JP2001242075A - Method and device for measuring light beam transmittance of applied matter - Google Patents

Method and device for measuring light beam transmittance of applied matter

Info

Publication number
JP2001242075A
JP2001242075A JP2000056469A JP2000056469A JP2001242075A JP 2001242075 A JP2001242075 A JP 2001242075A JP 2000056469 A JP2000056469 A JP 2000056469A JP 2000056469 A JP2000056469 A JP 2000056469A JP 2001242075 A JP2001242075 A JP 2001242075A
Authority
JP
Japan
Prior art keywords
light
transmittance
predetermined wavelength
measured
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000056469A
Other languages
Japanese (ja)
Inventor
Tomosuke Katsuyama
智祐 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2000056469A priority Critical patent/JP2001242075A/en
Publication of JP2001242075A publication Critical patent/JP2001242075A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and accurately measure reflectance of an object to be measured on a base body by a method and a device for measuring light beam transmittance of the object arranged on a proper base body. SOLUTION: By this method for measuring light beam transmittance, light beam transmittance of the object to be measured (cosmetics such as a sunscreen, for example) applied onto the base body (human skin, for instance) having a specific light reflectance is measured. In this method, a light beam having a plurality of continuous wavelengths including a predetermined wavelength is incident on the object to be measured on the base body from the measured object applied side, a reflectance primary differential value to the predetermined wavelength serving as a change rate of the reflectance to the predetermined wavelength is found, and on the basis of the reflectance primary differential value and the transmittance at the predetermined wavelength, transmittance of the object to be measured at the predetermined wavelength is found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は適当な基体の上に設
けられた被測定物の該基体上での塗布物の光線透過率の
測定方法及び塗布物の光線透過率の測定装置に係り、特
に基体を人肌とする等、基体を通しての被測定物の透過
率測定が困難な場合に用いて好適な塗布物の光線透過率
の測定方法及び塗布物の光線透過率の測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the light transmittance of a coated object on an object to be measured provided on an appropriate substrate, and an apparatus for measuring the light transmittance of the coated object. In particular, the present invention relates to a method for measuring the light transmittance of a coated material and a device for measuring the light transmittance of a coated material, which are suitable for use when it is difficult to measure the transmittance of an object to be measured through the substrate, such as when the substrate is human skin.

【0002】[0002]

【従来の技術】太陽から地球に降り注ぐ太陽光は紫外線
領域から赤外線領域に渡る範囲内にその成分を有し、殆
ど直線光として近似しうる特性の光である。そして最
近、この太陽光中に成分として含まれる紫外線の人体、
特に肌に及ぼす影響が問題となっている。
2. Description of the Related Art Sunlight falling on the earth from the sun has its components in the range from the ultraviolet region to the infrared region, and is light having characteristics that can be approximated as almost linear light. And recently, the human body of ultraviolet rays contained as components in this sunlight,
In particular, the effect on the skin is a problem.

【0003】地表に到達する太陽光中の紫外線はおよそ
280nm以上の波長のものとされ、可視光との境界と
される400nmまでのものをその成分として含む。こ
れら紫外線は、人体に対して紅斑、黒化、しわの発生、
皮膚癌の発生等の様々な影響を与えるため、適当な防御
を施して紫外線が肌などに到達しないようにすることが
望ましい。そのような要求に答えるためには、有害な紫
外線に対する遮蔽性の高い化粧品を開発すると共に、化
粧品について正確な紫外線遮蔽性の評価を行なう必要が
ある。
[0003] Ultraviolet rays in sunlight reaching the ground surface have a wavelength of about 280 nm or more, and include as a component up to 400 nm which is a boundary with visible light. These ultraviolet rays cause erythema, blackening, wrinkles,
Since it has various effects such as the occurrence of skin cancer, it is desirable to provide appropriate protection so that ultraviolet rays do not reach the skin and the like. In order to meet such demands, it is necessary to develop cosmetics having a high shielding property against harmful ultraviolet rays and to accurately evaluate the ultraviolet shielding properties of the cosmetics.

【0004】しかし、紫外線防御を目的とするクリーム
やファンデーション等の化粧品が実際の人肌の上で使用
されるとき、どの程度の紫外線遮蔽性を有しているかを
直接測定する方法としては、未だSPF試験法に準じて
試験を行い、肌上の紅斑現象の有無を確認するしかな
い。
However, when cosmetics such as creams and foundations for the purpose of protecting against ultraviolet rays are used on actual human skin, there is still no method for directly measuring the degree of ultraviolet shielding properties. There is no alternative but to conduct a test according to the SPF test method and confirm the presence or absence of erythema on the skin.

【0005】尚、SPF試験法は、人の肌に化粧品等の
被測定物を塗布し、紫外線を照射し、下式で表されるS
PF値を求め、その大小により被測定物の紫外線遮蔽効
果を評価する方法である。
In the SPF test method, an object to be measured such as cosmetics is applied to human skin, irradiated with ultraviolet light, and expressed by the following formula.
In this method, the PF value is determined, and the magnitude of the PF value is used to evaluate the ultraviolet shielding effect of the object.

【0006】SPF=(被測定物塗布部に微かな紅斑が
惹起される紫外線量)/(未塗布部で微かな紅斑が惹起
される紫外線量) しかしながら、SPF測定は時間がかかり、人の肌を用
いることから多くの被測定物を頻繁に測定するのは困難
であり、化粧品開発の現場において日常的に行なうには
不向きな方法である。そこで、SPFをある程度予測で
きる紫外線遮蔽効果評価法が幾つか提案されている。
SPF = (Amount of ultraviolet light causing slight erythema on the portion to be measured) / (Amount of ultraviolet light causing slight erythema on the uncoated portion) However, the SPF measurement is time-consuming and requires human skin. Since it is difficult to frequently measure many objects to be measured, the method is not suitable for daily use in the field of cosmetics development. Therefore, several methods of evaluating the ultraviolet shielding effect capable of predicting the SPF to some extent have been proposed.

【0007】例えば、被測定物を溶媒に溶解或いは分散
させ、透過率や吸光度を測定する希釈透過率法や、石英
板に被測定物を薄く塗布し、分光測定をする石英板薄膜
法、肌表面の凹凸を考慮し、凹凸面を有する半透明板に
被測定物を塗布して、分光測定をする半透明凹凸板塗布
法等がある。
For example, a dilution transmittance method for dissolving or dispersing an object in a solvent and measuring transmittance and absorbance, a quartz plate thin film method for thinly coating the object on a quartz plate and performing spectral measurement, There is a translucent uneven plate coating method in which an object to be measured is applied to a semi-transparent plate having an uneven surface in consideration of surface irregularities, and spectral measurement is performed.

【0008】しかしながら、これらの代替法はin v
itroで計測される紫外線透過量から計算式によって
SPF値を算出するものであり、いずれの方法も人の肌
の上に一定量(通常は2mg/cm2 )を塗布した場合
を前提としている。
[0008] However, these alternatives are in v
The SPF value is calculated by a calculation formula from the amount of transmitted ultraviolet light measured in vitro, and each method is based on the assumption that a certain amount (usually 2 mg / cm 2 ) is applied to human skin.

【0009】従って、これらの代替法は定められた塗布
量を前提とするSPF値とは相関があるといえるが、実
際の使用においての塗布量は後述するように未知であ
り、従って肌の上に塗布された化粧料自身の紫外線遮蔽
性を正確に評価できるものではなかった。
Therefore, it can be said that these alternative methods have a correlation with the SPF value based on the assumed application amount, but the application amount in actual use is unknown as described later, and therefore, It was not possible to accurately evaluate the ultraviolet shielding properties of the cosmetics applied to the cosmetics.

【0010】[0010]

【発明が解決しようとする課題】以下で代替法により予
測されたSPF値若しくは定められた塗布量により測定
されたSPF値が実際の紫外線遮蔽性との相関において
不十分であることについて考察する。
In the following, it will be considered that the SPF value predicted by the alternative method or the SPF value measured by the specified application amount is insufficient in correlation with the actual ultraviolet shielding property.

