JP2001237226A - Plasma treatment equipment - Google Patents

Plasma treatment equipment

Info

Publication number
JP2001237226A
JP2001237226A JP2000046513A JP2000046513A JP2001237226A JP 2001237226 A JP2001237226 A JP 2001237226A JP 2000046513 A JP2000046513 A JP 2000046513A JP 2000046513 A JP2000046513 A JP 2000046513A JP 2001237226 A JP2001237226 A JP 2001237226A
Authority
JP
Japan
Prior art keywords
control unit
temperature control
electrode
plasma processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000046513A
Other languages
Japanese (ja)
Inventor
Toshinori Segawa
利規 瀬川
Katsumitsu Watanabe
克充 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000046513A priority Critical patent/JP2001237226A/en
Publication of JP2001237226A publication Critical patent/JP2001237226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem wherein since gas having depositing property is used in plasma treatment equipment which performs etching of an oxide film, so that a deposition film is formed on a side wall or the like besides a wafer, and the film becomes causes of process shift and generation of particles. SOLUTION: A cylindrical temperature adjusting unit 51 in which a heater is buried is fixed along the inside of a vacuum vessel wall surface (chamber) 21. The heater is arranged in a space of atmospheric pressure, and heat transfer is increased. The temperature adjusting unit 51 is brought into contact with the chamber 21 only at a lower surface of a protruding part 51a formed on the upper end portion of the unit 51. Consequently, the amount of heat transfer from the temperature adjusting unit 51 to the chamber 21 can be restrained to be very small, so that the temperature of the chamber 21 does not become abnormally high. On the contrary, the temperature of the unit 51 can be sufficiently increased without transfer loss, and formation of a deposition film on a side wall can be effectively prevented. By attaching insulator for insulating a part between the temperature adjusting unit 51 and an electrode to the unit 51, discharge between the vacuum vessel side wall 21 and the temperature adjusting unit 51 and the electrode can be prevented when a bias is applied to the electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,真空容器内に配設
された電極に高周波を印加し,上記電極に対向して配置
された被処理物にプラズマ処理を施すプラズマ処理装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus for applying a high frequency to an electrode disposed in a vacuum vessel and performing a plasma processing on an object disposed opposite the electrode. .

【0002】[0002]

【従来の技術】エッチング等のプラズマ処理に用いられ
るプラズマ処理装置としては,例えば図5に示すものが
ある。図5に示すプラズマ処理装置Z0は,不活性ガス
(Arなど)のイオンを供給するプラズマ発生空間1
と,反応性ガス(C48 などの反応ラジカルを形成す
るガス)を解離するプラズマ処理空間2とが,互いに隣
接して連通可能に形成されている。上記プラズマ発生空
間1は,ドーズ量が制御された低導電性Siで構成され
たプラズマ発生キャビティ3に同心に彫り込まれた複数
の環状溝として形成されている。また,上記プラズマ発
生キャビティ3の下端部には,高ドープの高導電性Si
で構成され,上記プラズマ発生空間1を挟むように環状
に形成されたアノード4が接着されている。また,上記
ベース構造物31は,同心円状の複数のガス溜まり溝5
が形成されたアルミ製のガス溜まり構造物(以下,ガス
チャネル)6の下面側に固定されている。ここで,不活
性ガスが供給されるガス溜まり溝5aは上記プラズマ発
生空間1の上方に形成された供給口13と,反応性ガス
が供給されるガス溜まり溝5bは上記アノード4に形成
された供給口14と,上記ベース構造物31及び上記プ
ラズマ発生キャビティ3内を通してそれぞれ連通されて
おり,適切なピッチで形成された上記供給口13,14
から各空間内に均一に噴射される。更に,上記ガスチャ
ネル6の上面側には,内部にフロロカーボン系の絶縁性
冷媒が循環されるアルミ製の冷却板8が,大気圧側(外
側)からボルトにて結合されている。
2. Description of the Related Art As a plasma processing apparatus used for plasma processing such as etching, for example, there is one shown in FIG. The plasma processing apparatus Z0 shown in FIG. 5 is a plasma generation space 1 for supplying ions of an inert gas (such as Ar).
A plasma processing space 2 that dissociates a reactive gas (a gas that forms a reactive radical such as C 4 F 8 ) is formed adjacent to each other and can communicate with each other. The plasma generation space 1 is formed as a plurality of annular grooves concentrically engraved in a plasma generation cavity 3 made of low-conductivity Si whose dose is controlled. The lower end of the plasma generation cavity 3 is provided with highly doped highly conductive Si.
The anode 4 is formed in a ring shape and sandwiches the plasma generation space 1. The base structure 31 has a plurality of concentric gas reservoir grooves 5.
Is fixed to the lower surface side of an aluminum gas reservoir structure (hereinafter referred to as a gas channel) 6 in which is formed. Here, the gas reservoir groove 5a to which the inert gas is supplied is formed in the supply port 13 formed above the plasma generating space 1, and the gas reservoir groove 5b to which the reactive gas is supplied is formed in the anode 4. The supply ports 13 are communicated with the supply port 14 through the base structure 31 and the plasma generation cavity 3, respectively, and are formed at an appropriate pitch.
Is uniformly injected into each space. Further, an aluminum cooling plate 8 in which a fluorocarbon-based insulating refrigerant is circulated is connected to the upper surface side of the gas channel 6 by bolts from the atmospheric pressure side (outside).

