JP2001230675A - Method for hierarchically encoding and decoding acoustic signal - Google Patents

Method for hierarchically encoding and decoding acoustic signal

Info

Publication number
JP2001230675A
JP2001230675A JP2000037418A JP2000037418A JP2001230675A JP 2001230675 A JP2001230675 A JP 2001230675A JP 2000037418 A JP2000037418 A JP 2000037418A JP 2000037418 A JP2000037418 A JP 2000037418A JP 2001230675 A JP2001230675 A JP 2001230675A
Authority
JP
Japan
Prior art keywords
signal
error
layer
quantization
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000037418A
Other languages
Japanese (ja)
Other versions
JP3559488B2 (en
Inventor
Takehiro Moriya
健弘 守谷
Naoki Iwagami
直樹 岩上
Takeshi Mori
岳至 森
Akio Jin
明夫 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000037418A priority Critical patent/JP3559488B2/en
Publication of JP2001230675A publication Critical patent/JP2001230675A/en
Application granted granted Critical
Publication of JP3559488B2 publication Critical patent/JP3559488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the effects of a transmission error or packet loss by deforming an error spread over hierarchies, in bit rate scalable encoding and decoding, based on hierarchical quantization such as controlling of an amplitude. SOLUTION: A signal, deformed into input signal by a first deformation function, is inputted to the quantizer of the first hierarchy, a quantized code and a signal reconstituted by inverse quantization are outputted, the error signal calculator of the first stage outputs an error d1 (f) between the input signal and the signal reconstituted on the first stage, the quantizer of the next hierarchy inputs a signal deformed into error signal d1 (f) by a second deformation function and outputs the quantized code of that hierarchy and the signal reconstituted by inverse quantization, the error signal calculator of the second stage outputs an rear d2 (f) between the sum of the signal reconstituted on the first hierarchy, and the signal reconstituted on the second hierarchy and the input signal and the errors deformed on the high-order hierarchies, are similarly successively quantized on multiple stages.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は音声や楽音信号など
の音響信号をできるだけ少ない情報量でディジタル符号
化する高能率信号符号化方法及び符号化方法に関するも
のであり、特にビット列に誤りやフレーム損失があった
場合に音声や楽音を再構成できる階層符号化方法及び符
号化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency signal encoding method and an encoding method for digitally encoding an audio signal such as a voice or a musical sound signal with a minimum amount of information. TECHNICAL FIELD The present invention relates to a hierarchical encoding method and an encoding method capable of reconstructing voices and musical sounds when there is an error.

【0002】[0002]

【従来の技術】従来の信号の階層的スケーラブル符号
化、復号化法は図1に示されるような構成となってい
る。符号器では入力信号ベクトルを量子化するために複
数の階層の量子化器と各階層間に誤差信号算出器を備
え、最下位の階層の量子化器は入力信号x(f)を入力と
し、量子化符号(圧縮ビット列)と逆量子化により再構
成した信号x^(f)を出力し、第1段の誤差信号算出器は
入力信号x(f)とx^(f)の誤差d1(f)(=x(f)−x^(f))を出
力し、次の階層の量子化器はd1(f)を入力として、その
階層の量子化符号と、逆量子化により再構成した信号d1
^(f)を出力し、第2段の誤差信号算出器は入力信号x
(f)とd2^(f)を加えた信号の誤差d2(d2=x(f)−(d1^(f)
+x^(f)))を出力し、同様に上位の階層変形した誤差
を逐次多段階に量子化を行う。
2. Description of the Related Art Hierarchical scalable encoding and decoding of a signal in the related art has a configuration as shown in FIG. The encoder includes a plurality of layers of quantizers and an error signal calculator between each layer to quantize an input signal vector, and the lowest layer quantizer receives the input signal x (f) as an input, A quantized code (compressed bit string) and a signal x ^ (f) reconstructed by inverse quantization are output, and the first-stage error signal calculator calculates an error d 1 between the input signal x (f) and x ^ (f). (f) (= x (f) −x ^ (f)), and the quantizer of the next layer receives d 1 (f) as input and re-quantizes it by the quantization code of the layer and inverse quantization. Composed signal d 1
^ (f) is output, and the second-stage error signal calculator calculates the input signal x
(f) and the error of the signal obtained by adding d 2 ^ (f) d 2 (d 2 = x (f) − (d 1 ^ (f)
+ X ^ (f))), and similarly, the upper-layer-deformed error is sequentially quantized in multiple stages.