【0011】クリームやファンデーション等の外用化粧
料の紫外線遮蔽性とは、紫外線の透過しにくさを意味
し、つまり、それはその外用化粧料の透過率の大小に大
きく依存するものである。
The ultraviolet shielding property of an external cosmetic such as a cream or a foundation means the difficulty in transmitting ultraviolet light, that is, it largely depends on the transmittance of the external cosmetic.

【0012】従って、化粧料の光学特性が求めてあれ
ば、後は被測定物の厚さ(塗布量)にのみ依存する。こ
の光学特性については分光光度計を用いることにより求
めることができる。よって、光学特性の詳細を測定して
いるわけではないが、被測定物の透過率を実測すること
よりなる上記の半透明凹凸板塗付法は理に適った測定を
行っていることとなる。
[0012] Therefore, if the optical properties of the cosmetic are required, it depends only on the thickness (application amount) of the object to be measured. This optical property can be determined by using a spectrophotometer. Therefore, the details of the optical properties are not measured, but the above-mentioned translucent uneven plate coating method, which involves actually measuring the transmittance of the object to be measured, means that a measurement that is reasonable is performed. .

【0013】しかし、実際の化粧料(サンスクリーン)
使用時における塗布量については、使用する化粧料の基
剤の種類や使用性、外観、使用する者の好みなどの要因
で大きく変動するのが通常である。特に、最近は高いS
PF値を有する化粧料に対する要求から紫外線散乱剤を
大量に配合した化粧料も多いが、これらは厚く塗布する
と散乱材に由来する白さが目立ってくるため、そのサン
スクリーンを使用する者は塗布剤に制限を加えながら好
みの厚さで使用しているものと予想される。
However, actual cosmetics (sunscreen)
The amount of application at the time of use usually fluctuates greatly depending on factors such as the type of the base of the cosmetic to be used, the usability, the appearance, and the preference of the user. Especially recently, high S
Due to the demand for cosmetics having a PF value, many cosmetics contain a large amount of ultraviolet light scattering agent. However, when these are applied thickly, the whiteness derived from the scattering material becomes conspicuous. It is anticipated that it will be used at the desired thickness, with restrictions on the agent.

【0014】紫外線遮蔽性が塗布量に依存することを考
慮すれば、実際での使用において、一定量を塗布するこ
とを前提とした半透明凹凸板塗布法で得られる紫外線遮
蔽性から、期待される紫外線遮蔽性が得られている保証
はない。すなわち、一定量塗布時におけるサンスクリー
ンの紫外線遮蔽効果を知ると共に、そのサンスクリーン
が様々な条件下において使用されるとき、平均的にはど
のくらいの遮蔽効果をもっており、どの程度のばらつき
をもっているかということを知ることも合わせて重要な
課題である。
Considering that the UV shielding property depends on the coating amount, it is expected from the UV shielding property obtained by the translucent uneven plate coating method on the assumption that a certain amount is applied in actual use. There is no guarantee that a good ultraviolet shielding property will be obtained. In other words, know the sunscreen's ultraviolet shielding effect when applying a certain amount, and, on average, when the sunscreen is used under various conditions, how much shielding effect it has and how much variation it has Knowing is also an important issue.

【0015】これまでにもサンスクリーン塗布量につい
ては、0.5〜1.5mg/cmの範囲との報告がなされてい
る。これらの結果は、被験者にサンスクリーンを塗布し
てもらった後に、肌からサンスクリーンを脱脂綿により
拭き取り、物理的に分離した後に成分分析によって定量
する。或いは、身体への全塗布面積を求め、全使用量か
ら平均塗布量を求める等して得られたものである。こう
した方法は、手間がかかり日常的な方法とは言い難い。
It has been reported that the sunscreen coating amount is in the range of 0.5 to 1.5 mg / cm 2 . These results are quantified by component analysis after having the subject apply the sunscreen, wiping the sunscreen from the skin with absorbent cotton and physically separating the sunscreen. Alternatively, it is obtained by calculating the total application area on the body and calculating the average application amount from the total used amount. These methods are cumbersome and hard to say on a daily basis.

【0016】更に問題点を付け加えるならば、紫外線遮
蔽性とは前述のとおり紫外線の透過しにくさをいうもの
であり、塗布量を測定できても、それが直接に紫外線遮
蔽性を示すものではない。塗付量と紫外線透過率との関
係は、塗布むら等の影響により、Lambert-Beerの法則と
ズレが生じるため、試験品毎にそのズレ幅を測定する必
要がある。
To add a further problem, the ultraviolet shielding property refers to the difficulty in transmitting ultraviolet light as described above. Even if the coating amount can be measured, it does not directly indicate the ultraviolet shielding property. Absent. The relationship between the coating amount and the ultraviolet transmittance has a deviation from the Lambert-Beer's law due to the influence of coating unevenness or the like. Therefore, it is necessary to measure the deviation width for each test sample.

【0017】このような背景から、サンスクリーンの評
価として、従来の一定量塗布時の紫外線遮断性を評価す
ることに加えて、実際に使用されているときの紫外線
遮蔽性を、基剤の違いや使われる環境等の影響を考慮し
た評価を行なうこと、これらの評価は、簡便でかつ正
確に行われる必要があること、の二点を満たさなければ
ならない。
[0017] From such a background, in addition to the conventional evaluation of the sunscreen property at the time of a certain amount of application, the sunscreen property at the time of actual use is evaluated for the sunscreen. The evaluation must take into account the effects of the environment and the environment in which it will be used, and that these evaluations must be performed easily and accurately.

【0018】従がって、サンスクリーン等の化粧品が肌
等の基体に塗布されたとき、実際にどれくらいの紫外線
遮蔽性を有するかを該基体上の上で直接に、且つ簡便に
評価することが課題となる。
Therefore, when a cosmetic product such as a sunscreen is applied to a substrate such as skin, it is possible to directly and simply evaluate how much ultraviolet shielding properties the product actually has on the substrate. Is an issue.

【0019】基体上にある被測定物の透過率Tを求める
場合、光学的な手法を用いることが考えられ、その一つ
としてKubelka-Munkの二定数理論を応用することが考え
られる。具体的には、被測定物の厚みを十分に厚くした
ときの反射率Rを知るか、或いは散乱係数と吸収係数
の比率(K/S)を知ることによって、基体の反射率R
、及び基体上にある被測定物の反射率RからKubelka
の文献に記載されている下式(4),(5)から導かれ
る(6)式により透過率Tを求める、或いはR が小さ
い場合には、より簡単な式に近似された式(7),
(8)によって、被測定物の透過率Rを測定することに
よって、予め測定したRとRから算出することが可
能と思われる。
The transmittance T of an object to be measured on a substrate is determined.
In some cases, optical methods may be used.
To apply Kubelka-Munk's two-constant theory
Can be Specifically, the thickness of the DUT was made sufficiently thick
Reflectance RKnow the scattering coefficient and absorption coefficient
Of the substrate (K / S), the reflectance R of the substrate
g, And the reflectance R of the object to be measured on the substrate
Derived from the following equations (4) and (5) described in
The transmittance T is calculated by the following equation (6), or R Is small
In this case, equation (7), which is approximated to a simpler equation,
According to (8), the transmittance R of the measured object is measured.
Therefore, the previously measured RAnd RgCan be calculated from
It seems to be noh.

【0020】[0020]

【数3】 しかしながら、以下の理由により人肌上のサンスクリー
ンの紫外線透過率を求めるような場合では、式(6)若
しくは式(7)を適用しても目的を達せられない。
(Equation 3) However, in the case of obtaining the ultraviolet transmittance of the sunscreen on human skin for the following reasons, the purpose cannot be achieved even by applying the equation (6) or the equation (7).

【0021】被測定物であるサンスクリーンのRは紫
外線領域(280~400nm)では、通常は0.1以下であること
が多いことから、式(7)を適用する。サンスクリーン
を塗布すると、反射率は人肌の紫外線反射率RからR
に近づいていくが、一般に人肌のRは0.05~0.2と小
さいため、非常に狭い範囲のダイナミックレンジ(R
−R)内で測定する必要がある。
[0021] In R ultraviolet region of the sunscreen to be measured (280 ~ 400 nm), typically applied from often 0.1 or less, equation (7). When applying the sunscreen, the reflectivity of an ultraviolet reflectivity R g human skin R
, but since the R g of human skin is generally as small as 0.05 to 0.2, a very narrow dynamic range (R g
It is necessary to measure in -R ∞) within.

