JP2001245871A - Doze judging device using saturation percentage of oxygen in artery blood in judging doze - Google Patents

Doze judging device using saturation percentage of oxygen in artery blood in judging doze

Info

Publication number
JP2001245871A
JP2001245871A JP2000110011A JP2000110011A JP2001245871A JP 2001245871 A JP2001245871 A JP 2001245871A JP 2000110011 A JP2000110011 A JP 2000110011A JP 2000110011 A JP2000110011 A JP 2000110011A JP 2001245871 A JP2001245871 A JP 2001245871A
Authority
JP
Japan
Prior art keywords
value
spo2
doze
time
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000110011A
Other languages
Japanese (ja)
Inventor
Kazumasa Onodera
和正 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000110011A priority Critical patent/JP2001245871A/en
Publication of JP2001245871A publication Critical patent/JP2001245871A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4035Evaluating the autonomic nervous system

Abstract

PROBLEM TO BE SOLVED: To prevent a traffic accident caused by a doze at the wheel. SOLUTION: The saturation percentage of oxygen in the artery blood (SpO2), one of biological data of human body, is used as a means for judging a doze. At the start of a doze, SpO2 lowers drastically; then after forming a minimum value, the SpO2 begins to rise and forms a maximal value. After that, the value lowers a little and comes near to a stable value before the start of the doze. The change of the value is a result of the interactions between the sympathetic nerve and the parasympathetic nerve. Therefore, the reproductivity is high and there is little difference by person, so the method using SpO2 is the most appropriate for judging a doze. The device using the method for judging a doze judges a doze by storing the standard curve of SpO2 indicating a doze in the device beforehand and comparing the curve and the change of SpO2 value in time at the time of driving a car. The device is comprised of an oxymetry function part using red light and infrared light and a comparator.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は生体の一部に、セン
サーを有するプローブを装着し、非侵襲的に動脈血中の
ヘモグロビンと酸素との結合割合を連続的に知るパルス
オキシメータの応用に関するものである。 【0002】 【従来の技術】覚醒状態から半覚醒(居眠り)に移行し
たいわゆる運転時の居眠り検出法としては、修正操舵
(角)周期法あるいは脳波法、など研究されている。こ
れらはいずれも実験段階で実用化に到っていないが、こ
こでは従来技術とみなして言及する。修正操舵(角)周
期法は運転時に半覚醒状態に入ると、運転者はハンドル
を操作して自動車の進路を修正する頻度が減少し、結果
として操舵周期が延びる。事前に閾値を設定しておき、
この値を越えたとき半覚醒に入ったと判定する。 ま
た、脳波法は脳波中のアルフア波を波形分析によりを検
出して、覚醒中に頻度高く出現するベータ波と比較、、
半覚醒を判断する手法である。 【0003】また、一方運転者の心拍の時間間隔変動
(R−Rインターバル変動)を観測して、半覚醒を判断
する手法もある。さらに、目の瞬き(瞬目)をビデオ撮
影し、目の開閉から半覚醒を判断する手法もある。これ
らはいずれも運転者の運転技術の特性によったり、運転
者の個人の資質に依存し、半覚醒判断の閾値決定が困難
で汎用性に欠けていた。また、修正操舵周期法、瞬き法
などは半覚醒判断のパラメータとしては間接的で、同様
に汎用性を欠いた。 【0004】更に、より直接的と考えられる脳波検出法
は、観測波形からアルフア波を分離する手法に高度な解
析が必要となる。いずれにしても従来技術では、簡便
に、汎用的に、精度高く半覚醒(居眠り)を検出する方
法とは言えなかった。 【0005】パルスオキシメータに関しては、従来公知
の技術として、特公昭53−26437号公報や特公6
1−11097号公報に開示されたものがある。本発明
は動脈血酸素飽和度を半覚醒の判断パラメータとして活
用してパルスオキシメータを本発明の機能の一部に使用
しているが、パルスオキシメータそのものではない。そ
の意味で本発明は従来の技術の延長線上に存在しない。 【0006】 【発明が解決しようとする課題】半覚醒を正確に判断し
て、半覚醒検知装置あるいは警報装置として汎用的に利
用するためには、つぎの条件が満足されねばならない。 覚醒から半覚醒に移行した時点を正確に判断できる 個人差によって判断結果に差がない 半覚醒に入ったことを早期に判断できる 半覚醒の生体情報を直接検知できる(間接情報だと判
断するまで時間がかかり、かつ精度が低下する) 検知装置の構成が簡単である(低廉化、引いては汎用
化につながる) できれば医療機器として、あるいは一般家庭利用と共
用でき汎用性がある、などの条件が満たされねばならな
い。 しかしながら先に述べたような従来方法、例えば修正操
舵周期、脳波検出、瞬目観察などでは上の条件を満足し
ない。 【0007】 【課題を解決するための手段】半覚醒(居眠り)を先に
延べた各種課題を満足して検知するためには、まずもっ
て生体情報を直接センシング対象とすることが第一条件
である。睡眠中枢に直接制御されている人体機能の一つ
として呼吸がある。この呼吸状態は睡眠中枢である大脳
の視床下部により神経系を通じて直接支配されている。
本発明なる検出パラメータである動脈血酸素飽和度は呼
吸状態の直接的な反映である。 【0008】人間は睡魔に襲われると(大脳から信号が
発せられると)、呼吸量に変化が生ずる。睡眠の初期、
すなわち覚醒から半覚醒に移行した段階では呼吸量が減
少する。これに伴って、SpO2は若干減少する。さら
に呼吸の減少状態が継続すると、生体に防御機能が働き
(交換神経・副交換神経の関係)、SpO2は若干回復
し、長時間後には初期値近傍に回復する。これは純粋に
医学的立場からは呼吸量低下を酸素取込み機能の向上に
よって補って人体の補償作用、復元作用を示している。 【0009】一方、これとは反対に半覚醒から覚醒へと
変化したとき(目覚めたとき)、呼吸量は急激に増加す
るが、同様な生体の防御作用により、SpO2は瞬間的
に(急激に)減少したあと増加し、最大値(ピーク)を
形成した後、緩やかに減少しある一定値に近づく。この
一定値は初期値であることが多い。 【0010】いづれにしても、生体の睡眠・覚醒信号に
反応して、SpO2は正(増加)方向もしくは負(減
少)の方向にオーバシュートし、ある安定な一定値に近
づく特異なパターンを有する。本発明では、これら大脳
の睡眠・覚醒中枢の司令に反応するSpO2の時間変化
に着目した。 また、これまで述べた覚醒・半覚醒・覚
醒のサイクルのうちで、半覚醒を判断するには幾つかの
手法が存在する。 即ち、最初の減少からさらにオーバ
シュートして減少し、しかる後増加するパターンの出現
で居眠り(半覚醒)と判断する。 さらなる方法は上に
述べた最初の居眠りパターンの出現後、覚醒時に現れる
上に述べた急激な減少(オーバシュート)・増加(ピー
クの形成)・緩やかな減少から安定のパターンを含めて
居眠り開始と判断する。これは浅い居眠りは常に覚醒を
伴うことを前提としている(運転時はこれに最も近いと
考えられる)。最後の手法は上の半覚醒・覚醒パターン
をひとつらなりととらえ、これらの複数個の出現をもっ
て居眠りの出現と判断する。 【0011】上の三つの手法のうちどの手法を採用する
かは、求められる測定精度、判定までの要求時間、本発
明になる判定装置の持ち得るメモリー容量、許容される
装置構成の複雑度などによって決定される。 【0012】つぎに上記判定法のいずれかの判定法に従
うにせよ、これらの判定法から居眠りを判断する居眠り
判定装置に関し、課題を解決するための手段について述
べる。先にも述べたように、本発明の原形は従来のパル
スオキシメータに見出せるが、ここでは煩雑さを避ける
ため主として本発明の従来装置との相違点のみにつき述
べる。特に記述しない点は従来のパルスオキシメータを
援用する。 【0013】指先、耳たぶ、など生体の一部に照射され
た赤外線の一部は動脈を通過するとき、赤血球を構成す
るヘモグロビン(Hb)、あるいはヘモグロビンと酸素
の結合体(HbO2)によってそれぞれ異なった程度に
吸収され、しかも波長依存性を持つ。いわゆるスペクト
ル特性をもつ。しかしながら赤外線の波長を固定するこ
とにより、対象物質特有の値を持つ。これにより、酸素
飽和度を求めることができるが、これらの酸素飽和度を
時間に対し集積して表示したものが上記判定に用いた酸