【0003】また,上記ベース構造物31には,伝熱性
のロッド状構造物(以下,伝熱ロッド)32が上下方向
に貫通する形で埋め込まれている。上記プラズマ発生キ
ャビティ3及びアノード4は,上記ボルト7によって上
記ベース構造物31の上記伝熱ロッド32に対して固定
されており,冷却板8及びガスチャネル6との熱的な連
結が実現されている。即ち,上記プラズマ発生キャビテ
ィ3及びアノード4は,上記伝熱ロッド32を介して上
記冷却板8からの伝熱冷却が実現されている。また,上
記ボルト7の頭部は,反応影響とプラズマへの特異点影
響を低減するためにSiのカバー15で覆われている。
更に,上記ベース構造物31内には,RF電源10aに
接続されたアンテナ9が,上記プラズマ発生空間1の上
方に位置するように同心円状に埋設されている。更に,
上記伝熱ロッド32には,ロッドヒータ11と熱電対1
2とが,上記冷却板8及びガスチャネル6を介して且つ
該冷却板8及び該ガスチャネル6に接せずに挿入されて
おり,プラズマ発生の強弱やプラズマ発生の有無(装置
停止時を含む)といった熱負荷の変化に対する,より安
定した温度制御を可能としている。尚,上記アルミナ製
のベース構造物31自体は,構造的な真空支持部材であ
り,冷却には直接寄与しない。以上のように,冷却板
8,ガスチャネル6,ベース構造物31,プラズマ発生
キャビティ3,及びアノード4は,ボルト等によって互
いに結合されてルーフ20を形成している。上記ルーフ
20は,チャンバ21の上方に形成された開口部を塞ぐ
ように,上記チャンバ21の上縁部に形成されたルーフ
ベース22上に載置され,更に絶縁性のルーフ押さえ2
3によって固定されている。つまり,電気的には上記ア
ノード4,上記冷却板8,上記ガスチャネル6,上記伝
熱ロッド32等と,チャンバ21とでは分断されること
となる。また,上記冷却板8はRF電源10bに接続さ
れている一方,上記チャンバ21は接地されている。こ
れにより,上記アノード4は,上記冷却板8,上記ガス
チャネル6,上記伝熱ロッド32,上記ボルト7を介し
てRF電位が付与されるとともに,チャンバ21には接
地電位が付与されることとなる。また,上記プラズマ処
理空間2は,上記アノード4と,ウェハなどの被処理物
Wが載置され,RF電源25に接続されるカソード24
とで挟まれた領域として形成されている。
Further, a heat conductive rod-shaped structure (hereinafter referred to as a heat transfer rod) 32 is embedded in the base structure 31 so as to penetrate vertically. The plasma generating cavity 3 and the anode 4 are fixed to the heat transfer rod 32 of the base structure 31 by the bolts 7, and a thermal connection between the cooling plate 8 and the gas channel 6 is realized. I have. That is, the heat transfer cooling from the cooling plate 8 to the plasma generating cavity 3 and the anode 4 is realized through the heat transfer rod 32. The head of the bolt 7 is covered with a Si cover 15 to reduce the effect of reaction and the effect of singularities on plasma.
Further, an antenna 9 connected to an RF power supply 10a is buried concentrically in the base structure 31 so as to be located above the plasma generation space 1. Furthermore,
The heat transfer rod 32 includes a rod heater 11 and a thermocouple 1.
2 is inserted through the cooling plate 8 and the gas channel 6 and not in contact with the cooling plate 8 and the gas channel 6, and the strength of plasma generation and the presence or absence of plasma generation (including when the apparatus is stopped) ) Enables more stable temperature control in response to changes in heat load. The alumina base structure 31 itself is a structural vacuum support member and does not directly contribute to cooling. As described above, the cooling plate 8, the gas channel 6, the base structure 31, the plasma generation cavity 3, and the anode 4 are connected to each other by bolts or the like to form the roof 20. The roof 20 is placed on a roof base 22 formed at the upper edge of the chamber 21 so as to cover an opening formed above the chamber 21.
3 fixed. That is, the chamber 21 is electrically separated from the anode 4, the cooling plate 8, the gas channel 6, the heat transfer rod 32, and the like. The cooling plate 8 is connected to the RF power source 10b, while the chamber 21 is grounded. Thereby, the anode 4 is applied with the RF potential through the cooling plate 8, the gas channel 6, the heat transfer rod 32, and the bolt 7, and the ground potential is applied to the chamber 21. Become. In the plasma processing space 2, the anode 4 and the workpiece W such as a wafer are placed and a cathode 24 connected to an RF power supply 25 is placed.
And is formed as a region sandwiched between.

【0004】以上のようなプラズマ処理装置Z0の動作
を簡単に説明する。プラズマ発生空間1内に不活性ガス
が供給され,RF電源10aが作動されて上記アンテナ
9からRF交番磁界が印加されると,同心円状の溝形状
に構成された上記プラズマ発生空間1内において,電子
が誘導結合し,高密度プラズマが形成される(IC
P)。その一方,高速電子は曲率ある壁面に吸収消滅さ
れ,比較的低温で高密度の不活性ガスプラズマ(HD
P)が形成される。このプラズマ発生空間1内で発生し
たプラズマは,上記プラズマ処理空間2に拡散する。更
に,RF電源25を作動させると,プラズマ処理空間2
にもカソード24及びアノード4を介してRF電界が印
加され,容量結合(CCP)によるプラズマ発生が行わ
れ,供給口14から供給された反応性ガスが励起・解離
され,プラズマ処理空間2内に載置されたウェハWは高
密度プラズマより供給される不活性ガスのイオンと上記
反応性ラジカルとのバランスによる反応性イオンアシス
ト反応に基づきエッチング処理される。
[0004] The operation of the above-described plasma processing apparatus Z0 will be briefly described. When an inert gas is supplied into the plasma generation space 1 and the RF power supply 10a is operated to apply an RF alternating magnetic field from the antenna 9, the plasma generation space 1 having a concentric groove shape is Electrons are inductively coupled to form a high-density plasma (IC
P). On the other hand, high-speed electrons are absorbed and annihilated by the curved wall, and a relatively low-temperature and high-density inert gas plasma (HD
P) is formed. The plasma generated in the plasma generation space 1 diffuses into the plasma processing space 2. Further, when the RF power supply 25 is operated, the plasma processing space 2
Also, an RF electric field is applied through the cathode 24 and the anode 4 to generate plasma by capacitive coupling (CCP), and the reactive gas supplied from the supply port 14 is excited and dissociated. The mounted wafer W is etched based on a reactive ion assist reaction based on a balance between ions of an inert gas supplied from high-density plasma and the reactive radicals.