【0022】しかも、式(7)をみると透過率を二乗し
ている関係上、透過率の減少に対して反射率R又は速や
かにRに近づく。従がって、透過率が30%以下にな
るような被測定物の場合、透過率を正確に算出するため
には、極めて精密に反射率を測定する必要性が生ずる。
[0022] Moreover, on the relationship between squaring and transmittance See equation (7), the reflectivity R or quickly relative decrease in transmittance approaching R ∞. Therefore, in the case of an object to be measured having a transmittance of 30% or less, it is necessary to measure the reflectance very accurately in order to calculate the transmittance accurately.

【0023】しかしながら、一般に、人肌のような生体
の反射率測定では、肌の柔軟性や表面形態の違いによ
り、測定値が定まらないことが多い。また、算出された
反射率の変動は、紫外線透過率を算出するには大きす
ぎ、結果としてKubelkaの示した式を直接に用いること
はできない。
However, in general, in the measurement of reflectance of a living body such as human skin, the measured value is often not determined due to differences in skin flexibility and surface morphology. Further, the fluctuation of the calculated reflectance is too large to calculate the ultraviolet transmittance, and as a result, the formula shown by Kubelka cannot be used directly.

【0024】更に根本的な問題として、空気との屈折率
差により生ずる表面反射光強度が基体表面と被測定物表
面では異なると考えられ、式(7)に測定された反射率
及びRをそのまま代入することができないという
問題がある。これらは、Saundersonの補正として、被測
定物の屈折率を基に表面反射パラメーターを用いて補正
することが行われるが、被測定物の表面反射パラメータ
ーは未知なうえに、表面形状の違いや、測定器の性質の
違いによってもパラメーターが変動すると考えられるた
め、正確に補正できるとは言い難い。
[0024] As a more fundamental problem, the surface reflected light intensity caused by difference in refractive index between the air is considered to differ in substrate surface and the workpiece surface, the reflectance was measured in equation (7) R g and R There is a problem that cannot be substituted as it is. These are corrected by using surface reflection parameters based on the refractive index of the object to be measured as Saunderson's correction, but the surface reflection parameters of the object to be measured are unknown, and differences in surface shape and Since it is considered that the parameters fluctuate depending on the difference in the properties of the measuring instrument, it cannot be said that the correction can be performed accurately.

【0025】本発明は上記の点に鑑みてなされたもので
あり、容易かつ正確に被測定物の透過率を測定しうる塗
布物の光線透過率の測定方法及び塗布物の光線透過率の
測定装置を提供することを目的とする。
The present invention has been made in view of the above points, and a method of measuring a light transmittance of a coated material and a method of measuring a light transmittance of a coated material capable of easily and accurately measuring the transmittance of a measured object. It is intended to provide a device.

【0026】[0026]

【課題を解決するための手段】上記の課題を解決するた
めに本発明では、次に述べる種々の手段を講じたことを
特徴とするものである。
Means for Solving the Problems In order to solve the above problems, the present invention is characterized by taking the following various means.

【0027】請求項1記載の発明は、固有の光反射率を
有する基体上に塗布された被測定物の光線透過率を測定
する塗布物の光線透過率の測定方法であって、既定波長
を含む連続した複数波長の光を、該被測定物が塗布され
た側から該基体上の被測定物に入射させ、該既定波長に
対する反射率の変化率となる前記既定波長に対する反射
率一次微分値を求め、該反射率一次微分値と該既定波長
における透過率との関係式に基づき、該既定波長におけ
る該測定物の透過率を求めることを特徴とするものであ
る。
According to the first aspect of the present invention, there is provided a method for measuring the light transmittance of an object to be measured which is applied to a substrate having a specific light reflectance, the method comprising: Light of a plurality of continuous wavelengths, including the object to be measured, is incident on the object to be measured on the substrate from the side on which the object to be measured is applied, and the first derivative of the reflectance with respect to the predetermined wavelength, which is the rate of change of the reflectance with respect to the predetermined wavelength. And determining the transmittance of the measured object at the predetermined wavelength based on a relational expression between the reflectance first derivative and the transmittance at the predetermined wavelength.

【0028】また、請求項2記載の発明は、請求項1記
載の塗布物の光線透過率の測定方法において、前記既定
波長における波長に対する反射率一次微分値と、前記既
定波長における透過率との関係式は、下式(1)で表さ
れ、
According to a second aspect of the present invention, in the method for measuring the light transmittance of a coating material according to the first aspect, the first derivative of the reflectance with respect to the wavelength at the predetermined wavelength and the transmittance at the predetermined wavelength are determined. The relational expression is represented by the following expression (1).

【0029】[0029]

【数4】 また、前記(1)式における定数Cは下式(2),
(3)を連立し、既定値であるmaxR’,R’,
’を代入することにより求められ、
(Equation 4) The constant C in the above equation (1) is expressed by the following equation (2),
(3) simultaneous equations, the default value of maxR ', R ∞',
R g ′,

【0030】[0030]

【数5】 かつ、前記(1)式にR’,R’,C、並びに前記
基体上に塗布された任意の厚みを有する前記被測定物の
前記既定波長における反射率一次微分値であるR’を代
入することにより、前記既定波長における透過率Tを求
めることを特徴とするものである。
(Equation 5) And, wherein (1) R in equation ', R g', C, and the R 'is a first-order derivative value reflectance at said predetermined wavelength of said object to be measured having an arbitrary thickness coated on the substrate By substituting, the transmittance T at the predetermined wavelength is obtained.

【0031】また、請求項3記載の発明は、請求項1ま
たは2記載の塗布物の光線透過率の測定方法において、
前記基体は人の肌であることを特徴とするものである。
According to a third aspect of the present invention, there is provided a method for measuring the light transmittance of a coated article according to the first or second aspect,
The substrate is human skin.

【0032】また、請求項4記載の発明は、請求項1乃
至3のいずれかに記載の塗布物の光線透過率の測定方法
において、前記被測定物は、サンスクリーン,ファンデ
ーションを含む化粧料であることを特徴とするものであ
る。
According to a fourth aspect of the present invention, in the method for measuring the light transmittance of a coating material according to any one of the first to third aspects, the object to be measured is a cosmetic containing a sunscreen and a foundation. It is characterized by having.

【0033】また、請求項5記載の発明は、請求項1乃
至4のいずれかに記載の塗布物の光線透過率の測定方法
において、前記既定波長は280nm〜400nmの範
囲であることを特徴とするものである。
According to a fifth aspect of the present invention, in the method for measuring the light transmittance of a coated article according to any one of the first to fourth aspects, the predetermined wavelength is in a range of 280 nm to 400 nm. Is what you do.

【0034】また、請求項6記載の発明に係る塗布物の
光線透過率の測定装置は、既定波長を含む連続した複数
波長を有する光を生成する光源と、該光源で生成された
光を直線光として被測定物に出射する投光器と、前記被
測定物からの反射光を集光する受光器と、前記光源と前
記投光器との間、或いは該受光された光を光電変換する
受光素子と前記受光器との間のいずれか一方に配置され
た分光器と、前記受光素子で得られる反射光データか
ら、前記既定波長における反射率と、該既定波長に対す
る反射率の変化率となる前記既定波長に対する反射率一
次微分値を演算し、該反射率一次微分値と該既定波長に
おける透過率とに基づき、該既定波長における該測定物
の透過率を演算する演算装置とを具備することを特徴と
するものである。
According to a sixth aspect of the present invention, there is provided an apparatus for measuring the light transmittance of a coating material, comprising: a light source for generating light having a plurality of continuous wavelengths including a predetermined wavelength; A light emitter that emits light to the device under test, a light receiver that collects reflected light from the device under test, and a light receiving element that photoelectrically converts the received light between the light source and the light projector or A spectroscope disposed on one of the light-receiving device and the reflected light data obtained by the light-receiving element, the reflectance at the predetermined wavelength, and the predetermined wavelength serving as a change rate of the reflectance with respect to the predetermined wavelength. And a calculating device for calculating the transmittance of the object at the predetermined wavelength based on the reflectance first derivative and the transmittance at the predetermined wavelength. Is what you do.

【0035】上記した各手段は、次のように作用する。Each of the means described above operates as follows.

