JP2001249172A - Vor/dme (very-high frequency omnidirectional radio beacon facility/distance measuring device) and vortac (strategic navigation system) antenna deterioration equipment diagnostic system - Google Patents

Vor/dme (very-high frequency omnidirectional radio beacon facility/distance measuring device) and vortac (strategic navigation system) antenna deterioration equipment diagnostic system

Info

Publication number
JP2001249172A
JP2001249172A JP2000061732A JP2000061732A JP2001249172A JP 2001249172 A JP2001249172 A JP 2001249172A JP 2000061732 A JP2000061732 A JP 2000061732A JP 2000061732 A JP2000061732 A JP 2000061732A JP 2001249172 A JP2001249172 A JP 2001249172A
Authority
JP
Japan
Prior art keywords
vor
antenna
dme
facility
vortac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000061732A
Other languages
Japanese (ja)
Inventor
Tsutomu Tokifuji
勉 時藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000061732A priority Critical patent/JP2001249172A/en
Publication of JP2001249172A publication Critical patent/JP2001249172A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve problems that prediction of obstacle generation or a proper time of maintenance can not be determined, because the operation state of a VOR/DME antenna can not be confirm except quality at the inspection by a navigation safety wireless engineer to thereby unable to rearrange long-term deterioration tendency to form database, and that thereby satisfactory service can not be provided for a user, because operation of the facility is stopped periodically to execute a maintenance work. SOLUTION: A traveling wave and a reflected wave fed to the VOR/DME antenna are branched from an existing device, and accumulated in a personal computer as data expressed numerically by an A/D converter to form database. The long-term deterioration tendency can be monitored as a graph, and automatic prediction can be executed from past accumulated data, to thereby enable to execute equipment diagnosis of the whole antenna system continuously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、VOR/DME
(超短波全方向無線標識施設/距離測定装置)及びVO
RTAC(戦略航法システム)の空中線劣化を長期間に
わたり設備診断するシステムである。
TECHNICAL FIELD The present invention relates to a VOR / DME
(Ultra high frequency omnidirectional radio beacon facility / distance measuring device) and VO
RTAC (strategic navigation system) is a system that diagnoses the deterioration of the aerial of the antenna over a long period of time.

【0002】[0002]

【従来の技術】VOR/DME(超短波全方向無線標識
施設/距離測定装置)及びVORTAC(戦略航法シス
テム)施設は飛行する航空機に施設からの距離と方位を
知らせる航空保安施設である。従来は施設の信頼性を維
持するため、定期的に施設の運用を停止し、航空保安無
線技術者による空中線の保守点検を実施していた。
2. Description of the Related Art VOR / DME (ultra-high frequency omnidirectional radio beacon facility / distance measuring device) and VORTAC (strategic navigation system) facilities are aviation security facilities that notify a flying aircraft of the distance and direction from the facility. Conventionally, in order to maintain the reliability of the facility, the operation of the facility was periodically stopped, and the maintenance and inspection of the antenna was carried out by an aviation security radio engineer.

【0003】そのため装置の停止期間中は航空路の変更
を余儀なくされた。操縦士に加わる負担としては、計器
飛行のための航空路変更のデータ入力の煩雑さに加え、
通常飛行ルートと異なるためにストレスの増加にもつな
がっていた。
[0003] For this reason, the air route had to be changed during the suspension of the apparatus. The burden on the pilot is not only the complexity of entering data for changing flight routes for instrument flight,
The difference from the normal flight route led to increased stress.

【0004】障害の発生を事前に予測できないため、障
害防止のためオーバーメンテナンスになりコストの上昇
を招いていた。
[0004] Since the occurrence of a failure cannot be predicted in advance, over-maintenance is required to prevent the failure, resulting in an increase in cost.

【0005】無人サイトでの個々のサイドバンド空中線
の障害は遠隔監視することができなかったため、障害発
生時の内容の把握や復旧に時間を要し、航空管制業務に
支障をきたしていた。
[0005] Since failures of individual sideband antennas at an unmanned site could not be monitored remotely, it took time to grasp and recover the contents when the failure occurred, which hindered air traffic control operations.

