JP2001230584A - Cooling method for component mounted on printed wiring board utilizing thermoelectric cooling element - Google Patents

Cooling method for component mounted on printed wiring board utilizing thermoelectric cooling element

Info

Publication number
JP2001230584A
JP2001230584A JP2000042315A JP2000042315A JP2001230584A JP 2001230584 A JP2001230584 A JP 2001230584A JP 2000042315 A JP2000042315 A JP 2000042315A JP 2000042315 A JP2000042315 A JP 2000042315A JP 2001230584 A JP2001230584 A JP 2001230584A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
heat
peltier module
cooling element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000042315A
Other languages
Japanese (ja)
Inventor
Makoto Tsunoda
誠 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2000042315A priority Critical patent/JP2001230584A/en
Publication of JP2001230584A publication Critical patent/JP2001230584A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method for components mounted on a printed wiring board that copes with surface mounted components, without having to decrease mounted component density of the printed wiring board. SOLUTION: A thermal electric cooling element (Peltier module) is placed on and in contact with the upper face on a high heat generating component on the printed wiring board, and the Peltier module is connected through a printed wiring pattern or a wire to supply power to the Peltier module. By supplying a current to the Peltier module via the connector cools a side of the Peltier module at a side which is in contact with a high heat generating component, the opposite side is heated. The side opposite to the side of the Peltier module, in contact with the high heat generating component is in contact with a heat pipe to move the heat generated in the Peltier module to a heat dissipating section.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子部品の放熱に係
り、熱電子冷却素子を利用したプリント配線板実装部品
の冷却法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat radiation of electronic components, and more particularly to a method for cooling printed circuit board mounted components using thermoelectric cooling elements.

【0002】[0002]

【従来の技術】プリント配線板に実装した部品の放熱手
段は一般にファンによる空冷方式と液体を使用した液冷
方式がある。ロケット、人工衛星、宇宙ステーション搭
載の電子機器においては空冷方式で冷却効果を得ること
が難しいため、自然冷却方式または液冷方式が用いられ
る。該電子機器で使用されるプリント配線板は実装IC
の高速化、大規模化により発熱量が大幅に増加する傾向
にある。そこで自然冷却方式または液冷方式を効率的に
するためプリント配線板の構造上の対応策として部品実
装間隔を広げたり、メタルコアやヒートシンク構造にす
ることでプリント配線板実装電子部品の発熱を放熱部分
に誘導する方法がとられている。従来のメタルコアプリ
ント配線板、ヒートシンクプリント配線板の構造例を図
3に示す。図3(a)はメタルコア10にアルミ板、銅
板、カッパーインバーカッパー板などを用いたメタルコ
アプリント配線板9の例であり、図3(b)はヒートシ
ンク12にアルミ板、銅板などを用いたプリント配線板
11の例である。
2. Description of the Related Art Generally, means for radiating heat from components mounted on a printed wiring board are classified into an air cooling method using a fan and a liquid cooling method using a liquid. For electronic devices mounted on rockets, artificial satellites, and space stations, it is difficult to obtain a cooling effect by an air-cooled system, so a natural cooling system or a liquid-cooled system is used. The printed wiring board used in the electronic device is a mounted IC
The heat generation tends to increase significantly due to the increase in speed and scale of the system. In order to make the natural cooling method or the liquid cooling method more efficient, the component mounting interval is increased as a structural countermeasure for the printed wiring board, or the metal core or heat sink structure is used to dissipate the heat generated by the electronic components mounted on the printed wiring board. The method of inducing is taken. FIG. 3 shows a structural example of a conventional metal core printed wiring board and heat sink printed wiring board. FIG. 3A shows an example of a metal core printed wiring board 9 using an aluminum plate, a copper plate, a copper-invar copper plate or the like as a metal core 10, and FIG. 3B shows a print using an aluminum plate, a copper plate or the like as a heat sink 12. This is an example of the wiring board 11.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記方
法ではプリント配線板の設計上の制約が多くなり、部品
実装密度や配線密度が低くなってしまうという問題があ
る。また、表面実装ICの場合、図4(a)に示すよう
に該IC実装部分のヒートシンク12をくりぬく必要が
あったり、図4(b)に示すようにメタルコア10の該
IC実装外周部全周にわたってクリアランスホール13
を設ける必要があったりでヒートシンクやメタルコアが
初期の熱伝導効果を発揮できなくなってしまうという問
題もある。本発明は、上記課題を解決するためになされ
たもので、プリント配線板の部品実装密度、配線密度を
低下させることなく、また、表面実装部品にも対応した
プリント配線板実装部品の冷却法を提供することを目的
とする。
However, the above-mentioned method has a problem in that the restrictions on the design of the printed wiring board are increased, and the component mounting density and the wiring density are reduced. Further, in the case of a surface mount IC, it is necessary to cut out the heat sink 12 of the IC mount portion as shown in FIG. 4A, or the entire periphery of the IC mount outer peripheral portion of the metal core 10 as shown in FIG. Over the clearance hole 13
There is also a problem that the heat sink and the metal core cannot exhibit the initial heat conduction effect due to the necessity of providing the heat sink and the metal core. The present invention has been made in order to solve the above-mentioned problems, and does not reduce the component mounting density of a printed wiring board, without reducing the wiring density, and also provides a method of cooling a printed wiring board mounted component corresponding to a surface mounted component. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】請求項1の熱電子冷却素
子を利用したプリント配線板実装部品の冷却法は、プリ
ント配線板上の高発熱部品冷却構造において、高発熱部
品の上面部に該部品に接触させて熱電子冷却素子を配
し、該熱電子冷却素子の発熱側を放熱板またはヒートパ
イプ端部に接触させることを特徴とする。
According to a first aspect of the present invention, there is provided a method of cooling a component mounted on a printed wiring board using a thermoelectric cooling element. A thermoelectric cooling element is disposed in contact with a component, and the heat generation side of the thermoelectric cooling element is brought into contact with a heat sink or an end of a heat pipe.