【0036】請求項1,請求項2,及び請求項6記載の
発明によれば、反射率を直接扱うのではなく、既定波長
に対する反射率一次微分値に変換して用いることによ
り、表面反射光のような波長依存性のない成分をキャン
セルすることができ、この波長依存性のない成分に対す
る補正処理を不要とすることができる。また、R’,
’, maxR’から反射率一次微分値と透過率との関
係を導くことができ、任意の厚さ(量)で塗布された塗
布物の光線透過率を反射率一次微分値から求めることが
できる。
According to the first, second, and sixth aspects of the present invention, instead of directly treating the reflectance, the reflectance is converted into a first derivative of the reflectance with respect to a predetermined wavelength and used to obtain the surface reflected light. Such a component having no wavelength dependence can be canceled, and the correction process for the component having no wavelength dependence can be eliminated. Also, R ',
The relationship between the reflectance first derivative and the transmittance can be derived from R g ′ and maxR ′, and the light transmittance of a coating material applied at an arbitrary thickness (amount) can be obtained from the reflectance first derivative. Can be.

【0037】また、請求項3記載の発明によれば、基体
を人の肌としたことにより、人肌上に塗布することを目
的とされた化粧料等の被測定物について、人肌以外の代
替物を用いることなく(代替法を用いることなく)、そ
の人肌上での光線透過率を測定することが可能となる。
よって、人肌上の被測定物にかかる光線透過率測定を、
該被測定物が実際に用いられる条件で行なうことがで
き、測定精度を高めることができる。
According to the third aspect of the present invention, since the substrate is made of human skin, an object to be measured, such as a cosmetic, intended to be applied on human skin, is made of a material other than human skin. The light transmittance on the human skin can be measured without using a substitute (without using a substitute method).
Therefore, the light transmittance measurement on the object to be measured on human skin,
The measurement can be performed under conditions where the device under test is actually used, and the measurement accuracy can be improved.

【0038】また、請求項4記載の発明によれば、被測
定物としてサンスクリーン,ファンデーションを含む化
粧料を用いたことにより、紫外線遮断効果を有するサン
スクリーン,ファンデーションを含む化粧料の実際の紫
外線遮断特性を得ることが可能となる。
According to the fourth aspect of the present invention, since the cosmetic containing sunscreen and foundation is used as the object to be measured, the actual ultraviolet light of the cosmetic containing sunscreen and foundation has an ultraviolet blocking effect. It is possible to obtain a blocking characteristic.

【0039】また、請求項5記載の発明によれば、既定
波長を280nm〜400nmの範囲としたことによ
り、肌に影響する紫外線を含んだスペクトルを得ること
が可能となる。このスペクトルの取得により、被測定物
の紫外線透過特性をより詳細に評価することが可能とな
り、紫外線に対する被測定物の持つ遮蔽等の性質をより
詳細に明らかにすることが可能となる。
According to the fifth aspect of the present invention, by setting the predetermined wavelength in the range of 280 nm to 400 nm, it becomes possible to obtain a spectrum including ultraviolet rays which affect the skin. Acquisition of this spectrum makes it possible to evaluate the ultraviolet transmission characteristics of the object to be measured in more detail, and to clarify the properties of the object to be measured such as shielding against ultraviolet rays in more detail.

【0040】[0040]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。
Next, an embodiment of the present invention will be described.

【0041】本発明者は、上記した従来の光線透過率の
測定方法の問題点に対し、鋭意研究した結果、測定目的
とする波長(以下、既定波長という)に対する反射率を
直接扱うのではなく、当該反射率を既定波長に対する反
射率一次徹分値に変換して用いることを考えた。このよ
うな操作を施すと、反射光のような波長依存性のない成
分がキャンセルされるため、前述で示した補正を特に行
なわなくてもよいという利点がある。以下、この点につ
いて下式(9)〜(11)を用いて説明する。
The present inventor has conducted intensive studies on the above-mentioned problems of the conventional method for measuring the light transmittance, and as a result, it has been found that the reflectance for the wavelength to be measured (hereinafter, referred to as a predetermined wavelength) is not directly treated. Considering that the reflectance is converted into a first-order reflectance value for a predetermined wavelength and used. By performing such an operation, a component having no wavelength dependency such as reflected light is canceled, and therefore, there is an advantage that the above-described correction need not be particularly performed. Hereinafter, this point will be described using the following equations (9) to (11).

【0042】[0042]

【数6】 先に説明した(7)式を反射率一次徹分値と透過率の関
係式に変換すると、式(9)が得られる。この式(9)
において、右辺に含む(T)’は、前記した式(8)
の関係を使うと式(10)に変換される。そして、この
式(10)を式(9)に代入することにより、式(1
1)を得る。
(Equation 6) When the equation (7) described above is converted into a relational expression between the first-order reflectance value and the transmittance, the equation (9) is obtained. This equation (9)
In the above expression, (T 2 ) ′ included in the right side is the above-described equation (8).
Is converted to the expression (10) using the relationship Then, by substituting equation (10) into equation (9), equation (1) is obtained.
Obtain 1).

【0043】この式(11)の右辺第3項には、未知の
パラメーターCが存在し、また前述したように測定の
困難である反射率R,Rも含んでいる。そこで、本
発明者は、更に式(11)の考察を行った。
The third term on the right side of the equation (11) includes an unknown parameter C 1 and also includes the reflectances R g and R which are difficult to measure as described above. Therefore, the inventor further considered the equation (11).

【0044】式(11)は、反射率一次微分値と透過率
との関係を示したものである。透過率が1のときは、被
測定物が無塗布の時の反射率一次時微分値、即ち基体の
反射率一次微分値R’である。また、透過率が0のと
きは、被測定物の厚みを無限に厚くし、事実上透過率が
0になったとみなせるときの反射率一次微分値R’で
ある。従がって、被測定物の厚みを0から徐々に厚く
し、被測定物の透過率を1から0に近づけていくと、R
’からR’へと動く過程を描く。
Equation (11) shows the relationship between the first derivative of the reflectance and the transmittance. When the transmittance is 1, it is a first-order differential value of the reflectance when the object to be measured is not applied, that is, a first-order reflectance value R g ′ of the substrate. When the transmittance is 0, the first derivative of the reflectance R ′ is obtained when the thickness of the object to be measured is infinitely increased and the transmittance can be regarded as substantially 0. Accordingly, when the thickness of the object to be measured is gradually increased from 0 and the transmittance of the object to be measured approaches 1 to 0, R
Draw the process of moving from g 'to R∞ '.

【0045】このとき、式(11)の第三項の(R
)Cが一定の条件を満たせば、具体的には0でな
ければ、反射率一次微分値R’はある特定の透過率のと
きに極値をとるものと考えられる((R−R)C
<0であれば、最大値。以下、最大値をとるものとし
て、そのときのR’をmaxR’と表記する)。このmax
R’を実験的に求めることは困難なことではなく、被測
定物を基体に対して徐々に塗り重ねていき、そのときの
反射率一次微分値の挙動から求めることが可能である。
次に、maxR’を与えるときのTmaxR’を求めてみる。
このとき、dR’/dT=0を満たしているから、式
(11)の右辺をTで微分し、左辺を0とおいた下式が
成立する。
At this time, (R g
If R ∞) C 1 is certain conditions are met, specifically, not 0, the reflectivity primary differential value R 'is believed to take an extreme value when there specific transmittance ((R g −R ) C 1
If <0, the maximum value. Hereinafter, assuming the maximum value, R ′ at that time is expressed as maxR ′). This max
It is not difficult to obtain R ′ experimentally, and it is possible to obtain R ′ from the behavior of the first derivative of the reflectance at that time by gradually coating the object to be measured on the substrate.
Next, try to determine the 'T maxR when giving the' maxR.
At this time, since dR ′ / dT = 0 is satisfied, the following equation is established in which the right side of equation (11) is differentiated by T and the left side is set to 0.