【0003】復号器では各階層の量子化符号を逆量子化
して信号を再構成し、加え合わせて最終的な信号を再生
する。第1段の出力y1(f)、第2段の出力y2(f)と、各階
層の量子化誤差をq1(f)、q2(f)とすると、 y1(f)=x^(f)=x(f)+q1(f) (1) y2(f)=y1(f)+d1^(f) =x^(f)+x(f)−x^(f)+q2(f) =x(f)+q2(f) (2) となる。この場合、下位の階層の誤差はすべて上位にフ
ィードバックされ、上層ほど品質の高い信号が再現でき
る。また上位の階層の信号はなくても、ビットレートに
見合った信号が再生でき、これが、スケーラブル符号化
の特徴である。しかし、下位の階層のビット列に誤りや
フレーム損失があった場合には、出力y2‐(f)はd1^(f)
だけとなり y2 -(f)=d1^(f) =x(f)−x^(f)+q2(f) =−q1(f)+q2(f) (3) x(f)とは大きな誤差が生じ、上位の階層で救済すること
は不可能であった。
In a decoder, a signal is reconstructed by inversely quantizing the quantization code of each layer, and a final signal is reproduced by addition. Assuming that the output y 1 (f) of the first stage, the output y 2 (f) of the second stage, and the quantization error of each layer are q 1 (f) and q 2 (f), y 1 (f) = x ^ (f) = x (f) + q 1 (f) (1) y 2 (f) = y 1 (f) + d 1 ^ (f) = x ^ (f) + x (f) −x ^ (f ) + Q 2 (f) = x (f) + q 2 (f) (2) In this case, errors in lower layers are all fed back to higher layers, and higher layers can reproduce higher quality signals. Further, a signal corresponding to the bit rate can be reproduced even without a signal of a higher layer, which is a feature of the scalable coding. However, when there is an error or a frame loss in the bit sequence of the lower layer, the output y 2- (f) is d 1 ^ (f)
Only the result y 2 - (f) = d 1 ^ (f) = x (f) -x ^ (f) + q 2 (f) = -q 1 (f) + q 2 (f) (3) x (f) A large error occurred, and it was not possible to rescue the upper hierarchy.

【0004】[0004]

【発明が解決しようとする課題】従来の技術で述べた階
層的スケーラブル符号化、復号化方法においてはビット
列に誤りやフレーム損失があった場合、音声や楽音を再
構成することは困難であった。本発明はネットワークや
デコーダの環境にあわせてできるだけ高品質で楽音や音
声を伝送することができ、特に伝送ビットに誤りが生じ
る可能性がある無線伝送に適用して好適な音響信号の階
層符号化方法及び符号化方法を提供することを目的とし
ている。
In the hierarchical scalable coding and decoding methods described in the prior art, if there is an error or a frame loss in a bit string, it is difficult to reconstruct speech or musical sound. . INDUSTRIAL APPLICABILITY The present invention can transmit musical sounds and voices with the highest possible quality in accordance with the environment of a network or a decoder, and is particularly suitable for hierarchical transmission of audio signals suitable for wireless transmission in which transmission bits may have errors. It is an object to provide a method and an encoding method.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために階層的な量子化によるビットレートスケー
ラブル符号化で、階層にまたがる誤差に振幅の制御など
の変形を行うことで伝送誤りやパケット消失の影響を軽
減するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a bit rate scalable coding by hierarchical quantization, and performs a transmission error by performing a modification such as an amplitude control on an error across layers. And the effect of packet loss.