【0005】請求項1の熱電子冷却素子を利用したプリ
ント配線板実装部品の冷却法によれば、プリント配線板
の構造を変化させることなく高発熱部品の熱を外部に移
動することができるので、プリント配線板の設計上の制
約がなく高密度設計が容易であり、また、表面実装部品
の発熱も既存のメタルコアプリント配線板やヒートシン
ク付きプリント配線板と異なり効率よく熱を移動でき
る。
According to the method for cooling a printed wiring board mounted component utilizing the thermoelectric cooling element of the first aspect, the heat of the high heat generating component can be transferred to the outside without changing the structure of the printed wiring board. In addition, there is no restriction on the design of the printed wiring board, so that high-density design is easy, and heat generation of the surface mount components can be transferred efficiently, unlike the existing metal core printed wiring board and the printed wiring board with a heat sink.

【0006】請求項2の熱電子冷却素子を利用したプリ
ント配線板実装部品の冷却法は、プリント配線板上の高
発熱部品冷却構造において、高発熱部品取り付け面のプ
リント配線板裏面部に接触させて熱電子冷却素子を配
し、該熱電子冷却素子の発熱側を放熱板またはヒートパ
イプ端部に接触させることを特徴とする。
According to a second aspect of the present invention, there is provided a method of cooling a component mounted on a printed wiring board using a thermoelectric cooling element, wherein the high heat generating component cooling structure on the printed wiring board is brought into contact with the back surface of the printed wiring board on the mounting surface of the high heat generating component. A thermoelectric cooling element is disposed, and the heat generation side of the thermoelectric cooling element is brought into contact with a heat radiating plate or an end of a heat pipe.

【0007】請求項2の熱電子冷却素子を利用したプリ
ント配線板実装部品の冷却法によれば、特に取り付け底
部が発熱する高発熱部品の場合に効率よく熱を移動する
ことができる。
According to the method for cooling a printed circuit board mounted component using a thermoelectric cooling element according to the second aspect, heat can be efficiently transferred, particularly in the case of a high heat-generating component in which the mounting bottom generates heat.

【0008】請求項3の熱電子冷却素子を利用したプリ
ント配線板実装部品の冷却法は、高発熱部品近傍に温度
センサを配し、該温度センサ出力を温度制御回路により
熱電子冷却素子へ帰還することを特徴とする。
According to a third aspect of the present invention, there is provided a method for cooling a printed circuit board mounted component utilizing a thermoelectric cooling element, wherein a temperature sensor is disposed near a high heat generating component, and the output of the temperature sensor is returned to the thermoelectric cooling element by a temperature control circuit. It is characterized by doing.

