ネオ
ペンチルグリコールジアクリレート、ネオペンチルグリ
コールジメタクリレート、エチレングリコールジアクリ
レート、ポリエチレングリコールジアクリレート、ペン
タエリスリトールジアクリレート等の二官能性モノマ
ー、トリメチロールプロパントリアクリレート、トリメ
チロールプロパントリメタクリレート、ペンタエリスり
トールトリアクリレート、ジペンタエリスリトールヘキ
サアクリレート等の多官能性モノマーが利用できる。光
重合開始剤としては、例えば、2,2−ジメトキシ−2
−フェニルアセトフェノン等のアセトフェノン類、α−
ヒドロキシイソブチルフェノン、p−イソプロピル−α
−ヒドロキシイソブチルフェノン等のブチルフェノン
類、p−tert−ブチルジクロロアセトフェノン、p
−tert−ブチルトリクロロアセトフェノン、α,α
−ジクロル−4−フェノキシアセトフェノン等のハロゲ
ン化アセトフェノン類、ベンゾフェノン、N,N−テト
ラエチル−4,4−ジアミノベンゾフェノン等のベンゾ
フェノン類、ベンジル、ベンジルジメチルケタール等の
ベンジル類、ベンゾイン、ベンゾインアルキルエーテル
等のベンゾイン類、1−フェニル−1,2−プロパンジ
オン−2−(o−エトキシカルボニル)オキシム等のオ
キシム類、2−メチルチオキサントン、2−クロロチオ
キサントン等のキサントン類、ミヒラーケトン、ベンジ
ルメチルケタール等のラジカル発生化合物が利用でき
る。なお、必要に応じて、酸素による硬化阻害を防止す
る目的でアミン類等の化合物を添加したり、塗布を容易
にする目的で溶剤成分を添加してもよい。溶剤成分とし
ては、特に限定されるものではなく、種々の有機溶剤、
例えば、プロピレングリコールモノメチルエーテルアセ
テート、メトキシメチルプロピオネート、エトキシエチ
ルプロピオネート、エチルラクテート、エチルピルピネ
ート、メチルアミルケトン等が利用可能である。これら
の物質によれば、高精度のエッチングが可能な点で原盤
10の材料として優れているシリコン又は石英からの離
型性が良好であるため好適である。また、可塑性を有す
る樹脂としては、例えば、ポリカーボネート系樹脂、ポ
リメチルメタクリレート系樹脂、アモルファスポリオレ
フィン系樹脂等の熱可塑性を有する樹脂が利用できる。
このような樹脂を軟化点温度以上に加温することにより
可塑化させて液状とし、図3(C)に示すように、原盤
10と基板34との間に挟み込んで層を形成する。光透
過性層前駆体32を介して原盤10と基板34を密着さ
せることで、光透過性層前駆体32は、原盤10の凹部
16に対応する形状になる。つまり、光透過性層前駆体
32に凹部16を転写して凸部38を形成することがで
きる。そして、光透過性層前駆体32に応じた固化処理
を施す。例えば、光硬化性の樹脂を用いた場合であれ
ば、所定の条件で光を照射する。これにより光透過性層
前駆体32を固化させて、図3(C)に示すように、光
透過性層40を形成することができる。なお、光硬化性
の物質にて光透過性層40を形成するときには、基板3
4及び原盤10のうち少なくとも一方が、光透過性を有
することが必要となる。あるいは、軟化点温度以上に加
温した可塑化した樹脂を光透過性層前駆体32として使
用する場合には、冷却することにより固化させることが
できる。このように、光透過性層前駆体32を、エネル
ギーの付与により硬化可能な物質あるいは可塑性を有す
る物質から形成することで、これを原盤10に塗布して
密着させた際に、原盤10に形成されている凹部16の
微細部にまで、光透過性層前駆体32が充填される。そ
して、この光透過性層前駆体32に応じた固化処理を施
すことにより固化させて光透過性層40を形成すると、
原盤10の凹部16を精密に光透過性層40に転写させ
ることができる。また、基板34としては、マイクロレ
ンズアレイとして要求される光透過性等の光学的な物性
や、機械的強度等の特性を満足するものであれば特に限
定されるものではなく、例えば、石英やガラス、あるい
は、ポリカーボネート、ポリアリレート、ポリエーテル
サルフォン、ポリエチレンテレフタレート、ポリメチル
メタクリレート、アモルファスポリオレフィン等のプラ
スチック製の基板あるいはフィルムを利用することが可
能である。次いで、図3(D)に示すように、原盤10
から光透過性層40及び基板34を剥離する。なお、光
透過性層40単独で、マイクロレンズアレイとして要求
される機械的強度等の特性を満足することが可能であれ
ば、基板34は不要であるから、基板34を光透過性層
40から剥離してもよい。この剥離工程は、原盤10か
ら光透過性層40を剥離する前であっても、その後であ
ってもよい。光透過性層40は、原盤10の凹部16に
対応して、複数の凸部38が形成されているので、凸レ
ンズを有するマイクロレンズアレイとなる。原盤10が
複数の製品を製造するものであれば、光透過性層40
は、複数のマイクロレンズアレイが一体化されたもので
あるから、これを個片に切断して個々の製品が得られ
る。次に、図5は、本発明を適用した実施の形態に係る
原盤の変形例を示す図である。同図において、原盤10
には、レンズアレイ形成領域12の周囲に形成された平
坦領域18内に凸部15が形成されている。こうするこ
とで、図3(B)〜(C)の工程で光透過性層前駆体3
2を塗り広げる際に基板34の端部からの光透過性層前
駆体32のはみ出しを防ぐことが可能となる。光透過性
層前駆体32のはみ出しがあると、除去工程が必要にな
るとともに、汚染の原因にもなり、歩留りを低下させ
る。凸部15は平坦領域18内であれば、どこでも良い
が、原盤10の端部とレンズアレイ形成領域12の間が
望ましい。凸部15の寸法精度はあまり必要としないた
め、予め、機械加工またはエッチングにより設けておい
ても良い。また、原盤10に直接接合、または、接着剤
により接合しても良い。図6は、本発明に係るマイクロ
レンズアレイを適用した表示装置の一例として、液晶プ
ロジェクタの一部を示す図である。この液晶プロジェク
タは、上述した実施の形態に係る方法により製造された
マイクロレンズアレイを組み込んだライトバルブ80
と、光源としてのランプ90とを有する。マイクロレン
ズアレイは、複数の凸部38が形成された光透過性層4
0から構成されてなる。凸部38は、凸レンズとなって
いる。マイクロレンズアレイは、凸レンズをランプ90
からみて凹状になるように配置されている。マイクロレ
ンズアレイの凸部が形成された面には、光透過性層81
が形成されている。マイクロレンズアレイと光透過性層
81との界面によって光が屈折する。光透過性層81上
には、ブラックマトリクス82、電極膜83及び配向膜
84が形成されている。配向膜84からギャップをあけ
て、TFT基板85が設けられている。TFT基板85
には、透明な個別電極86及び薄膜トランジスタ87が
設けられており、これらの上に配向膜88が形成されて
いる。また、TFT基板85は、配向膜88を配向膜8
4に対向させて配置されている。配向膜84,88間に
は、液晶89が封入されており、薄膜トランジスタ87
によって制御される電圧によって、液晶89が駆動され
るようになっている。この液晶プロジェクタによれば、
ランプ90から照射された光92が、各画素毎に、凸部
38にて構成されるレンズにて集光するので、明るい画
面を表示することができる。なお、その前提として、光
透過性層81の光屈折率naと、マイクロレンズアレイ
を構成する光透過性層40の光屈折率nbとは、na<
nbの関係にあることが必要である。この条件を満たす
ことで、屈折率の大きい媒質から、屈折率の小さい媒質