【0006】[0006]

【発明の実施の形態】図2は、本発明の実施例の符号器
及び復号器における処理を説明するブロック図である。
符号器では入力信号ベクトルを量子化するために最下位
の階層の量子化器Q1は入力信号x(f)をα1倍した信号を
入力とし、量子化符号(圧縮ビット列)と逆量子化Q1 -1
により再構成した信号〔α1 x(f)〕^を出力する。ここ
でα1 は1以下の定数とする。すなわち、第1段の逆量
子化では入力信号をそのまま入力として使わずに、変形
した信号を使う。ここでは定数倍の例であるが、周波数
に依存した係数やフィルタの処理でもよい。
FIG. 2 is a block diagram for explaining processing in an encoder and a decoder according to an embodiment of the present invention.
In the encoder, in order to quantize the input signal vector, a quantizer Q 1 of the lowest hierarchy receives a signal obtained by multiplying the input signal x (f) by α 1, and performs a quantization code (compressed bit sequence) and inverse quantization. Q 1 -1
And outputs a signal [α 1 x (f)] ^ reconstructed by Here, α 1 is a constant of 1 or less. That is, in the first stage of inverse quantization, the input signal is not used as it is as an input, but a modified signal is used. Here, an example of multiplication by a constant is used, but processing of a coefficient or filter depending on frequency may be used.

【0007】次に第1段の誤差信号算出器は〔α1 x
(f)〕^と入力信号x(f)との誤差d1(f) d1(f)=x(f)−〔α1 x(f)〕^ (4) を出力する。次の階層の量子化器はd1(f)をα2倍した信
号を入力として、その階層の量子化符号と、逆量子化に
より再構成した信号〔α2d1(f)〕^を出力する。第2段
の誤差信号算出器はx^(f)とd1^(f)に変形g2()を加え
た信号と入力信号x(f)との誤差d2(d2=x(f)−g2(x^
(f), d1^(f)))を出力し、同様に上位の階層に変形し
た信号を入力して逐次多段階に量子化を行う。なお最終
階層ではこの変形は必要ない。
Next, the first-stage error signal calculator calculates [α 1 x
(f)] ^ and the error d 1 (f) d 1 (f) = x (f) − [α 1 x (f)] ^ (4) between the input signal x (f) and (4) is output. The quantizer of the next layer receives a signal obtained by multiplying d 1 (f) by α 2, and receives a quantization code of the layer and a signal reconstructed by inverse quantization (α 2 d 1 (f)) ^. Output. The second-stage error signal calculator calculates an error d 2 (d 2 = x (f) between the signal obtained by adding the modified g 2 () to x ^ (f) and d 1 ^ (f) and the input signal x (f). ) −g 2 (x ^
(f), d 1 ^ (f))), and similarly, a signal transformed into an upper layer is input, and quantization is sequentially performed in multiple stages. This modification is not necessary in the last layer.

【0008】復号器では符号誤りやフレーム消失がない
場合には各階層の量子化符号を逆量子化して信号を再構
成する。 y1(f)=〔α1x(f)〕^=α1x(f)+α1q1(f) (5) y2(f)=y1(f)+〔α2d1(f)〕^ =〔α1x(f)〕^+α2(x(f)−x^(f)+q2(f)) =(1−α2)〔α1x(f)〕^+α2(x(f)+q2(f)) =(α1+α2−α1α2)x(f)+α1(1−α2)q1(f)+α2q2(f) (6) 第1段の出力y1(f)に含まれる入力信号の成分はα1とな
り、また第2段までの出力はy2(f)に含まれる入力信号
の成分は(α1+α2−α1α2 )倍となる。この結果、q
1(f)やq2(f)の量子化誤差が相対的に大きくなり、αを
含まない通常の場合よりもSNRは低くなる。
[0008] When there is no code error or frame erasure, the decoder dequantizes the quantization code of each layer to reconstruct a signal. y 1 (f) = [α 1 x (f)] ^ = α 1 x (f) + α 1 q 1 (f) (5) y 2 (f) = y 1 (f) + [α 2 d 1 ( f)] ^ = [α 1 x (f)] ^ + α 2 (x (f) −x ^ (f) + q 2 (f)) = (1−α 2 ) [α 1 x (f)] ^ + α 2 (x (f) + q 2 (f)) = (α 1 + α 2 -α 1 α 2) x (f) + α 1 (1-α 2) q 1 (f) + α 2 q 2 (f) (6 ) component of the input signal component alpha 1 next to the input signal included in the output y 1 (f) of the first stage, and the output up to the second stage, which is contained in the y 2 (f) is (alpha 1 + alpha 2 - α 1 α 2 ) times. As a result, q
The quantization error of 1 (f) and q 2 (f) becomes relatively large, and the SNR becomes lower than in a normal case not including α.