【0009】請求項3の熱電子冷却素子を利用したプリ
ント配線板実装部品の冷却法によれば、温度センサによ
り捉えた発熱状態に応じて熱電子冷却素子の冷却能力を
可変できるので、部品温度が安定し電子機器の安定した
動作が可能になる。
According to the method for cooling a printed wiring board mounted component using a thermoelectric cooling element according to the third aspect, the cooling capability of the thermoelectric cooling element can be varied according to the heat generation state detected by the temperature sensor. And the electronic device can operate stably.

【0010】[0010]

【発明の実施の形態】本発明の実施形態を図面に基づい
て詳細に説明する。図1は熱電子冷却素子(例えばペル
チェモジュールがあり、以下ペルチェモジュールとい
う。)使用プリント配線板自然放熱冷却方式の構造例を
示し、図2は同じく強制液冷冷却方式の構造例を示す。
図において、1はプリント配線板、2は放熱板(アルミ
板)、3は高発熱部品、4はペルチェモジュール、5は
コネクタ、6はヒートパイプ、7は液冷パイプ、8は温
度センサ(例えばサーミスタ)を示す。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a structure of a printed circuit board using a thermoelectric cooling element (for example, a Peltier module, which is hereinafter referred to as a Peltier module), and a structure of a forced liquid cooling system.
In the figure, 1 is a printed wiring board, 2 is a heat radiating plate (aluminum plate), 3 is a high heat generating component, 4 is a Peltier module, 5 is a connector, 6 is a heat pipe, 7 is a liquid cooling pipe, and 8 is a temperature sensor (for example, Thermistor).

【0011】図1において、プリント配線板1の高発熱
部品3の上面部に該部品3に接触させてペルチェモジュ
ール4を配し、該ペルチェモジュール4に電力を供給す
べくプリント配線パターンかワイヤでコネクタ5に結線
する。コネクタ5経由でペルチェモジュール4に電流を
流すことで該ペルチェモジュール4の高発熱部品3接触
側を冷却し反対側が発熱するように動作させる。ペルチ
ェモジュール4の高発熱部品3接触側の反対側は放熱板
(アルミ板)2に接触させておくことでペルチェモジュ
ール4における発生熱は、熱伝導に優れた放熱板2全域
に速やかに広がることになる。この放熱板2全域に広が
った熱は、広い表面積を持つ放熱板2の表面から放散
し、更にペルチェモジュール4からの熱の流れを受け入
れる。
In FIG. 1, a Peltier module 4 is arranged on the upper surface of a high heat generating component 3 of a printed wiring board 1 in contact with the component 3, and a printed wiring pattern or a wire is used to supply power to the Peltier module 4. Connect to connector 5. An electric current is supplied to the Peltier module 4 via the connector 5 to cool the Peltier module 4 contacting the high heat generating component 3 and operate the Peltier module 4 to generate heat on the opposite side. The heat generated in the Peltier module 4 is quickly spread over the entire area of the heat dissipation plate 2 having excellent heat conduction by keeping the side of the Peltier module 4 opposite to the contact side of the high heat generating component 3 with the heat dissipation plate (aluminum plate) 2. become. The heat spread throughout the heat radiating plate 2 is radiated from the surface of the heat radiating plate 2 having a large surface area, and further receives the flow of heat from the Peltier module 4.

【0012】図2の強制液冷冷却の例は、前記自然放熱
冷却の場合の放熱板2に替えてヒートパイプ6の端部を
ペルチェモジュール4の高発熱部品3接触側の反対側に
接触させ、該ヒートパイプ6の他端を液冷パイプ7に熱
的および機械的に接続する。高発熱部品3での発生熱は
ヒートパイプ6の一端を加熱し、該ヒートパイプ6の両
端に温度差が生じることで高温部から低温部へ熱は高速
に移動する。液冷パイプ7に到達した熱は、図面では省
略した強制液冷冷却機構により順次冷却される。
In the example of the forced liquid cooling shown in FIG. 2, the end of the heat pipe 6 is brought into contact with the side of the Peltier module 4 opposite to the high heat generating component 3 in place of the heat sink 2 in the case of the natural heat radiation cooling. The other end of the heat pipe 6 is thermally and mechanically connected to the liquid cooling pipe 7. The heat generated by the high heat-generating component 3 heats one end of the heat pipe 6, and a temperature difference is generated at both ends of the heat pipe 6, so that the heat moves from the high temperature part to the low temperature part at high speed. The heat reaching the liquid cooling pipe 7 is sequentially cooled by a forced liquid cooling cooling mechanism not shown in the drawing.