【0005】[0005]

【発明が解決しようとする課題】ところで,一般に,酸
化膜のエッチングにおいては,C48 などデポ性のガ
スを使用し,ウェハ上へのデポ膜堆積とイオンアタック
によるイオンアシスト反応とを利用し,垂直エッチング
を行うようにしている。しかしながら,デポ性のガスを
使用するが故に,エッチングが行われる一方でデポジシ
ョンも行われることとなる。このため,ウェハ以外のプ
ラズマ被爆部にデポ膜が形成され,このデポ膜はプロセ
スシフト(エッチングレートやレジスト選択比などのプ
ロセス性能が処理時間に呼応してズレていく現象)やパ
ーティクル発生の原因となり問題となっている。また,
上記のようなプラズマ処理装置では,滞在時間制御の観
点と大面積での圧力分布抑制の観点から,上部電極と下
部電極との間に十分な距離をおいた,いわゆるワイドギ
ャップ構造とすることが望ましいが,特にこのワイドギ
ャップ構造では,プラズマは,上部電極と下部電極との
間のみならず,広い面積の側壁部とも接することとな
り,この側壁部に形成されるデポ膜が問題となる。従来
より,この側壁部のデポ膜形成を防止する手段として,
側壁部をヒータ等の加熱手段で加熱することが有効であ
ることは知られていた。しかしながら,実際には,側壁
部はプラズマチャンバが露出している状態とされている
のが一般的であり,またチャンバ温度は安全上の制約な
どから60〜80℃程度のヒートアップしかなされてお
らず,また,上記以上のヒートアップが許容される場合
においても,多大なる熱エネルギーを供給してやらねば
ならないことから,結局のところ150℃程度以上のヒ
ートアップはできず,上記の課題の解消には至っていな
いのが実情であった。本発明は上記事情に鑑みてなされ
たものであり,その目的とするところは,側壁部を安全
上,問題となる高温状態にすることなく,側壁部へのデ
ポ膜形成の防止を成し遂げ,デポ膜形成に伴う諸問題を
解消しうるプラズマ処理装置を提供することである。
Generally, in etching an oxide film, a deposition gas such as C 4 F 8 is used, and the deposition of a deposition film on a wafer and an ion-assisted reaction by ion attack are used. Then, vertical etching is performed. However, since the deposition gas is used, the etching is performed while the deposition is performed. As a result, a deposit film is formed on the exposed portion of the plasma other than the wafer, and this deposit film causes process shift (a phenomenon in which process performance such as etching rate and resist selectivity shifts in response to the processing time) and particle generation. Is a problem. Also,
In the plasma processing apparatus described above, a so-called wide-gap structure in which a sufficient distance is provided between the upper electrode and the lower electrode from the viewpoint of controlling the staying time and suppressing the pressure distribution in a large area. Although it is desirable, particularly in this wide gap structure, the plasma comes into contact not only between the upper electrode and the lower electrode but also on the side wall having a large area, and the deposition film formed on the side wall becomes a problem. Conventionally, as means for preventing the formation of a deposit film on the side wall,
It has been known that it is effective to heat the side wall with a heating means such as a heater. However, in practice, it is general that the plasma chamber is exposed on the side wall, and the chamber temperature is only heated up to about 60 to 80 ° C. due to safety restrictions. In addition, even when the above-mentioned heat-up is allowed, a large amount of heat energy must be supplied, and as a result, the heat-up at about 150 ° C. or more cannot be performed. The fact was not reached. The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent the formation of a deposition film on a side wall without keeping the side wall at a high temperature, which is a problem for safety. An object of the present invention is to provide a plasma processing apparatus capable of solving various problems associated with film formation.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に,本発明は,真空容器内に配設された電極に高周波を
印加し,上記電極に対向して配置された被処理物にプラ
ズマ処理を施すプラズマ処理装置において,上記電極の
側方に位置する上記真空容器壁面の内側に沿って,ヒー
タが埋設された温度調節ユニットが取り付けられてなる
ことを特徴とするプラズマ処理装置として構成されてい
る。これにより,真空容器を安全上,問題となる高温状
態にすることなく,側壁部へのデポ膜形成を防止するこ
とが可能となる。ここで,上記温度調節ユニットに,そ
の外周に沿って半径方向に突出した突出部を形成し,上
記温度調節ユニットを,上記突出部のみにおいて上記真
空容器側面と接触するよう付設して構成すれば,接地さ
れた上記真空容器側面との接触によって上記温度調節ユ
ニットの接地電位を確保しつつ,上記温度調節ユニット
から真空容器側壁以外の真空容器への伝熱を抑制でき
る。更に,上記ヒータを,上記温度調節ユニット内に形
成された大気圧空間内に配設すれば,固体接触や輻射に
よる伝熱に加えて,大気圧での空気の対流による伝熱効
果により,温度調節ユニットを効率よく昇温させること
が可能となる。更に,上記温度調節ユニットに上記電極
との間を絶縁する絶縁物を取り付けることにより,上記
電極にバイアスを印加した場合の真空容器側壁及び温度
調節ユニットと上記電極との間の放電を防止できる。更
に,上記温度調節ユニットと上記絶縁物との接触面に熱
伝導性の高い例えばグラファイトシートなどの熱伝導部
材を挟設すれば,輻射が主たる伝熱形態となっている構
成に比して,固体接触による伝熱形態が付加されるた
め,上記絶縁物を上記温度調節ユニットに近い温度まで
昇温することができ,より効果的である。更に,上記真
空容器側面と,上記温度調節ユニットの突出部との接触
面にかかる押圧力が調整可能な構成とすれば,温度調節
ユニットからの伝熱の度合い,接地状態を適宜変更する
ことが可能となる。
In order to achieve the above object, the present invention provides a method for applying a high frequency to an electrode disposed in a vacuum vessel, and applying a plasma to an object to be processed disposed opposite to the electrode. In the plasma processing apparatus for performing the processing, a temperature control unit in which a heater is embedded is attached along the inside of the vacuum vessel wall located on the side of the electrode. ing. This makes it possible to prevent the formation of a deposit film on the side wall without bringing the vacuum vessel into a high-temperature state that poses a problem on safety. Here, if the temperature control unit is formed with a protrusion protruding radially along its outer periphery, and the temperature control unit is provided so as to be in contact with the side surface of the vacuum vessel only at the protrusion. The heat transfer from the temperature control unit to the vacuum vessel other than the side wall of the vacuum vessel can be suppressed while maintaining the ground potential of the temperature control unit by contact with the side of the vacuum vessel grounded. Further, if the heater is arranged in the atmospheric pressure space formed in the temperature control unit, in addition to the heat transfer due to solid contact and radiation, the heat transfer effect due to the convection of air at atmospheric pressure causes the temperature to rise. It is possible to efficiently raise the temperature of the adjustment unit. Further, by attaching an insulator to the temperature control unit to insulate the electrode from the electrode, it is possible to prevent discharge between the vacuum vessel side wall and the temperature control unit and the electrode when a bias is applied to the electrode. Further, if a heat conductive member such as a graphite sheet having a high thermal conductivity is interposed between the contact surface between the temperature control unit and the insulator, the radiation is mainly in the form of heat transfer. Since the form of heat transfer by solid contact is added, the temperature of the insulator can be raised to a temperature close to the temperature control unit, which is more effective. Further, if the pressure applied to the contact surface between the side surface of the vacuum vessel and the protrusion of the temperature control unit can be adjusted, the degree of heat transfer from the temperature control unit and the grounding state can be appropriately changed. It becomes possible.

【0007】[0007]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は,本発明を
具体化した一例であって,本発明の技術的範囲を限定す
る性格のものではない。ここに,図1は本発明の実施の
形態に係るプラズマ処理装置Z1の概略構成を示す縦断
面図,図2は図1における左側の温度調節ユニット51
近傍の拡大図,図3は図1における右側の温度調節ユニ
ット51近傍の拡大図,図4は図1におけるA−A断面
図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a longitudinal sectional view showing a schematic configuration of a plasma processing apparatus Z1 according to an embodiment of the present invention, and FIG. 2 is a temperature control unit 51 on the left side in FIG.
FIG. 3 is an enlarged view of the vicinity of the temperature control unit 51 on the right side in FIG. 1, and FIG. 4 is a sectional view taken along the line AA in FIG.

【0008】本実施の形態に係るプラズマ処理装置Z1
は,図1に示すような概略構成を有する。このプラズマ
処理装置Z1のプラズマ処理装置としての基本構成は,
上記従来のプラズマ処理装置Z0とほぼ同様であるた
め,略同一の構成については同符号を付し,その説明は
省略する。以下,上記従来のプラズマ処理装置Z0との
相違部分を中心にその構成について詳述する。プラズマ
処理装置Z1では,図1に示すように,チャンバ21の
内面側に沿って,円筒状に形成された温度調節ユニット
51が取り付けられている。上記温度調節ユニット51
は,その上端部が半径方向に突出した形状(突出部51
a)に形成されている。また,上記チャンバ21の上端
部近傍には,上記突出部51aに対応する屈曲部21a
が形成されており,上記温度調節ユニット51は上記突
出部51aにおいて上記チャンバ21の上記屈曲部21
aに吊設されている。尚,上記温度調節ユニット51
は,上記屈曲部21aの下面においてのみ上記チャンバ
21と接触しており,その他の部分においてはチャンバ
21やルーフベース22との間に隙間が形成されてい
る。
[0008] Plasma processing apparatus Z1 according to the present embodiment
Has a schematic configuration as shown in FIG. The basic configuration of the plasma processing apparatus Z1 as a plasma processing apparatus is as follows.
Since it is almost the same as the above-mentioned conventional plasma processing apparatus Z0, the same reference numerals are given to the substantially same components, and the description thereof will be omitted. Hereinafter, the configuration thereof will be described in detail focusing on the differences from the above-described conventional plasma processing apparatus Z0. In the plasma processing apparatus Z <b> 1, as shown in FIG. 1, a cylindrical temperature control unit 51 is attached along the inner surface side of the chamber 21. The temperature control unit 51
Has a shape in which the upper end protrudes in the radial direction (projection 51
a). In the vicinity of the upper end of the chamber 21, a bent portion 21a corresponding to the projection 51a is provided.
The temperature control unit 51 is connected to the bent portion 21 of the chamber 21 at the projecting portion 51a.
a. The temperature control unit 51
Is in contact with the chamber 21 only on the lower surface of the bent portion 21a, and a gap is formed between the chamber 21 and the roof base 22 in other portions.

【0009】図1における上記温度調節ユニット51周
辺の拡大図である図2及び図3を用いて,上記温度調節
ユニット51の構成を更に詳しく説明する。図2,図3
に示すように,上記温度調節ユニット51は,ウォール
部材52,蓋部材53,絶縁部材54,抑え部材55,
及びヒータ56を具備して構成されている。上記ウォー
ル部材52は,上記突出部51aから連続して上記チャ
ンバ21の内面を覆うような形状に構成されており,上
記チャンバ21の内面との間には若干の隙間が形成され
ている。また,上記蓋部材53は,ボルト63,64に
よって上記ウォール部材52の上面部に固定され,これ
により,上記ウォール部材52と上記蓋部材53との間
には環状の空間71が形成されている。また,上記空間
71は,その周上の一か所に形成された連通孔72によ
って上記突出部51aの下面まで連通されており,更に
上記連通孔72は上記チャンバ21内に形成された外気
に連通する連通孔73と接続されている(図3,図4参
照)。尚,上記ウォール部材52と上記蓋部材53との
間はシール部材61,62によりシールされ,上記連通
孔72と連通孔73との接続部分も図示しないシール部
材によってシールされており,上記空間71はチャンバ
21内の真空空間と隔離された大気圧空間を形成してい
る。また,上記空間71内には,ヒータ56が環状に配
設されている。尚,上記ヒータ56は,上記連通孔7
2,73を介して図示しない電源と接続されている。更
には,上記空間71内には図示しない熱電対も配設さ
れ,上記空間71内の温度,ひいては上記ヒータ56の
温度を監視可能に構成されている。更に,上記ウォール
部材52と上記蓋部材53の内周側には,石英などの絶
縁物で形成された絶縁部材54が,上記蓋部材53と上
記抑え部材55との間に挟持されて固定されている。ま
た,上記絶縁部材54と上記蓋部材53との間には,熱
伝導性の高い例えばグラファイトシート(図示省略)が
挟み込まれている。以上のようにウォール部材52,蓋
部材53,絶縁部材54,及び抑え部材55が一体化さ
れた温度調節ユニット51は,上述したように突出部5
1aにおいて上記チャンバ21の屈曲部21aに吊設さ
れており,更に上記突出部51aと上記屈曲部21aと
は,ボルト66により上記温度調節ユニット51に接地
電位を与えられる程度の締め付け力で周上の数カ所にお
いて固着されている。
The structure of the temperature control unit 51 will be described in more detail with reference to FIGS. 2 and 3, which are enlarged views of the vicinity of the temperature control unit 51 in FIG. Figures 2 and 3
As shown in FIG. 5, the temperature control unit 51 includes a wall member 52, a lid member 53, an insulating member 54, a holding member 55,
And a heater 56. The wall member 52 is configured to cover the inner surface of the chamber 21 continuously from the protruding portion 51a, and a slight gap is formed between the wall member 52 and the inner surface of the chamber 21. The lid member 53 is fixed to the upper surface of the wall member 52 by bolts 63 and 64, whereby an annular space 71 is formed between the wall member 52 and the lid member 53. . The space 71 is communicated to the lower surface of the protruding portion 51a by a communication hole 72 formed at one location on the periphery thereof. The communication hole 72 is connected to outside air formed in the chamber 21. The communication hole 73 is connected to the communication hole 73 (see FIGS. 3 and 4). The space between the wall member 52 and the lid member 53 is sealed by seal members 61 and 62, and the connection between the communication hole 72 and the communication hole 73 is also sealed by a seal member (not shown). Forms an atmospheric pressure space isolated from the vacuum space in the chamber 21. In the space 71, the heater 56 is disposed in an annular shape. The heater 56 is provided with the communication hole 7.
The power supply (not shown) is connected via the power supply 2 and 73. Further, a thermocouple (not shown) is also provided in the space 71 so as to monitor the temperature in the space 71 and the temperature of the heater 56. Further, an insulating member 54 made of an insulating material such as quartz is sandwiched and fixed between the wall member 52 and the lid member 53 between the lid member 53 and the holding member 55. ing. Further, for example, a graphite sheet (not shown) having high thermal conductivity is interposed between the insulating member 54 and the lid member 53. As described above, the temperature control unit 51 in which the wall member 52, the lid member 53, the insulating member 54, and the holding member 55 are integrated, as described above,
1a, the projection 51a and the bent portion 21a are suspended from the bent portion 21a of the chamber 21 by a tightening force enough to apply a ground potential to the temperature control unit 51 by the bolt 66. Are fixed in several places.