に光が入射することになり、光92は両媒質の界面の法
線から離れるように即ち角度を以て屈折して集光する。
そして、画面を明るくすることができる。
As shown in FIG. 3A, the light transmitting layer precursor 32 is transferred to the concave portion 16 and the flat region 18 of the master 10.
Place on the surface on which is formed. As shown in FIG. 3B, the substrate 34 and the master 10 are brought into close contact with each other via the light-transmitting layer precursor 32, so that the light-transmitting layer precursor 32 is spread to a predetermined region. As shown in FIG.
A layer made of the light transmitting layer precursor 32 is formed between the substrate and the substrate. This layer becomes the light transmissive layer 40 when solidified. FIG. 4A is a plan view of the substrate 34 used in this embodiment, and FIG. 4B is a plan view of the substrate 34 shown in FIG.
It is a line sectional view. A groove or recess 14 is provided in advance on a surface of the master 10 facing the flat region 18. The groove or recess 16 may be any surface as long as it faces the flat region 18, but is preferably between the end of the substrate 34 and the lens array formation region 12 as shown in FIG. By doing this,
When spreading the light transmitting layer precursor 32 in the steps of FIGS. 3B to 3C, the light transmitting layer precursor 3
2 can be prevented from protruding. If the light-transmitting layer precursor 32 protrudes, a removal step is required, and it also causes contamination and lowers the yield. As a method for forming the groove or the concave portion 14, machining may be used. Further, dry etching or wet etching may be used. Alternatively, it may be formed directly by FIB (focused ion beam) processing or laser processing. The shape of the groove or the concave portion 16 is shown in FIGS.
The light-transmitting layer precursor 32 can be prevented from protruding. Since the dimensional accuracy of the groove or recess 16 is not so required, it can be provided by simple means. Here, the light-transmitting layer precursor 32
Was placed on the master 10, but was placed on the substrate 34 or the master 1
0 and the substrate 34. Master 10
The light-transmitting layer precursor 32 may be applied to a predetermined region on one or both of the substrate 34 and the substrate 34 in advance. If necessary, when the master 10 and the substrate 34 are brought into close contact with each other via the light-transmitting layer precursor 32, the light-transmitting layer precursor 32 is connected via at least one of the master 10 and the substrate 34. Pressure may be applied. By applying pressure, the time required for the light transmissive layer precursor 32 to spread to a predetermined area can be shortened, so that workability is improved, and the light transmissive layer precursor 32 is reliably filled in the recesses 16. Here, the light-transmitting layer precursor 32 is preferably a liquid or a liquefiable substance. By using the liquid state, it becomes easy to fill the plurality of recesses 16 on the master 10 with the light transmitting layer precursor 32. As the liquid substance, a substance that can be cured by applying energy can be used, and as the liquefiable substance, a plastic substance can be used. The light-transmitting layer precursor 32 is not particularly limited as long as it has required characteristics such as light transmission when the light-transmitting layer 40 is formed. Is preferred. As the resin, a resin having energy curability or a resin having plasticity is easily obtained, and is preferable.