【0046】[0046]

【数7】 前記した式(11)に、実験的に求めたmaxR’,
’,及びR’を代入すると、式(11)と式(1
2)の連立方程式から、(R−R)C及びT
maxR’を算出することが可能である。その結果、式
(11)の反射率一次微分値と透過率との関係は確定す
る。即ち、本発明のポイントは、測定可能なmaxR’と
式(12)の関係を使うことによって、反射率一次微分
値と透過率との関係式を導くことができることにある。
(Equation 7)Equation (11) is used to calculate maxR ',
Rg’, And R′, Equations (11) and (1)
From the simultaneous equations of 2), (Rg-R) C1And T
maxR 'Can be calculated. As a result, the expression
The relationship between the first derivative of the reflectance and the transmittance of (11) is determined.
You. That is, the point of the present invention is that the maxR 'that can be measured is
By using the relationship of equation (12), the first derivative of the reflectance
This is to derive a relational expression between the value and the transmittance.

【0047】この関係式を使うことにより、任意の量で
塗布された被測定物の反射率一次微分値から透過率を算
出することが可能となる。しかも、これら透過率を求め
る一連の操作において、測定値としては反射率一次微分
値だけを用いており、反射率データは直接関与していな
い。従って、表面反射光のような波長依存性のない成分
をキャンセルすることができ、この波長依存性のない成
分に対する補正処理を不要とすることができる。これに
より、被測定物の反射率を、容易かつ正確に測定するこ
とが可能となる。
By using this relational expression, the transmittance can be calculated from the first derivative of the reflectance of the object to be measured applied in an arbitrary amount. Moreover, in a series of operations for obtaining the transmittance, only the first derivative of the reflectance is used as the measured value, and the reflectance data is not directly involved. Therefore, a component having no wavelength dependency such as surface reflected light can be canceled, and a correction process for the component having no wavelength dependency can be eliminated. This makes it possible to easily and accurately measure the reflectance of the device under test.

【0048】続いて、上記した原理に基づいた、具体的
な光線透過率の測定方法について説明する。
Next, a specific method for measuring the light transmittance based on the above principle will be described.

【0049】先ず、図1を用いて本光線透過率の測定方
法で用いる光線透過率の測定装置について説明する。同
図に示されるように、測定装置10は人肌20(基体)
の上面に塗付された被測定物21(ファンデーション,
クリーム,サンスクリーン等の化粧料)の光線透過率を
測定するものであり、大略すると光源11,分光器1
2,投光器13,受光器15,受光素子16,及び演算
装置17等により構成されている。
First, an apparatus for measuring light transmittance used in the method for measuring light transmittance will be described with reference to FIG. As shown in the figure, the measuring device 10 is a human skin 20 (substrate).
To be measured 21 (foundation,
It measures the light transmittance of cosmetics such as creams and sunscreens.
2, a light projector 13, a light receiver 15, a light receiving element 16, an arithmetic unit 17, and the like.

【0050】光源11は被測定物に照射する光(複色
光)を生成するものであり、Xeランプ、Dランプ、
Wランプが好ましい。また、分光器12は、光源11で
生成された光を分散させ、所定範囲の波長のみを投光器
13に向け出射する機能を奏するものである。分光器1
2は、本実施例では280nm〜400nmの波長範囲
の光、即ち紫外線領域の波長の光を投光器13に向け出
射する構成としている。この分光器12としては、分光
機能を有していればよく、回折格子のほか、プリズム、
フィルターなどが用いられる。また、波長分解能は半値
幅で20nm以下であれば十分である。
The light source 11 is intended to generate a light (Fukuiroko) for irradiating the object to be measured, Xe lamp, D 2 lamp,
W lamps are preferred. Further, the spectroscope 12 has a function of dispersing the light generated by the light source 11 and emitting only a predetermined range of wavelengths toward the light projector 13. Spectrometer 1
Reference numeral 2 denotes a configuration in which light in the wavelength range of 280 nm to 400 nm, that is, light having a wavelength in the ultraviolet region, is emitted toward the projector 13 in this embodiment. As long as the spectroscope 12 has a spectroscopic function, in addition to the diffraction grating, a prism,
A filter or the like is used. The wavelength resolution is sufficient if the half width is 20 nm or less.

【0051】投光器13は分光器12で分光された光を
被測定物21に向け投光するものであり、被測定物21
(人肌20)上に装着されている。また、受光器15も
被測定物21(人肌20)上に装着されており、被測定
物21からの反射光のうち、正反射を除いた拡散反射光
のみを受光できる構成とされている。この投光器13と
受光器15の間には、反射光の集光を目的とした積分球
14が配設されている。
The light projector 13 projects the light separated by the spectroscope 12 toward the device under test 21.
(Human skin 20). The light receiver 15 is also mounted on the device under test 21 (human skin 20), and is configured to be able to receive only diffusely reflected light excluding specular reflection from among the light reflected from the device under test 21. . An integrating sphere 14 for focusing the reflected light is provided between the light projector 13 and the light receiver 15.

【0052】受光器15は、受光素子16に接続されて
いる。この受光素子16は、受光器15で受光された拡
散反射光を光電変換し、反射光の光強度に対応した反射
光データを生成する。受光素子16で生成された反射光
データは、演算装置17に送られる。演算装置17で
は、反射光データより反射率一次微分値を求め、この反
射率一次微分値から透過率を演算する。
The light receiver 15 is connected to the light receiving element 16. The light receiving element 16 photoelectrically converts the diffuse reflected light received by the light receiver 15 and generates reflected light data corresponding to the light intensity of the reflected light. The reflected light data generated by the light receiving element 16 is sent to the arithmetic unit 17. The arithmetic unit 17 obtains the first derivative of the reflectance from the reflected light data, and calculates the transmittance from the first derivative of the reflectance.

【0053】この際、好ましくは図示されるように、積
分球14を被測定物21に密着させたとき、人肌20に
対して投光器13が垂直に光を照射するよう設置され、
受光器15は、被測定物21からの拡散反射光強度に比
例した光線量が受光されるように設置されるのが望まし
い。また、測定の利便性を考えると、投光器13及び受
光器15を装着した積分球14は、自在に動かせるよう
にグラスファイバーかあるいは電線など柔軟性のあるも
ので分光器12及び受光素子16と接続することが望ま
しい。
At this time, preferably, as shown in the figure, when the integrating sphere 14 is brought into close contact with the object 21 to be measured, the projector 13 is installed so as to irradiate the human skin 20 with light vertically.
The light receiver 15 is desirably installed so as to receive a light amount proportional to the intensity of diffusely reflected light from the device under test 21. Considering the convenience of the measurement, the integrating sphere 14 equipped with the projector 13 and the light receiver 15 is connected to the spectroscope 12 and the light receiving element 16 by a flexible material such as glass fiber or electric wire so as to be freely movable. It is desirable to do.

【0054】また、標準体に同時に光を照射して、反射
してくる光強度と被測定物21からの光強度を同時に測
定するか、あるいは被測定物21に照射する光強度を同
時にモニターすることにより、測定精度を増すための装
置を追加してもかまわない。更に、わずかに波長の異な
る二つの単色光を被測定物21に交互に照射し、その光
強度差から反射率一次微分値を求めるような、光学的な
手法を用いてもかまわない。
Further, the standard body is irradiated with light at the same time, and the reflected light intensity and the light intensity from the DUT 21 are simultaneously measured, or the light intensity applied to the DUT 21 is simultaneously monitored. Thus, a device for increasing the measurement accuracy may be added. Further, an optical method may be used such that two monochromatic lights having slightly different wavelengths are alternately irradiated on the DUT 21 and the first derivative of the reflectance is obtained from the difference between the light intensities.

【0055】更に、分光器12は光源11と投光器13
の間に配置しても(図1に示す構成)、また受光器15
と受光素子16の間のどちらに設定してもかまわない。
光源11と投光器13の間に置く場合はモノクロメータ
ーを置き、受光素子16には光電子倍増管を用いること
ができる。また、受光器15と受光素子16の間に置く
場合はポリクロメーターを使って、受光素子16にマル
チチャンネル検出器を使うことができる。
Further, the spectroscope 12 includes a light source 11 and a light projector 13.
1 (the configuration shown in FIG. 1),
It may be set to any one of between and the light receiving element 16.
A monochromator can be placed between the light source 11 and the projector 13, and a photomultiplier tube can be used for the light receiving element 16. When the light receiving element 16 is placed between the light receiving element 15 and the light receiving element 16, a multi-channel detector can be used for the light receiving element 16 using a polychromator.