【0009】ある階層の量子化符号の誤りや消失があっ
た場合にはその階層の信号を0として信号を再構成す
る。誤り検出符号が伝送路の情報として入手できる場合
はそれを利用すればよく、ない場合はフレーム毎、各階
層毎に誤り検出符号をつければよい。たとえば第1階層
の情報がないとき、第2階層だけの出力信号y2 -(f)は
〔α1d1(f)〕^となる。 y2 -(f)=α2(〔α1d1(f)〕^+q2(f)) =α2α1x(f)−x^(f)+α2q2(f) =α2(1−α1)x(f)−α1α2q1(f)+α2q2(f) (7) これから分かるように、第1階層からの出力がまったく
なくてもα2(1−α1)倍された入力信号の成分が第2層
の出力に含まれるので、第1階層がない条件で比較する
と従来法よりもSNRが高くなる。同様に上位の階層に
も入力信号の成分が分散され、加え合わせることで第1
階層の欠落をある程度補うことができる。
If there is an error or loss of the quantization code of a certain layer, the signal of that layer is set to 0 and the signal is reconstructed. If an error detection code can be obtained as transmission line information, it may be used. If not, an error detection code may be attached to each frame or each layer. In the absence example information of the first layer, the output signal y 2 only the second layer - (f) is the ^ [alpha 1 d 1 (f)]. y 2 - (f) = α 2 ( [α 1 d 1 (f)] ^ + q 2 (f)) = α 2 α 1 x (f) -x ^ (f) + α 2 q 2 (f) = α 2 (1−α 1 ) x (f) −α 1 α 2 q 1 (f) + α 2 q 2 (f) (7) As can be seen from the above, even if there is no output from the first layer, α 2 ( Since the component of the input signal multiplied by 1−α 1 ) is included in the output of the second layer, the SNR is higher than that of the conventional method when compared under the condition that the first layer is not present. Similarly, the components of the input signal are also distributed to the higher layers, and the first layer
The lack of hierarchy can be compensated to some extent.

【0010】ここまでの実施例では量子化の入力の変形
は定数倍としたが、周波数に依存した処理に拡張するこ
とが可能である。図3は本発明の第2実施例を示してい
る。図2と類似しているが、信号の変形(ここでは定数
倍)を逆量子化による出力信号のあとに行う。第1実施
例と同様の効果があるが、複号器側の再生信号が少し異
なる。
In the embodiments described so far, the transformation of the quantization input is made a constant multiple, but it can be extended to a processing depending on the frequency. FIG. 3 shows a second embodiment of the present invention. Similar to FIG. 2, but the signal transformation (here a constant multiple) is performed after the output signal by inverse quantization. The same effect as in the first embodiment is obtained, but the reproduced signal on the decoder side is slightly different.

【0011】 y1(f)=x^(f)=x(f)+q1(f) (8) 第2階層の出力は y2(f)=y1(f)+d1^(f) =x(f)+q1(f)+x(f)−α1(x(f)+q1(f))+q2(f) =(2−α1)x(f)+(1−α1)q1(f)+q2(f) (9) となる。Y 1 (f) = x ^ (f) = x (f) + q 1 (f) (8) The output of the second layer is y 2 (f) = y 1 (f) + d 1 ^ (f) = x (f) + q 1 (f) + x (f) -α 1 (x (f) + q 1 (f)) + q 2 (f) = (2-α 1) x (f) + (1-α 1 ) q 1 (f) + q 2 (f) (9)