It is desirable that the resin having energy curability be curable by application of at least one of light and heat. For the use of light and heat, a general-purpose exposure apparatus, a heating apparatus such as a baking furnace or a hot plate can be used, and the equipment cost can be reduced. Examples of such an energy-curable resin include an acrylic resin, an epoxy resin, a melamine resin, and a polyimide resin. In particular, an acrylic resin is preferable because it can easily be cured by irradiation with light by using various commercially available precursors and photosensitive agents (photopolymerization initiators). Specific examples of the basic composition of the photocurable acrylic resin include a prepolymer or oligomer, a monomer, and a photopolymerization initiator. As the prepolymer or oligomer, for example, acrylates such as epoxy acrylates, urethane acrylates, polyester acrylates, polyether acrylates, spiroacetal acrylates, epoxy methacrylates, urethane methacrylates,
Methacrylates such as polyester methacrylates and polyether methacrylates can be used. As the monomer, for example, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, N-vinyl-2-pyrrolidone, carbitol acrylate, tetrahydrofurfuryl acrylate, isobornyl acrylate, Monofunctional monomers such as dicyclopentenyl acrylate and 1,3-butanediol acrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, ethylene Bifunctional monomers such as glycol diacrylate, polyethylene glycol diacrylate, and pentaerythritol diacrylate, trimethylol Propane triacrylate, trimethylol propane trimethacrylate, Pentaerisuri tall triacrylate, polyfunctional monomers such as dipentaerythritol hexaacrylate available. As the photopolymerization initiator, for example, 2,2-dimethoxy-2
Acetophenones such as phenylacetophenone, α-
Hydroxyisobutylphenone, p-isopropyl-α
Butylphenones such as -hydroxyisobutylphenone, p-tert-butyldichloroacetophenone, p
-Tert-butyltrichloroacetophenone, α, α
-Halogenated acetophenones such as -dichloro-4-phenoxyacetophenone, benzophenones such as benzophenone, N, N-tetraethyl-4,4-diaminobenzophenone, benzyls such as benzyl and benzyldimethylketal, benzoin, benzoin alkyl ether and the like. Benzoins, oximes such as 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, xanthones such as 2-methylthioxanthone and 2-chlorothioxanthone, radicals such as Michler's ketone and benzylmethylketal Generated compounds are available. If necessary, a compound such as an amine may be added to prevent curing inhibition by oxygen, or a solvent component may be added to facilitate coating. The solvent component is not particularly limited, and various organic solvents,
For example, propylene glycol monomethyl ether acetate, methoxymethyl propionate, ethoxyethyl propionate, ethyl lactate, ethyl pyrpinate, methyl amyl ketone and the like can be used. These materials are preferable because they have good releasability from silicon or quartz, which is excellent as a material of the master 10 in that high-precision etching is possible. As the resin having plasticity, for example, a resin having thermoplasticity such as a polycarbonate resin, a polymethyl methacrylate resin, and an amorphous polyolefin resin can be used.