【0056】次に、上記構成を有する測定装置10を用
いて実施する透過率の測定の手順について説明する。
Next, the procedure for measuring the transmittance, which is performed using the measuring apparatus 10 having the above configuration, will be described.

【0057】先ず、既定波長(測定しようとする目的波
長)を含む連続した所定範囲内の各波長光を人肌20に
照射すると共にその反射率を測定し、既定波長に対する
反射率一次微分値R’を求める。
First, the human skin 20 is irradiated with light of each wavelength in a continuous predetermined range including a predetermined wavelength (a target wavelength to be measured) and its reflectance is measured, and the reflectance first derivative R with respect to the predetermined wavelength is measured. g ′.

【0058】続いて、被測定物21となる化粧料を人肌
20上に塗付する。この際、被測定物21の塗布量厚さ
を変化させることにより、或いは被測定物21を希釈し
て塗布することによって、被測定物21の既定波長にお
ける透過率が60〜80%の範囲に入るようにする。そ
して、既定波長を含む連続した所定範囲内の各波長光を
被測定物21に照射し、その反射率を測定し、該波長に
おける波長に対する反射率一次微分値を求める。更に、
塗布厚み、希釈率を変えて同様に反射率一次微分値を求
め、この作業を繰り返すことにより反射率一次微分値の
最大値maxR’を求める。
Subsequently, a cosmetic to be measured 21 is applied on human skin 20. At this time, the transmittance of the measured object 21 at a predetermined wavelength is in the range of 60 to 80% by changing the applied amount thickness of the measured object 21 or by diluting and applying the measured object 21. To enter. Then, the object 21 is irradiated with light of each wavelength in a continuous predetermined range including the predetermined wavelength, the reflectance is measured, and the first derivative of the reflectance with respect to the wavelength at the wavelength is obtained. Furthermore,
The reflectance first derivative is similarly obtained by changing the coating thickness and the dilution ratio, and the maximum value maxR 'of the reflectance first derivative is obtained by repeating this operation.

【0059】次に、被測定物21を十分に厚く塗布し
て、具体的には既定波長における透過率がほとんど0と
みなせる厚さで人肌20に塗布し、既定波長における反
射率を測定し、この既定波長対する反射率一次微分値R
’を求める。
Next, the object to be measured 21 is applied sufficiently thick, specifically, applied to the human skin 20 at a thickness at which the transmittance at the predetermined wavelength can be regarded as almost 0, and the reflectance at the predetermined wavelength is measured. , The first derivative of the reflectance R for this predetermined wavelength
Ask for ∞ '.

【0060】上記のように、人肌20の既定波長におけ
る反射率一次微分値R’、反射率一次微分値の最大値
maxR’、十分に厚く塗布したときの反射率一次微分値
’が求められると、この各値R’、maxR’、R
’を前記した式(119,(12)に代入すると共
に、各式を連列させることにより、各式における(R
−R)Cを求めることができる。尚、請求項2の式
(1)においては、(R −R)Cを定数Cとして
いる。
As described above, at the predetermined wavelength of the human skin 20
Reflectance first derivative Rg’, Maximum value of the first derivative of reflectance
maxR ', first derivative of reflectivity when applied sufficiently thick
R′ Are obtained, each value Rg’, MaxR’, R
Is substituted into the above equation (119, (12)).
Then, by serializing each equation, (Rg
-R) C1Can be requested. Incidentally, the expression of claim 2
In (1), (R g-R) C1As a constant C
I have.

【0061】続いて、人肌20に任意に被測定物21を
塗布したときの既定波長における反射率一次微分値R’
を測定する。そして、前記した式(11)の関係式に、
先に得られたR’,R’,(R−R)C及び
R’を代入することにより、既定波長における透過率T
を求めることができる。
Subsequently, the reflectance primary differential value R ′ at a predetermined wavelength when the object 21 is arbitrarily applied to the human skin 20.
Is measured. Then, in the relational expression of the above-mentioned expression (11),
Previously obtained R ∞ ', R g', (R g -R ∞) by substituting the C 1 and R ', transmittance at a predetermined wavelength T
Can be requested.

【0062】図2乃至図4は、本発明による光線透過率
の測定方法の検証を行った結果を示している。この検証
では、透過率が実測可能である半透明凹凸板を用い、反
射率一次微分値からだけで求めた透過率と実測によって
求めた透過率との比較を行なった。その結果を図2に示
す。同図より、実測した透過率と本発明による測定方法
により求められた論理曲線は良く一致しており、よって
本発明による測定方法が有効であることが実証された。
FIGS. 2 to 4 show the results of verification of the method for measuring the light transmittance according to the present invention. In this verification, a translucent uneven plate whose transmittance can be actually measured was used, and the transmittance obtained from only the first derivative of the reflectance was compared with the transmittance obtained by actual measurement. The result is shown in FIG. The figure shows that the measured transmittance is in good agreement with the logical curve obtained by the measuring method according to the present invention, and thus it has been proved that the measuring method according to the present invention is effective.

【0063】次に、基体として人肌を用い、また被測定
物としてサンスクリーンを用いた場合における反射率一
次微分値の最大値maxR’を求め、反射率一次微分値と
透過率との関係を求めた。その結果をグラフとして図3
に示す。
Next, the maximum value maxR 'of the first derivative of the reflectance when human skin is used as the substrate and the sunscreen is used as the object to be measured, and the relationship between the first derivative of the reflectance and the transmittance is determined. I asked. Fig. 3 shows the result as a graph.
Shown in

【0064】次に、上記と同種のサンスクリーンを人肌
上に0.5〜2.0mg/cm2塗布したときに反射率一次微分値か
ら計算した透過率の結果と、同量のサンスクリーンを半
透明凹凸板に塗付したときの実測した透過率(in vitr
oで求めた透過率)を図4に示す。同図から明らかなよ
うに、両者は略一致しており、これによっても本発明に
よる測定方法が有効であることが実証された。
Next, when the same type of sunscreen as described above was applied to human skin at 0.5 to 2.0 mg / cm 2 , the result of the transmittance calculated from the first derivative of the reflectance and the same amount of sunscreen were translucent. The measured transmittance (in vitr
FIG. 4 shows the transmittance determined by o. As is apparent from the figure, the two are almost the same, which demonstrates that the measurement method according to the present invention is also effective.

【0065】尚、本測定方法は、Rが比較的小さい波
長領域で近似される式から出発したが、(R−R
≠0である限り、波長を特に限定するものではな
い。詳細は述べないが、式(4)からも複雑化するもの
の、同様に反射率一次徹分値を使って、未知パラメータ
ーを求めることもできる。
Note that the present measurement method started from an equation in which R 近似 is approximated in a relatively small wavelength region, but (R g −R )
There is no particular limitation on the wavelength as long as C 1 ≠ 0. Although not described in detail, although it is complicated from Equation (4), the unknown parameter can be similarly obtained using the first-order reflectance value.

【0066】但し、極値とR’の差が大きければ大き
いほど、即ち、|C|>>0であるほど測定のダイナ
ミックレンジが広がり精度が向上すること、またR
小さいほうが測定しやすいこと等の理由から、そのよう
な波長を特に選んでサンスクリーン等の紫外線遮蔽評価
として使うほうが実用的である。具体的には、サンスク
リーンの場合では、特に350〜380nm付近の透過
率変化の大きい波長領域において、本測定方法は有効で
ある。
However, the larger the difference between the extremum and R ′, that is, the larger | C 1 | >> 0, the wider the dynamic range of the measurement and the higher the accuracy, and the smaller the R It is more practical to select such a wavelength especially and use it for the evaluation of ultraviolet shielding of a sunscreen or the like, for the reason that it is easy to perform. Specifically, in the case of a sunscreen, the present measurement method is effective particularly in a wavelength region where the transmittance changes largely around 350 to 380 nm.

【0067】[0067]

【発明の効果】上述の如く本発明によれば、次に述べる
種々の効果を実現することができる。
According to the present invention as described above, the following various effects can be realized.

