JP2001232158A - Diafiltration method - Google Patents

Diafiltration method

Info

Publication number
JP2001232158A
JP2001232158A JP2000047465A JP2000047465A JP2001232158A JP 2001232158 A JP2001232158 A JP 2001232158A JP 2000047465 A JP2000047465 A JP 2000047465A JP 2000047465 A JP2000047465 A JP 2000047465A JP 2001232158 A JP2001232158 A JP 2001232158A
Authority
JP
Japan
Prior art keywords
membrane
liquid
separation device
membrane separation
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000047465A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Tanida
克義 谷田
Kazutaka Takada
一貴 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP2000047465A priority Critical patent/JP2001232158A/en
Publication of JP2001232158A publication Critical patent/JP2001232158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficiency diafiltration method in which permeated flux is high and foulings onto the surface of a membrane are effectively prevented. SOLUTION: The liquid to be treated is supplied to one side of a membrane module 3a, in which permeation membranes are disposed, of a first membrane separation unit 21 and separated into the permeated liquid to be withdrawn from the other side and the impermeable liquid to be withdrawn from one side by vibrating the permeation membranes. A part or the whole of the impermeable liquid is returned to a supply tank 1a and the liquid in the tank 1a is forcibly sent to the module 3a while adding a cleaning liquid to the tank 1a to carry out the same permeation treatment as described above. The permeated liquid to be withdrawn from the other side is forcibly sent to one side of another membrane module 3b, in which permeation membranes are disposed of, of a second membrane separation unit 22 and separated into the permeated liquid to be withdrawn from the other side and the impermeable liquid to be withdrawn from one side while performing the same permeation treatment by vibrating the permeation membranes. A part or the whole of the impermeable liquid is returned to another supply tank 1b and the liquid in the tank 1b is forcibly sent to the module 3b to carry out the same permeation treatment as described above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃液からの有価物
回収、金属分級、菌体からの有価物回収等に好適である
ダイアフィルトレーション方法に関し、さらに、ラテッ
クス、炭酸カルシウム、リン酸カルシウム、酸化チタン
もしくは金属イオン含有溶液またはポリマー溶液等のス
ラリー中の粒子に付着しているイオンや超微粒子など
を、あらかじめ決められた洗浄度になるまで洗浄しうる
ダイアフィルトレーション方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diafiltration method suitable for recovering valuable resources from waste liquid, metal classification, recovering valuable resources from cells, and the like. The present invention relates to a diafiltration method capable of washing ions or ultrafine particles adhering to particles in a slurry such as a titanium or metal ion-containing solution or a polymer solution to a predetermined washing degree.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、化学工業、製紙工業、医薬・食品工業等の分野で
は、例えば、ラテックス、菌体液等の処理対象液を透過
性膜により膜分離する膜分離法が採用されている。この
膜分離法としては、微小孔を備えた透過性膜により透過
成分と非透過成分とを分離するダイアフィルトレーショ
ン法が広く行われている。このダイアフィルトレーショ
ン法とは、図7に示すように、タンク31内の有価物を
含む被処理液に管路36より洗浄液(例えば、洗浄水)
を供給し、洗浄液を含む被処理液をポンプ32で膜分離
装置33に供給し、この被処理液を膜分離装置33内の
透過性膜により、例えば分散媒が水の場合、透過液(水
+低分子量の有価物)と濃縮液(水+高分子量の有価
物)に分離し、濃縮液を管路34を経てタンク31に戻
し、管路35より透過液を取り出す方法により行われて
いる。
2. Description of the Related Art Conventionally, in the fields of the chemical industry, the paper industry, the pharmaceutical and food industries, etc., for example, a membrane for separating a liquid to be treated, such as latex or a bacterial cell liquid, by a permeable membrane. Separation methods have been employed. As this membrane separation method, a diafiltration method in which a permeable component and a non-permeable component are separated by a permeable membrane having micropores is widely used. This diafiltration method is, as shown in FIG. 7, a cleaning liquid (for example, cleaning water) is supplied from a pipe 36 to a liquid to be treated containing valuables in a tank 31.
And the liquid to be treated including the cleaning liquid is supplied to the membrane separation device 33 by the pump 32. The liquid to be treated is transmitted by the permeable membrane in the membrane separation device 33, for example, when the dispersion medium is water, the permeated liquid (water + Low-molecular-weight valuables) and a concentrated liquid (water + high-molecular-weight valuables), return the concentrated liquid to the tank 31 via the pipe 34, and take out the permeated liquid from the pipe 35. .

【0003】ところが、従来の中空糸、スパイラル、チ
ューブラー等のクロスフロー型膜分離装置を使用してス
ラリーの洗浄を行った場合、図8に示すように、非透過
成分37による膜表面への目詰まり(ファウリング)に
よって膜孔38が塞がれるために透過抵抗が大きくな
り、透過流束が低下することがある。また、従来のクロ
スフロー型膜分離装置では、処理液の粘性が大きくなる
と、膜表面のせん断力が低下するため、ファウリングが
生じやすくなる。さらに、従来のクロスフロー型膜分離
装置において、膜表面近傍の流体にせん断力を発生させ
るためには、配管内を高流速で流さなければならない
が、速度境界層の影響やスクリーンや曲がり管の圧力損
失ならびに各種配管抵抗により、流体輸送のために投入
されたエネルギーがファウリングを防止するせん断力に
変換される効率は10%程度と小さい。
However, when the slurry is washed using a conventional cross-flow type membrane separation device such as a hollow fiber, a spiral, or a tubular, as shown in FIG. Since the membrane hole 38 is closed by clogging (fouling), the permeation resistance increases, and the permeation flux may decrease. Further, in the conventional cross-flow type membrane separation apparatus, when the viscosity of the treatment liquid increases, the shearing force on the membrane surface decreases, so that fouling is likely to occur. Furthermore, in a conventional cross-flow type membrane separation apparatus, in order to generate a shearing force in the fluid near the membrane surface, the fluid must flow at a high flow rate in the pipe. Due to pressure loss and various pipe resistances, the efficiency with which the energy input for fluid transport is converted into a shearing force for preventing fouling is as small as about 10%.

【0004】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、透過
流束が高く、膜表面へのファウリングを効果的に防止し
うる、高効率のダイアフィルトレーション方法を提供す
ることにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a high permeation flux and to effectively prevent fouling on the membrane surface. An object of the present invention is to provide a highly efficient diafiltration method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、供給タンク内の被処理液に洗浄液を添加し
て透過性膜を配置した膜モジュールの一方側に圧送し、
この透過性膜を振動させれば、この振動により発生する
せん断力により有価物の粒子に付着しているイオンや超
微粒子等の不純物が有価物粒子から容易に剥がされるの
で効率よく洗浄が行われる(洗浄液の量および洗浄時間
が低減される)とともに膜表面近傍の非透過成分は膜表
面に接することなく非透過側出口より流出するので、ポ
ンプにより被処理液に適正な圧力を加えれば、高い透過
流束を得ることができる。また、膜表面には振動に伴っ
て高せん断場が形成されるため、膜表面はクリーンな状
態に保たれ、ファウリングが防止される。さらに、粘性
の大きい被処理液が流れても膜表面には振動に伴うせん
断場が形成されているので、粒子間に捕捉されている水
分が自由水となって流動性が改善される結果、みかけの
粘性係数が低下するので、高濃度被処理液の処理が可能
になる。そして、膜表面を動かすエネルギーの大半が膜
表面近傍の流体にせん断力として変換され、高効率で被
処理液を膜分離することができる。このように、本発明
は、振動型膜分離装置を用いて被処理液に洗浄液を添加
して透過液と非透過液に分離する透過処理を行うことと
している。そして、この透過処理を効率的に行うため
に、膜分離装置として、第一膜分離装置と第二膜分離装
置を用いることとしている。
In order to achieve the above object, the present invention provides a method in which a cleaning liquid is added to a liquid to be treated in a supply tank, and the liquid is fed to one side of a membrane module in which a permeable membrane is arranged,
If this permeable membrane is vibrated, impurities such as ions and ultrafine particles adhering to valuable particles are easily peeled off from valuable particles by the shear force generated by the vibration, so that efficient cleaning is performed. (The amount of the cleaning liquid and the cleaning time are reduced) and the non-permeable component near the membrane surface flows out of the non-permeable side outlet without coming into contact with the membrane surface. A permeation flux can be obtained. Further, since a high shear field is formed on the film surface due to the vibration, the film surface is kept clean and fouling is prevented. Furthermore, even if a highly viscous liquid to be processed flows, a shear field accompanying vibration is formed on the film surface, so that the water trapped between the particles becomes free water and the fluidity is improved, Since the apparent viscosity coefficient is reduced, it becomes possible to process a high concentration liquid to be treated. Most of the energy for moving the membrane surface is converted into a fluid near the membrane surface as a shearing force, and the liquid to be treated can be membrane-separated with high efficiency. As described above, in the present invention, a permeation treatment is performed in which a cleaning liquid is added to a liquid to be treated and separated into a permeate and a non-permeate using a vibration type membrane separation device. Then, in order to perform this permeation processing efficiently, the first membrane separation device and the second membrane separation device are used as the membrane separation devices.