Such a resin is plasticized by heating to a temperature equal to or higher than the softening point to be in a liquid state, and is sandwiched between the master 10 and the substrate 34 to form a layer, as shown in FIG. By bringing the master 10 and the substrate 34 into close contact with each other via the light-transmitting layer precursor 32, the light-transmitting layer precursor 32 has a shape corresponding to the concave portion 16 of the master 10. That is, the concave portions 16 can be transferred to the light transmitting layer precursor 32 to form the convex portions 38. Then, a solidification process corresponding to the light-transmitting layer precursor 32 is performed. For example, when a photo-curable resin is used, light is irradiated under predetermined conditions. Thereby, the light transmitting layer precursor 32 is solidified, and the light transmitting layer 40 can be formed as shown in FIG. When forming the light-transmitting layer 40 with a photocurable substance, the substrate 3
At least one of the master 4 and the master 10 needs to have optical transparency. Alternatively, when a plasticized resin heated to a temperature equal to or higher than the softening point is used as the light-transmitting layer precursor 32, it can be solidified by cooling. As described above, by forming the light transmitting layer precursor 32 from a substance curable by application of energy or a substance having plasticity, when the precursor 32 is applied to and closely adhered to the master 10, it is formed on the master 10. The light transmitting layer precursor 32 is filled up to the minute portion of the recess 16 that has been formed. Then, when the light transmitting layer 40 is formed by being solidified by performing a solidification treatment corresponding to the light transmitting layer precursor 32,
The concave portion 16 of the master 10 can be precisely transferred to the light transmitting layer 40. The substrate 34 is not particularly limited as long as it satisfies optical properties such as light transmittance required for a microlens array and characteristics such as mechanical strength. It is possible to use a substrate or a film made of glass or a plastic such as polycarbonate, polyarylate, polyethersulfone, polyethylene terephthalate, polymethyl methacrylate, and amorphous polyolefin. Next, as shown in FIG.
The light transmissive layer 40 and the substrate 34 are peeled off. If the light-transmitting layer 40 alone can satisfy the characteristics such as mechanical strength required for the microlens array, the substrate 34 is unnecessary. You may peel off. This peeling step may be before or after peeling the light-transmitting layer 40 from the master 10. The light transmissive layer 40 has a plurality of convex portions 38 corresponding to the concave portions 16 of the master 10, so that it becomes a microlens array having convex lenses. If the master 10 manufactures a plurality of products, the light transmitting layer 40
Since a plurality of microlens arrays are integrated, individual products can be obtained by cutting the microlens arrays into individual pieces. Next, FIG. 5 is a diagram showing a modification of the master according to the embodiment to which the present invention is applied. In FIG.