【0010】以上のような構成を有する上記温度調節ユ
ニット51は,ヒータ56が加熱されることにより昇温
される。このとき,上記ヒータ56が配設されている空
間71は大気圧空間であるため,上記ヒータ56から上
記ウォール部材52及び上記蓋部材53への熱伝達は,
(1)対流伝熱(固体面間にあるガスによる伝熱),
(2)固体接触伝熱,及び(3)輻射によって効率的に
行われる。ここで,例えばヒータ56を真空内に置いた
場合,伝熱は(2)+(3)のみとなるため,熱伝達が
悪く上記ウォール部材52等を十分に昇温することがで
きず,またヒータの過熱によって断線を引き起こしてし
まう可能性がある。尚,大気圧放熱による伝熱ロスを小
さくするため,上記空間71は可能な限り小さくするこ
とが望ましい。間隙には銅板シム等を挟むことなども有
効である。また,上記温度調節ユニット51は,上記突
出部51aの下面のみにおいて上記チャンバ21と接触
しており,また上記温度調節ユニット51とチャンバ2
1との間の隙間は真空であるため,温度調節ユニット5
1からチャンバ21への伝熱量はごく小さく抑えられ
る。従って,上記チャンバ21が安全上,問題となる程
の高温となることはなく,また逆に上記温度調節ユニッ
ト51を伝熱ロスなく十分に昇温させることが可能とな
り,側壁部へのデポ膜形成を効果的に防止できる。ま
た,温度調節ユニット51は上記突出部51aの下面及
びボルト66によってチャンバ21と接触することによ
って接地電位が与えられており,上記温度調節ユニット
51は接地電位で囲まれたシールドボックスを形成する
ため,処理室内に伝播するRF電位の影響を受けず,ヒ
ータ56の,あるいは図示しない熱電対の,いわゆるR
Fノイズ等による異常動作が防止できる。更に,上記絶
縁部材54により,ルーフ電極4にバイアス印加する際
のルーフ電極4と温度調節ユニット51との間の放電を
防止できる。更に,上記絶縁部材54は,真空内で上記
蓋部材53と接触しているためにそのままでは十分に昇
温されないが,上記グラファイトシートが挟み込まれて
いることにより固体熱接触が増大し,絶縁部材54をウ
ォール部材52や蓋部材53に近い温度まで昇温させる
ことができ,側壁部へのデポ膜形成の抑止効果を更に高
めることが可能である。
The temperature of the temperature control unit 51 having the above-described structure is increased by heating the heater 56. At this time, since the space 71 in which the heater 56 is provided is an atmospheric pressure space, heat transfer from the heater 56 to the wall member 52 and the lid member 53 is
(1) Convection heat transfer (heat transfer by gas between solid surfaces),
It is performed efficiently by (2) solid contact heat transfer and (3) radiation. Here, for example, when the heater 56 is placed in a vacuum, the heat transfer is only (2) + (3), so that the heat transfer is poor and the temperature of the wall member 52 and the like cannot be sufficiently increased. The overheating of the heater may cause a disconnection. It is desirable that the space 71 be as small as possible in order to reduce the heat transfer loss due to atmospheric pressure heat radiation. It is also effective to insert a copper plate shim or the like in the gap. The temperature control unit 51 is in contact with the chamber 21 only on the lower surface of the protrusion 51a.
1 is a vacuum, so that the temperature control unit 5
The amount of heat transfer from 1 to the chamber 21 is kept very small. Therefore, the temperature of the chamber 21 does not become so high as to cause a problem in terms of safety. Conversely, the temperature of the temperature control unit 51 can be sufficiently increased without heat transfer loss, and the deposition film on the side wall portion can be formed. Formation can be effectively prevented. The temperature control unit 51 is provided with a ground potential by contacting the lower surface of the protruding portion 51a and the chamber 21 with a bolt 66, and the temperature control unit 51 forms a shield box surrounded by the ground potential. , Which is not affected by the RF potential propagating into the processing chamber, and is provided with a so-called R of the heater 56 or a thermocouple (not shown).
An abnormal operation due to F noise or the like can be prevented. Furthermore, the insulating member 54 can prevent discharge between the roof electrode 4 and the temperature control unit 51 when applying a bias to the roof electrode 4. Further, the insulating member 54 is not sufficiently heated as it is because it is in contact with the lid member 53 in a vacuum. However, since the graphite sheet is interposed, the solid thermal contact increases, and the insulating member 54 is insulated. 54 can be raised to a temperature close to the wall member 52 and the lid member 53, and the effect of suppressing the formation of a deposition film on the side wall can be further enhanced.

【0011】[0011]

【発明の効果】以上説明したように,本発明は,真空容
器内に配設された電極に高周波を印加し,上記電極に対
向して配置された被処理物にプラズマ処理を施すプラズ
マ処理装置において,上記電極の側方に位置する上記真
空容器壁面の内側に沿って,ヒータが埋設された温度調
節ユニットが取り付けられてなることを特徴とするプラ
ズマ処理装置として構成されているため,真空容器を安
全上,問題となる高温状態にすることなく,側壁部への
デポ膜形成を防止することが可能となる。ここで,上記
温度調節ユニットに,その外周に沿って半径方向に突出
した突出部を形成し,上記温度調節ユニットを,上記突
出部のみにおいて上記真空容器側面と接触するように付
設して構成すれば,接地された上記真空容器側面との接
触によって上記温度調節ユニットの接地電位を確保しつ
つ,上記温度調節ユニットから真空容器側壁以外の真空
容器への伝熱を抑制できる。更に,上記ヒータを,上記
温度調節ユニット内に形成された大気圧空間内に配設す
れば,固体接触や輻射による伝熱に加えて,大気圧での
空気の対流による伝熱効果により,温度調節ユニットを
効率よく昇温させることが可能となる。更に,上記温度
調節ユニットに上記電極との間を絶縁する絶縁物を取り
付けることにより,上記電極にバイアスを印加した場合
の真空容器側壁及び温度調節ユニットと上記電極との間
の放電を防止できる。更に,上記温度調節ユニットと上
記絶縁物との接触面に熱伝導性の高い例えばグラファイ
トシートなどの熱伝導部材を挟設すれば,輻射が主たる
伝熱形態となっている構成に比して,固体接触による伝
熱形態が付加されるため,上記絶縁物を上記温度調節ユ
ニットに近い温度まで昇温することができ,より効果的
である。更に,上記真空容器側面と,上記温度調節ユニ
ットの突出部との接触面にかかる押圧力が調整可能な構
成とすれば,温度調節ユニットからの伝熱の度合い,接
地状態を適宜変更することが可能となる。
As described above, the present invention provides a plasma processing apparatus for applying a high frequency to an electrode disposed in a vacuum vessel and performing a plasma processing on an object disposed opposite to the electrode. , A temperature control unit in which a heater is embedded is attached along the inside of the vacuum vessel wall located on the side of the electrode. It is possible to prevent the formation of a deposited film on the side wall portion without causing a high temperature condition, which is a problem on safety. Here, the temperature control unit is formed by forming a protrusion protruding in the radial direction along the outer periphery thereof, and attaching the temperature control unit so that only the protrusion is in contact with the side surface of the vacuum vessel. For example, heat transfer from the temperature control unit to a vacuum vessel other than the side wall of the vacuum vessel can be suppressed while maintaining the ground potential of the temperature control unit by contact with the side of the vacuum vessel grounded. Further, if the heater is arranged in the atmospheric pressure space formed in the temperature control unit, in addition to the heat transfer due to solid contact and radiation, the heat transfer effect due to the convection of air at atmospheric pressure causes the temperature to rise. It is possible to efficiently raise the temperature of the adjustment unit. Further, by attaching an insulator to the temperature control unit to insulate the electrode from the electrode, it is possible to prevent discharge between the vacuum vessel side wall and the temperature control unit and the electrode when a bias is applied to the electrode. Further, if a heat conductive member such as a graphite sheet having a high thermal conductivity is interposed between the contact surface between the temperature control unit and the insulator, the radiation is mainly in the form of heat transfer. Since the form of heat transfer by solid contact is added, the temperature of the insulator can be raised to a temperature close to the temperature control unit, which is more effective. Further, if the pressure applied to the contact surface between the side surface of the vacuum vessel and the protrusion of the temperature control unit can be adjusted, the degree of heat transfer from the temperature control unit and the grounding state can be appropriately changed. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係るプラズマ処理装置
Z1の概略構成を示す縦断面図。
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a plasma processing apparatus Z1 according to an embodiment of the present invention.