【0013】また、高発熱部品3近傍または高発熱部品
3に接触して複数の温度センサ8を配し、該温度センサ
8の出力と複数のペルチェモジュール4の電源入力と
を、図では省略した温度制御回路に接続し温度センサ8
の出力をペルチェモジュール4駆動電流に帰還すること
で各々のペルチェモジュール4に加わる電流を制御し、
該ペルチェモジュール4の冷却能力を可変することで高
発熱部品の温度調整を図ることも可能である。更にこの
温度調整機能を発展させて、環境温度が低下した場合に
ペルチェモジュール4に加える電流を逆極性にすること
でペルチェモジュール4に接触する部品を加温し、該部
品の適性動作保証範囲の温度に高めることも可能であ
る。
Further, a plurality of temperature sensors 8 are arranged near or in contact with the high heat generating component 3, and the output of the temperature sensor 8 and the power input of the plurality of Peltier modules 4 are omitted in the figure. Temperature sensor 8 connected to temperature control circuit
Is fed back to the Peltier module 4 drive current to control the current applied to each Peltier module 4,
By varying the cooling capacity of the Peltier module 4, it is possible to adjust the temperature of the high heat-generating component. Further, by developing this temperature adjusting function, the current applied to the Peltier module 4 when the environmental temperature is lowered is made to reverse the polarity, so that the parts in contact with the Peltier module 4 are heated, and the proper operation guarantee range of the parts is ensured. It is also possible to increase the temperature.

【0014】自然放熱冷却方式か強制液冷冷却方式かの
選択は、当該電子機器の発熱部品の発熱量が大きい場合
に強制液冷冷却方式が有利であり、比較的小さい場合に
は自然放熱冷却方式が適する。図1および図2において
は、高発熱部品上面部にペルチェモジュールを接触させ
る方式を示したが、高発熱部品の発熱部位が底部である
場合には図では省略したが、該高発熱部品取り付け部プ
リント配線板裏面にペルチェモジュールを接触させる方
式も有効である。
The choice between the natural heat radiation cooling method and the forced liquid cooling method is advantageous when the heat generated by the heat-generating components of the electronic device is large. The forced liquid cooling method is advantageous. The method is suitable. FIGS. 1 and 2 show a method in which the Peltier module is brought into contact with the upper surface of the high heat generating component. However, when the heat generating portion of the high heat generating component is the bottom portion, it is omitted in the drawings. A method in which a Peltier module is brought into contact with the back surface of a printed wiring board is also effective.

【0015】[0015]

【発明の効果】本発明によれば、プリント配線板本体の
構造を変更することなく高発熱部品の熱を移動すること
ができるので、プリント配線板設計の配線上および構造
上の制約がなく、高発熱部品に影響されずに高密度実
装、高密度配線が可能となる。また、ペルチェモジュー
ルに供給する電流を制御することにより精密な温度制御
ができるので、電子部品を適正温度に維持し電子機器の
動作を安定させることができる。更に、ペルチェモジュ
ールに供給する電流方向を反転することで電子部品の加
温ができるので、宇宙空間での日陰時の低温環境下にお
いても電子部品加温による電子機器動作維持が可能にな
る。
According to the present invention, since the heat of the high heat-generating component can be transferred without changing the structure of the printed wiring board main body, there is no restriction on the wiring and structure of the printed wiring board design. High-density mounting and high-density wiring can be performed without being affected by high heat-generating components. In addition, precise temperature control can be performed by controlling the current supplied to the Peltier module, so that the electronic components can be maintained at an appropriate temperature and the operation of the electronic device can be stabilized. Furthermore, since the electronic components can be heated by reversing the direction of the current supplied to the Peltier module, the operation of the electronic device can be maintained by heating the electronic components even in a low-temperature environment in the shade in outer space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態である熱電子冷却素子使用プ
リント配線板自然放熱冷却方式の構造例を示す。
FIG. 1 shows a structural example of a printed wiring board using a thermoelectric cooling element, which is a natural heat radiation cooling system according to an embodiment of the present invention.