Has a convex portion 15 formed in a flat region 18 formed around the lens array forming region 12. By doing so, the light-transmitting layer precursor 3 in the steps of FIGS.
When spreading 2, the light-transmitting layer precursor 32 can be prevented from protruding from the edge of the substrate 34. If the light-transmitting layer precursor 32 protrudes, a removal step is required, and it also causes contamination and lowers the yield. The convex portion 15 may be located anywhere within the flat region 18, but is preferably located between the end of the master 10 and the lens array forming region 12. Since the dimensional accuracy of the protrusion 15 is not so required, it may be provided in advance by machining or etching. Further, it may be directly bonded to the master 10 or bonded with an adhesive. FIG. 6 is a diagram illustrating a part of a liquid crystal projector as an example of a display device to which the microlens array according to the present invention is applied. This liquid crystal projector has a light valve 80 incorporating a microlens array manufactured by the method according to the above-described embodiment.
And a lamp 90 as a light source. The microlens array includes a light transmitting layer 4 on which a plurality of convex portions 38 are formed.
0. The convex portion 38 is a convex lens. The microlens array includes a convex lens and a lamp 90.
It is arranged so as to be concave when viewed. The light transmitting layer 81 is provided on the surface of the microlens array where the convex portions are formed.
Are formed. Light is refracted by the interface between the microlens array and the light transmitting layer 81. On the light transmitting layer 81, a black matrix 82, an electrode film 83, and an alignment film 84 are formed. A TFT substrate 85 is provided with a gap from the alignment film 84. TFT substrate 85
Are provided with transparent individual electrodes 86 and thin film transistors 87, on which an alignment film 88 is formed. Further, the TFT substrate 85 is formed by aligning the alignment film 88 with the alignment film 8
4 and are disposed opposite to each other. A liquid crystal 89 is sealed between the alignment films 84 and 88, and a thin film transistor 87 is formed.
The liquid crystal 89 is driven by the voltage controlled by. According to this liquid crystal projector,
Since the light 92 emitted from the lamp 90 is condensed by the lens constituted by the convex portion 38 for each pixel, a bright screen can be displayed. It is assumed that the light refractive index na of the light transmitting layer 81 and the light refractive index nb of the light transmitting layer 40 forming the microlens array are na <na.
nb. By satisfying this condition, light is incident from a medium having a large refractive index to a medium having a small refractive index, and the light 92 is refracted away from the normal to the interface between the two media, that is, is refracted at an angle and condensed. I do.
Then, the screen can be brightened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明を適用した実施の形態に係るマ
イクロレンズアレイの製造に使用される原盤を示す図で
ある。
FIG. 1 is a diagram showing a master used for manufacturing a microlens array according to an embodiment to which the present invention is applied.