【0006】すなわち、第一膜分離装置の透過性膜を配
置した膜モジュールの一方側に供給された被処理液は、
その透過性膜を振動させることにより、他方側から透過
液として取り出され、一方側から非透過液として取り出
される。この非透過液の一部または全部を前段供給タン
クに戻し、前段供給タンクに洗浄液を添加しつつ前段供
給タンク内の液を第一膜分離装置の膜モジュールに圧送
して上記透過処理を行う。そして、他方側から取り出し
た透過液を、第二膜分離装置の透過性膜を配置した膜モ
ジュールの一方側に圧送し、その透過性膜を振動させつ
つ同様の透過処理を行って、透過性膜の他方側から透過
液を取り出し、一方側からは非透過液を取り出す。この
非透過液の一部または全部を後段供給タンクに戻し、後
段供給タンク内の液を第二膜分離装置の膜モジュールに
圧送して上記透過処理を行う。このようにして、有価物
を含む被処理液から、第一膜分離装置の非透過液中に有
価物を回収し、第一膜分離装置の透過液を第二膜分離装
置で濃縮して排水の減容化を図り、あるいは第一膜分離
装置の透過液中に有価物を回収し、この透過液を第二膜
分離装置で濃縮し、第一膜分離装置の非透過液は、第一
膜分離装置で濃縮して排水の減容化を図ることができ
る。
That is, the liquid to be treated supplied to one side of the membrane module in which the permeable membrane of the first membrane separation device is arranged is:
By vibrating the permeable membrane, it is taken out as a permeate from the other side and as a non-permeate from one side. A part or all of the non-permeate liquid is returned to the first-stage supply tank, and the permeation treatment is performed by feeding the liquid in the first-stage supply tank to the membrane module of the first membrane separation device while adding the cleaning liquid to the first-stage supply tank. Then, the permeated liquid taken out from the other side is pressure-fed to one side of the membrane module in which the permeable membrane of the second membrane separation device is arranged, and the same permeation process is performed while vibrating the permeable membrane to obtain the permeable membrane. The permeate is withdrawn from the other side of the membrane and the non-permeate is withdrawn from one side. A part or all of the non-permeate liquid is returned to the subsequent supply tank, and the liquid in the latter supply tank is pressure-fed to the membrane module of the second membrane separation device to perform the permeation treatment. In this way, valuable resources are recovered from the liquid to be treated containing valuable resources in the non-permeate of the first membrane separator, and the permeate of the first membrane separator is concentrated in the second membrane separator and drained. Or recover valuable resources in the permeate of the first membrane separator, concentrate the permeate in the second membrane separator, and remove the non-permeate in the first membrane separator. The wastewater can be concentrated by a membrane separation device to reduce the volume of wastewater.

【0007】[0007]

【発明の実施の形態】すなわち、本発明の要旨は、第一
膜分離装置の透過性膜を配置した膜モジュールの一方側
に被処理液を供給し、その透過性膜を振動させつつ透過
成分を他方側に透過させて透過液を取り出し、一方側か
らは透過性膜を透過しない非透過液を取り出し、一方側
から取り出した非透過液の一部または全部を前段供給タ
ンクに戻し、前段供給タンクに洗浄液を添加しつつ前段
供給タンク内の液を第一膜分離装置の膜モジュールに圧
送して上記透過処理を行い、他方側から取り出した透過
液を、第二膜分離装置の透過性膜を配置した膜モジュー
ルの一方側に圧送し、その透過性膜を振動させつつ透過
成分を他方側に透過させて透過液を取り出し、一方側か
らは透過性膜を透過しない非透過液を取り出し、一方側
から取り出した非透過液の一部または全部を後段供給タ
ンクに戻し、後段供給タンク内の液を第二膜分離装置の
膜モジュールに圧送して上記透過処理を行うことを特徴
とするダイアフィルトレーション方法にある。
That is, the gist of the present invention is that a liquid to be treated is supplied to one side of a membrane module in which a permeable membrane of a first membrane separation device is arranged, and the permeable component is vibrated while the permeable membrane is vibrated. To the other side to take out the permeate, take out the non-permeate that does not permeate through the permeable membrane from one side, and return some or all of the non-permeate taken out from one side to the pre-supply tank, While the washing liquid is being added to the tank, the liquid in the pre-stage supply tank is pressure-fed to the membrane module of the first membrane separation device to perform the permeation treatment, and the permeate taken out from the other side is passed through the permeable membrane of the second membrane separation device. Is placed under pressure on one side of the membrane module in which the permeable membrane is vibrated and the permeable component is transmitted to the other side to take out the permeate, and from one side, the non-permeate which does not pass through the permeable membrane is taken out, Non-extracted from one side A diafiltration method characterized in that part or all of the excess liquid is returned to the downstream supply tank, and the liquid in the downstream supply tank is pressure-fed to the membrane module of the second membrane separation device to perform the permeation treatment. .

【0008】このように構成される本発明によれば、透
過性膜の振動に伴って生成するせん断力により、有価物
の粒子に付着しているイオンや超微粒子等の不純物が有
価物粒子から容易に剥がされるので効率よく洗浄が行わ
れる(洗浄液の量および洗浄時間が低減される)ととも
に膜表面のファウリングを防止しつつ高い透過流束を得
ることができ、透過性膜の一方側に供給された被処理液
を透過液と非透過液に分離して排出し、さらに、その透
過液を別の振動型膜分離装置を用いて透過処理を施すこ
とにより、透過液を濃縮することができる。
[0010] According to the present invention having the above-described structure, impurities such as ions and ultrafine particles adhering to valuable particles are removed from valuable particles by the shearing force generated by the vibration of the permeable membrane. Since it is easily peeled off, cleaning is performed efficiently (reduction of the amount of cleaning liquid and cleaning time), and high permeation flux can be obtained while preventing fouling on the membrane surface. The supplied liquid to be treated is separated into a permeated liquid and a non-permeated liquid, discharged, and the permeated liquid is subjected to a permeation treatment using another vibrating membrane separation device, whereby the permeated liquid can be concentrated. it can.

【0009】第二膜分離装置の透過性膜の膜孔径が第一
膜分離装置の透過性膜の膜孔径より小さければ、第一膜
分離装置においては比較的大径の成分を分離し、第二膜
分離装置においては比較的小径の成分を分離しうる。こ
のように、各膜分離装置の機能を分けることにより、効
率的に膜分離を行いうる。
If the pore size of the permeable membrane of the second membrane separation device is smaller than the membrane pore size of the permeable membrane of the first membrane separation device, the first membrane separation device separates relatively large-diameter components. In a two-membrane separation device, components having a relatively small diameter can be separated. In this way, by separating the functions of the respective membrane separation devices, efficient membrane separation can be performed.