【0006】VOR/DME(超短波全方向無線標識施
設/距離測定装置)及びVORTAC(戦略航法システ
ム)の空中線の動作状態を連続的に基地局などで遠隔監
視するシステムは現在までに発明されていない。
[0006] A system for continuously monitoring the operating state of the antenna of VOR / DME (ultra-high frequency omnidirectional radio beacon facility / distance measuring device) and VORTAC (strategic navigation system) by a base station or the like has not been invented until now. .

【0007】[0007]

【発明が解決しようとする課題】解決しようとする問題
点は、従来は航空保安無線技術者の点検時での設備の良
否しか確認ができず、長期間の劣化傾向をデータベース
化して監理することができないため、障害発生の予測や
保守の適切な時期を決定できなかった。
The problem to be solved is that, in the past, it was only possible to confirm the quality of equipment at the time of inspection by an aeronautical security radio technician, and to manage a long-term deterioration tendency in a database. As a result, it was not possible to predict the occurrence of a failure or determine an appropriate time for maintenance.

【0008】個々の空中線の長期劣化傾向は遠隔監視す
ることができないため、障害発生時の内容の把握や復旧
に時間を要し、航空管制業務に支障をきたしていた。
Since the long-term deterioration tendency of individual antennas cannot be monitored remotely, it takes time to grasp and recover the contents at the time of occurrence of a failure, which has hindered air traffic control operations.

【0009】[0009]

【課題を解決するための手段】VOR/DME及びVO
RTACサイトと監視基地局の間にはモニター受信信号
の伝送や装置の監視制御のため専用電話回線が敷設され
ている。本発明は専用通電話線を利用し、進行波及び反
射波のデータを基地局にファイル転送し遠隔監視してい
る。
[MEANS FOR SOLVING THE PROBLEMS] VOR / DME and VO
A dedicated telephone line is laid between the RTAC site and the monitoring base station for transmitting a monitor reception signal and monitoring and controlling the device. The present invention uses a dedicated telephone line to transfer traveling wave and reflected wave data to a base station by file and remotely monitor the data.

【0010】VOR/DME及びVORTACサイトの
空中線に給電される進行波及び反射波を既設の装置から
分岐し、A/Dコンバーターで数値化したデータとして
パソコンに蓄積、データベース化している。
[0010] The traveling wave and the reflected wave fed to the antennas at the VOR / DME and VORTAC sites are branched from the existing device, stored in a personal computer as data digitized by an A / D converter, and stored in a database.

【0011】長期間の劣化傾向をグラフとして監理する
ことができ、信号の解析から設備の良否の自動判断、さ
らに障害発生の時期までも、過去の蓄積データから自動
予測することにより、空中線系全体の設備診断を連続的
におこなうものである。
The tendency of deterioration over a long period of time can be managed as a graph, and the entire antenna system can be monitored by analyzing the signal, automatically judging the quality of the equipment, and automatically predicting even the time of occurrence of a fault from past accumulated data. The equipment diagnosis is performed continuously.

【0012】予め設定された上下限値を越えた値を検出
した場合、基地局に自動的に警報を発し、リアルタイム
での無人サの遠隔監視が可能となる。
When a value exceeding a preset upper and lower limit value is detected, an alarm is automatically issued to the base station, and remote monitoring of the unmanned service in real time becomes possible.

【0013】[0013]

【実施例】VOR/DME及びVORTACは飛行する
航空機に施設からの距離と方位を知らせる航空保安施設
であり、同様の機能を有しているが、主にVOR/DM
Eは民間航空機が利用し、VORTACは軍用機が利用
してる。図1にVORを例に本設備診断システムのブロ
ックダイヤグラムを示す。本装置はサイト側設備診断装
置と基地局側遠隔監視装置から構成されている。既存の
VOR装置1に装着されている空中線モニター盤2より
キャリア空中線3及びサイドバンド空中線群4の進行波
及び反射波をVSWR検出器5で検出しインターフェー
スユニット6を介してデータ採取パソコン8のA/Dコ
ンバーター7に入力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS VOR / DME and VORTAC are aviation security facilities that notify a flying aircraft of the distance and direction from the facility, and have the same function, but are mainly VOR / DM.
E is used by commercial aircraft and VORTAC is used by military aircraft. FIG. 1 shows a block diagram of the facility diagnosis system using a VOR as an example. This device is composed of a site-side equipment diagnosis device and a base station-side remote monitoring device. The traveling wave and the reflected wave of the carrier antenna 3 and the sideband antenna group 4 are detected by the VSWR detector 5 from the antenna monitor panel 2 mounted on the existing VOR device 1, and the A of the data acquisition personal computer 8 is transmitted through the interface unit 6. / D converter 7.