【図2】図2(A)〜(E)は、本発明を適用した実施
の形態に係るマイクロレンズアレイ製造用原盤の製造方
法をその工程に沿って示す断面図である。
FIGS. 2A to 2E are cross-sectional views showing a method of manufacturing a microlens array manufacturing master according to an embodiment to which the present invention is applied, along the steps.

【図3】図3(A)〜(C)は、本発明を適用した実施
の形態に係るマイクロレンズアレイの製造方法をその工
程に沿って示す断面図である。
FIGS. 3A to 3C are cross-sectional views illustrating a method of manufacturing a microlens array according to an embodiment to which the present invention is applied, along the steps.

【図4】図4は、本発明を適用した実施の形態に係る基
板の一例を示す図である。
FIG. 4 is a diagram illustrating an example of a substrate according to an embodiment to which the present invention is applied;

【図5】図5は、本発明を適用した実施の形態に係る原
盤の他の例を示す図である。
FIG. 5 is a diagram showing another example of the master according to the embodiment to which the present invention is applied;

【図6】図6は、本発明を適用した実施の形態に係るマ
イクロレンズアレイを組み込んだ表示装置を示す図であ
る。
FIG. 6 is a diagram showing a display device incorporating a microlens array according to an embodiment to which the present invention is applied.

【符号の説明】[Explanation of symbols]

10 原盤 12 レンズアレイ形成領域 14 溝または凹部 15 凸部 16 凹部 18 平坦領域 32 光透過性層前駆体 40 光透過性層 DESCRIPTION OF SYMBOLS 10 Master disk 12 Lens array formation area 14 Groove or concave part 15 Convex part 16 Concave part 18 Flat area 32 Light transmissive layer precursor 40 Light transmissive layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 11:00 G02F 1/1335 530 Fターム(参考) 2H091 FA29X FB04 FC26 GA01 LA30 2H096 AA28 HA11 HA17 HA23 JA04 4F202 AA21 AA44 AH75 CA01 CB01 CD18 CD24 CK85 4F204 AA21 AA44 AH75 EA03 EB01 EK18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B29L 11:00 G02F 1/1335 530 F-term (Reference) 2H091 FA29X FB04 FC26 GA01 LA30 2H096 AA28 HA11 HA17 HA23 JA04 4F202 AA21 AA44 AH75 CA01 CB01 CD18 CD24 CK85 4F204 AA21 AA44 AH75 EA03 EB01 EK18

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1つのレンズアレイ形成領域
と、前記レンズアレイ形成領域の周囲に形成された平坦
領域と、を1つの面に有する原盤に光透過性層前駆体を
介して基板を密着させ、前記レンズアレイ形成領域を前
記光透過性層前駆体に転写形成する工程と、前記光透過
性層前駆体を硬化させる工程と、を含み、前記基板の前
記平坦領域に対向する面に溝または凹部を形成しておく
マイクロレンズアレイの製造方法。
A substrate is brought into close contact with a master having at least one lens array formation region and a flat region formed around the lens array formation region on one surface via a light transmitting layer precursor. Transferring the lens array formation region to the light transmitting layer precursor, and curing the light transmitting layer precursor, including a groove or a groove on the surface of the substrate facing the flat region. A method for manufacturing a microlens array in which concave portions are formed.
【請求項2】請求項1記載のマイクロレンズアレイの製
造方法において、前記溝または凹部を前記基板の端部と
前記レンズアレイ形成領域の間に形成しておくマイクロ
レンズアレイの製造方法。
2. The method of manufacturing a microlens array according to claim 1, wherein said groove or recess is formed between an end of said substrate and said lens array formation region.
【請求項3】請求項1記載のマイクロレンズアレイの製