【0010】さらに、有価物(工業的に価値の有る物
質)を含む被処理液を膜分離する場合、その有価物の大
きさと種類によって、以下のように透過処理の目的が異
なる。 (1)有価物が比較的大きい場合 第一膜分離装置の透過性膜の膜孔径を有価物の平均的な
大きさより小さくして、不純物を除去して非透過液中に
極力有価物を回収する。そして、透過液を第二膜分離装
置において透過処理をして、さらに、非透過液と透過液
に分離する。この第二膜分離装置の透過処理の目的は、
必要に応じて所定の処理が施された後外部に排出される
液(非透過液)を極力濃縮してその排出量を減少し、し
かも、透過液(透過水)の水質を向上することにある。
このように、第一膜分離装置と第二膜分離装置の透過処
理の目的は異なるので、それぞれの透過性膜の膜孔径は
異なるのが好ましい。すなわち、第一膜分離装置に比し
て第二膜分離装置の透過性膜には、より微小孔径のもの
を使用するのが好ましい。さらに、第一膜分離装置の透
過液中に不純物を集め、第二膜分離装置の非透過液中に
濃縮するためには、第一膜分離装置の透過性膜の膜孔径
は、不純物よりも大きく、第二膜分離装置の透過性膜の
膜孔径は、不純物よりも小さいのが好ましい。 (2)有価物が比較的小さい場合 有価物の平均的な大きさが、第一膜分離装置の透過性膜
の膜孔径より小さく、且つ第二膜分離装置の透過性膜の
膜孔径より大きくなるように透過性膜の選択を行い、第
一膜分離装置の透過液中に極力有価物を回収する。非透
過液は必要に応じて所定の処理が施された後外部に排出
されるのであるが、排液の減容化を図るために、第一膜
分離装置で透過処理を繰り返して行い、非透過液を極力
濃縮するのが好ましい。そして、有価物を多く含む透過
液を第二膜分離装置において透過処理をして、さらに、
非透過液と透過液に分離する。この第二膜分離装置の透
過処理の目的は、非透過液を極力濃縮して有価物を最大
限回収し、透過液中への有価物の混入を防ぐとともに透
過液の水質を向上することにある。この場合も、第一膜
分離装置と第二膜分離装置の透過処理の目的は異なり、
しかも、第二膜分離装置における透過処理によって非透
過液中に有価物を回収するためには、第一膜分離装置の
透過性膜を有価物が透過し、第二膜分離装置の透過性膜
を有価物が透過しないように、それぞれの透過性膜の膜
孔径を選択する必要がある。 (3)有価物が2種類である場合 被処理液中に含まれている有価物が、平均的な大きさが
比較的大きい有価物1と平均的な大きさが比較的小さい
有価物2の2種類からなる場合、これら有価物1と2の
回収率を高めるためには、第一膜分離装置の透過性膜の
膜孔径が有価物1の平均的な大きさより小さくて有価物
2の平均的な大きさより大きく、第二膜分離装置の透過
性膜の膜孔径が有価物2の平均的な大きさより小さいこ
とが好ましい。
[0010] Further, when the liquid to be treated containing valuables (industrial valuable substances) is subjected to membrane separation, the purpose of the permeation treatment differs as follows depending on the size and type of the valuables. (1) When the valuables are relatively large The pore size of the permeable membrane of the first membrane separation device is made smaller than the average size of the valuables, impurities are removed, and the valuables are recovered as much as possible in the non-permeate. I do. Then, the permeated liquid is subjected to a permeation treatment in the second membrane separation device, and further separated into a non-permeated liquid and a permeated liquid. The purpose of the permeation treatment of this second membrane separation device is
The liquid (non-permeate) discharged to the outside after being subjected to a predetermined treatment as required is concentrated as much as possible to reduce the amount of discharge, and to improve the water quality of the permeate (permeate). is there.
As described above, since the purpose of the permeation treatment is different between the first membrane separation device and the second membrane separation device, it is preferable that the membrane pore sizes of the respective permeable membranes are different. That is, it is preferable to use a permeable membrane having a smaller pore diameter for the permeable membrane of the second membrane separator than for the first membrane separator. Furthermore, in order to collect impurities in the permeate of the first membrane separation device and concentrate them in the non-permeate of the second membrane separation device, the membrane pore size of the permeable membrane of the first membrane separation device is larger than that of the impurities. It is preferable that the pore size of the permeable membrane of the second membrane separation device is larger than that of the impurities. (2) When the valuable material is relatively small The average size of the valuable material is smaller than the membrane pore size of the permeable membrane of the first membrane separation device and larger than the membrane pore size of the permeable membrane of the second membrane separation device. The permeable membrane is selected so as to obtain valuable resources as much as possible in the permeate of the first membrane separation device. The non-permeated liquid is discharged to the outside after being subjected to a predetermined treatment as needed.In order to reduce the volume of the discharged liquid, the permeation treatment is repeatedly performed in the first membrane separation device, It is preferable to concentrate the permeate as much as possible. Then, the permeate containing a large amount of valuables is permeated in the second membrane separation device, and further,
Separate into non-permeate and permeate. The purpose of the permeation treatment of the second membrane separation device is to concentrate the non-permeated liquid as much as possible to recover valuable resources as much as possible, to prevent the entry of valuable substances into the permeated liquid, and to improve the water quality of the permeated liquid. is there. Also in this case, the purpose of the permeation treatment of the first membrane separation device and the second membrane separation device is different,
Moreover, in order to recover valuable materials in the non-permeated liquid by the permeation treatment in the second membrane separation device, the valuable materials permeate through the permeable membrane of the first membrane separation device and pass through the permeable membrane of the second membrane separation device. It is necessary to select the membrane pore size of each permeable membrane so that valuable materials do not pass through. (3) When there are two types of valuable resources The valuable resources contained in the liquid to be treated are valuable resources 1 having a relatively large average size and valuable resources 2 having a relatively small average size. In the case of two types, in order to increase the recovery rate of these valuables 1 and 2, the membrane pore size of the permeable membrane of the first membrane separator is smaller than the average size of the valuables 1 and the average of the valuables 2 It is preferable that the pore size of the permeable membrane of the second membrane separation device is smaller than the average size of the valuable material 2.

【0011】被処理液に含まれている有価物が3種類以
上である場合、第一膜分離装置を、複数段の膜モジュー
ルを直列に接続した構成とし、前段供給タンクを複数と
し、各膜モジュールに被処理液の供給タンクを備えるよ
うにし、第一膜分離装置の各膜モジュールの透過性膜の
膜孔径および第二膜分離装置の膜モジュールの透過性膜
の膜孔径を互いに異ならせることにより、各有価物の大
きさに応じた適正径の透過性膜を有する膜モジュールの
透過液中に、あるいは、非透過液中に有価物を回収する
ことができる。
In the case where the liquid to be treated contains three or more valuable resources, the first membrane separation device has a configuration in which a plurality of membrane modules are connected in series, and a plurality of pre-stage supply tanks are used. The module is provided with a supply tank for the liquid to be treated, and the membrane pore size of the permeable membrane of each membrane module of the first membrane separation device and the membrane pore size of the permeable membrane of the membrane module of the second membrane separation device are different from each other. Thereby, valuable resources can be collected in a permeated liquid or a non-permeated liquid of a membrane module having a permeable membrane having an appropriate diameter according to the size of each valuable substance.

【0012】ダイアフィルトレーション方法は、被処理
液に洗浄液(例えば、水)を添加しながら、透過処理を
行うことを特徴としており、例えば、金属イオン含有溶
液またはポリマー溶液等のスラリー中の粒子に付着して
いるイオンや超微粒子などを洗浄液により洗浄して透過
液とともに排出することにより、被処理液を洗浄するこ
とができる。洗浄液として、第二の膜分離装置の透過性
膜を透過した透過液を使用すれば、洗浄のためのランニ
ングコストを低減しうるので好ましい。
The diafiltration method is characterized by performing a permeation treatment while adding a cleaning liquid (for example, water) to a liquid to be treated. For example, particles in a slurry such as a metal ion-containing solution or a polymer solution are used. The liquid to be treated can be washed by washing the ions and ultrafine particles adhering to the surface with a washing liquid and discharging it together with the permeated liquid. It is preferable to use a permeate that has passed through the permeable membrane of the second membrane separation device as the cleaning solution because running costs for cleaning can be reduced.

【0013】洗浄液の温度を被処理液の温度と同じにな
るように加熱しあるいは冷却し、また、被処理液の供給
タンクを公知の保温手段を用いて被処理液を一定温度に
保持すれば、透過流束を一定に保持することが可能にな
る。洗浄液は連続的または間欠的に添加することができ
るが、連続的に添加する場合は、透過性膜を透過する透
過液の流量を測定して、その透過液の流量と同一になる
ように洗浄液の流量を調節すれば、洗浄液の使用量を比
較的少なくすることができる。洗浄液を間欠的に添加す
る方式は、一定量の透過液が透過性膜を透過したときに
その透過液と同量の洗浄液を添加する方法であり、洗浄
液の流量を常に調節する連続添加方式に比べて制御が容
易になる。
If the temperature of the cleaning liquid is heated or cooled so as to be the same as the temperature of the liquid to be treated, and the supply tank for the liquid to be treated is kept at a constant temperature by using a known heat retaining means. , The permeation flux can be kept constant. The washing liquid can be added continuously or intermittently.If added continuously, measure the flow rate of the permeate passing through the permeable membrane and adjust the flow rate of the wash liquid to be the same as the flow rate of the permeate. By adjusting the flow rate, the amount of the cleaning liquid used can be relatively reduced. The method of intermittently adding a washing solution is a method in which when a certain amount of a permeating solution permeates a permeable membrane, the same amount of the washing solution as the permeating solution is added. Control becomes easier.

【0014】また、前段および後段供給タンク内の被処
理液を攪拌すれば、洗浄液と被処理液を均一に混合し、
濃度および温度の均一化を図ることができるので好まし
い。
Further, by stirring the liquid to be treated in the first and second supply tanks, the cleaning liquid and the liquid to be treated are uniformly mixed,
This is preferable because the concentration and temperature can be made uniform.

【0015】ファウリングの原因となる被処理液中の粒
子の凝集を防ぐためには、被処理液中に界面活性剤など
の分散剤を添加することができる。特に、有価物が比較
的大きい場合、前段供給タンクに分散剤を添加すれば、
ファウリングを効果的に防止しうるので好ましい。
In order to prevent aggregation of particles in the liquid to be treated, which causes fouling, a dispersant such as a surfactant can be added to the liquid to be treated. In particular, if the valuables are relatively large, adding a dispersant to the upstream supply tank
It is preferable because fouling can be effectively prevented.

【0016】透過性膜を振動させるときの振幅および振
動周波数の条件としては、透過性膜を、水平面内の円周
方向に振幅0.5cm以上で、振動周波数40〜60Hz
の往復運動をさせるのが好ましい。
The conditions for the amplitude and the vibration frequency when the permeable membrane is vibrated are as follows: the permeable membrane is made to have an amplitude of 0.5 cm or more in the circumferential direction in the horizontal plane and a vibration frequency of 40 to 60 Hz.
Is preferable.

【0017】供給タンクに蓋を設け、被処理液中の水の
蒸発を防ぐのが好ましい。これにより、被処理液の濃度
変化を抑制し、透過流束の変化を最小に抑えることがで
きる。
It is preferable to provide a lid on the supply tank to prevent evaporation of water in the liquid to be treated. As a result, a change in the concentration of the liquid to be treated can be suppressed, and a change in the permeation flux can be suppressed to a minimum.

【0018】[0018]

【実施例】以下に、本発明の実施例を図面を参照しなが
ら説明する。図1は、本発明のダイアフィルトレーショ
ン方法を適用するに好適な振動型膜分離装置(第一また
は第二膜分離装置)の概略構成を示す図である。図1を
説明すると、1は被処理液の供給タンク、2は被処理液
を圧送するポンプ、3は多数の平膜型の透過性膜を積層
した膜モジュール、4はこの膜モジュール3内の透過性
膜に、水平面内の円周方向に振幅0.5〜2.54cmで
振動周波数40〜60Hzの微小振幅の往復運動を伝え
るトーションバー、5は透過液の貯槽である。6は膜モ
ジュール3から管路7を経て排出される非透過液の排出
量を調節する流量調節バルブである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a vibration type membrane separation device (first or second membrane separation device) suitable for applying the diafiltration method of the present invention. Referring to FIG. 1, 1 is a supply tank of a liquid to be treated, 2 is a pump for pumping the liquid to be treated, 3 is a membrane module in which many flat membrane type permeable membranes are laminated, and 4 is a membrane module in the membrane module 3. A torsion bar 5 for transmitting a reciprocating motion of a small amplitude having an amplitude of 0.5 to 2.54 cm and a vibration frequency of 40 to 60 Hz in the circumferential direction in the horizontal plane to the permeable membrane, and 5 is a permeated liquid storage tank. Reference numeral 6 denotes a flow control valve for controlling the discharge amount of the non-permeated liquid discharged from the membrane module 3 via the pipe 7.

【0019】膜モジュール3の内部には、図2に示すよ
うに、上下の透過性膜8、8´の間に2〜15枚の不織
布のドレインクロス9、9´を介して金属板10が積層
されたものが水平方向に配置され、かつ鉛直方向に所定
間隔を隔てて多段に設置されている。図中、上位の透過
性膜8の上側が一方側(供給側)であり、ドレインクロ
ス9側が他方側(透過側)である。この供給側に被処理
液を供給すると、供給側の内圧は透過側より高圧(約
0.20〜3.92MPa)に設定されているため、被
処理液中の透過成分、すなわち、図3に示すように、透
過性膜8の微小孔よりも小さな粒子(透過成分)11お
よび溶媒(水)が膜孔を通過し、他方側へ達する。透過
成分が透過した後の非透過液は、下位の透過性膜8´と
次の段の透過性膜8の供給側に供給され、透過成分が透
過性膜の膜孔を通過する。
As shown in FIG. 2, a metal plate 10 is provided inside the membrane module 3 between two upper and lower permeable membranes 8 and 8 'via 2 to 15 nonwoven fabric drain cloths 9 and 9'. The stacked ones are arranged in a horizontal direction and are installed in multiple stages at predetermined intervals in a vertical direction. In the figure, the upper side of the upper permeable film 8 is one side (supply side), and the drain cross 9 side is the other side (transmission side). When the liquid to be treated is supplied to this supply side, the internal pressure on the supply side is set to a higher pressure (about 0.20 to 3.92 MPa) than that on the permeation side. As shown, the particles (permeation component) 11 and the solvent (water) smaller than the micropores of the permeable membrane 8 pass through the membrane pores and reach the other side. The non-permeate liquid after the permeation component has passed is supplied to the supply side of the lower permeable membrane 8 'and the next stage of the permeable membrane 8, and the permeable component passes through the pores of the permeable membrane.