【0014】サイドバンド空中線群は48本の空中線か
ら構成され30Hzの周波数で反時計方向に電気的に回
転している。従って、計測中の進行波及び反射波が何番
目の空中線に相当するのかを識別するためにディストリ
ビューター9よりタイミング信号を分岐し、インターフ
ェースユニットに加え、相関をとることにより測定空中
線を特定している。
The sideband antenna group is composed of 48 antennas and is electrically rotated counterclockwise at a frequency of 30 Hz. Therefore, the timing signal is branched from the distributor 9 in order to identify the order of the traveling wave and the reflected wave being measured to the antenna, added to the interface unit, and the measured antenna is identified by correlation. I have.

【0015】データ採取パソコンはA/Dコンバーター
からのデーターをキャリア空中線、サイドバンド空中線
群それぞれの空中線を特定しデータ採取する。A/Dコ
ンバー部でのサンプリング周波数は直流胞絡線のピーク
値を確実に検出できるよう1KHzで動作している。
The data collection personal computer specifies the antennas of the carrier antenna and the sideband antennas and collects the data from the A / D converter. The sampling frequency in the A / D converter is operated at 1 KHz so that the peak value of the DC cell line can be reliably detected.

【0016】空中線の1回転に要する時間が約1/30
秒なので各空中線を1秒間で1本分計測し、逐次メモリ
ー、計測終了と同時に進行波、反射波の全空中線分デー
タとしてファイルされる。1回の計測にはキャリア空中
線1本、サイドバンド空中線48本の合計49本の進行
波、反射波それぞれを計測するため98秒を要する。そ
のため全空中線の測定周期を2分毎としている。測定さ
れたデータはリングバッファに10回分格納され、設備
診断用パソコン10からの要求により転送される。
The time required for one rotation of the antenna is about 1/30
Since the measurement is performed in seconds, each antenna is measured for one line in one second, and sequentially stored in the memory, and simultaneously with the completion of the measurement, the file is recorded as data of all antennas of traveling waves and reflected waves. One measurement requires 98 seconds to measure each of 49 traveling waves and reflected waves, one carrier antenna and 48 sideband antennas. Therefore, the measurement cycle of all antennas is set to every two minutes. The measured data is stored in the ring buffer for 10 times and transferred by a request from the equipment diagnosis personal computer 10.

【0017】設備診断用パソコンは、データ採取用パソ
コンからの測定データを取り込み、予め設定された基準
値と比較をおこない、設定値を超えたデータを検出した
場合、アラーム表示をおこなう。なお、アラーム値の設
定は各空中線の過去の動作状態から長期間の評価により
設定されるので、過去のデータの推移を検証して、将来
のアラーム発出の時期を予測することが可能となる。
The equipment diagnosis personal computer takes in measured data from the data collecting personal computer, compares it with a preset reference value, and displays an alarm when data exceeding the set value is detected. Since the setting of the alarm value is set by a long-term evaluation from the past operation state of each antenna, it is possible to verify the transition of the past data and predict the future alarm issuance time.