造方法において、前記溝または凹部を機械加工により形
成するマイクロレンズアレイの製造方法。
3. The method of manufacturing a microlens array according to claim 1, wherein said groove or recess is formed by machining.
【請求項4】請求項1記載のマイクロレンズアレイの製
造方法において、前記溝または凹部をドライエッチン
グ、または、ウエットエッチングにより形成するマイク
ロレンズアレイの製造方法。
4. The method of manufacturing a microlens array according to claim 1, wherein said grooves or recesses are formed by dry etching or wet etching.
【請求項5】請求項1記載のマイクロレンズアレイの製
造方法において、前記溝または凹部をFIB加工、また
は、レーザ加工により形成するマイクロレンズアレイの
製造方法。
5. The method of manufacturing a microlens array according to claim 1, wherein the groove or the concave portion is formed by FIB processing or laser processing.
【請求項6】少なくとも1つのレンズアレイ形成領域
と、前記レンズアレイ形成領域の周囲に形成された平坦
領域と、を1つの面に有し、前記平坦領域内に凸部が形
成されているマイクロレンズアレイ製造用原盤。
6. A micro-device having at least one lens array formation region and a flat region formed around the lens array formation region on one surface, wherein a convex portion is formed in the flat region. Master for manufacturing lens arrays.
【請求項7】請求項6記載のマイクロレンズアレイ製造
用原盤において、前記凸部を前記原盤の端部と前記レン
ズアレイ形成領域の間に形成しておくマイクロレンズア
レイ製造用原盤。
7. A master for manufacturing a microlens array according to claim 6, wherein said convex portion is formed between an end of said master and said lens array forming region.
【請求項8】少なくとも1つのレンズアレイ形成領域
と、前記レンズアレイ形成領域の周囲に形成された平坦
領域と、を1つの面に有する原盤に光透過性層前駆体を
介して基板を密着させ、前記レンズアレイ形成領域を前
記光透過性層前駆体に転写形成する工程と、前記光透過
性層前駆体を硬化させる工程と、を含み、前記平坦領域
内に凸部を形成しておくマイクロレンズアレイの製造方
法。
8. A substrate is brought into close contact with a master having at least one lens array forming region and a flat region formed around the lens array forming region on one surface via a light transmitting layer precursor. Transferring the lens array forming region to the light transmitting layer precursor, and curing the light transmitting layer precursor, and forming a convex portion in the flat region. A method for manufacturing a lens array.
【請求項9】請求項8記載のマイクロレンズアレイの製
造方法において、前記凸部を前記原盤の端部と前記レン
ズアレイ形成領域の間に形成しておくマイクロレンズア
レイの製造方法。
9. The method of manufacturing a microlens array according to claim 8, wherein said convex portion is formed between an end of said master and said lens array forming region.
【請求項10】請求項1から5または8または9のいず
れかに記載の方法により製造されるマイクロレンズアレ
イ。
10. A microlens array manufactured by the method according to claim 1.
【請求項11】請求項10記載のマイクロレンズアレイ
を有する表示装置。
11. A display device having the microlens array according to claim 10.
JP2000095427A 2000-03-30 2000-03-30 Micro-lens array, its production method, and original board and display for producing it Withdrawn JP2001277260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095427A JP2001277260A (en) 2000-03-30 2000-03-30 Micro-lens array, its production method, and original board and display for producing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095427A JP2001277260A (en) 2000-03-30 2000-03-30 Micro-lens array, its production method, and original board and display for producing it