【図2】本発明の実施形態である熱電子冷却素子使用プ
リント配線板強制液冷冷却方式の構造例を示す。
FIG. 2 shows a structural example of a forced wiring cooling system using a thermoelectric cooling element according to an embodiment of the present invention.

【図3】従来のメタルコアプリント配線板、ヒートシン
クプリント配線板の構造例を示す。
FIG. 3 shows a structural example of a conventional metal core printed wiring board and a heat sink printed wiring board.

【図4】従来のメタルコア、ヒートシンクにおける表面
実装ICの場合の形状例を示す。
FIG. 4 shows a shape example of a surface mount IC in a conventional metal core and heat sink.

【符号の説明】[Explanation of symbols]

1 プリント配線板 2 放熱板(アルミ板) 3 高発熱部品 4 熱電子冷却素子(ペルチェモジュール) 5 コネクタ 6 ヒートパイプ 7 液冷パイプ 8 温度センサ(例えばサーミスタ) 9 メタルコアプリント配線板 10 メタルコア(アルミ板、銅板、カッパーインバー
カッパー板など) 11 プリント配線板 12 ヒートシンク(アルミ板、銅板など) 13 クリアランスホール
DESCRIPTION OF SYMBOLS 1 Printed wiring board 2 Heat sink (Aluminum board) 3 High heat generation parts 4 Thermoelectric cooling element (Peltier module) 5 Connector 6 Heat pipe 7 Liquid cooling pipe 8 Temperature sensor (for example, thermistor) 9 Metal core printed wiring board 10 Metal core (Aluminum board) , Copper plate, copper invar copper plate, etc.) 11 printed wiring board 12 heat sink (aluminum plate, copper plate, etc.) 13 clearance hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プリント配線板上の高発熱部品冷却構造
において、高発熱部品の上面部に該部品に接触させて熱
電子冷却素子を配し、該熱電子冷却素子の発熱側を放熱
板またはヒートパイプ端部に接触させることを特徴とす
る熱電子冷却素子を利用したプリント配線板実装部品の
冷却法。
In a cooling structure for a high heat-generating component on a printed wiring board, a thermoelectric cooling element is arranged on an upper surface of the high heat-generating component in contact with the component, and a heat-generating side of the thermoelectric cooling element is disposed on a heat-radiating plate or a heat-radiating plate. A method for cooling a printed wiring board mounted part using a thermoelectric cooling element, which is brought into contact with an end of a heat pipe.
【請求項2】 プリント配線板上の高発熱部品冷却構造
において、高発熱部品取り付け面のプリント配線板裏面
部に接触させて熱電子冷却素子を配し、該熱電子冷却素
子の発熱側を放熱板またはヒートパイプ端部に接触させ
ることを特徴とする熱電子冷却素子を利用したプリント
配線板実装部品の冷却法。
2. A structure for cooling a high heat generating component on a printed wiring board, wherein a thermoelectric cooling element is arranged in contact with the back surface of the printed wiring board on a surface on which the high heat generating component is mounted, and the heat generation side of the thermoelectric cooling element is radiated. A method for cooling a component mounted on a printed wiring board using a thermoelectric cooling element, which is brought into contact with an end of a board or a heat pipe.
【請求項3】 高発熱部品近傍に温度センサを配し、該
温度センサ出力を温度制御回路により熱電子冷却素子へ
帰還することを特徴とする熱電子冷却素子を利用したプ
リント配線板実装部品の冷却法。
3. A component mounted on a printed wiring board using a thermoelectric cooling element, wherein a temperature sensor is arranged near a high heat generating component, and an output of the temperature sensor is returned to a thermoelectric cooling element by a temperature control circuit. Cooling method.
JP2000042315A 2000-02-21 2000-02-21 Cooling method for component mounted on printed wiring board utilizing thermoelectric cooling element Pending JP2001230584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000042315A JP2001230584A (en) 2000-02-21 2000-02-21 Cooling method for component mounted on printed wiring board utilizing thermoelectric cooling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042315A JP2001230584A (en) 2000-02-21 2000-02-21 Cooling method for component mounted on printed wiring board utilizing thermoelectric cooling element