【0012】第1階層の情報がないとき、第2階層だけ
の出力信号y2 -(f)はd1^(f)となる。 y2 -(f)=d1^(f) =x(f)−α1(x(f)+q1(f))+q2(f) =(1−α1)x(f)−α1q1(f)+q2(f) (10) 効果や拡張は第1の実施例と同様であり、二つの実施例
を組み合わせることも可能である。この実施例では式
(9)のx(f)の係数が(2−α1)であるので、通常の第
2層の音量が本来より大きくなる。また、式(10)のよ
うに第1層の出力が使えないときは係数が(1−α1)な
ので音量が低下する。通常の復号器の場合には、どの階
層の情報を使うかはあらかじめわかるので、出力に補正
定数をかけて音量がもとのx(f)となるように修正すれば
よい。ただし、復号器が国際標準などで固定されてチッ
プ化されているような場合にはこの補正ができないので
音量の違いを許容するか、別に音量を修正する必要があ
る。
[0012] When there is no information in the first layer, the output signal y 2 only the second layer - (f) becomes d 1 ^ (f). y 2 - (f) = d 1 ^ (f) = x (f) -α 1 (x (f) + q 1 (f)) + q 2 (f) = (1-α 1) x (f) -α 1 q 1 (f) + q 2 (f) (10) The effects and extensions are the same as in the first embodiment, and the two embodiments can be combined. In this embodiment, since the coefficient of x (f) in equation (9) is (2-α 1 ), the normal volume of the second layer is higher than it should be. Also, when the output of the first layer cannot be used as in the equation (10), the volume decreases because the coefficient is (1−α 1 ). In the case of a normal decoder, since it is known in advance which layer of information is to be used, it is sufficient to modify the output by multiplying the output by a correction constant so that the volume becomes the original x (f). However, if the decoder is fixed and chipped according to an international standard or the like, this correction cannot be made, so it is necessary to allow a difference in volume or to separately correct the volume.

【0013】[0013]

【発明の効果】本発明のスケーラブル符号化ではシステ
ム全体として冗長になるため、同じビット数で比較する
と、誤りのない場合の量子化歪みは従来法より大きくな
るが、入力信号の成分が各階層に分散され、どこかの階
層の情報が消失してもその被害が軽減される。
According to the scalable coding of the present invention, since the entire system becomes redundant, when compared with the same number of bits, the quantization distortion in the case where there is no error is larger than that of the conventional method. , So that even if information in any layer is lost, the damage is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の階層符号化器及び復号化器の基本構成を
示す図。
FIG. 1 is a diagram showing a basic configuration of a conventional hierarchical encoder and decoder.

【図2】本発明の第1実施例における階層符号化器及び
復号化器の構成を示す図。
FIG. 2 is a diagram showing a configuration of a hierarchical encoder and a decoder in the first embodiment of the present invention.

【図3】本発明の第2実施例における階層符号化器及び
復号化器の構成を示す図。
FIG. 3 is a diagram showing a configuration of a hierarchical encoder and a decoder according to a second embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 岳至 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 神 明夫 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5D045 DA11 5J064 AA01 BA01 BC08 BC16 BD01 5K041 AA01 CC01 EE38 FF27 9A001 EE04 KK43  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takeshi Mori 2-3-1 Otemachi, Chiyoda-ku, Tokyo Within Nippon Telegraph and Telephone Corporation (72) Inventor Akio Kami 2-chome Otemachi, Chiyoda-ku, Tokyo No. 1 Nippon Telegraph and Telephone Corporation F term (reference) 5D045 DA11 5J064 AA01 BA01 BC08 BC16 BD01 5K041 AA01 CC01 EE38 FF27 9A001 EE04 KK43