素飽和度曲線である。従来のオキシメータでは時ゞ刻ゞ
変化するSpO2値を各々の瞬間に表示部分に表示でき
れば基本性能は確保されたこととなる。 【0014】しかしながら、本発明では従来にないつぎ
に述べる種々の新たな機能を追加して課題を解決する手
段を提供する。まず一つにはある特定な個人につき家庭
内で(車乗車時でない)時ゞ刻ゞ変化する居眠り開始時
のSpO2値をメモリー素子に記憶する機能である。こ
の機能は通常の如く、半導体メモリー素子によって達成
される。これら記憶された測定値を時間連続させること
によりひとつの酸素飽和度曲線が得られる。ここではこ
れを標準(基準)曲線と呼ぶ。 【0015】つぎに、運転時に居眠り開始に伴って同様
な酸素飽和度曲線を得ることができる。このようにして
得られた複数の酸素飽和度曲線同士の類似性を比較する
比較器(コンパレータ)によって本発明になる機能は構
成される。実際の本発明の適用に当たっては、事前に記
憶された基準曲線と運転時に測定された特性曲線を比
較、その類似性から上に述べた半覚醒(居眠り)を判断
する。このとき個人差はほぼ完全に除去され居眠り判定
の精度は向上する。他の方法としては、基準曲線を得る
代わりに多数人の家庭内でのSpO2変化を採取して典
型的な曲線を基準曲線としてメモリーする方法もある。
このひとつの方法として各時点における極小値と極大値
の差分を規定する方法もある。このとき判定精度は多少
低下するがもともとこのSpO2の手法に個人差は大き
くなく許容できる範囲 である。しかも事前に記憶され
た基準曲線を使用するため、個々人が基準曲線を採取す
る煩わしさはない。いずれも基準曲線との比較になるた
め新たな回路機能として比較器をもつ必要がある。 【0016】 【実施例1】まずはじめに、居眠り開始から覚醒するま
での一連のSpO2の実測値を図1に一例として示し
た。図で左側半分は居眠り開始してから安定するまで、
右側半分は覚醒開始から安定するまでを各々示す。つぎ
にこれらにつき順次説明を加える。 【0017】まず、居眠り部分であるが、覚醒時にはS
pO2値98%の第一の安定値をとるが、居眠り開始か
ら約30秒で大きく減少し始め、約1分で第一の極小値
まで到達する。しかる後時間経過とともに増加に転じ、
1分50秒で第一の極大値に達し、しかる後第二の安定
値へと減少する。居眠り状態が継続するとき、SpO2
値はほぼこの安定値をとりつづける。 【0018】一方、右側の覚醒部分であるが、覚醒開始
後第二の安定値から急激に低下して、第二の極小値を形
成し、さらに今度は急激に第一の安定値を超えて増加し
し、第二の極大値を形成した後、徐々に減少して第一の
安定値と同じ第三の安定値を取る。覚醒が継続すると
き、ほぼこの第三の安定値のままで変動は少ない。 【0019】以上は覚醒から居眠りへ更に覚醒へと一サ
イクルのSpO2推移の例を示したが、次に本発明なる
二つ居眠り開始判断法の実施例について述べる。 ま
ず、第一は図の左部分、即ち第一の安定値から第二の安
定値までのSpO2のうち、第一の安定値、第一の極小
値、第一の極大値、第二の安定値の各々の許容範囲を、
事前に調査した多人数の居眠りデータを参考に標準値を
決定し、装置内の記憶素子に記憶しておき、これと運転
時に得られたSpO2とを比較して、類似性の高いもの
を居眠り運転と判断する。このとき標準値の代わりに本
発明になる装置内に、装置を使用する特定個人の居眠り
時のSpO2のデータを基準曲線として記憶し、これ
と運転時に得られたSpO2値を比較する方法でもよ
い。 【0020】第二は図の左の部分にさらに右の部分の覚
醒時のSpO2値を加えて、即ち第一の安定から第三の
安定までを、第一の方法と同様にして居眠りを判断して
もよい。これは居眠りを浅い眠りと捉えて、居眠りには
覚醒が伴うことを前提としている。 【0021】同様な意味において、上の第二の居眠り・
覚醒の一サイクルを複数回繰り返すのが居眠りの特性と
見れば、この複数回のSpO2変化を上と同様に基準
値、基準曲線と比較して居眠りを判断してもよい。 【0022】 【実施例2】図2は覚醒期から居眠り期に移行するとき
のSpO2と脈拍数を示す。SoP2については図1と
同様な推移を示すが、脈拍数については覚醒期には70
を中心に大きく変動し居眠り開始とともに大きく低下
し、60を中心とした変動に移行する。この低下の初期
では図のようにやや振幅は大きいが、時間の経過ととも
に振幅は減少する。以上の脈拍数変化は居眠り開始期に
特有なものであり、SpO2と併用して居眠り判断を行
う。すなわち、居眠り開始の極めて初期に脈拍数低下か
ら居眠り開始が予測され、遅れてSpO2から居眠り開
始が確定したときをもって居眠り開始と判断する方法で
ある。 【0023】 【実施例3】図3にはは覚醒期から居眠り期に移行する
ときのSpO2と脈拍間隔変動との関係を示す。脈拍間
隔変動は居眠り開始の極めて初期に大きく変動し、図の
ように時間経過とともに減衰する。ここではこの初期変
動を居眠り開始の予兆と捉え、遅れて得られるSpO2
からの居眠り開始が確認された時点で居眠り開始と判断
する方法である。 【0024】 【実施例4】つぎに本発明なる居眠り判定法を用いた、
本発明なる居眠り判定装置につき実施例を図4示す。図
ではSpO2検出部である光プローブ部、マイクロコン
ピユータ部、AD変換部、警報装置を含んだ表示部など
のSpO2信号処理・制御部のほか基準データ・基準曲
線と測定データを比較する”最小二乗演算CPU”から
なっている。ここでは比較回路の代表として最小二乗演
算CPUが一例として示されているが、他の方法による
比較回路ブロックによって代替してもよい。 要はこの
部分は比較回路で構成され、たとえば 【実施例1】で示した居眠り・覚醒の基本波形と基準デ
ータ・基準曲線とを比較する方式を用いて比較する機能
を有していれば本発明となる。比較回路部で居眠り運転
と判定されると、文字表示されるかブザーなどの警報装
置により、運転者・同乗者に居眠り運転であることを知
らせる。 【0025】 【発明の効果】現代は車社会であり、登録車数は700
0万台に達している。一方、生活形態は夜間活動する機
会が増え、事故件数のうち16%は居眠り運転起因と言
われている。交通事故死者は年間9000人にも達する
が、このうち居眠り運転起因割合は更に増加する。か
かる社会環境下にあって居眠り運転事故の防止は社会の
要請である。 本発明になる”新しい居眠り(半覚醒)
判定法を用いた居眠り判定装置”を使用することによ
り、表示装置・警報装置などにより、運転者自身はもと
より、同乗者にも居眠り運転であることを明解に認識さ
せ、適当な場所での休憩を促すなど適切な対応策を取る
ことにより、居眠り運転による交通事故・死亡事故を未
然に防止することができる。 【0026】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of attaching a probe having a sensor to a part of a living body to continuously and non-invasively measure the binding ratio between hemoglobin and oxygen in arterial blood. It relates to the application of a pulse oximeter, which is known in practice. 2. Description of the Related Art As a so-called drowsiness detection method at the time of driving in which the awake state shifts to a half-wake (drowsiness), a modified steering (angular) cycle method or an electroencephalogram method has been studied. Although none of these have been put to practical use at the experimental stage, they are referred to here as prior art. In the modified steering (angular) cycle method, when the driver enters a semi-wake state during driving, the frequency at which the driver operates the steering wheel to correct the course of the vehicle decreases, and as a result, the steering cycle is extended. Set the threshold in advance,
When this value is exceeded, it is determined that the person has entered half-wake. In addition, the EEG method detects the Alpha wave in the EEG by waveform analysis and compares it with the beta wave that appears frequently during awakening,
This is a method for determining half awakening. On the other hand, there is also a method of judging half-wake by observing a time interval variation (RR interval variation) of a driver's heartbeat. Furthermore, there is a method of video-taking a blink of an eye (blink) and judging half-wake from the opening and closing of the eye. All of these depend on the characteristics of the driver's driving technique and the personal qualities of the driver, and it is difficult to determine the threshold value for the half-wake determination, and lacks versatility. In addition, the modified steering cycle method, the blink method, and the like are indirect as parameters for determining arousal, and similarly lack versatility. [0004] Furthermore, the brain wave detection method considered to be more direct requires a high-level analysis in a method of separating alpha waves from observed waveforms. In any case, according to the conventional technology, it cannot be said that it is a simple, versatile, and accurate method for detecting half-wake (sleeping). [0005] Regarding the pulse oximeter, as a conventionally known technique, Japanese Patent Publication No. 53-26437 and Japanese Patent Publication No.
There is one disclosed in JP-A-11-11097. In the present invention, the pulse oximeter is used as a part of the function of the present invention by utilizing the arterial oxygen saturation as a parameter for determining arousal, but is not a pulse oximeter itself. In this sense, the present invention does not extend from the prior art. [0006] The following conditions must be satisfied in order to accurately determine a half-wake and use it as a half-wake detection device or a warning device for general use. It is possible to accurately judge when the transition from awake to semi-awake. There is no difference in the judgment result depending on the individual difference. It is possible to directly detect the half-wake biometric information that allows early judgment of entering semi-wake (until it is judged to be indirect information) (It takes a long time and the accuracy is lowered.) The configuration of the detection device is simple (lower cost, and eventually leads to general use). Must be satisfied. However, the above-mentioned conventional methods, such as the modified steering cycle, brain wave detection, and blink observation, do not satisfy the above conditions. [0007] In order to satisfy and detect various problems that have been delayed in the first half of awakening (drowsiness), it is first necessary to directly detect biological information as a target for sensing. is there. One of the human functions directly controlled by the sleep center is breathing. This respiratory state is directly controlled through the nervous system by the hypothalamus of the cerebrum, which is the sleep center.
The arterial oxygen saturation, which is a detection parameter according to the present invention, is a direct reflection of the respiratory condition. [0008] When a human is attacked by sleep (a signal is emitted from the cerebrum), a change in respiratory volume occurs. Early in the sleep,
That is, the respiratory volume decreases at the stage of transition from awake to semi-awake. Accordingly, SpO2 slightly decreases. When the state of respiratory decline continues, a protective function acts on the living body (relationship between sympathetic nerve and accessory sympathetic nerve), and SpO2 slightly recovers, and after a long time, recovers to near the initial value. Purely from a medical point of view, the decrease in respiratory volume is compensated for by improving the oxygen uptake function, indicating a compensatory action and a restorative action of the human body. On the other hand, when the state changes from semi-awakening to awakening (wake up), on the other hand, the respiratory volume increases sharply, but SpO2 instantaneously (suddenly increases) due to the similar protective action of the living body. ) It increases after decreasing, forms a maximum value (peak), then gradually decreases and approaches a certain value. This constant value is often an initial value. In any case, in response to the sleep / wake signal of the living body, SpO2 overshoots in a positive (increase) direction or a negative (decrease) direction, and has a peculiar pattern approaching a certain stable constant value. . In the present invention, attention was paid to the temporal change of SpO2 in response to the command of the cerebral sleep / wake center. In addition, in the awakening / semi-awakening / awakening cycle described above, there are several methods for determining a half-wakefulness. That is, the appearance of a pattern that overshoots and decreases after the initial decrease and then increases thereafter is determined to be dozing (semi-awakening). A further method is that after the appearance of the first dozing pattern described above, the onset of dozing, including the above-mentioned sudden decrease (overshoot), increase (formation of a peak), and a gradual decrease that appears when awake, including a stable pattern. to decide. This assumes that light snoozing always accompanies wakefulness (driving is considered to be closest to this). The last method considers the above semi-awakening / wakening pattern as one, and determines the appearance of dozing with the appearance of a plurality of these. Which of the above three methods should be used depends on the required measurement accuracy, the required time until the determination, the memory capacity of the determination device of the present invention, the allowable complexity of the device configuration, and the like. Is determined by Next, a means for solving the problem will be described with respect to a drowsiness judging device for judging drowsiness by using any of the above judgment methods. As described above, the original form of the present invention can be found in a conventional pulse oximeter, but here, in order to avoid complexity, only differences from the conventional apparatus of the present invention will be mainly described. Unless otherwise described, a conventional pulse oximeter is used. When a part of the living body, such as a fingertip, an ear lobe, or the like, is irradiated on a part of a living body, when passing through an artery, a part of the infrared ray is different depending on hemoglobin (Hb) constituting red blood cells or a complex of hemoglobin and oxygen (HbO2). It is absorbed to a certain degree and has wavelength dependence. It has so-called spectral characteristics. However, by fixing the wavelength of the infrared ray, it has a value specific to the target substance. Thus, the oxygen saturation can be obtained. The oxygen saturation curve used for the above determination is obtained by accumulating and displaying the oxygen saturation with respect to time. In the conventional oximeter, if the SpO2 value that changes every moment can be displayed on the display at each moment, the basic performance is secured. However, the present invention provides means for solving the problem by adding various new functions which are not heretofore described. The first is a function of storing the SpO2 value at the start of falling asleep at the time {not at the time of riding in a car) for a specific individual at the time {at time} in a memory element. This function is conventionally achieved by a semiconductor memory device. By making these stored measured values continuous over time, one oxygen saturation curve is obtained. Here, this is called a standard (reference) curve. Next, a similar oxygen saturation curve can be obtained with the start of falling asleep during driving. The function according to the present invention is constituted by a comparator (comparator) for comparing the similarity between a plurality of oxygen saturation curves obtained in this manner. In actual application of the present invention, a reference curve stored in advance is compared with a characteristic curve measured during driving, and the above-mentioned semi-wake (sleeping) is determined from the similarity. At this time, the individual difference is almost completely removed, and the accuracy of the dozing determination is improved. As another method, instead of obtaining a reference curve, there is a method of collecting SpO2 changes in a large number of people's homes and storing a typical curve as a reference curve.
As one of the methods, there is a method of defining a difference between a local minimum value and a local maximum value at each time point. At this time, although the judgment accuracy is slightly reduced, the SpO2 method does not largely differ between individuals and is within an acceptable range. Moreover, since the reference curve stored in advance is used, there is no need for each person to collect the reference curve. In any case, since the comparison with the reference curve is required, it is necessary to have a comparator as a new circuit function. First Embodiment First, a series of measured values of SpO2 from the start of falling asleep to the time of awakening are shown in FIG. 1 as an example. In the figure, the left half starts falling asleep and then stabilizes.
The right half shows the time from the start of awakening to the stabilization. Next, these will be described sequentially. First, the dozing part, but when awake, S
It takes the first stable value of 98% pO2, but starts to decrease greatly in about 30 seconds from the start of falling asleep, and reaches the first minimum value in about 1 minute. After a while, it began to increase over time,
At 1 minute and 50 seconds, the first local maximum is reached and then decreases to the second stable value. When the dozing state continues, SpO2
The value keeps about this stable value. On the other hand, in the awakening part on the right side, after the start of awakening, it suddenly drops from the second stable value to form a second minimum value, and then suddenly exceeds the first stable value. After increasing and forming the second maximum, it gradually decreases and takes on the same third stable value as the first stable value. When the awakening continues, the fluctuation is small with substantially the third stable value. In the above, an example of the transition of SpO2 in one cycle from awakening to dozing to further awakening has been described. Next, an embodiment of the two dozing start determination method according to the present invention will be described. First, the first part is the left part of the figure, that is, of SpO2 from the first stable value to the second stable value, the first stable value, the first minimum value, the first maximum value, the second stability value. Each acceptable range of values
A standard value is determined with reference to the dozing data of a large number of persons surveyed in advance, stored in a storage element in the device, and this is compared with SpO2 obtained during driving, and a high similarity drowsiness is determined. Judge as driving. At this time, instead of the standard value, a method of storing SpO2 data at the time of falling asleep of a specific individual using the device as a reference curve in the device according to the present invention and comparing this with the SpO2 value obtained during driving may be used. . The second is to add the SpO2 value at the time of awakening of the right part to the left part of the figure, that is, judge drowsiness from the first stabilization to the third stabilization in the same manner as the first method. May be. This assumes that dozing is light sleep and that dozing is accompanied by arousal. In a similar sense, the second dozing above
If it is considered that the characteristic of dozing is that one cycle of awakening is repeated a plurality of times, the doping may be determined by comparing the plurality of changes in SpO2 with a reference value and a reference curve in the same manner as above. Embodiment 2 FIG. 2 shows the SpO2 and the pulse rate when shifting from the awake phase to the dozing phase. The transition of SoP2 is similar to that of FIG. 1, but the pulse rate is 70
Fluctuates around the center, and decreases greatly with the start of falling asleep. At the beginning of this decrease, the amplitude is slightly large as shown in the figure, but the amplitude decreases over time. The above pulse rate change is peculiar to the drowsiness start period, and the drowsiness determination is performed in combination with SpO2. That is, this method is a method in which a drowsiness start is predicted from a drop in the pulse rate very early in the drowsiness start, and a drowsiness start is determined when the drowsiness start is determined later from SpO2. Embodiment 3 FIG. 3 shows the relationship between SpO2 and pulse interval fluctuation when shifting from awake to dozing. The pulse interval fluctuation fluctuates significantly at the very beginning of falling asleep, and attenuates with time as shown in the figure. Here, this initial fluctuation is regarded as a sign of the start of dozing, and SpO2 obtained late
This is a method of determining that a dozing start has occurred when it is confirmed that the dozing has started. Embodiment 4 Next, using the dozing determination method according to the present invention,
FIG. 4 shows an embodiment of the dozing determination device according to the present invention. In the figure, the SpO2 signal processing / control unit such as an optical probe unit serving as a SpO2 detection unit, a microcomputer unit, an AD conversion unit, and a display unit including an alarm device, as well as reference data and a reference curve are compared with the measured data. Arithmetic CPU ". Here, the least squares operation CPU is shown as an example of the comparison circuit as an example, but the comparison circuit block may be replaced by another method. The point is that this part is composed of a comparison circuit. For example, if it has a function of comparing the basic waveform of dozing / wake and the reference data / reference curve shown in [First Embodiment] It is an invention. When the comparison circuit section determines that the vehicle is dozing, the driver / passenger is notified of the drowsy driving by displaying a character or using an alarm device such as a buzzer. The present invention is a car society, and the number of registered cars is 700.
It has reached 100,000 units. On the other hand, the lifestyle has more opportunities to be active at night, and it is said that 16% of accidents are caused by dozing off. The number of traffic fatalities is as high as 9000 per year, of which the proportion due to drowsy driving will further increase. Or
In such a social environment, prevention of driving accidents falling asleep is a social demand. Become the present invention "new doze (semi-awakening)
By using the "Drowsiness determination device using the determination method", the driver and the passengers can clearly recognize that they are falling asleep by using the display device and the alarm device, and take a break at an appropriate place. By taking appropriate countermeasures such as urging the driver to sleep, it is possible to prevent traffic accidents and fatal accidents caused by falling asleep.

【図面の簡単な説明】 【図1】は覚醒時の動脈血酸素飽和度(SpO2)の安
定状態から居眠り開始、更に再び覚醒するまでの時間経
過を示す。 【図2】覚醒期から居眠りに移行したときの脈拍数・S
pO2と時間との関係を示す。 【図3】は覚醒期から居眠りに移行したときの脈拍間隔
変動・SpO2と時間との関係を示す。 【図4】は本発明なる装置のブロック図を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the elapse of time from the stable state of arterial blood oxygen saturation (SpO2) at the time of awakening to the beginning of falling asleep and the time of awakening again. FIG. 2 Pulse rate / S at the time of transition from awake to dozing
4 shows the relationship between pO2 and time. FIG. 3 shows the relationship between pulse interval fluctuation / SpO2 and time when awakening transitions to dozing. FIG. 4 shows a block diagram of the device according to the invention.

Claims (1)

【特許請求の範囲】 【請求項1】二光以上複数の光照射を用いたオキシメト
リー法によって得られる人間の覚醒状態の動脈血酸素飽
和度(SpO2)がある第一の安定値を示した後、この
安定値から時間とともに一旦増加し、しかるのち減少す
るかあるいはある安定値から時間とともに減少するパタ
ーンを有し更に時間と共に減少をつづけ第一の極小値と
なった後増加し第一の極大値を示し、このあと減少傾向
に入り、ある第二の安定な一定値をとったとき(図1左
部分参照)、当該人間は覚醒から居眠り(半覚醒)に入
ったと判断する方法。 【請求項2】、 【請求項1】のパターンで最後の第二の安定値を形成し
た後、今度は減少を続け、第二の極小値を形成したあと
急激に増加して第二の極大値を形成し、しかる後先のあ
る第一の安定値よりも小さな安定値かあるいはほぼ同一
の第三の安定値に減少し近づく(図1右部分参照)。こ
のとき、 【請求項1】(図1の左部分)に示すSpO2変化に加
えて図1右部分が出現したとき、当該人間は覚醒から居
眠り(半覚醒)に入ったと判断する方法。 【請求項3】請求項2のパターンを複数回繰返したと
き、当該人間は覚醒から居眠り(半覚醒)に入ったと判
断する方法。 【請求項4】請求項1,2,3は人間以外の酸素飽和度
を有する他の生物についても同様に判断する方法。 【請求項5】二光以上複数の光照射を用いたオキシメト
リー法によって得られる脈拍数・脈拍波形に関し、脈拍
数については覚醒時からの低下が観測されたとき、脈拍
波形については振幅の低下か脈拍間隔変動の各々の一方
か両方が同時に観測されたとき、 【請求項1】から 【請求項4】までの居眠り判断法と併用して居眠りに入
ったと結論づける居眠りの判断方法。 【請求項6】動脈血に対し二つ以上の赤色光・赤外線を
照射、吸光度の変化を求めて動脈血酸素飽和度を決定す
るオキシメトリー法において、各々の時点におけるSp
O2を求める機能と、このSpO2の時間変化を時間間
隔でメモリーする機能と、このメモリーされた数値群か
ら請求項1〜4を判断するため、各々の請求項に対応し
たあらかじめ設定された基準曲線とメモリーされた数値
群との類似性を比較する比較器と、これらの判断の結果
としての半覚醒(居眠り)に入ったことを表示する機能
および警報で知らせるためのブザーを有してなる居眠り
判定装置。なお、表示機能と警報機能は併存する必要は
ない。また、表示部にはSpO2値、脈拍数が表示され
てもよい。 【請求項7】動脈血に対し二つ以上の赤色光・赤外線を
照射、吸光度の変化を求めて動脈血酸素飽和度を決定す
るオキシメトリー法において、各々の時点におけるSp
O2を求める機能と、このSpO2の時間変化を時間間
隔でメモリーする機能と、このメモリーされた数値群か
ら請求項1〜4を判断するため、第一の安定値と第一の
極小値の差分、第一の極小値と第一の極大値の差分、第
二の安定値と第二の極小値の差分、第二の極小値と第二
の極大値の差分とメモリーされた数値群との類似性を比
較する比較器と、これらの判断の結果としての半覚醒
(居眠り)に入ったことを表示する機能および警報で知
らせるためのブザーを有してなる居眠り判定装置。な
お、表示機能と警報機能は併存する必要はないことは前
項と同じである。また、表示部にはSpO2値、脈拍数
が表示されてもよい。 【請求項8】、 【請求項6】、 【請求項7】の比較器を有する居眠り判定装置につき、
比較項目として 【請求項5】に示すSpO2と脈拍数の低下または脈拍
波形の振幅低下もしくは脈拍間隔変動をも取込んで比較
する比較器を有する居眠り判定装置。
Claims 1. An arterial blood oxygen saturation (SpO2) of a human awake state obtained by an oximetry method using two or more light irradiations after a certain stable value is obtained. From this stable value, it increases once with time and then decreases, or has a pattern that decreases with time from a certain stable value, further decreases with time, increases to the first minimum value, then increases to the first maximum value. A method of judging that the person has entered a doze (semi-wake) from awakening when he enters a decreasing trend and then takes a certain second stable constant value (see the left part of FIG. 1). 2. After forming the last second stable value in the pattern of claim 1, it continues to decrease, and then increases rapidly after forming the second minimum value to increase the second maximum value. A stable value that is less than a certain first stable value or decreases and approaches a substantially same third stable value (see the right part of FIG. 1). At this time, when the right part of FIG. 1 appears in addition to the change of SpO2 shown in the left part of FIG. 1, it is determined that the person has fallen asleep (semi-awake) from awakening. 3. A method for judging that the person has entered a doze (semi-wake) from awake when the pattern of claim 2 is repeated a plurality of times. 4. The method according to claim 1, 2 or 3, wherein other organisms having oxygen saturation other than humans are similarly judged. 5. A pulse rate and a pulse waveform obtained by an oximetry method using two or more light irradiations, wherein a decrease in the pulse rate from the time of awakening is observed, and a decrease in the amplitude of the pulse waveform is observed. A method for determining a drowsiness that concludes that the user has fallen asleep in combination with the drowsiness determination method according to any one of claims 1 to 4, when one or both of the pulse interval variations are simultaneously observed. 6. An oximetry method for irradiating arterial blood with two or more red light / infrared rays and determining a change in absorbance to determine oxygen saturation of arterial blood.
A function for obtaining O2, a function for storing the time change of SpO2 at time intervals, and a reference curve set in advance corresponding to each claim in order to determine claims 1 to 4 from the stored numerical value group. And a comparator for comparing the similarity with the stored numerical value group, a function for displaying that a semi-wake (sleep) has been entered as a result of these determinations, and a buzzer for notifying by an alarm Judgment device. It is not necessary that the display function and the alarm function coexist. Further, the display unit may display the SpO2 value and the pulse rate. 7. An oximetry method for irradiating arterial blood with two or more red light / infrared rays and determining a change in absorbance to determine arterial oxygen saturation.
The function of obtaining O2, the function of storing the time change of SpO2 at time intervals, and the difference between the first stable value and the first minimum value to determine Claims 1 to 4 from the stored numerical value group. The difference between the first minimum value and the first maximum value, the difference between the second stable value and the second minimum value, the difference between the second minimum value and the second maximum value, and the stored numerical value group. A drowsiness judging device comprising a comparator for comparing similarities, a function of displaying that the person has entered a half-wake state (drowsiness) as a result of these judgments, and a buzzer for giving an alarm. Note that the display function and the alarm function do not need to coexist, as in the previous section. Further, the display unit may display the SpO2 value and the pulse rate. 8. A dozing determination device having a comparator according to claim 6.
A dozing determination apparatus having a comparator for comparing the SpO2 with the pulse rate reduction or the pulse waveform amplitude reduction or pulse interval variation shown in claim 5 as a comparison item.
JP2000110011A 2000-03-07 2000-03-07 Doze judging device using saturation percentage of oxygen in artery blood in judging doze Pending JP2001245871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110011A JP2001245871A (en) 2000-03-07 2000-03-07 Doze judging device using saturation percentage of oxygen in artery blood in judging doze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110011A JP2001245871A (en) 2000-03-07 2000-03-07 Doze judging device using saturation percentage of oxygen in artery blood in judging doze