【0018】データ採取用パソコンで測定されたデータ
は、過去24時間を、そのまま格納し、その進行波と反
射波を別途格納する。したがって1日の総データ数は3
0回×24時間で720回となる。また、このデータは
最大で3年間のデータを蓄積することができる。グラフ
表示は過去24時間の、それぞれの空中線のVSWRデ
ータを表示することが可能な当日表示(図3)と、予め
表示期間を設定し表示させる期間指定表示(図2)とが
ある。格納されたデータは、監視用パソコン14(基地
局パソコン)からの要求で監視用パソコンへ転送され
る。
The data measured by the personal computer for data collection stores the past 24 hours as it is, and separately stores its traveling wave and reflected wave. Therefore, the total number of data per day is 3
720 times in 0 times 24 hours. This data can accumulate data for a maximum of three years. The graph display includes a current day display (FIG. 3) capable of displaying VSWR data of each aerial for the past 24 hours, and a period designation display (FIG. 2) in which a display period is set and displayed in advance. The stored data is transferred to the monitoring personal computer in response to a request from the monitoring personal computer 14 (base station personal computer).

【0019】監視用パソコンは基地局に設置され、モデ
ム12,13を介し専用線電話回線で設備診断用パソコ
ンとリンクされている。測定された振動データは診断用
パソコンから転送され、最新の測定データにより監視モ
ニターされ、基準値を超えればアラーム表示される。グ
ラフ表示、基準値設定は設備診断用パソコンと同様にお
こなうことができる。
The personal computer for monitoring is installed in the base station and is linked to the personal computer for facility diagnosis via a dedicated telephone line via modems 12 and 13. The measured vibration data is transferred from the diagnostic personal computer, monitored and monitored by the latest measured data, and an alarm is displayed if the measured value exceeds the reference value. Graph display and reference value setting can be performed in the same manner as a computer for equipment diagnosis.

【0020】[0020]

【発明の効果】長期間の劣化傾向を図2のようにデータ
ベース化したグラフ表示するため、標準VSWR値1.
2から徐々に反射波が増大した場合、その時点で当該空
中線のみの適切な保守作業を実施すれば、アラームレベ
ル4に達することなく施設の維持が可能となる。従って
運用停止を伴う空中線点を行う必要がなく、航空保安業
務のサービス向上に貢献できる。
According to the present invention, a standard VSWR value of 1.
When the reflected wave gradually increases from 2, if the appropriate maintenance work is performed only on the antenna at that time, the facility can be maintained without reaching the alarm level 4. Therefore, there is no need to perform an aerial point with a stoppage of operation, which can contribute to improving the service of aviation security operations.

【0021】VOR/DMEサイトでの空中線系の動作
状態を基地局で図3のように常時監視できるため、アラ
ームレベル2に達する突発的な障害発生3の把握や障害
空中線の特定が短時間で行へ、施設の運用停止を伴うこ
となく障害復旧が可能となりサービス向上に貢献でき
る。
Since the operation state of the antenna system at the VOR / DME site can be constantly monitored by the base station as shown in FIG. 3, it is possible to grasp the sudden failure occurrence 3 reaching the alarm level 2 and to specify the failed antenna in a short time. The service can be restored without stopping the operation of the facilities, which can contribute to the improvement of services.

【0022】収集データの反射レベルの上昇及び進行波
レベル低下の周期の分析から障害発生の予測が可能とな
り、定期保守の最適化が実現でき、VOR/DMEシス
テムとしての信頼性の向上に寄与する。
The analysis of the period of the rise of the reflection level and the decrease of the traveling wave level of the collected data makes it possible to predict the occurrence of a failure, thereby optimizing the periodic maintenance and contributing to the improvement of the reliability of the VOR / DME system. .

【0023】24時間の自動監視体制が基地局側ででき
るため無人化が容易となりランニングコストの大幅な削
減が可能となる。
Since an automatic monitoring system for 24 hours can be performed on the base station side, unmanned operation is easy and running cost can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 設備診断システムの構成図FIG. 1 is a configuration diagram of an equipment diagnosis system.

【図2】 期間指定表示グラフの表示例[Figure 2] Display example of the period designation display graph

【図3】 当日表示グラフの表示例[Figure 3] Display example of the display graph on the day

【符号の説明】[Explanation of symbols]

図1 1 VOR/DME装置 2 空中線モニター装置 3 キャリア空中線 4 サイドバンド空中線群 5 VSWR検出器 6 インターフェースユニット 7 A/D変換ボード 8 データ採取パソコン 9 ディストリビューター盤 10 設備診断パソコン 11 設備診断パソコンモニター 12 専用線モデム 13 専用線モデム 14 監視用パソコン 15 監視用パソコンモニター Fig. 1 1 VOR / DME device 2 Antenna monitoring device 3 Carrier antenna 4 Sideband antenna group 5 VSWR detector 6 Interface unit 7 A / D conversion board 8 Data acquisition personal computer 9 Distributor panel 10 Equipment diagnostic personal computer 11 Equipment diagnostic personal computer monitor 12 Dedicated line modem 13 Dedicated line modem 14 PC for monitoring 15 PC monitor for monitoring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】VOR/DME(超短波全方向無線標識施
設/距離測定装置)及びVORTAC(戦略航法システ
ム)空中線から発射される進行波及び反射波を検出し、
A/Dコンバーターで数値化したデータとしてパソコン
に蓄積、データベース化することにより、長期間の劣化
傾向をグラフとして監理することにより、障害発生の予
測や保守の適切な時期を決定でき、航空機に距離及び方
位情報を提供する航空保安施設としての信頼性の向上に
寄与する。
1. A traveling wave and a reflected wave emitted from a VOR / DME (ultra-high frequency omnidirectional radio beacon facility / distance measuring device) and a VORTAC (strategic navigation system) antenna are detected.
By storing the data quantified by the A / D converter in a personal computer and making it into a database, the long-term deterioration tendency can be managed as a graph, so that it is possible to predict the occurrence of a failure and determine the appropriate time for maintenance, and to determine the distance to the aircraft. And contributes to the improvement of reliability as an aviation security facility that provides azimuth information.
【請求項2】 予め設定された値より大きい又は小さい
値を検出した場合、基地局に自動的に警報を発すること
ができ、リアルタイムでの無人サイトの遠隔監視が可能
となりランニグコストの低減に寄与する。
2. When a value larger or smaller than a preset value is detected, an alarm can be automatically issued to a base station, and remote monitoring of an unmanned site in real time becomes possible, contributing to a reduction in running cost. .
JP2000061732A 2000-03-07 2000-03-07 Vor/dme (very-high frequency omnidirectional radio beacon facility/distance measuring device) and vortac (strategic navigation system) antenna deterioration equipment diagnostic system Pending JP2001249172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000061732A JP2001249172A (en) 2000-03-07 2000-03-07 Vor/dme (very-high frequency omnidirectional radio beacon facility/distance measuring device) and vortac (strategic navigation system) antenna deterioration equipment diagnostic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000061732A JP2001249172A (en) 2000-03-07 2000-03-07 Vor/dme (very-high frequency omnidirectional radio beacon facility/distance measuring device) and vortac (strategic navigation system) antenna deterioration equipment diagnostic system

Publications (1)

Publication Number Publication Date
JP2001249172A true JP2001249172A (en) 2001-09-14

Family

ID=18581832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000061732A Pending JP2001249172A (en) 2000-03-07 2000-03-07 Vor/dme (very-high frequency omnidirectional radio beacon facility/distance measuring device) and vortac (strategic navigation system) antenna deterioration equipment diagnostic system

Country Status (1)