【0020】この透過処理の間、図1に示す膜モジュー
ル3内の透過性膜はトーションバー4の作用により、水
平面内の円周方向に微小振幅の往復運動を続けるため、
透過性膜と被処理液との界面にはせん断力が作用し、有
価物の粒子に付着しているイオンや超微粒子等の不純物
が有価物粒子から容易に剥がされるので効率よく洗浄が
行われる(洗浄液の量および洗浄時間が低減される)と
ともに膜孔がファウリングを起こすことなく、また、ポ
ンプ2により適正な圧力を被処理液に加えることによ
り、高い透過流束を得ることができる。
During the permeation process, the permeable membrane in the membrane module 3 shown in FIG. 1 continues to reciprocate with a small amplitude in the circumferential direction in the horizontal plane due to the action of the torsion bar 4.
Shear force acts on the interface between the permeable membrane and the liquid to be treated, and impurities such as ions and ultrafine particles attached to the valuable particles are easily peeled off from the valuable particles, so that the cleaning is performed efficiently. A high permeate flux can be obtained by applying an appropriate pressure to the liquid to be treated by the pump 2 without causing fouling of the membrane pores and reducing the amount of the cleaning liquid and the cleaning time.

【0021】このようにして順次透過処理が行われ、得
られた透過液は、管路12を経て貯槽5に集められ、管
路7内にある非透過液は供給タンク1に戻され、供給タ
ンク1には管路13より必要に応じて洗浄液が補給され
る。かくして、供給タンク1内の被処理液は、振動型膜
分離装置により効率的に透過液と非透過液に分離され、
被処理液の種類および性状によっては、透過液の取出量
に見合うだけの洗浄液を管路13より供給タンク1に補
給し、供給タンク1内の被処理液を管路14を経て膜モ
ジュール3に供給して透過処理を繰り返すことにより、
被処理液を透過液と非透過液に分離することができる。
また、被処理液の性状によっては、粒子の凝集を避ける
ために、界面活性剤等の分散剤を必要に応じて添加する
ことができる。
The permeation process is sequentially performed in this manner, and the obtained permeate is collected in the storage tank 5 through the pipe 12, and the non-permeate in the pipe 7 is returned to the supply tank 1 and supplied. The tank 1 is replenished with a washing liquid through a pipe 13 as needed. Thus, the liquid to be treated in the supply tank 1 is efficiently separated into a permeate and a non-permeate by the vibrating membrane separator,
Depending on the type and properties of the liquid to be processed, the cleaning liquid is supplied to the supply tank 1 from the pipe 13 in an amount corresponding to the amount of the permeated liquid to be taken out, and the liquid to be processed in the supply tank 1 is supplied to the membrane module 3 via the pipe 14. By supplying and repeating the permeation process,
The liquid to be treated can be separated into a permeate and a non-permeate.
In addition, depending on the properties of the liquid to be treated, a dispersant such as a surfactant can be added as needed to avoid aggregation of particles.

【0022】振動型膜分離装置の透過性膜としては、逆
浸透膜、ナノフィルター、限定濾過膜、精密濾過膜等を
好適に用いることができる。
As the permeable membrane of the vibration type membrane separation device, a reverse osmosis membrane, a nanofilter, a limited filtration membrane, a microfiltration membrane or the like can be suitably used.

【0023】図4(a)は膜モジュール内の被処理液の
流れを示す図であり、被処理液は経路15から膜モジュ
ール内に流入し、透過性膜を透過した透過液は経路16
から排出され、非透過液は経路17から排出される。1
8は非透過液の流路である(直上の透過性膜8´と直下
の透過性膜8との間隙が非透過液の流路である。図2の
拡大図参照)。図4(b)は透過性膜の拡大平面図で、
19は透過液の流路、20は被処理液の流路である。
FIG. 4A is a view showing the flow of the liquid to be treated in the membrane module. The liquid to be treated flows into the membrane module from the path 15, and the permeated liquid that has passed through the permeable membrane passes through the path 16.
And the non-permeated liquid is discharged from the passage 17. 1
Reference numeral 8 denotes a non-permeate liquid flow path (the gap between the permeable film 8 'immediately above and the permeable film 8 immediately below is a non-permeate liquid flow path; see an enlarged view of FIG. 2). FIG. 4B is an enlarged plan view of the permeable membrane.
Reference numeral 19 denotes a flow path for the permeated liquid, and reference numeral 20 denotes a flow path for the liquid to be treated.

【0024】以上のように構成される第一膜分離装置に
おいて透過処理が行われた後、引き続いて、同様の構成
の第二膜分離装置において透過処理が行われる。例え
ば、図5に示すように、第一膜分離装置21に後続して
第二膜分離装置22が配置され、各膜分離装置において
上記したような透過処理が行われる。第一膜分離装置2
1において、1a、2a、3aは、それぞれ、供給タン
ク、ポンプ、膜モジュールを示し、第二膜分離装置22
において、1b、2b、3bは、それぞれ、供給タン
ク、ポンプ、膜モジュールを示す。膜モジュール3aと
3bは、図1に示す膜モジュール3と実質的に同一の構
成のものである。供給タンク1aには、管路13より必
要に応じて洗浄液が供給される。23、24は、図示し
ないモータにより回転する、液を攪拌するためのインペ
ラである。また、供給タンク1a、1b内の被処理液を
一定温度に保持するために、例えば、加熱する場合に
は、電気ヒータを被処理液中に浸漬するか、またはタン
ク外壁を液体の流通が可能な間隙を有する二重壁にし
て、高温の液体をその間隙に流通させる方式を採用する
ことができ、冷却する場合には、低温の液体をその間隙
に流通させる方式を採用することができる。
After the permeation process is performed in the first membrane separation device configured as described above, subsequently, the permeation process is performed in the second membrane separation device having the same configuration. For example, as shown in FIG. 5, a second membrane separation device 22 is arranged following the first membrane separation device 21, and the above-described permeation processing is performed in each membrane separation device. First membrane separation device 2
In FIG. 1, 1a, 2a, and 3a denote a supply tank, a pump, and a membrane module, respectively.
, 1b, 2b, and 3b indicate a supply tank, a pump, and a membrane module, respectively. The membrane modules 3a and 3b have substantially the same configuration as the membrane module 3 shown in FIG. The cleaning liquid is supplied to the supply tank 1a from the pipe 13 as needed. Reference numerals 23 and 24 denote impellers rotated by a motor (not shown) for stirring the liquid. In order to maintain the liquid to be treated in the supply tanks 1a and 1b at a constant temperature, for example, when heating, the electric heater can be immersed in the liquid to be treated or the liquid can flow through the tank outer wall. It is possible to adopt a method in which a high-temperature liquid flows through the gap by using a double wall having a narrow gap, and a method in which a low-temperature liquid flows through the gap when cooling.

【0025】上記したように、被処理液に含まれる有価
物の大きさによって透過処理の目的が異なり、有価物が
比較的大きい場合、第一膜分離装置21における透過処
理によって非透過液中に有価物を回収し、透過液を第二
膜分離装置22において透過処理をして、さらに、非透
過液と透過液に分離する。この場合の第一膜分離装置2
1の透過処理の目的は、不純物を除去することにあり、
第二膜分離装置22の透過処理の目的は、非透過液を極
力濃縮して外部に排出される液の量を減少し、しかも、
透過液(透過水)の水質を向上して透過水を回収するこ
とにある。そこで、これらの目的に合致するような膜孔
径の透過性膜が選択される。
As described above, the purpose of the permeation treatment differs depending on the size of the valuables contained in the liquid to be treated. When the valuables are relatively large, the permeation treatment in the first membrane separation device 21 causes the permeation in the non-permeate. The valuable resources are collected, the permeated liquid is subjected to a permeation treatment in the second membrane separation device 22, and further separated into a non-permeated liquid and a permeated liquid. First membrane separation device 2 in this case
The purpose of the transmission process 1 is to remove impurities,
The purpose of the permeation treatment of the second membrane separation device 22 is to concentrate the non-permeated liquid as much as possible to reduce the amount of liquid discharged to the outside,
An object of the present invention is to improve the water quality of a permeated liquid (permeated water) and collect the permeated water. Therefore, a permeable membrane having a membrane pore size that meets these purposes is selected.

【0026】有価物が比較的小さい場合、第一膜分離装
置21における透過処理によって透過液中に有価物を回
収し、その有価物を含む透過液を第二膜分離装置22に
おいて透過処理をして、さらに、非透過液と透過液に分
離する。この場合の第一膜分離装置21の透過処理の目
的は、透過液中に有価物を最大限回収することにあり、
第二膜分離装置22の透過処理の目的は、非透過液を極
力濃縮して有価物を最大限回収し、透過液中への有価物
の混入を防いで透過水を回収することにあるので、これ
らの目的に合致するような膜孔径の透過性膜が選択され
る。
When the valuables are relatively small, the valuables are recovered in the permeate by the permeation treatment in the first membrane separation device 21, and the permeate containing the valuables is subjected to the permeation treatment in the second membrane separation device 22. Then, it is further separated into a non-permeate liquid and a permeate liquid. The purpose of the permeation treatment of the first membrane separation device 21 in this case is to recover valuable resources in the permeate to the maximum.
The purpose of the permeation treatment of the second membrane separation device 22 is to concentrate the non-permeated liquid as much as possible to recover valuable resources as much as possible, and to prevent permeated liquid from being mixed into the permeated liquid to recover permeated water. A permeable membrane having a membrane pore size that meets these purposes is selected.

【0027】図6は、第一膜分離装置が21aと21b
の2段からなる場合を示し、被処理液に含まれる有価物
が3種類である場合は、図6に示すような膜分離装置の
配置とするのが好ましい。すなわち、第一膜分離装置を
21a、21bの2段とし、第一膜分離装置21bに後
続して第二膜分離装置22を配置し、各膜分離装置にお
いて上記したような透過処理を行う。第一膜分離装置2
1aにおいて、1c、2c、3cは、それぞれ、供給タ
ンク、ポンプ、膜モジュールを示し、第一膜分離装置2
1bにおいて、1d、2d、3dは、それぞれ、供給タ
ンク、ポンプ、膜モジュールを示す。膜モジュール3c
と3dは、図1に示す膜モジュール3と実質的に同一の
構成のものである。供給タンク1c、1dにはそれぞ
れ、管路25、26より必要に応じて洗浄液が供給され
る。
FIG. 6 shows that the first membrane separation devices 21a and 21b
In the case where there are three types of valuables contained in the liquid to be treated, it is preferable to arrange a membrane separation device as shown in FIG. That is, the first membrane separation device has two stages of 21a and 21b, the second membrane separation device 22 is arranged following the first membrane separation device 21b, and the above-described permeation processing is performed in each membrane separation device. First membrane separation device 2
In 1a, 1c, 2c, and 3c denote a supply tank, a pump, and a membrane module, respectively.
In 1b, 1d, 2d, and 3d indicate a supply tank, a pump, and a membrane module, respectively. Membrane module 3c
And 3d have substantially the same configuration as the membrane module 3 shown in FIG. The cleaning liquid is supplied to the supply tanks 1c and 1d from the pipes 25 and 26 as needed.

【0028】なお、被処理液の種類や性状に応じて、あ
るいは要求される有価物の回収歩留まりや排出される液
の水質レベルに応じて、第二膜分離装置に後続して、さ
らに振動型膜分離装置を設けることもできる。
Following the second membrane separation device, the vibration type is further added in accordance with the type and properties of the liquid to be treated, or in accordance with the required recovery yield of valuable resources and the water quality level of the discharged liquid. A membrane separation device can also be provided.

【0029】[0029]

【発明の効果】本発明は上記のとおり構成されているの
で、次の効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0030】請求項1記載の発明によれば、透過性膜の
振動に伴って生成するせん断力により、有価物の粒子に
付着しているイオンや超微粒子等の不純物が有価物粒子
から容易に剥がされるので効率よく洗浄が行われる(洗
浄液の量および洗浄時間が低減される)とともに透過流
束が高く、膜表面へのファウリングを防止し、有価物を
含む被処理液から有価物を効率的に回収したり、あるい
は被処理液を効率的に洗浄しうるダイアフィルトレーシ
ョン方法を提供することができる。
According to the first aspect of the present invention, impurities such as ions and ultrafine particles adhered to the valuable material particles are easily removed from the valuable material particles by the shear force generated by the vibration of the permeable membrane. Peeling enables efficient cleaning (reducing the amount of cleaning liquid and cleaning time), high permeation flux, preventing fouling on the membrane surface, and efficient conversion of valuables from the liquid to be treated containing valuables. It is possible to provide a diafiltration method capable of recovering the target liquid or washing the liquid to be treated efficiently.

【0031】請求項2記載の発明によれば、各膜分離装
置の機能を分離することにより、より効率的に膜分離を
行うことができる。
According to the second aspect of the present invention, it is possible to more efficiently perform the membrane separation by separating the functions of the respective membrane separation devices.

【0032】請求項3記載の発明によれば、第一膜分離
装置における非透過液中に有価物を最大限濃縮し、しか
も、第二膜分離装置から外部に排出される液の量を減少
するとともに透過水を回収することができる。
According to the third aspect of the invention, the valuable substance is concentrated to the maximum in the non-permeate in the first membrane separation device, and the amount of the liquid discharged from the second membrane separation device to the outside is reduced. And permeated water can be recovered.

【0033】請求項4記載の発明によれば、第二膜分離
装置における非透過液中に有価物を最大限濃縮するとと
もに透過水を回収することができる。
According to the fourth aspect of the present invention, it is possible to concentrate the valuable resources in the non-permeated liquid in the second membrane separation device to the maximum and to collect the permeated water.

【0034】請求項5記載の発明によれば、2種類の有
価物を含む被処理液から、その有価物を効率的に回収す
ることができる。
According to the fifth aspect of the present invention, valuable resources can be efficiently recovered from the liquid to be treated containing two types of valuable resources.

【0035】請求項6記載の発明によれば、3種類以上
の有価物を含む被処理液から、その各有価物を効率的に
回収することができる。
According to the sixth aspect of the present invention, each valuable material can be efficiently recovered from the liquid to be treated containing three or more valuable materials.

【0036】請求項7記載の発明によれば、洗浄液とし
て特別のものが不要であり、洗浄のためのランニングコ
ストを低減することができる。
According to the seventh aspect of the present invention, no special cleaning liquid is required, and the running cost for cleaning can be reduced.

【0037】請求項8記載の発明によれば、被処理液中
の粒子の凝集を抑制することができる。
According to the eighth aspect of the present invention, aggregation of particles in the liquid to be treated can be suppressed.

【0038】請求項9記載の発明によれば、透過性膜を
振動させるときの好適な振幅および周波数の条件を提供
することができる。
According to the ninth aspect of the present invention, it is possible to provide suitable amplitude and frequency conditions for vibrating the permeable membrane.

【0039】請求項10記載の発明によれば、透過流束
を一定に保持することが可能になる。
According to the tenth aspect, it is possible to keep the permeation flux constant.

【0040】請求項11記載の発明によれば、洗浄液と
被処理液を均一に混合し、濃度および温度の均一化を図
ることができる。
According to the eleventh aspect of the present invention, the cleaning liquid and the liquid to be treated can be uniformly mixed, and the concentration and the temperature can be made uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のダイアフィルトレーション方法を実施
するに好適である振動型膜分離装置の概略構成を示す図
である。
FIG. 1 is a diagram showing a schematic configuration of a vibration type membrane separation apparatus suitable for carrying out a diafiltration method of the present invention.

【図2】図1の振動型膜分離装置の一部を示す断面図で
ある。
FIG. 2 is a sectional view showing a part of the vibration type membrane separation device of FIG.

【図3】振動型膜分離装置による透過処理の概念を説明
する図である。
FIG. 3 is a view for explaining the concept of a permeation process by a vibrating membrane separation device.