【0068】請求項1,請求項2,及び請求項6記載の
発明によれば、反射率を直接扱うのではなく、既定波長
に対する反射率一次微分値に変換して用いることによ
り、表面反射光のような波長依存性のない成分をキャン
セルすることができ、この波長依存性のない成分に対す
る補正処理を不要とすることができる。また、R’,
’, maxR’から反射率一次微分値と透過率との関
係を導くことができ、任意の厚さ(量)で塗布された塗
布物の光線透過率を反射率一次微分値から求めることが
できる。
According to the first, second, and sixth aspects of the present invention, instead of directly treating the reflectance, the reflectance is converted into a first derivative of the reflectance with respect to a predetermined wavelength to be used. Such a component having no wavelength dependence can be canceled, and the correction process for the component having no wavelength dependence can be eliminated. Also, R ',
The relationship between the first derivative of the reflectance and the transmittance can be derived from R g 'and maxR', and the light transmittance of a coating material applied at an arbitrary thickness (amount) is obtained from the first derivative of the reflectance. Can be.

【0069】また、請求項3記載の発明によれば人肌上
に塗布することを目的とされた化粧料等の被測定物につ
いて、人肌以外の代替物を用いることなく(代替法を用
いることなく)、その人肌上での光線透過率を測定する
ことが可能となる。よって、人肌上の被測定物にかかる
光線透過率測定を、該被測定物が実際に用いられる条件
で行なうことができ、測定精度を高めることができる。
Further, according to the third aspect of the present invention, an object to be measured such as a cosmetic intended to be applied on human skin can be used without using an alternative other than human skin (using an alternative method). ), The light transmittance on the human skin can be measured. Therefore, the light transmittance measurement on the object to be measured on human skin can be performed under conditions where the object to be measured is actually used, and the measurement accuracy can be improved.

【0070】また、請求項4記載の発明によれば、紫外
線遮断効果を有するサンスクリーン,ファンデーション
を含む化粧料の実際の紫外線遮断特性を得ることが可能
となる。
According to the fourth aspect of the present invention, it is possible to obtain the actual ultraviolet shielding properties of a cosmetic including a sunscreen and a foundation having an ultraviolet shielding effect.

【0071】また、請求項5記載の発明によれば、肌に
影響する紫外線を含んだスペクトルを得ることが可能と
なり、このスペクトルの取得により被測定物の紫外線透
過特性をより詳細に評価することが可能となり、紫外線
に対する被測定物の持つ遮蔽等の性質をより詳細に明ら
かにすることが可能となる。
According to the fifth aspect of the present invention, it is possible to obtain a spectrum including ultraviolet rays which affect the skin, and to obtain the spectrum to evaluate the ultraviolet transmission characteristics of the object to be measured in more detail. It becomes possible to clarify in more detail the properties of the object to be measured such as shielding against ultraviolet rays.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である光線透過率の測定装置
の要部構成を示す図である。
FIG. 1 is a diagram showing a main configuration of a light transmittance measuring apparatus according to an embodiment of the present invention.

【図2】本発明に係る光線透過率の測定方法の有用性を
実証するための図である(その1)。
FIG. 2 is a diagram for demonstrating the usefulness of the method for measuring light transmittance according to the present invention (part 1).

【図3】本発明に係る光線透過率の測定方法の有用性を
実証するための図である(その2)。
FIG. 3 is a diagram for demonstrating the usefulness of the method for measuring light transmittance according to the present invention (part 2).

【図4】本発明に係る光線透過率の測定方法の有用性を
実証するための図である(その3)。
FIG. 4 is a diagram for demonstrating the usefulness of the method for measuring light transmittance according to the present invention (part 3).

【符号の説明】[Explanation of symbols]

10 光線透過率の測定装置 11 光源 12 分光器 13 投光器 14 積分球 15 受光器 16 受光素子 17 演算装置 20 人肌 21 被測定物 Reference Signs List 10 light transmittance measuring device 11 light source 12 spectroscope 13 light emitting device 14 integrating sphere 15 light receiving device 16 light receiving element 17 arithmetic device 20 human skin 21 object to be measured

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固有の光反射率を有する基体上に塗布さ
れた被測定物の光線透過率を測定する塗布物の光線透過
率の測定方法であって、 既定波長を含む連続した複数波長を有する光を、該被測
定物が塗布された側から該基体上の被測定物に入射さ
せ、該既定波長に対する反射率の変化率となる前記既定
波長に対する反射率一次微分値を求め、 該反射率一次微分値と該既定波長における透過率との関
係式に基づき、該既定波長における該測定物の透過率を
求めることを特徴とする塗布物の光線透過率の測定方
法。
1. A method for measuring the light transmittance of an object to be measured which is applied to a substrate having an inherent light reflectance, comprising: measuring a plurality of continuous wavelengths including a predetermined wavelength. Having the light incident on the object to be measured on the substrate from the side on which the object to be measured is applied, and obtaining a first derivative of the reflectance with respect to the predetermined wavelength, which is a change rate of the reflectance with respect to the predetermined wavelength, A method for measuring the light transmittance of a coating material, wherein the transmittance of the measurement object at the predetermined wavelength is obtained based on a relational expression between the first derivative of the rate and the transmittance at the predetermined wavelength.
【請求項2】 請求項1記載の塗布物の光線透過率の測
定方法において、 前記既定波長における波長に対する反射率一次微分値
と、前記既定波長における透過率との関係式は、下式
(1)で表され、 【数1】 また、前記(1)式における定数Cは下式(2),
(3)を連立し、既定値であるmaxR’,R’,
’を代入することにより求められ、 【数2】 かつ、前記(1)式にR’,R’,C、並びに前記
基体上に塗布された任意の厚みを有する前記被測定物の
前記既定波長における反射率一次微分値であるR’を代
入することにより、前記既定波長における透過率Tを求
めることを特徴とする塗布物の光線透過率の測定方法。
2. The method for measuring the light transmittance of a coating material according to claim 1, wherein a relational expression between a first derivative of reflectance at a wavelength at the predetermined wavelength and a transmittance at the predetermined wavelength is represented by the following equation (1). ), And The constant C in the above equation (1) is expressed by the following equation (2),
(3) simultaneous equations, the default value of maxR ', R ∞',
R g 'is obtained by substituting And, wherein (1) R in equation ', R g', C, and the R 'is a first-order derivative value reflectance at said predetermined wavelength of said object to be measured having an arbitrary thickness coated on the substrate A method of measuring the light transmittance of a coating material, wherein the transmittance T at the predetermined wavelength is determined by substituting the values.
【請求項3】 請求項1または2記載の塗布物の光線透
過率の測定方法において、 前記基体は、人の肌であることを特徴とする塗布物の光
線透過率の測定方法。
3. The method for measuring the light transmittance of a coated material according to claim 1 or 2, wherein the substrate is human skin.
【請求項4】 請求項1乃至3のいずれかに記載の塗布
物の光線透過率の測定方法において、 前記被測定物は、サンスクリーン,ファンデーションを
含む化粧料であることを特徴とする塗布物の光線透過率
の測定方法。
4. The method according to claim 1, wherein the object to be measured is a cosmetic containing a sunscreen and a foundation. The method for measuring the light transmittance.
【請求項5】 請求項1乃至4のいずれかに記載の塗布
物の光線透過率の測定方法において、 前記既定波長は280nm〜400nmの範囲であるこ
とを特徴とする塗布物の光線透過率の測定方法。
5. The method for measuring the light transmittance of a coated material according to claim 1, wherein the predetermined wavelength is in a range of 280 nm to 400 nm. Measuring method.
【請求項6】 既定波長を含む連続した複数波長の光を
生成する光源と、 該光源で生成された光を被測定物に出射する投光器と、 前記被測定物からの反射光を集光する受光器と、 前記光源と前記投光器との間、或いは該受光された光を
光電変換する受光素子と前記受光器との間のいずれか一
方に配置された分光器と、 前記受光素子で得られる反射光データから、前記既定波
長における反射率と、該既定波長に対する反射率の変化
率となる前記既定波長に対する反射率一次微分値を演算
し、該反射率一次微分値と該既定波長における透過率と
の関係式に基づき、該既定波長における該測定物の透過
率を演算する演算装置とを具備することを特徴とする塗
布物の光線透過率の測定装置。
6. A light source for generating light of a plurality of continuous wavelengths including a predetermined wavelength, a projector for emitting light generated by the light source to an object to be measured, and condensing light reflected from the object to be measured. A light receiver, a spectroscope disposed between the light source and the light projector, or between the light receiver and the light receiver for photoelectrically converting the received light, and the light receiver. From the reflected light data, the reflectance at the predetermined wavelength and the first derivative of the reflectance for the predetermined wavelength, which is the rate of change of the reflectance for the predetermined wavelength, are calculated, and the first derivative of the reflectance and the transmittance at the predetermined wavelength are calculated. A calculating device for calculating the transmittance of the measured object at the predetermined wavelength based on the relational expression:
JP2000056469A 2000-03-01 2000-03-01 Method and device for measuring light beam transmittance of applied matter Withdrawn JP2001242075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056469A JP2001242075A (en) 2000-03-01 2000-03-01 Method and device for measuring light beam transmittance of applied matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056469A JP2001242075A (en) 2000-03-01 2000-03-01 Method and device for measuring light beam transmittance of applied matter