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】音響信号をフレーム単位で符号化する符号
化方法であって、 変形関数と量子化器とを備えた複数の階層と各階層間に
誤差信号算出器を備え、 第1の階層の量子化器は入力信号x(f)に第1の変形関数
g1()で変形した信号を入力とし、量子化符号と逆量子化
により再構成した信号g1^(x)(f)を出力し、 第1段の誤差信号算出器は入力信号x(f)と第1階層で再
構成した信号g1^(x)(f)との誤差d1(f)(=x(f)−g1
(x)(f))を出力し、 次の階層の量子化器は誤差信号d1(f)に変形関数g2()で
変形した信号を入力として、その階層の量子化符号と、
逆量子化により再構成した信号g2^(d1)(f)を出力し、 第2段の誤差信号算出器は第1階層で再構成した信号g1
^(x)(f)と第2階層で再構成した信号g2^(d1)(f)の和
と入力信号x(f)との誤差d2(f)(=x(f)−(g1^(x)(f)+
g2^(d1)(f)))を出力し、 同様に上位の階層変形した誤差を逐次多段階に量子化を
行ない、 前記各階層の量子化符号を出力することを特徴とする音
響信号の階層符号化方法。
An encoding method for encoding an audio signal on a frame-by-frame basis, comprising: a plurality of layers having a deformation function and a quantizer; an error signal calculator between each layer; Of the input signal x (f)
The signal deformed by g 1 () is input, and a signal g 1 ^ (x) (f) reconstructed by quantization code and inverse quantization is output. The first-stage error signal calculator calculates the input signal x ( error d 1 (f) (= x (f) −g 1の) between signal f 1 and signal g 1 ^ (x) (f) reconstructed in the first hierarchy
(x) (f)), and the quantizer of the next layer receives as input the signal transformed by the transformation function g 2 () into the error signal d 1 (f),
The signal g 2 ^ (d 1 ) (f) reconstructed by the inverse quantization is output, and the error signal calculator of the second stage outputs the signal g 1 reconstructed in the first layer.
The error d 2 (f) (= x (f) −) between the sum of ^ (x) (f) and the signal g 2 ^ (d 1 ) (f) reconstructed in the second hierarchy and the input signal x (f) (G 1 ^ (x) (f) +
g 2 ^ (d 1 ) (f))), and similarly, sequentially performs multistage quantization of the upper layer-deformed error, and outputs a quantization code of each layer. Hierarchical coding method for signals.
【請求項2】音響信号をフレーム単位で符号化する符号
化方法であって、 変形関数と量子化器とを備えた複数の階層と各階層間に
誤差信号算出器を備え、 第1の階層の量子化器は入力信号x(f)を入力とし、量子
化符号と逆量子化により再構成した信号x^(f)を出力
し、 第1段の誤差信号算出器は入力信号x(f)とx^(f)に変形
関数g1()で変形した信号の誤差信号d1(f)(=x(f)−g
1(x^(f)))を出力し、 次の階層の量子化器はd1(f)を入力として、その階層の
量子化符号と逆量子化により再構成した信号d1^(f)を
出力し、 第2段の誤差信号算出器はx^(f)とd1^(f)に変形関数g
2()で変形した信号と入力信号x(f)との誤差d2(f)(=x
(f)−g2(x^(f),d1^(f)))を出力し、 同様に上位の階層変形した誤差を逐次多段階に量子化を
行ない、 前記各階層の量子化符号を出力することを特徴とする音
響信号の階層符号化方法。
2. An encoding method for encoding an audio signal on a frame basis, comprising: a plurality of hierarchies having a deformation function and a quantizer; and an error signal calculator between the hierarchies. Receives the input signal x (f), outputs a signal x ^ (f) reconstructed by quantization code and inverse quantization, and the first-stage error signal calculator calculates the input signal x (f ) and x ^ (f) the transformation function g 1 (the deformed signal) the error signal d 1 (f) (= x (f) -g
1 (x ^ (f))), and the quantizer of the next layer receives d 1 (f) as an input, and the signal d 1 ^ (f ), And the second-stage error signal calculator calculates the transformation function g as x ^ (f) and d 1 ^ (f).
2 The error d 2 (f) between the signal transformed in () and the input signal x (f) (= x
(f) −g 2 (x ^ (f), d 1 ^ (f))), and similarly, the higher-layer-deformed error is sequentially quantized in multiple stages, and the quantization code of each layer And a hierarchical encoding method of the acoustic signal.