Publications (1)

Publication Number Publication Date
JP2001245871A true JP2001245871A (en) 2001-09-11

Family

ID=18622600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110011A Pending JP2001245871A (en) 2000-03-07 2000-03-07 Doze judging device using saturation percentage of oxygen in artery blood in judging doze

Country Status (1)

Country Link
JP (1) JP2001245871A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146107A (en) * 2001-11-14 2003-05-21 Hitachi Ltd Finger attestation device provided with organism condition detection
WO2003084400A1 (en) * 2002-03-26 2003-10-16 Hitachi Medical Corporation Biological photometer
JP2006055501A (en) * 2004-08-23 2006-03-02 Denso Corp Apparatus and method for detecting sleepiness
JP2007334251A (en) * 2006-06-19 2007-12-27 Kenwood Corp Agent device, program and voice supply method
US7689259B2 (en) 2000-04-17 2010-03-30 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US9066660B2 (en) 2009-09-29 2015-06-30 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
US9681830B2 (en) 2008-10-07 2017-06-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for detecting a vital parameter
WO2020179186A1 (en) * 2019-03-01 2020-09-10 パナソニックIpマネジメント株式会社 Sleepiness prediction device, moving body, and sleepiness prediction method
US20210181734A1 (en) * 2019-12-12 2021-06-17 Hyundai Motor Company Apparatus and Method for Controlling Emergency Driving Situation Using Brain Wave

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689259B2 (en) 2000-04-17 2010-03-30 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
JP2003146107A (en) * 2001-11-14 2003-05-21 Hitachi Ltd Finger attestation device provided with organism condition detection
WO2003084400A1 (en) * 2002-03-26 2003-10-16 Hitachi Medical Corporation Biological photometer
US7186217B2 (en) 2002-03-26 2007-03-06 Hitachi Medical Corporation Biological photometer
JP2006055501A (en) * 2004-08-23 2006-03-02 Denso Corp Apparatus and method for detecting sleepiness
JP4543822B2 (en) * 2004-08-23 2010-09-15 株式会社デンソー Sleepiness detection device
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
JP2007334251A (en) * 2006-06-19 2007-12-27 Kenwood Corp Agent device, program and voice supply method
US9681830B2 (en) 2008-10-07 2017-06-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for detecting a vital parameter
US9066660B2 (en) 2009-09-29 2015-06-30 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
US9649071B2 (en) 2009-09-29 2017-05-16 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
WO2020179186A1 (en) * 2019-03-01 2020-09-10 パナソニックIpマネジメント株式会社 Sleepiness prediction device, moving body, and sleepiness prediction method
US20210181734A1 (en) * 2019-12-12 2021-06-17 Hyundai Motor Company Apparatus and Method for Controlling Emergency Driving Situation Using Brain Wave

Similar Documents

Publication Publication Date Title
US11172835B2 (en) Method and system for monitoring sleep
JP5007975B2 (en) Dozing detection device
US10618522B2 (en) Drowsiness detection and intervention system and method
Warwick et al. Detecting driver drowsiness using wireless wearables
Rogado et al. Driver fatigue detection system
US8570176B2 (en) Method and device for the detection of microsleep events
Johns A sleep physiologist's view of the drowsy driver
US6337629B1 (en) Method and a system for monitoring a person
US7250029B2 (en) Human condition evaluation system, computer program, and computer-readable record medium
JP2007203913A (en) Driving assistance device and driving assistance system
Tateno et al. Development of drowsiness detection system based on respiration changes using heart rate monitoring
EP2842490B1 (en) Method and device for accurate real-time detection of drowsiness in operators using physiological responses
JP2001245871A (en) Doze judging device using saturation percentage of oxygen in artery blood in judging doze
KR102407956B1 (en) Smart mirror device
JP3596158B2 (en) Driver monitoring device and safety device using it
Miyaji Method of drowsy state detection for driver monitoring function
JP3480483B2 (en) Arousal level estimation device
JPH08299443A (en) Doze preventing device
WO2018105459A1 (en) Drowsiness estimating device
Sari et al. A two-stage intelligent model to extract features from PPG for drowsiness detection
JPH05184558A (en) Device for detecting abnormality of driver
KR101932147B1 (en) sleepiness diagnostic method and apparatus using signal of electrocardiogram for driver
JPH07117595A (en) Asleep driving prevention device
JPH0910312A (en) Awakening judgement device, awakening judging method, and sleeping judging method
JP2013255734A (en) Doze warning device