Publications (1)

Publication Number Publication Date
JP2001242075A true JP2001242075A (en) 2001-09-07

Family

ID=18577410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056469A Withdrawn JP2001242075A (en) 2000-03-01 2000-03-01 Method and device for measuring light beam transmittance of applied matter

Country Status (1)

Country Link
JP (1) JP2001242075A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102365A (en) * 2004-10-08 2006-04-20 Kao Corp Evaluation method for skin transparency
JP2006226836A (en) * 2005-02-17 2006-08-31 Shiseido Co Ltd Method and device for evaluating light extraction performance of specimen, and material and method for light extraction
JP2007278880A (en) * 2006-04-07 2007-10-25 Kao Corp Method of measuring optical characteristics of decorative coating film, and method and device for estimating reflectivity of decorative skin
WO2008044576A1 (en) * 2006-10-06 2008-04-17 Shiseido Company, Ltd. Ultraviolet ray detection device and ultraviolet ray protection effect evaluating device
JP2010175264A (en) * 2009-01-27 2010-08-12 Shiseido Co Ltd Method and device for evaluating subcorneal intercellular lipid structure
JP2012242215A (en) * 2011-05-18 2012-12-10 Shiseido Co Ltd Evaluation device of ultraviolet ray protection effect
CN106442331A (en) * 2016-09-29 2017-02-22 上海家化联合股份有限公司 Testing method of waterproof capability of sunscreen product
WO2018221923A1 (en) * 2017-05-31 2018-12-06 (주)아모레퍼시픽 Cosmetic material thickness measuring device and method
KR20220037717A (en) * 2020-09-18 2022-03-25 코스맥스 주식회사 Device for measuring Infrared protection factor
KR20220073312A (en) * 2020-11-26 2022-06-03 박상명 UV-blocker Performance Measurement Device and Method using Infrared Ray

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102365A (en) * 2004-10-08 2006-04-20 Kao Corp Evaluation method for skin transparency
JP4522884B2 (en) * 2005-02-17 2010-08-11 株式会社資生堂 Evaluation method of sample light extraction performance and sample light extraction performance evaluation device
JP2006226836A (en) * 2005-02-17 2006-08-31 Shiseido Co Ltd Method and device for evaluating light extraction performance of specimen, and material and method for light extraction
JP2007278880A (en) * 2006-04-07 2007-10-25 Kao Corp Method of measuring optical characteristics of decorative coating film, and method and device for estimating reflectivity of decorative skin
JP4632994B2 (en) * 2006-04-07 2011-02-16 花王株式会社 Method for measuring optical characteristics of cosmetic coating film and method and apparatus for estimating reflectance of cosmetic skin
US8049179B2 (en) 2006-10-06 2011-11-01 Shiseido Company, Ltd. Ultraviolet radiation detector and apparatus for evaluating ultraviolet radiation protection effect
JP2008096151A (en) * 2006-10-06 2008-04-24 Shiseido Co Ltd Ultraviolet detection apparatus and apparatus for evaluating ultraviolet protection effect
WO2008044576A1 (en) * 2006-10-06 2008-04-17 Shiseido Company, Ltd. Ultraviolet ray detection device and ultraviolet ray protection effect evaluating device
AU2007305640B2 (en) * 2006-10-06 2012-12-20 Shiseido Company, Ltd. Ultraviolet radiation detector and apparatus for evaluating ultraviolet radiation protection effect
KR101411102B1 (en) * 2006-10-06 2014-06-27 하마마츠 포토닉스 가부시키가이샤 Ultraviolet ray protection effect evaluating device
JP2010175264A (en) * 2009-01-27 2010-08-12 Shiseido Co Ltd Method and device for evaluating subcorneal intercellular lipid structure
JP2012242215A (en) * 2011-05-18 2012-12-10 Shiseido Co Ltd Evaluation device of ultraviolet ray protection effect
CN106442331A (en) * 2016-09-29 2017-02-22 上海家化联合股份有限公司 Testing method of waterproof capability of sunscreen product
CN106442331B (en) * 2016-09-29 2021-02-26 上海家化联合股份有限公司 Method for testing waterproof capability of sun-proof product
WO2018221923A1 (en) * 2017-05-31 2018-12-06 (주)아모레퍼시픽 Cosmetic material thickness measuring device and method
KR20220037717A (en) * 2020-09-18 2022-03-25 코스맥스 주식회사 Device for measuring Infrared protection factor
KR102439912B1 (en) * 2020-09-18 2022-09-05 코스맥스 주식회사 Device for measuring Infrared protection factor
KR20220073312A (en) * 2020-11-26 2022-06-03 박상명 UV-blocker Performance Measurement Device and Method using Infrared Ray
KR102467287B1 (en) 2020-11-26 2022-11-15 박상명 UV-blocker Performance Measurement Device and Method using Infrared Ray

Similar Documents

Publication Publication Date Title
Springsteen et al. In vitro measurement of sun protection factor of sunscreens by diffuse transmittance
AU2008312804B2 (en) Ultraviolet protection effect evaluation method, evaluation device, evaluation program, and recording medium where the program is recorded
US8598535B2 (en) Ultraviolet protection effect evaluation method, evaluation apparatus, and recording medium
US11137347B2 (en) Optically ascertaining the sun protection factor of sunscreens or other radiation protection agents
Shortall et al. Robust spectrometer-based methods for characterizing radiant exitance of dental LED light curing units
JP4632994B2 (en) Method for measuring optical characteristics of cosmetic coating film and method and apparatus for estimating reflectance of cosmetic skin
US20110098815A1 (en) Skin substitute membrane, mold, and method of evaluating external preparation for skin
Ruvolo Junior et al. New noninvasive approach assessing in vivo sun protection factor (SPF) using diffuse reflectance spectroscopy (DRS) and in vitro transmission
WO2010113961A1 (en) Method for applying external skin preparation, method for evaluating application by the method, device for evaluating the application and program for evaluating the application
JP2001242075A (en) Method and device for measuring light beam transmittance of applied matter
JP4709164B2 (en) A method for determining color perception in multilayer systems.
JP3337832B2 (en) Method and apparatus for measuring ultraviolet protection effect
Reble et al. Evaluation of detection distance‐dependent reflectance spectroscopy for the determination of the sun protection factor using pig ear skin
JP4573752B2 (en) Method and apparatus for determining pigmentation depth
TW200819728A (en) An evaluation method and device for ultraviolet radiation protective effect
JP4632982B2 (en) Method and apparatus for estimating makeup application amount
US20040195519A1 (en) In vitro method of determining the protection efficacy of a substance against solar radiation
JP5643571B2 (en) Fluorescence estimation apparatus, fluorescence estimation method, and fluorescence measurement apparatus
JP4278419B2 (en) Evaluation method of skin transparency
Bleasel et al. In vitro evaluation of sun protection factors of sunscreen agents using a novel UV spectrophotometric technique
US6856395B2 (en) Reflectometer arrangement and method for determining the reflectance of selected measurement locations of measurement objects reflecting in a spectrally dependent manner
JPH1151859A (en) Method and equipment for measuring transmittance of uv-ray and method for evaluating uv-ray shielding performance based on transmittance of uv-ray
US20140307258A1 (en) Optical analyte measurement
JP5087471B2 (en) Transparency evaluation method and apparatus
JP4799628B2 (en) Skin transparency evaluation device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501