Publications (1)

Publication Number Publication Date
JP2001277260A true JP2001277260A (en) 2001-10-09

Family

ID=18610329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095427A Withdrawn JP2001277260A (en) 2000-03-30 2000-03-30 Micro-lens array, its production method, and original board and display for producing it

Country Status (1)

Country Link
JP (1) JP2001277260A (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199454A (en) * 2004-01-13 2005-07-28 National Institute Of Advanced Industrial & Technology Minute mold and its manufacturing method
US7128459B2 (en) 2001-11-12 2006-10-31 Nidec Copal Corporation Light-guide plate and method for manufacturing the same
JP2007187842A (en) * 2006-01-12 2007-07-26 Seiko Epson Corp Manufacturing method of microlens substrate, the microlens substrate, transmission screen and rear-type projector
JP2013522681A (en) * 2010-03-17 2013-06-13 ペリカン イメージング コーポレーション Method for producing master of imaging lens array
JP2014024223A (en) * 2012-07-25 2014-02-06 Nikon Corp Optical element manufacturing method and optical element
JP2014503382A (en) * 2011-10-19 2014-02-13 サンファン リ Manufacturing method of 3D lens film
JPWO2013089223A1 (en) * 2011-12-16 2015-04-27 コニカミノルタ株式会社 Lens array manufacturing method and molding die
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
WO2020091692A1 (en) * 2018-11-02 2020-05-07 Ams Sensors Singapore Pte. Ltd. Method for manufacturing an optical element module
WO2020242378A1 (en) * 2019-05-30 2020-12-03 Ams Sensors Singapore Pte. Ltd. Method of replicating optical elements and replicated optical elements
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128459B2 (en) 2001-11-12 2006-10-31 Nidec Copal Corporation Light-guide plate and method for manufacturing the same
JP2005199454A (en) * 2004-01-13 2005-07-28 National Institute Of Advanced Industrial & Technology Minute mold and its manufacturing method
JP2007187842A (en) * 2006-01-12 2007-07-26 Seiko Epson Corp Manufacturing method of microlens substrate, the microlens substrate, transmission screen and rear-type projector
JP4687468B2 (en) * 2006-01-12 2011-05-25 セイコーエプソン株式会社 Microlens substrate manufacturing method, microlens substrate, transmissive screen, and rear projector
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
JP2013522681A (en) * 2010-03-17 2013-06-13 ペリカン イメージング コーポレーション Method for producing master of imaging lens array
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
JP2014503382A (en) * 2011-10-19 2014-02-13 サンファン リ Manufacturing method of 3D lens film
US10259178B2 (en) 2011-12-16 2019-04-16 Konica Minolta, Inc. Method for producing lens array, and molding mold
JPWO2013089223A1 (en) * 2011-12-16 2015-04-27 コニカミノルタ株式会社 Lens array manufacturing method and molding die
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
JP2014024223A (en) * 2012-07-25 2014-02-06 Nikon Corp Optical element manufacturing method and optical element
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US11985293B2 (en) 2013-03-10 2024-05-14 Adeia Imaging Llc System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11983893B2 (en) 2017-08-21 2024-05-14 Adeia Imaging Llc Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
WO2020091692A1 (en) * 2018-11-02 2020-05-07 Ams Sensors Singapore Pte. Ltd. Method for manufacturing an optical element module
CN112969572A (en) * 2018-11-02 2021-06-15 ams传感器新加坡私人有限公司 Method for manufacturing optical element module
CN113906319A (en) * 2019-05-30 2022-01-07 ams传感器新加坡私人有限公司 Method of replicating an optical element and replicated optical element
WO2020242378A1 (en) * 2019-05-30 2020-12-03 Ams Sensors Singapore Pte. Ltd. Method of replicating optical elements and replicated optical elements
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11982775B2 (en) 2019-10-07 2024-05-14 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Similar Documents

Publication Publication Date Title
JP2001277260A (en) Micro-lens array, its production method, and original board and display for producing it
JP3968545B2 (en) Manufacturing method of microlens array
JP3931936B2 (en) Microlens array substrate, method for manufacturing the same, and display device
US6297911B1 (en) Micro lens array, method of fabricating the same, and display device
US6618201B2 (en) Micro lens array, method of fabricating the same, and display device
US6597509B2 (en) Microlens array, manufacturing method thereof, optical device and electronic device with reflective alignment mark in lens layer
JPH11326603A (en) Microlens array and its production thereof, and display
JP3824042B2 (en) Optical substrate, manufacturing method thereof, and display device
JP3687366B2 (en) Optical substrate, manufacturing method thereof, and display device
US6730459B2 (en) Microlens array, method for fabricating the same and optical devices
JP3965541B2 (en) Manufacturing method of microlens array
JP4069337B2 (en) Manufacturing method of microlens array
JP2000241607A (en) Forming method for microlens array and microlens array
JP2001096636A (en) Microlens array and method for manufacture thereof, and optical device
JP2002192534A (en) Microlens array, method for manufacturing it, and original base and optical apparatus for manufacturing it
JP2000081501A (en) Microlens array and its production as well as display device
JP4196139B2 (en) Manufacturing method of optical substrate
JP2000221305A (en) Optical substrate, master disk for production of optical disk, their production and display device
JP2001042104A (en) Microlens array, its production, master disk for production of the same and display device
JP2000131504A (en) Microlens array, its manufacture and display device
JP2001215305A (en) Microlens array, method of producing the same and display device
JP3692785B2 (en) Optical substrate, manufacturing method thereof, and display device
JP2001133601A (en) Microlens array, manufacturing method therefor, and display device
JP2001188105A (en) Microlens array, method for producing same and display device
JP2002200624A (en) Optical substrate, method and apparatus for manufacturing the same, original plate for manufacturing optical substrate, and display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605