Publications (1)

Publication Number Publication Date
JP2001230584A true JP2001230584A (en) 2001-08-24

Family

ID=18565403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042315A Pending JP2001230584A (en) 2000-02-21 2000-02-21 Cooling method for component mounted on printed wiring board utilizing thermoelectric cooling element

Country Status (1)

Country Link
JP (1) JP2001230584A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088282A (en) * 2005-09-22 2007-04-05 Mitsubishi Electric Corp Peripheral equipment and electronic equipment
JP2007316626A (en) * 2006-04-27 2007-12-06 Sanyo Electric Co Ltd Projection type video display device
US7360903B2 (en) 2003-09-01 2008-04-22 Seiko Epson Corporation Light source device, method for manufacturing light source device, and projection type display apparatus
JP2012104554A (en) * 2010-11-08 2012-05-31 Freesia Makurosu Kk Heat radiation structure
CN111295760A (en) * 2017-11-02 2020-06-16 国际商业机器公司 Dynamic thermoelectric quick response code device
TWI697272B (en) * 2019-05-06 2020-06-21 宏達國際電子股份有限公司 Heat dissipation module and electronic device
US10785893B1 (en) 2019-05-06 2020-09-22 Htc Corporation Heat dissipation module and electronic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360903B2 (en) 2003-09-01 2008-04-22 Seiko Epson Corporation Light source device, method for manufacturing light source device, and projection type display apparatus
JP2007088282A (en) * 2005-09-22 2007-04-05 Mitsubishi Electric Corp Peripheral equipment and electronic equipment
JP2007316626A (en) * 2006-04-27 2007-12-06 Sanyo Electric Co Ltd Projection type video display device
JP4657242B2 (en) * 2006-04-27 2011-03-23 三洋電機株式会社 Projection display device
JP2012104554A (en) * 2010-11-08 2012-05-31 Freesia Makurosu Kk Heat radiation structure
CN111295760A (en) * 2017-11-02 2020-06-16 国际商业机器公司 Dynamic thermoelectric quick response code device
CN111295760B (en) * 2017-11-02 2023-09-22 国际商业机器公司 Dynamic thermoelectric quick response code device
TWI697272B (en) * 2019-05-06 2020-06-21 宏達國際電子股份有限公司 Heat dissipation module and electronic device
US10785893B1 (en) 2019-05-06 2020-09-22 Htc Corporation Heat dissipation module and electronic device

Similar Documents

Publication Publication Date Title
US6094919A (en) Package with integrated thermoelectric module for cooling of integrated circuits
JP2004295718A (en) Liquid cooling system for information processor
JP2001230584A (en) Cooling method for component mounted on printed wiring board utilizing thermoelectric cooling element
JP2000077585A (en) Cooling apparatus
JP4438526B2 (en) Power component cooling system
JPH06163758A (en) Heat-dissipating structure by ic socket using spring made of shape memory alloy
JP2005136211A (en) Cooling device
JPH10229288A (en) Power semiconductor device
JP2005136212A (en) Heat exchanger
JP2008106958A (en) Heat exchanger
JPH08204070A (en) Electronic part cooling structure
JP3246199B2 (en) Multi-chip module
JP2009017624A (en) Motor controller
KR20070051308A (en) Semiconductor cooling system and process for manufacturing the same
KR200200517Y1 (en) The cooling device of heat protect board for electronic machine
JP4325026B2 (en) Cooling device and electronic equipment
JPH07111378A (en) Packaging structure of double-sided packaging board
JP5056036B2 (en) Heat dissipation structure for electronic component equipment
JP2001053342A (en) Thermoelectric heater and cooler
CN217689993U (en) Power supply device and computing equipment with same
JPH0715140Y2 (en) Electronic component cooling system
JPH09325831A (en) Heat radiation structure of module
JPH0917926A (en) Semiconductor element cooling mechanism
JP2001144483A (en) Structure for cooling printed board unit
JP2000227821A (en) Cooling device for electronic component