【図2】 図1における左側の温度調節ユニット51近
傍の拡大図。
FIG. 2 is an enlarged view of the vicinity of a temperature control unit 51 on the left side in FIG.

【図3】 図1における右側の温度調節ユニット51近
傍の拡大図。
FIG. 3 is an enlarged view of the vicinity of a temperature control unit 51 on the right side in FIG. 1;

【図4】 図1におけるA−A断面図。FIG. 4 is a sectional view taken along line AA in FIG. 1;

【図5】 従来技術に係るプラズマ処理装置Z0の概略
構成を示す縦断面図。
FIG. 5 is a longitudinal sectional view showing a schematic configuration of a plasma processing apparatus Z0 according to a conventional technique.

【符号の説明】[Explanation of symbols]

4…アノード電極 21…チャンバ 22…ルーフベース 51…温度調節ユニット 51a…突出部 54…絶縁部材 56…ヒータ 71…大気圧空間 DESCRIPTION OF SYMBOLS 4 ... Anode electrode 21 ... Chamber 22 ... Roof base 51 ... Temperature control unit 51a ... Projection part 54 ... Insulating member 56 ... Heater 71 ... Atmospheric pressure space

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F004 AA15 BA06 BA09 BB11 BB18 BB23 BB28 BC08 CA09 5F045 AA08 BB15 DP03 DQ10 EC05 EF05 EH13 EJ05 EK07 EK08 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F004 AA15 BA06 BA09 BB11 BB18 BB23 BB28 BC08 CA09 5F045 AA08 BB15 DP03 DQ10 EC05 EF05 EH13 EJ05 EK07 EK08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に配設された電極に高周波を
印加し,上記電極に対向して配置された被処理物にプラ
ズマ処理を施すプラズマ処理装置において,上記電極の
側方に位置する上記真空容器壁面の内側に沿って,ヒー
タが埋設された温度調節ユニットが取り付けられてなる
ことを特徴とするプラズマ処理装置。
In a plasma processing apparatus for applying a high frequency to an electrode disposed in a vacuum vessel and performing a plasma processing on an object to be processed disposed opposite to the electrode, the plasma processing apparatus is located on a side of the electrode. A plasma processing apparatus, wherein a temperature control unit in which a heater is embedded is attached along the inside of the vacuum vessel wall.
【請求項2】 上記温度調節ユニットには,その外周に
沿って半径方向に突出した突出部が形成されており,上
記温度調節ユニットは,上記突出部のみにおいて上記真
空容器側面と接触して付設されてなる請求項1記載のプ
ラズマ処理装置。
2. The temperature control unit has a protruding portion that protrudes in a radial direction along an outer periphery of the temperature control unit, and the temperature control unit is provided in contact with the side surface of the vacuum vessel only at the protruding portion. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is used.
【請求項3】 上記ヒータは,上記温度調節ユニット内
に形成された大気圧空間内に配設されてなる請求項1又
は2記載のプラズマ処理装置。
3. The plasma processing apparatus according to claim 1, wherein the heater is disposed in an atmospheric pressure space formed in the temperature control unit.
【請求項4】 上記温度調節ユニットに,上記電極との
間を絶縁する絶縁物が取り付けられてなる請求項1〜3
のいずれかに記載のプラズマ処理装置。
4. The temperature control unit is provided with an insulator for insulating the electrode from the electrode.
The plasma processing apparatus according to any one of the above.
【請求項5】 上記温度調節ユニットと上記絶縁物との
接触面に熱伝導性の高い熱伝導部材が挟設されてなる請
求項4記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 4, wherein a heat conductive member having high heat conductivity is interposed between a contact surface between the temperature control unit and the insulator.
【請求項6】 上記真空容器側面と,上記温度調節ユニ
ットの突出部との接触面にかかる押圧力が調整可能に構
成されてなる請求項1〜5のいずれかに記載のプラズマ
処理装置。
6. The plasma processing apparatus according to claim 1, wherein a pressing force applied to a contact surface between the side surface of the vacuum vessel and a protrusion of the temperature control unit is adjustable.
JP2000046513A 2000-02-23 2000-02-23 Plasma treatment equipment Pending JP2001237226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046513A JP2001237226A (en) 2000-02-23 2000-02-23 Plasma treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046513A JP2001237226A (en) 2000-02-23 2000-02-23 Plasma treatment equipment

Publications (1)

Publication Number Publication Date
JP2001237226A true JP2001237226A (en) 2001-08-31

Family

ID=18568908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046513A Pending JP2001237226A (en) 2000-02-23 2000-02-23 Plasma treatment equipment

Country Status (1)

Country Link
JP (1) JP2001237226A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093979A2 (en) * 2010-01-29 2011-08-04 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
JP2013520836A (en) * 2010-02-26 2013-06-06 ラム リサーチ コーポレーション System, method, and apparatus for plasma etching with independent control of ion generation and process gas dissociation
WO2013136656A1 (en) * 2012-03-15 2013-09-19 東京エレクトロン株式会社 Film forming device
US8916793B2 (en) 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
US9155181B2 (en) 2010-08-06 2015-10-06 Lam Research Corporation Distributed multi-zone plasma source systems, methods and apparatus
US9177762B2 (en) 2011-11-16 2015-11-03 Lam Research Corporation System, method and apparatus of a wedge-shaped parallel plate plasma reactor for substrate processing
US9449793B2 (en) 2010-08-06 2016-09-20 Lam Research Corporation Systems, methods and apparatus for choked flow element extraction
US9639097B2 (en) 2010-05-27 2017-05-02 Applied Materials, Inc. Component temperature control by coolant flow control and heater duty cycle control
US9911578B2 (en) 2009-12-03 2018-03-06 Lam Research Corporation Small plasma chamber systems and methods
US9967965B2 (en) 2010-08-06 2018-05-08 Lam Research Corporation Distributed, concentric multi-zone plasma source systems, methods and apparatus
US10274270B2 (en) 2011-10-27 2019-04-30 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
US10283325B2 (en) 2012-10-10 2019-05-07 Lam Research Corporation Distributed multi-zone plasma source systems, methods and apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9911578B2 (en) 2009-12-03 2018-03-06 Lam Research Corporation Small plasma chamber systems and methods
US9338871B2 (en) 2010-01-29 2016-05-10 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
WO2011093979A3 (en) * 2010-01-29 2011-10-20 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
CN102742365A (en) * 2010-01-29 2012-10-17 应用材料公司 Feedforward temperature control for plasma processing apparatus
US10854425B2 (en) 2010-01-29 2020-12-01 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
WO2011093979A2 (en) * 2010-01-29 2011-08-04 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
US9214315B2 (en) 2010-01-29 2015-12-15 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
JP2013520836A (en) * 2010-02-26 2013-06-06 ラム リサーチ コーポレーション System, method, and apparatus for plasma etching with independent control of ion generation and process gas dissociation
US9735020B2 (en) 2010-02-26 2017-08-15 Lam Research Corporation System, method and apparatus for plasma etch having independent control of ion generation and dissociation of process gas
US9190289B2 (en) 2010-02-26 2015-11-17 Lam Research Corporation System, method and apparatus for plasma etch having independent control of ion generation and dissociation of process gas
US9639097B2 (en) 2010-05-27 2017-05-02 Applied Materials, Inc. Component temperature control by coolant flow control and heater duty cycle control
US8916793B2 (en) 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
US9449793B2 (en) 2010-08-06 2016-09-20 Lam Research Corporation Systems, methods and apparatus for choked flow element extraction
US9155181B2 (en) 2010-08-06 2015-10-06 Lam Research Corporation Distributed multi-zone plasma source systems, methods and apparatus
US9967965B2 (en) 2010-08-06 2018-05-08 Lam Research Corporation Distributed, concentric multi-zone plasma source systems, methods and apparatus
US10274270B2 (en) 2011-10-27 2019-04-30 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
US9177762B2 (en) 2011-11-16 2015-11-03 Lam Research Corporation System, method and apparatus of a wedge-shaped parallel plate plasma reactor for substrate processing
WO2013136656A1 (en) * 2012-03-15 2013-09-19 東京エレクトロン株式会社 Film forming device
US10283325B2 (en) 2012-10-10 2019-05-07 Lam Research Corporation Distributed multi-zone plasma source systems, methods and apparatus

Similar Documents

Publication Publication Date Title
US7524397B2 (en) Lower electrode design for higher uniformity
KR102594442B1 (en) Plasma processing apparatus
JP4236329B2 (en) Plasma processing equipment
US6094334A (en) Polymer chuck with heater and method of manufacture
EP0064163B1 (en) High speed plasma etching system
JP3374033B2 (en) Vacuum processing equipment
KR20150013575A (en) Electrostatic chuck with advanced rf and temperature uniformity
KR20010080296A (en) Vacuum processor apparatus
JP2001237226A (en) Plasma treatment equipment
KR20090071060A (en) Electrostatic chuck and apparatus for treating substrate including the same
JP7381713B2 (en) Process kit sheath and temperature control
JP2001085398A (en) Plasma treatment apparatus
JP3323928B2 (en) Plasma processing equipment
US20070012401A1 (en) Plasma processing apparatus
JP4311828B2 (en) Plasma processing equipment
JP2001244242A (en) Plasma treatment equipment
JPH0476495B2 (en)
CN113035683B (en) Lower electrode assembly and plasma processor
JP2000164563A (en) Plasma processing device
WO2022201351A1 (en) Plasma treatment device and plasma treatment method
JP3662101B2 (en) Plasma processing equipment
JPH0878190A (en) Microwave discharge device and discharge method
KR20230139097A (en) Diamond film forming apparatus using microwave plasma chemical vapor deposition having a ring shaped electrode
US20200219729A1 (en) Reactive Ion Etching Apparatus
KR20230092672A (en) Focus ring and substrate processing apparatus including same