Country Link
JP (1) JP2001249172A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103644A1 (en) * 2003-12-16 2008-05-01 Garmin International, Inc. Method and system for using database and gps data to linearize vor and ils navigation data
EP1939645A1 (en) 2006-12-27 2008-07-02 Kabushiki Kaisha Toshiba DVOR apparatus and sideband antenna fault detecting method
JP2010038757A (en) * 2008-08-06 2010-02-18 Toshiba Corp Dvor (doppler vhf omnidirectional radio range) system, monitoring apparatus, and dvor apparatus monitoring method
US8031118B2 (en) 2006-06-13 2011-10-04 Kabushiki Kaisha Toshiba Phase correction apparatus, DVOR apparatus, and phase correction method
KR101421576B1 (en) * 2012-12-24 2014-07-22 한국공항공사 System and method for measuring navaid transmission signal using unmanned air vehicle
JP2014235041A (en) * 2013-05-31 2014-12-15 古野電気株式会社 Radar apparatus and radar performance measuring method
KR101932836B1 (en) * 2017-02-28 2018-12-26 한국항공대학교산학협력단 Testbed system for Radio Navigational Aids
KR20190069767A (en) * 2017-12-12 2019-06-20 한국공항공사 Device and method for precise monitoring vor
KR20190132042A (en) * 2018-05-18 2019-11-27 김태진 Error detecting and operation analysis apparatus of navigation aids and method the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103644A1 (en) * 2003-12-16 2008-05-01 Garmin International, Inc. Method and system for using database and gps data to linearize vor and ils navigation data
US8031118B2 (en) 2006-06-13 2011-10-04 Kabushiki Kaisha Toshiba Phase correction apparatus, DVOR apparatus, and phase correction method
EP1939645A1 (en) 2006-12-27 2008-07-02 Kabushiki Kaisha Toshiba DVOR apparatus and sideband antenna fault detecting method
JP2008164368A (en) * 2006-12-27 2008-07-17 Toshiba Corp Dvor device, and method of detecting abnormality in sideband antenna
US7786924B2 (en) 2006-12-27 2010-08-31 Kabushiki Kaisha Toshiba DVOR apparatus and sideband antenna fault detecting method
JP2010038757A (en) * 2008-08-06 2010-02-18 Toshiba Corp Dvor (doppler vhf omnidirectional radio range) system, monitoring apparatus, and dvor apparatus monitoring method
KR101421576B1 (en) * 2012-12-24 2014-07-22 한국공항공사 System and method for measuring navaid transmission signal using unmanned air vehicle
JP2014235041A (en) * 2013-05-31 2014-12-15 古野電気株式会社 Radar apparatus and radar performance measuring method
KR101932836B1 (en) * 2017-02-28 2018-12-26 한국항공대학교산학협력단 Testbed system for Radio Navigational Aids
KR20190069767A (en) * 2017-12-12 2019-06-20 한국공항공사 Device and method for precise monitoring vor
KR102018441B1 (en) * 2017-12-12 2019-09-04 한국공항공사 Device and method for precise monitoring vor
KR20190132042A (en) * 2018-05-18 2019-11-27 김태진 Error detecting and operation analysis apparatus of navigation aids and method the same
KR102066240B1 (en) 2018-05-18 2020-01-14 김태진 Error detecting and operation analysis apparatus of navigation aids and method the same

Similar Documents

Publication Publication Date Title
KR100288950B1 (en) System and Method for monitoring signal equipment difficulty in train
AU2011247439B2 (en) Device and method for transmitting measurement signals in spatially extensive supply networks
KR20150095718A (en) A Device, Method And System For Monitoring A Network Of Fluid-Carrying Conduits
JP2012518305A (en) Sensors and sensor networks for aircraft
KR20130012226A (en) System and method for remote maintenance of ship
JP2001249172A (en) Vor/dme (very-high frequency omnidirectional radio beacon facility/distance measuring device) and vortac (strategic navigation system) antenna deterioration equipment diagnostic system
EP3375691A1 (en) Monitoring system for a railway infrastructure
CN110702268B (en) Cable temperature monitoring method and system applied to rail transit
CN110994785A (en) Remote power monitoring system for transformer substation
CN109115115A (en) A kind of Tunnel Displacement detection system and detection calculation method
CN117169656A (en) Quick positioning device for power distribution network ground fault
JP2003050620A (en) System for monitoring equipment
CN210776827U (en) ETC signal on-line monitoring device
JP6167085B2 (en) Wireless measurement system, wireless sensor terminal, and device management method
JP4693693B2 (en) Aircraft detection processing equipment for stop line lights
WO2019125197A1 (en) Method and system of automatically monitoring a contact conductor of an electric transport system
KR100305289B1 (en) Base Station and Repeater Management System Using Mobile Phone
JP2002233081A (en) Equipment monitoring control system
EP3498569A1 (en) Train control system
KR20020036797A (en) Transportation information sensing apparatus and system
KR101855577B1 (en) Safety inspection and management system with rf communication
JPH0581600A (en) System monitoring processing system in hyperbolic navigation system
CN109709524A (en) A kind of portable radar tester
US20050225475A1 (en) Monitoring system for land-based navigational and landing systems
CN110221235A (en) A kind of fault detector remote test system and method