【請求項3】請求項1または2に記載の音響信号の階層
符号化方法において、量子化の対象が周波数領域の変換
係数であることを特徴とする音響信号の階層符号化方
法。
3. The hierarchical encoding method of an acoustic signal according to claim 1, wherein an object to be quantized is a transform coefficient in a frequency domain.
【請求項4】請求項1または2に記載の音響信号の階層
符号化方法において、量子化の対象が時間領域の信号で
あることを特徴とする音響信号の階層符号化方法。
4. A method according to claim 1, wherein the quantization target is a signal in the time domain.
【請求項5】請求項1乃至4のいずれか1項に記載の音
響信号の階層符号化方法において、 変形関数(g1(),g2(),・・・)は1以下の定数であるこ
とを特徴とする音響信号の階層符号化方法。
5. The hierarchical coding method of an acoustic signal according to claim 1, wherein the transformation function (g 1 (), g 2 (),...) Is a constant of 1 or less. A hierarchical encoding method of an acoustic signal, characterized in that:
【請求項6】請求項3に記載の音響信号の階層符号化方
法において、 変形関数(g1(),g2(),・・・)は周波数に依存する重み
関数であることを特徴とする音響信号の階層符号化方
法。
6. A method according to claim 3, wherein the transformation function (g 1 (), g 2 (),...) Is a frequency-dependent weight function. Encoding method of the audio signal to be encoded.
【請求項7】請求項4に記載の音響信号の階層符号化方
法において、 変形関数(g1(),g2(),・・・)は周波数特性が変わるフ
ィルタを用いることを特徴とする音響信号の階層符号化
方法。
7. A method according to claim 4, wherein the transform function (g 1 (), g 2 (),...) Uses a filter whose frequency characteristic changes. Hierarchical encoding method for audio signals.
【請求項8】音響信号をフレーム単位で復号化する方法
であって、 請求項1乃至7のいずれか1項に記載の音響信号の階層
符号化方法で生成された各階層の量子化符号と量子化符
号に対する誤り検出符号を入力し、 各階層の量子化符号を逆量子化して逆量子化信号を出力
する逆量子化過程と、 誤り検出符号に基づき各階層の量子化符号の誤りの有無
を検出し、誤りが検出されない量子化符号に対する逆量
子化信号を加算して音響信号を再構成する過程を備えた
ことを特徴とする音響信号の階層復号化方法。
8. A method for decoding an audio signal on a frame basis, wherein the quantization code of each layer generated by the audio signal hierarchical encoding method according to claim 1 is provided. An inverse quantization process of inputting an error detection code for the quantization code, inversely quantizing the quantization code of each layer and outputting an inversely quantized signal, and determining whether or not an error exists in the quantization code of each layer based on the error detection code. And reconstructing an audio signal by adding an inverse quantization signal to a quantization code in which no error is detected, and decoding the audio signal hierarchically.
【請求項9】請求項8に記載の音響信号の階層復号化方
法において、 上記音響信号を再構成する過程より出力された音響信号
に補正定数をかけて音量を修正する手段を備えたことを
特徴とする音響信号の階層復号化方法。
9. The hierarchical decoding method of an audio signal according to claim 8, further comprising means for correcting a volume by applying a correction constant to the audio signal output from the step of reconstructing the audio signal. A method for hierarchical decoding of an acoustic signal.
JP2000037418A 2000-02-16 2000-02-16 Hierarchical encoding method and decoding method for audio signal Expired - Fee Related JP3559488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000037418A JP3559488B2 (en) 2000-02-16 2000-02-16 Hierarchical encoding method and decoding method for audio signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000037418A JP3559488B2 (en) 2000-02-16 2000-02-16 Hierarchical encoding method and decoding method for audio signal