【図4】図4(a)は振動型膜分離装置の膜モジュール
内の被処理液の流れを示す図であり、図4(b)は透過
性膜の拡大平面図である。
FIG. 4 (a) is a diagram showing a flow of a liquid to be treated in a membrane module of a vibration type membrane separation device, and FIG. 4 (b) is an enlarged plan view of a permeable membrane.

【図5】本発明のダイアフィルトレーション方法を実施
するための膜分離装置の配置の一例を示す図である。
FIG. 5 is a diagram showing an example of an arrangement of a membrane separation device for performing the diafiltration method of the present invention.

【図6】本発明のダイアフィルトレーション方法を実施
するための膜分離装置の配置の別の例を示す図である。
FIG. 6 is a diagram showing another example of an arrangement of a membrane separation device for performing the diafiltration method of the present invention.

【図7】従来のダイアフィルトレーション法を説明する
図である。
FIG. 7 is a diagram illustrating a conventional diafiltration method.

【図8】従来のクロスフロー型膜分離装置におけるファ
ウリングを説明する図である。
FIG. 8 is a diagram illustrating fouling in a conventional cross-flow type membrane separation apparatus.

【符号の説明】[Explanation of symbols]

1、1a、1b…供給タンク 2、2a、2b…ポンプ 3、3a、3b…膜モジュール 8、8´…透過性膜 21、21a、21b…第一膜分離装置 22…第二膜分離装置 1, 1a, 1b ... supply tank 2, 2a, 2b ... pump 3, 3a, 3b ... membrane module 8, 8 '... permeable membrane 21, 21a, 21b ... first membrane separation device 22 ... second membrane separation device

フロントページの続き Fターム(参考) 4D006 GA03 GA05 GA06 GA07 HA42 HA86 JA51A KA03 KA52 KA53 KA55 KA57 KA62 KA63 KC02 KC13 KD04 KE16Q KE30R MA03 MA06 MA22 MA40 PA04 PB08 PB12 PB15 PB20 PC11 PC25 PC41 Continued on the front page F term (reference) 4D006 GA03 GA05 GA06 GA07 HA42 HA86 JA51A KA03 KA52 KA53 KA55 KA57 KA62 KA63 KC02 KC13 KD04 KE16Q KE30R MA03 MA06 MA22 MA40 PA04 PB08 PB12 PB15 PB20 PC11 PC25 PC41

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 第一膜分離装置の透過性膜を配置した膜
モジュールの一方側に被処理液を供給し、その透過性膜
を振動させつつ透過成分を他方側に透過させて透過液を
取り出し、一方側からは透過性膜を透過しない非透過液
を取り出し、一方側から取り出した非透過液の一部また
は全部を前段供給タンクに戻し、前段供給タンクに洗浄
液を添加しつつ前段供給タンク内の液を第一膜分離装置
の膜モジュールに圧送して上記透過処理を行い、他方側
から取り出した透過液を、第二膜分離装置の透過性膜を
配置した膜モジュールの一方側に圧送し、その透過性膜
を振動させつつ透過成分を他方側に透過させて透過液を
取り出し、一方側からは透過性膜を透過しない非透過液
を取り出し、一方側から取り出した非透過液の一部また
は全部を後段供給タンクに戻し、後段供給タンク内の液
を第二膜分離装置の膜モジュールに圧送して上記透過処
理を行うことを特徴とするダイアフィルトレーション方
法。
1. A liquid to be treated is supplied to one side of a membrane module in which a permeable membrane of a first membrane separation device is disposed, and a permeated component is transmitted to the other side while vibrating the permeable membrane to remove the permeated liquid. Take out the non-permeate liquid that does not permeate the permeable membrane from one side, return part or all of the non-permeate liquid taken out from one side to the pre-stage supply tank, and add the cleaning liquid to the pre-stage supply tank while adding the cleaning liquid to the pre-stage supply tank. The permeated liquid taken out from the other side is pumped to one side of the membrane module in which the permeable membrane of the second membrane separation device is arranged, by pumping the liquid inside the membrane module of the first membrane separation device to perform the permeation process. Then, the permeated component is transmitted to the other side while the permeable membrane is vibrated, and the permeated liquid is taken out, the non-permeated liquid that does not pass through the permeable membrane is taken out from one side, and one of the non-permeated liquid taken out from one side is taken out. Part or all of the A diafiltration method, wherein the permeation treatment is performed by returning the liquid in the second supply tank to the membrane module of the second membrane separation device under pressure.
【請求項2】 第二膜分離装置の透過性膜の膜孔径が第
一膜分離装置の透過性膜の膜孔径より小さいことを特徴
とする請求項1記載のダイアフィルトレーション方法。
2. The diafiltration method according to claim 1, wherein the membrane pore size of the permeable membrane of the second membrane separation device is smaller than the membrane pore size of the permeable membrane of the first membrane separation device.
【請求項3】 第一膜分離装置の透過性膜の膜孔径は被
処理液中に含まれる有価物の平均的な大きさより小さい
ことを特徴とする請求項2記載のダイアフィルトレーシ
ョン方法。
3. The diafiltration method according to claim 2, wherein the membrane pore size of the permeable membrane of the first membrane separation device is smaller than the average size of the valuables contained in the liquid to be treated.
【請求項4】 被処理液中に含まれる有価物の平均的な
大きさが、第一膜分離装置の透過性膜の膜孔径より小さ
く、第二膜分離装置の透過性膜の膜孔径より大きいこと
を特徴とする請求項2記載のダイアフィルトレーション
方法。
4. An average size of valuables contained in the liquid to be treated is smaller than a pore size of a permeable membrane of the first membrane separation device, and smaller than a pore size of a permeable membrane of the second membrane separation device. 3. The diafiltration method according to claim 2, wherein the diameter is large.
【請求項5】 被処理液中に含まれる有価物が、平均的
な大きさが比較的大きい有価物1と平均的な大きさが比
較的小さい有価物2の2種類からなり、第一膜分離装置
の透過性膜の膜孔径が有価物1の平均的な大きさより小
さくて有価物2の平均的な大きさより大きく、第二膜分
離装置の透過性膜の膜孔径が有価物2の平均的な大きさ
より小さいことを特徴とする請求項1記載のダイアフィ
ルトレーション方法。
5. The valuable material contained in the liquid to be treated is a valuable material 1 having a relatively large average size and a valuable material 2 having a relatively small average size. The membrane pore size of the permeable membrane of the separation device is smaller than the average size of the valuable material 1 and larger than the average size of the valuable material 2, and the membrane pore size of the permeable membrane of the second membrane separation device is the average of the valuable material 2. The diafiltration method according to claim 1, wherein the diafiltration method is smaller than the target size.
【請求項6】 第一膜分離装置が、複数段の膜モジュー
ルを直列に接続したものであって、前段供給タンクが複
数からなり、各膜モジュールが被処理液の供給タンクを
備えていることを特徴とする請求項1、2、3、4また
は5記載のダイアフィルトレーション方法。
6. A first membrane separation device comprising a plurality of membrane modules connected in series, wherein a plurality of pre-stage supply tanks are provided, and each membrane module has a supply tank for a liquid to be treated. The diafiltration method according to claim 1, 2, 3, 4, or 5, wherein
【請求項7】 洗浄液として、第二膜分離装置の透過性
膜を透過した透過液を使用することを特徴とする請求項
1、2、3、4、5または6記載のダイアフィルトレー
ション方法。
7. The diafiltration method according to claim 1, wherein a permeate which has passed through a permeable membrane of the second membrane separation device is used as the washing liquid. .
【請求項8】 前段供給タンクに分散剤を添加すること
を特徴とする請求項1、2、3、4、5、6または7記
載のダイアフィルトレーション方法。
8. The diafiltration method according to claim 1, wherein a dispersant is added to the first-stage supply tank.
【請求項9】 透過性膜を、水平面内の円周方向に振幅
0.5cm以上で、振動周波数40〜60Hzの条件で振
動させることを特徴とする請求項1、2、3、4、5、
6、7または8記載のダイアフィルトレーション方法。
9. The method according to claim 1, wherein the permeable membrane is vibrated in a circumferential direction in a horizontal plane with an amplitude of 0.5 cm or more and a vibration frequency of 40 to 60 Hz. ,
The diafiltration method according to 6, 7, or 8.
【請求項10】 前段供給タンク内の洗浄液を被処理液
と同じ温度に保つことを特徴とする請求項1、2、3、
4、5、6、7、8または9記載のダイアフィルトレー
ション方法。
10. The cleaning liquid in the preceding supply tank is maintained at the same temperature as the liquid to be treated.
The diafiltration method according to 4, 5, 6, 7, 8 or 9.
【請求項11】 前段および後段供給タンク内の被処理
液を攪拌することを特徴とする請求項1、2、3、4、
5、6、7、8、9または10記載のダイアフィルトレ
ーション方法。
11. The method according to claim 1, wherein the liquid to be treated in the first and second supply tanks is agitated.
The diafiltration method according to 5, 6, 7, 8, 9 or 10.
JP2000047465A 2000-02-24 2000-02-24 Diafiltration method Pending JP2001232158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047465A JP2001232158A (en) 2000-02-24 2000-02-24 Diafiltration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047465A JP2001232158A (en) 2000-02-24 2000-02-24 Diafiltration method

Publications (1)

Publication Number Publication Date
JP2001232158A true JP2001232158A (en) 2001-08-28

Family

ID=18569713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047465A Pending JP2001232158A (en) 2000-02-24 2000-02-24 Diafiltration method

Country Status (1)

Country Link
JP (1) JP2001232158A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229559A (en) * 2007-03-22 2008-10-02 Tsukishima Kankyo Engineering Ltd Process and apparatus for separation of target substance using membrane separation
JP2009119461A (en) * 2007-11-15 2009-06-04 Evonik Degussa Gmbh Method for classifying oxide nanoparticle by cross-flow membrane filtration
JP2010115719A (en) * 2008-11-11 2010-05-27 Ihi Compressor & Machinery Co Ltd Method and device for oscillating filtration
JP2013516313A (en) * 2010-01-08 2013-05-13 ビッグ・ダッチマン・インターナショナル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Drive unit for membrane filtration device
JP2013536077A (en) * 2010-08-25 2013-09-19 ロッキード・マーチン・コーポレーション Deionization or desalination with perforated graphene
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9844757B2 (en) 2014-03-12 2017-12-19 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US9870895B2 (en) 2014-01-31 2018-01-16 Lockheed Martin Corporation Methods for perforating two-dimensional materials using a broad ion field
US10005038B2 (en) 2014-09-02 2018-06-26 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
US10017852B2 (en) 2016-04-14 2018-07-10 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
US10118130B2 (en) 2016-04-14 2018-11-06 Lockheed Martin Corporation Two-dimensional membrane structures having flow passages
US10203295B2 (en) 2016-04-14 2019-02-12 Lockheed Martin Corporation Methods for in situ monitoring and control of defect formation or healing
US10201784B2 (en) 2013-03-12 2019-02-12 Lockheed Martin Corporation Method for forming perforated graphene with uniform aperture size
US10213746B2 (en) 2016-04-14 2019-02-26 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US10418143B2 (en) 2015-08-05 2019-09-17 Lockheed Martin Corporation Perforatable sheets of graphene-based material
US10471199B2 (en) 2013-06-21 2019-11-12 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US10500546B2 (en) 2014-01-31 2019-12-10 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US10696554B2 (en) 2015-08-06 2020-06-30 Lockheed Martin Corporation Nanoparticle modification and perforation of graphene
US10980919B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229559A (en) * 2007-03-22 2008-10-02 Tsukishima Kankyo Engineering Ltd Process and apparatus for separation of target substance using membrane separation
WO2008123099A1 (en) * 2007-03-22 2008-10-16 Tsukishima Kankyo Engineering Ltd. Method of separating target substance according to membrane separation and apparatus therefor
US8900458B2 (en) 2007-03-22 2014-12-02 Tsukishima Kankyo Engineering Ltd. Method of isolating target substance using membrane and apparatus therefor
JP2009119461A (en) * 2007-11-15 2009-06-04 Evonik Degussa Gmbh Method for classifying oxide nanoparticle by cross-flow membrane filtration
JP2010115719A (en) * 2008-11-11 2010-05-27 Ihi Compressor & Machinery Co Ltd Method and device for oscillating filtration
JP2013516313A (en) * 2010-01-08 2013-05-13 ビッグ・ダッチマン・インターナショナル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Drive unit for membrane filtration device
JP2013536077A (en) * 2010-08-25 2013-09-19 ロッキード・マーチン・コーポレーション Deionization or desalination with perforated graphene
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
US9833748B2 (en) 2010-08-25 2017-12-05 Lockheed Martin Corporation Perforated graphene deionization or desalination
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US10201784B2 (en) 2013-03-12 2019-02-12 Lockheed Martin Corporation Method for forming perforated graphene with uniform aperture size
US10471199B2 (en) 2013-06-21 2019-11-12 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US9870895B2 (en) 2014-01-31 2018-01-16 Lockheed Martin Corporation Methods for perforating two-dimensional materials using a broad ion field
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US10500546B2 (en) 2014-01-31 2019-12-10 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9844757B2 (en) 2014-03-12 2017-12-19 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US10005038B2 (en) 2014-09-02 2018-06-26 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
US10418143B2 (en) 2015-08-05 2019-09-17 Lockheed Martin Corporation Perforatable sheets of graphene-based material
US10696554B2 (en) 2015-08-06 2020-06-30 Lockheed Martin Corporation Nanoparticle modification and perforation of graphene
US10203295B2 (en) 2016-04-14 2019-02-12 Lockheed Martin Corporation Methods for in situ monitoring and control of defect formation or healing
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US10213746B2 (en) 2016-04-14 2019-02-26 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
US10118130B2 (en) 2016-04-14 2018-11-06 Lockheed Martin Corporation Two-dimensional membrane structures having flow passages
US10017852B2 (en) 2016-04-14 2018-07-10 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
US10981120B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
US10980919B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials

Similar Documents

Publication Publication Date Title
JP2001232158A (en) Diafiltration method
Strathmann Membrane separation processes
US10406482B2 (en) Osmotic separation systems and methods
Kertész et al. Dairy wastewater purification by vibratory shear enhanced processing
WO2011132497A1 (en) Membrane unit and membrane separation device
JP2013158732A (en) Device for washing reverse osmosis membrane module
JPWO2011016410A1 (en) Water treatment apparatus and water treatment method
JP2008542007A (en) Product membrane filtration
WO2020179594A1 (en) Zero liquid discharge system
JP2016016397A (en) Filtration membrane cleaning method and membrane filtration apparatus
JP2018143970A (en) Concentration system and concentration method
Bahnasawy et al. Flux behavior and energy consumption of ultrafiltration (UF) process of milk
JPS644802B2 (en)
JP4525857B1 (en) Pretreatment apparatus and pretreatment method for water treatment system
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP5269331B2 (en) Waste water treatment equipment
JP5918033B2 (en) Method and apparatus for treating wastewater containing oil
JPH11137980A (en) Cleaning method of slurry
JP2016172238A (en) Desalination method, cleaning method of desalination apparatus, and desalination apparatus
JP2001104761A (en) Operation method for membrane separation apparatus
JP2014061488A (en) Water treatment system and water treatment method
KR101870350B1 (en) Multistage immersion type membrane distillation water treatment apparatus and a resource recovery method using the same
US10570042B2 (en) Vacuum enhanced operation method for forward osmosis membrane bioreactors
JP3276334B2 (en) Latex concentration method
JPH09276863A (en) Reverse osmosis separation apparatus and method therefor