Publications (2)

Publication Number Publication Date
JP2001230675A true JP2001230675A (en) 2001-08-24
JP3559488B2 JP3559488B2 (en) 2004-09-02

Family

ID=18561311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000037418A Expired - Fee Related JP3559488B2 (en) 2000-02-16 2000-02-16 Hierarchical encoding method and decoding method for audio signal

Country Status (1)

Country Link
JP (1) JP3559488B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066937A1 (en) * 2004-01-08 2005-07-21 Matsushita Electric Industrial Co., Ltd. Signal decoding apparatus and signal decoding method
WO2007119368A1 (en) * 2006-03-17 2007-10-25 Matsushita Electric Industrial Co., Ltd. Scalable encoding device and scalable encoding method
US7752052B2 (en) 2002-04-26 2010-07-06 Panasonic Corporation Scalable coder and decoder performing amplitude flattening for error spectrum estimation
JP2010532489A (en) * 2007-06-15 2010-10-07 フランス・テレコム Digital audio signal encoding
US7996233B2 (en) 2002-09-06 2011-08-09 Panasonic Corporation Acoustic coding of an enhancement frame having a shorter time length than a base frame

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752052B2 (en) 2002-04-26 2010-07-06 Panasonic Corporation Scalable coder and decoder performing amplitude flattening for error spectrum estimation
US8209188B2 (en) 2002-04-26 2012-06-26 Panasonic Corporation Scalable coding/decoding apparatus and method based on quantization precision in bands
US7996233B2 (en) 2002-09-06 2011-08-09 Panasonic Corporation Acoustic coding of an enhancement frame having a shorter time length than a base frame
WO2005066937A1 (en) * 2004-01-08 2005-07-21 Matsushita Electric Industrial Co., Ltd. Signal decoding apparatus and signal decoding method
JP2005222014A (en) * 2004-01-08 2005-08-18 Matsushita Electric Ind Co Ltd Device and method for signal decoding
US7411522B2 (en) 2004-01-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Signal decoding apparatus and signal decoding method
US7636055B2 (en) 2004-01-08 2009-12-22 Panasonic Corporation Signal decoding apparatus and signal decoding method
JP4733939B2 (en) * 2004-01-08 2011-07-27 パナソニック株式会社 Signal decoding apparatus and signal decoding method
WO2007119368A1 (en) * 2006-03-17 2007-10-25 Matsushita Electric Industrial Co., Ltd. Scalable encoding device and scalable encoding method
US8370138B2 (en) 2006-03-17 2013-02-05 Panasonic Corporation Scalable encoding device and scalable encoding method including quality improvement of a decoded signal
JP2010532489A (en) * 2007-06-15 2010-10-07 フランス・テレコム Digital audio signal encoding

Also Published As

Publication number Publication date
JP3559488B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US5701346A (en) Method of coding a plurality of audio signals
Jayant Signal compression: Technology targets and research directions
US6263312B1 (en) Audio compression and decompression employing subband decomposition of residual signal and distortion reduction
JP5161212B2 (en) ITU-TG. Noise shaping device and method in multi-layer embedded codec capable of interoperating with 711 standard
US6502069B1 (en) Method and a device for coding audio signals and a method and a device for decoding a bit stream
JP4570250B2 (en) System and method for entropy encoding quantized transform coefficients of a signal
JP4000261B2 (en) Stereo sound signal processing method and apparatus
US20080097755A1 (en) Fast lattice vector quantization
US4354273A (en) ADPCM System for speech or like signals
JP2001202097A (en) Encoded binary audio processing method
JPH09204199A (en) Method and device for efficient encoding of inactive speech
US9646615B2 (en) Audio signal encoding employing interchannel and temporal redundancy reduction
US5524170A (en) Vector-quantizing device having a capability of adaptive updating of code book
CA2378035A1 (en) Coded domain noise control
US7072830B2 (en) Audio coder
JP2002221994A (en) Method and apparatus for assembling packet of code string of voice signal, method and apparatus for disassembling packet, program for executing these methods, and recording medium for recording program thereon
JP2001230675A (en) Method for hierarchically encoding and decoding acoustic signal
JP2003110429A (en) Coding method and device, decoding method and device, transmission method and device, and storage medium
CA2521445C (en) Code conversion method and apparatus
JP4603429B2 (en) Client / server speech recognition method, speech recognition method in server computer, speech feature extraction / transmission method, system, apparatus, program, and recording medium using these methods
JPS63214032A (en) Coding transmitter
JPH05165499A (en) Quantizing method for lsp coefficient
JPH0774649A (en) Quantizing device based on variable digital coding rate
JPH08211900A (en) Digital speech compression system
JPH0786952A (en) Predictive encoding method for voice

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees