JP2001220294A - Method for forming film by atomic layer epitaxial growing method - Google Patents

Method for forming film by atomic layer epitaxial growing method

Info

Publication number
JP2001220294A
JP2001220294A JP2000032809A JP2000032809A JP2001220294A JP 2001220294 A JP2001220294 A JP 2001220294A JP 2000032809 A JP2000032809 A JP 2000032809A JP 2000032809 A JP2000032809 A JP 2000032809A JP 2001220294 A JP2001220294 A JP 2001220294A
Authority
JP
Japan
Prior art keywords
film
aluminum oxide
titanium oxide
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000032809A
Other languages
Japanese (ja)
Other versions
JP4362919B2 (en
Inventor
Yukihiro Sano
幸浩 佐野
Masayuki Katayama
片山  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000032809A priority Critical patent/JP4362919B2/en
Publication of JP2001220294A publication Critical patent/JP2001220294A/en
Application granted granted Critical
Publication of JP4362919B2 publication Critical patent/JP4362919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a layer structure in which aluminum oxide and titanium oxide are separated and do not mix each other, in a film forming method in which an insulating membrane is formed by alternately laminating the aluminum oxide and the titanium oxide by using an ALE method. SOLUTION: This method for forming a film is provided by setting a base substrate temperature at which the aluminum oxide and the titanium oxide do not mix with each other based on the aimed film thickness of the aluminum oxide and the titanium oxide by utilizing a phenomenon in that when the film thickness of the titanium oxide becomes smaller, then the base substrate temperature so as not to mix the titanium oxide with the aluminum oxide, becomes higher and a conditional zone R1 for realizing such layer structure having the separated aluminum oxide and titanium oxide, moves to high temperature side, and forming the film at the above set base substrate temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子層エピタキシ
ャル成長法(アトミック・レイヤー・エピタキシー法、
以下、ALE法という)により酸化アルミニウムと酸化
チタンとが交互に積層された絶縁膜を成膜する成膜方法
に関し、例えば、ディスプレイ用絶縁膜、半導体の絶縁
膜、各種材料の不動態コーティングに用いられる。
The present invention relates to an atomic layer epitaxial growth method (atomic layer epitaxy method,
A method for forming an insulating film in which aluminum oxide and titanium oxide are alternately stacked by the ALE method is used for, for example, an insulating film for a display, an insulating film of a semiconductor, and a passive coating of various materials. Can be

【0002】[0002]

【従来の技術】例えば、この種のALE法による成膜方
法に関するものとしては、特告昭64−5440公報に
記載のものがある。これは、塩化アルミニウムと水とに
よる酸化アルミニウムの生成反応、及び、塩化チタンと
水とによる酸化チタンの生成反応を、反応室内で交互に
行わせることにより、絶縁体である酸化アルミニウムと
誘電体である酸化チタンとが交互に積層された絶縁性に
優れた絶縁膜(ATO膜)を形成するものである。
2. Description of the Related Art For example, a method described in Japanese Patent Application Laid-Open No. 64-5440 is related to this type of film forming method by the ALE method. This is because the aluminum oxide and the dielectric are made to alternately perform the reaction of producing aluminum oxide by aluminum chloride and water and the reaction of producing titanium oxide by titanium chloride and water in the reaction chamber. This is to form an insulating film (ATO film) having excellent insulating properties, in which certain titanium oxides are alternately laminated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来公報に基づいて本発明者等が絶縁膜を試作したとこ
ろ、部分的に酸化アルミニウムと酸化チタンとがきちん
と分離した層構造を形成せずに、酸化アルミと酸化チタ
ンとが混合された構造となってしまうことがわかった。
SUMMARY OF THE INVENTION However, when the present inventors prototyped an insulating film based on the above-mentioned conventional gazette, they found that a layer structure in which aluminum oxide and titanium oxide were not properly separated was formed. It was found that the structure was a mixture of aluminum oxide and titanium oxide.

【0004】本発明者等がTEM(透過型電子顕微鏡)
観察等を行ったところ、酸化アルミニウムと酸化チタン
とがきちんと分離した層構造となっている部分では、両
材料がアモルファス状態であるのに対し、混合構造の部
分では、結晶化している(酸化アルミニウムと酸化チタ
ンとの混合結晶と思われる)ことが確認された。これ
は、酸化チタンの結晶を核にして各層を跨いで結晶化が
進むことに起因していると考えられる。
[0004] The present inventors have developed a TEM (transmission electron microscope).
According to observations, both materials are in an amorphous state in a layer structure where aluminum oxide and titanium oxide are properly separated, whereas in a mixed structure portion, they are crystallized (aluminum oxide). And titanium oxide). This is considered to be due to the fact that crystallization progresses over each layer with the titanium oxide crystal as a nucleus.

【0005】酸化アルミニウムと酸化チタンが分離した
層構造でなく、混合している構造では、結晶粒界を通っ
て電流がリークする現象が起きやすい。また、抵抗体で
ある酸化チタンが絶縁膜である酸化アルミニウムを突き
抜けて電流のリークの原因となる場合もある。このリー
ク電流により絶縁膜の性能が低下したり、絶縁膜の耐久
性が悪くなったりする問題点がある。そのために、両材
料を混合させず、きちんと分離した層構造にする必要が
ある。
[0005] In a structure in which aluminum oxide and titanium oxide are not separated layers but mixed, a phenomenon in which current leaks through crystal grain boundaries tends to occur. Further, in some cases, titanium oxide as a resistor penetrates through aluminum oxide as an insulating film and causes current leakage. There is a problem that the performance of the insulating film is deteriorated due to the leak current, and the durability of the insulating film is deteriorated. For this purpose, it is necessary to form a layer structure which is not separated from the other materials and is properly separated.

【0006】本発明は上記したような本発明者等が新規
に見出した課題に基づいてなされたものであり、その目
的とするところは、ALE法により酸化アルミニウムと
酸化チタンとが交互積層された絶縁膜を成膜する成膜方
法において、酸化アルミニウムと酸化チタンとが混合せ
ずに分離した層構造を実現することにある。
The present invention has been made based on the above-mentioned problems newly found by the present inventors. The object of the present invention is to alternately laminate aluminum oxide and titanium oxide by the ALE method. In a film formation method for forming an insulating film, an object is to realize a layer structure in which aluminum oxide and titanium oxide are separated without being mixed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
鋭意検討した結果、酸化チタンの膜厚が大きくなるに連
れて成膜温度を低くしないと酸化アルミニウムと酸化チ
タンとが混合しやすくなることを、実験的に見出した
(図1参照)。請求項1〜請求項4記載の発明は、この
検討結果に基づいてなされたものである。
Means for Solving the Problems As a result of intensive studies to achieve the above object, it is found that aluminum oxide and titanium oxide are easily mixed unless the film forming temperature is lowered as the thickness of titanium oxide increases. Was found experimentally (see FIG. 1). The inventions described in claims 1 to 4 have been made based on the results of this study.

【0008】即ち、請求項1〜請求項4の発明において
は、酸化アルミニウム及び酸化チタンの膜厚に基づい
て、酸化アルミニウムと酸化チタンとが混合しないよう
な成膜温度を設定し、この設定された成膜温度にて絶縁
膜の成膜を行うことを特徴としている。それによって、
酸化アルミニウムと酸化チタンとが混合せずに分離した
層構造を実現することができる。
That is, in the present invention, a film forming temperature is set based on the film thickness of aluminum oxide and titanium oxide so that aluminum oxide and titanium oxide are not mixed. It is characterized in that the insulating film is formed at the formed film forming temperature. Thereby,
A layer structure in which aluminum oxide and titanium oxide are separated without being mixed can be realized.

【0009】ここで、酸化アルミニウムの膜厚を5nm
とした場合を考えると、成膜温度を400℃以下に設定
すれば、酸化チタンの膜厚の大きさに依らず分離した層
構造を実現することができ、また、酸化チタンの膜厚を
2nm以上としたとき、成膜温度を450℃未満に設定
することが好ましく、酸化チタンの膜厚を1.1nm以
上としたとき、成膜温度を500℃未満に設定すること
が好ましい(図1参照)。
Here, the thickness of the aluminum oxide is set to 5 nm.
When the film formation temperature is set to 400 ° C. or less, a separated layer structure can be realized regardless of the thickness of the titanium oxide film. In this case, the film formation temperature is preferably set to less than 450 ° C., and when the thickness of titanium oxide is set to 1.1 nm or more, the film formation temperature is preferably set to less than 500 ° C. (see FIG. 1). ).

【0010】さらに、検討を進めたところ、酸化アルミ
ニウムと酸化チタンとの混合構造は、下地(基板)に近
い部分では殆ど発生せず、積層構造の途中部から絶縁膜
の表面側の部位に渡って発生しやすいことがわかった。
さらに、層構造の乱れ度合は、混合構造の発生の起点で
ある積層構造の途中部から、絶縁膜の表面側の部位に行
くほど、ひどくなることがわかった。
Further studies have shown that a mixed structure of aluminum oxide and titanium oxide hardly occurs in a portion close to the base (substrate), and extends from a middle portion of the laminated structure to a portion on the surface side of the insulating film. It was found that it was easy to occur.
Furthermore, it was found that the degree of disorder in the layer structure became more severe from the middle of the laminated structure, which is the starting point of the occurrence of the mixed structure, to the portion on the surface side of the insulating film.

【0011】このことから、積層構造の途中部において
は、下地寄りの部位に比べて平坦性が劣るため、酸化チ
タンの結晶を核にした結晶化が起こり、この結晶化に伴
い、層平面に凹凸が発生して層構造の平坦性が悪化し、
この平坦性の悪化により、酸化チタンの結晶化がいっそ
う進んでいくと考えられる。そこで、積層構造中に、酸
化チタンの結晶化による凹凸を平坦化する手段を形成し
てやれば良いのではないかと考え、実験検討を行った。
From the above, since the flatness is inferior in the middle of the laminated structure as compared with the portion close to the base, crystallization with the titanium oxide crystal as a nucleus occurs. Irregularities occur and the flatness of the layer structure deteriorates,
It is considered that the crystallization of titanium oxide is further promoted by the deterioration of the flatness. Therefore, an experimental study was conducted on the assumption that a means for flattening irregularities due to crystallization of titanium oxide may be formed in the laminated structure.

【0012】請求項5記載の発明は、この検討結果に基
づいてなされたものであり、請求項5の発明によれば、
積層構造を平坦化するために、交互に積層される酸化ア
ルミニウムの所定膜厚よりも膜厚が厚い平坦化用の酸化
アルミニウムを、積層構造の途中に少なくとも1層以上
成膜することを特徴としている。
[0012] The invention of claim 5 is based on the result of this examination, and according to the invention of claim 5,
In order to flatten the stacked structure, at least one or more layers of flattening aluminum oxide having a thickness larger than a predetermined thickness of the alternately stacked aluminum oxide are formed in the middle of the stacked structure. I have.

【0013】それによれば、厚い平坦化用の酸化アルミ
ニウムを積層構造の途中に少なくとも1層以上成膜する
ことによって、酸化チタンの結晶化に伴い発生した層平
面の凹凸を吸収することができる。そのため、乱れかけ
た層構造は平坦化用の酸化アルミニウムによって平坦化
されるから、各層を跨いで結晶化が進行していくのを抑
制することができる。
According to this, by forming at least one layer of thick aluminum oxide for flattening in the middle of the laminated structure, it is possible to absorb the unevenness of the layer plane caused by the crystallization of titanium oxide. Therefore, the disordered layer structure is flattened by the flattening aluminum oxide, so that the progress of crystallization over each layer can be suppressed.

【0014】よって、本発明によれば、酸化アルミニウ
ムと酸化チタンとが混合せずに分離した層構造を実現す
ることができる。ここで、酸化アルミニウムの所定膜厚
を5nmとした場合、平坦化用の酸化アルミニウムの膜
厚を20nmとすれば、請求項5の発明の効果を良好に
発揮することができる。
Therefore, according to the present invention, a layer structure in which aluminum oxide and titanium oxide are separated without being mixed can be realized. Here, if the predetermined thickness of the aluminum oxide is 5 nm, and if the thickness of the aluminum oxide for flattening is 20 nm, the effect of the invention of claim 5 can be exhibited well.

【0015】また、請求項7記載の発明は、個々の酸化
チタンの層に、結晶化の進行を防止する手段を形成する
ことに着目してなされたものであり、個々の酸化チタン
の層を形成する際に、その形成途中において酸化チタン
の成膜を一旦停止し、酸化アルミニウムを成膜した後、
再び酸化チタンを成膜することにより、個々の酸化チタ
ンの層を、酸化チタンで酸化アルミニウムを挟んだサン
ドイッチ構造とすることを特徴としている。
The invention according to claim 7 is based on the fact that a means for preventing the progress of crystallization is formed in each titanium oxide layer. During the formation, the film formation of titanium oxide is temporarily stopped during the formation, and after the film formation of aluminum oxide,
By forming titanium oxide again, each titanium oxide layer has a sandwich structure in which aluminum oxide is sandwiched between titanium oxides.

【0016】本発明によれば、個々の酸化チタンの層
を、酸化チタンで酸化アルミニウムを挟んだサンドイッ
チ構造とすることができるため、個々の酸化チタンの層
において、挟まれた酸化アルミニウムが障壁となり、酸
化チタンの結晶化の進行を防止することができる。よっ
て、本発明によれば、酸化アルミニウムと酸化チタンと
が混合せずに分離した層構造を実現することができる。
According to the present invention, each titanium oxide layer can have a sandwich structure in which aluminum oxide is sandwiched between titanium oxides. Therefore, the aluminum oxide sandwiched in each titanium oxide layer serves as a barrier. In addition, the progress of crystallization of titanium oxide can be prevented. Therefore, according to the present invention, it is possible to realize a layer structure in which aluminum oxide and titanium oxide are separated without being mixed.

【0017】[0017]

【発明の実施の形態】(第1実施形態)本実施形態はA
LE(原子層エピタキシャル成長)法による絶縁膜とし
てのATO膜を成膜する方法に係るものであり、本成膜
方法は、通常のALE法に用いられる成膜装置により実
現可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment)
The present invention relates to a method of forming an ATO film as an insulating film by an LE (atomic layer epitaxial growth) method, and this film forming method can be realized by a film forming apparatus used in a normal ALE method.

【0018】この種の一般的な成膜装置は、図示しない
が、成膜用の基板を収納する反応室、反応室近傍に設け
られ輻射等により基板を加熱するヒータ、反応に用いる
各ガスを反応室に供給する供給系及び反応室内のガスを
排気する排気系を備えている。また、成膜用の基板とし
ては、ディスプレイ用のガラス基板や半導体素子用のシ
リコン基板等を採用することができる。
Although not shown, a general film forming apparatus of this type includes a reaction chamber for accommodating a substrate for film formation, a heater provided near the reaction chamber for heating the substrate by radiation or the like, and a gas used for the reaction. A supply system for supplying the reaction chamber and an exhaust system for exhausting gas in the reaction chamber are provided. Further, as a substrate for film formation, a glass substrate for a display, a silicon substrate for a semiconductor element, or the like can be employed.

【0019】そして、本実施形態では、塩化アルミニウ
ム(AlCl3)と水(H2O)とによる酸化アルミニウ
ム(Al23)の生成反応、及び、塩化チタン(TiC
4)と水とによる酸化チタン(TiO2)の生成反応
を、反応室内で交互に行わせることにより、絶縁体であ
るAl23と誘電体であるTiO2とが交互に積層され
た絶縁性に優れた絶縁膜(ATO膜)を形成するもので
ある。
In the present embodiment, the reaction of forming aluminum oxide (Al 2 O 3 ) with aluminum chloride (AlCl 3 ) and water (H 2 O) and titanium chloride (TiC)
l 4 ) and water to generate titanium oxide (TiO 2 ) alternately in the reaction chamber, whereby Al 2 O 3 as an insulator and TiO 2 as a dielectric were alternately laminated. This is for forming an insulating film (ATO film) having excellent insulating properties.

【0020】成膜方法としては、まず、反応室内に設置
された基板を、ヒータによって所望の反応が起こる以上
の温度に加熱する。基板温度(成膜温度)が成膜可能な
温度に達したら、塩化アルミニウムのガス(AlCl3
ガス)をキャリアガスである窒素ガス(N2ガス)と共
に、反応室へ導入し、基板近傍に流して基板に吸着させ
る。その後、基板に吸着した以外の余剰ガスを除去する
ため、N2ガスのみ流し、N2パージを行なう。
As a film forming method, first, a substrate placed in a reaction chamber is heated by a heater to a temperature at which a desired reaction occurs. When the substrate temperature (film formation temperature) reaches a temperature at which a film can be formed, aluminum chloride gas (AlCl 3
Gas) together with a nitrogen gas (N 2 gas) as a carrier gas is introduced into the reaction chamber, flows near the substrate, and is adsorbed on the substrate. Thereafter, in order to remove excess gas other than the gas adsorbed on the substrate, only N 2 gas is flown and N 2 purge is performed.

【0021】さらに、H2OをN2ガスと共に反応室へ導
入し、基板近傍に流して基板上でAlCl3と反応させ
て、目的とする薄膜であるAl23層を形成する。その
後、反応に供した以外の余剰ガスを除去するため、再び
上記N2パージを行なう。このように、Al23の1サ
イクルは、AlCl3+パージ+H2O+パージ、という
2つの反応体パルスと2つのパージパルスとからなる。
Further, H 2 O is introduced into the reaction chamber together with the N 2 gas, flows near the substrate, and reacts with AlCl 3 on the substrate to form an Al 2 O 3 layer as a target thin film. Thereafter, in order to remove excess gas other than the gas used for the reaction, the N 2 purge is performed again. Thus, one cycle of Al 2 O 3 consists of two reactant pulses, AlCl 3 + purge + H 2 O + purge, and two purge pulses.

【0022】このようなガスの1サイクルを繰り返すこ
とにより、所望の膜厚を有するAl 23層を形成するこ
とができる。TiO2層についても、TiCl4+パージ
+H 2O+パージからなる1サイクルを繰り返すことに
より同様に形成することができる。そして、これら両層
の成膜を交互に行うことにより、上記絶縁膜を形成する
ことができる。
One cycle of such a gas is repeated.
With the above, Al having a desired film thickness TwoOThreeForming a layer
Can be. TiOTwoAlso for the layer, TiClFour+ Purge
+ H TwoTo repeat one cycle consisting of O + purge
It can be formed more similarly. And both these layers
The insulating film is formed by alternately forming a film of
be able to.

【0023】なお、各反応に用いる各成膜材料(AlC
3、H2O、TiCl4)は、各々、成膜装置に備えら
れた別々の容器(図示せず)に、固体もしくは液体状態
で収納され、各容器内にて昇華または蒸発により反応ガ
スが発生するように所望の温度(容器温度)となってい
る。そして、供給系のバルブを制御する等により、各容
器内のガスを所定流量のN2ガスとともに反応室へ供給
したり、N2ガスのみ流すようにしている。
Each of the film forming materials (AlC
l 3 , H 2 O, and TiCl 4 ) are each stored in a solid or liquid state in a separate container (not shown) provided in the film forming apparatus, and sublimated or evaporated in each container to produce a reaction gas. At a desired temperature (container temperature) such that the temperature rises. By controlling a valve of a supply system, the gas in each container is supplied to the reaction chamber together with a predetermined flow rate of N 2 gas, or only the N 2 gas flows.

【0024】かかるALE法による成膜方法において、
鋭意検討した結果、層構造が保たれるか乱れるかは、A
23及びTiO2の膜厚と成膜温度が支配的な要因で
あることがわかった。総膜厚250nmのAl23とT
iO2からなる絶縁膜を成膜する場合において、各々の
材料が混合されずに層構造となる成膜条件について検討
した例を示す。
In the film forming method by the ALE method,
As a result of intensive studies, it is determined whether the layer structure is maintained or disturbed.
It has been found that the film thickness and film forming temperature of l 2 O 3 and TiO 2 are the dominant factors. Al 2 O 3 and T with a total film thickness of 250 nm
In the case where an insulating film made of iO 2 is formed, an example in which film forming conditions for forming a layer structure without mixing each material will be described.

【0025】ここで、例えば、プロセス圧力(反応室内
の圧力)は例えば約200Pa、キャリアガスであるN
2ガスの流量は3リットル/分とし、AlCl3ガスの容
器温度を151℃、H2Oガスの容器温度を42℃、T
iCl4ガスの容器温度を30℃とした。また、基板と
しては、通常のガラス基板を用いた。
Here, for example, the process pressure (pressure in the reaction chamber) is, for example, about 200 Pa, and the carrier gas is N.
The flow rate of the two gases was 3 liters / minute, the container temperature of the AlCl 3 gas was 151 ° C., the container temperature of the H 2 O gas was 42 ° C., and T
The container temperature of the iCl 4 gas was 30 ° C. Further, a normal glass substrate was used as the substrate.

【0026】また、Al23の1サイクルは上述のよう
に、AlCl3+パージ+H2O+パージであるが、各パ
ルスの時間は例えば、順に0.5秒+1.0秒+0.8
秒+2.0秒とした。一方、TiO2の1サイクルは上
述のように、TiCl4+パージ+H2O+パージである
が、各パルスの時間は例えば、順に0.4秒+1.0秒
+0.6秒+2.0秒とした。
One cycle of Al 2 O 3 is AlCl 3 + purge + H 2 O + purge as described above, and the time of each pulse is, for example, 0.5 seconds + 1.0 seconds + 0.8.
Seconds + 2.0 seconds. On the other hand, one cycle of TiO 2 is TiCl 4 + purge + H 2 O + purge as described above, and the time of each pulse is, for example, 0.4 seconds + 1.0 seconds + 0.6 seconds + 2.0 seconds. did.

【0027】このような成膜条件において、Al23
単層の膜厚を5nmとし、基板温度(本発明でいう成膜
温度)とTiO2の単層の膜厚を種々変えて検討した。
ちなみに、上記成膜条件にて、Al23の1サイクルを
111回繰り返すことにより、膜厚が5nmのAl23
の単層が成膜できる。また、TiO2の1サイクルを5
1回繰り返すことにより、膜厚が1.1nmのTiO2
の単層が成膜できる。TiO2の膜厚変更は、このサイ
クル回数を基準として適宜変更することで行うことがで
きる。
Under such film forming conditions, the thickness of the Al 2 O 3 single layer was set to 5 nm, and the substrate temperature (the film forming temperature in the present invention) and the thickness of the TiO 2 single layer were variously examined. did.
Incidentally, in the above film forming conditions, by repeating 111 times the cycle of the Al 2 O 3, thickness 5nm of Al 2 O 3
Can be formed into a single layer. In addition, one cycle of TiO 2
By repeating once, TiO 2 having a film thickness of 1.1 nm is obtained.
Can be formed into a single layer. The film thickness of TiO 2 can be changed by appropriately changing the number of cycles as a reference.

【0028】図1に、基板温度(℃)とTiO2の単層
の膜厚(酸化チタン膜厚、単位:nm)との関係をグラ
フとして示す。ここで、基板温度は、基板近傍に設置し
た熱電対等により求め、層構造の状態は、成膜された総
膜厚250nmのAl23とTiO2からなる絶縁膜の
積層方向断面をTEM観察することにより求めた。
FIG. 1 is a graph showing the relationship between the substrate temperature (° C.) and the thickness of a single layer of TiO 2 (thickness of titanium oxide, unit: nm). Here, the substrate temperature is obtained by a thermocouple or the like placed near the substrate, and the state of the layer structure is shown by TEM observation of a cross section in the stacking direction of an insulating film made of Al 2 O 3 and TiO 2 having a total thickness of 250 nm. I asked by doing.

【0029】図1中のグラフ曲線R0よりも下側の領域
(斜線ハッチング部)R1は、Al 23とTiO2がき
ちんと分離した層構造を形成する条件領域であり、該グ
ラフ曲線R0以上の領域R2は、Al23とTiO2
混合された構造が出現する条件領域である。図1から、
酸化チタン膜厚が薄いほど、条件領域R1が高温側へ移
動し、基板温度(成膜温度)を高くしても、各材料がき
ちんと分離した層構造が形成されることがわかる。
Area below graph curve R0 in FIG.
(Hatched area) R1 is Al TwoOThreeAnd TiOTwoPostcard
This is a condition area for forming a properly separated layer structure.
The region R2 of the rough curve R0 or more is made of AlTwoOThreeAnd TiOTwoBut
This is a condition area where a mixed structure appears. From FIG.
The condition region R1 shifts to the higher temperature side as the titanium oxide film thickness is smaller.
Movement, and even if the substrate temperature (film formation temperature) is raised,
It can be seen that a properly separated layer structure is formed.

【0030】また、ALE法によりAl23とTiO2
からなる絶縁膜を形成する場合、基板温度(成膜温度)
はできる限り高い方が好ましい。これは、温度が高くな
るほど、成膜された層(薄膜)内に残存する塩素(C
l)等の不純物が除去しやすくなるためである。これら
から、Al23とTiO2がきちんと分離した層構造を
形成するための成膜条件として、次のことが言える。
Further, Al 2 O 3 and TiO 2 are formed by the ALE method.
When forming an insulating film consisting of
Is preferably as high as possible. This is because chlorine (C) remaining in the formed layer (thin film) increases as the temperature increases.
This is because impurities such as l) can be easily removed. From these, the following can be said as film forming conditions for forming a layer structure in which Al 2 O 3 and TiO 2 are properly separated.

【0031】Al23の単層の膜厚が5nmとなる条件
で積層した場合、まず、基板温度が400℃以下では、
酸化チタン膜厚に依らず、各層が分離された層構造とな
る。また、酸化チタン膜厚が2nm以上では基板温度を
450℃未満に、酸化チタン膜厚が1.1nm以上では
基板温度を500℃未満に設定することが好ましい。
When a single layer of Al 2 O 3 is laminated under the condition of a thickness of 5 nm, first, when the substrate temperature is 400 ° C. or lower,
Regardless of the thickness of the titanium oxide film, each layer has a separated layer structure. Further, it is preferable to set the substrate temperature to less than 450 ° C. when the titanium oxide film thickness is 2 nm or more, and to set the substrate temperature to less than 500 ° C. when the titanium oxide film thickness is 1.1 nm or more.

【0032】ちなみに、基板温度が450℃の時、酸化
チタン膜厚を2nmよりも薄くすると分離した層構造に
なり、2nm以上とすると各層が混合された膜になる。
また、基板温度が500℃の時、酸化チタン膜厚を1.
5nmよりも薄くすると分離した層構造になり、1.5
nm以上とすると各層が混合された膜になる。
By the way, when the substrate temperature is 450 ° C., if the thickness of the titanium oxide is thinner than 2 nm, the structure becomes a separated layer structure. If the thickness is 2 nm or more, the layers are mixed.
When the substrate temperature was 500 ° C., the thickness of the titanium oxide film was 1.
If the thickness is smaller than 5 nm, a separated layer structure is obtained, and 1.5
When the thickness is not less than nm, each layer becomes a mixed film.

【0033】以上のように、本実施形態は、酸化チタン
の膜厚が小さくなるに連れて、酸化アルミニウムと酸化
チタンとが混合しないような基板温度(成膜温度)が高
くなるという、本発明者等が独自に見出した現象を利用
するものであり、狙いとする酸化アルミニウムと酸化チ
タンの膜厚に基づいて基板温度(成膜温度)を設定する
ことを特徴としたものである。そして、本成膜方法によ
れば、酸化アルミニウムと酸化チタンとが混合せずに分
離した層構造を実現することができる。
As described above, according to the present embodiment, as the thickness of titanium oxide is reduced, the substrate temperature (film formation temperature) at which aluminum oxide and titanium oxide are not mixed increases. The present invention utilizes a phenomenon uniquely found by a person or the like, and is characterized by setting a substrate temperature (film formation temperature) based on a target film thickness of aluminum oxide and titanium oxide. Then, according to the present film forming method, a layer structure in which aluminum oxide and titanium oxide are separated without being mixed can be realized.

【0034】(第2実施形態)本第2実施形態は、原子
層エピタキシャル成長法により酸化アルミニウムと酸化
チタンとが、それぞれ所定膜厚にて交互に積層された絶
縁膜(ATO膜)を成膜する成膜方法において、積層構
造を平坦化するために酸化アルミニウムの所定膜厚より
も膜厚が厚い平坦化用の酸化アルミニウムを、積層構造
の途中に少なくとも1層以上成膜することを特徴とする
ものである。以下、主として、上記第1実施形態と異な
るところについて述べる。
(Second Embodiment) In a second embodiment, an insulating film (ATO film) in which aluminum oxide and titanium oxide are alternately laminated in a predetermined film thickness by an atomic layer epitaxial growth method is formed. In the film formation method, at least one layer of planarizing aluminum oxide having a thickness larger than a predetermined thickness of aluminum oxide is formed in the middle of the layered structure to planarize the layered structure. Things. Hereinafter, the points different from the first embodiment will be mainly described.

【0035】本実施形態に係る絶縁膜の断面構造を図2
(a)に模式的に示す。なお、図2(b)は、比較例と
しての従来の絶縁膜の模式的断面構造を示す図である。
図2中、1は酸化アルミニウム層(Al23層)、2は
酸化チタン層(TiO2層)、3は平坦化用の酸化アル
ミニウム層(以下、平坦化層という)である。
FIG. 2 shows a sectional structure of the insulating film according to this embodiment.
FIG. FIG. 2B is a diagram showing a schematic cross-sectional structure of a conventional insulating film as a comparative example.
In FIG. 2, 1 is an aluminum oxide layer (Al 2 O 3 layer), 2 is a titanium oxide layer (TiO 2 layer), and 3 is an aluminum oxide layer for flattening (hereinafter, referred to as a flattening layer).

【0036】所定膜厚にて積層されるAl23層1より
も厚い平坦化層3を積層構造の途中に少なくとも1層以
上成膜することによって、TiO2層2の結晶化に伴い
発生した層平面の凹凸を吸収することができる。そのた
め、乱れかけた層構造は平坦化層3によって平坦化され
るから、各層を跨いで結晶化が進行していくのを抑制す
ることができる。
By forming at least one flattening layer 3 thicker than the Al 2 O 3 layer 1 having a predetermined thickness in the middle of the laminated structure, the flattening layer 3 is generated as the TiO 2 layer 2 is crystallized. The unevenness on the layer plane can be absorbed. Therefore, the disordered layer structure is flattened by the flattening layer 3, so that the progress of crystallization over each layer can be suppressed.

【0037】図2に示す積層構造において、総膜厚25
0nmのAl23層1とTiO2層2からなる絶縁膜を
成膜する際に、各々の材料が混合されずに層構造となる
成膜条件の例を示す。Al23層1、TiO2層2の単
層の膜厚は、それぞれ5nm、平坦化層3の膜厚は20
nmとした。各層1〜3は、上記第1実施形態にて述べ
た成膜条件の例に基づいて、サイクル回数を適宜変更す
ることで所望の膜厚にて成膜することができ、特に、平
坦化層3は、Al23層1のサイクル回数を多く(本例
では4倍程度)することで形成できる。
In the laminated structure shown in FIG.
An example of film forming conditions for forming a layer structure without mixing each material when forming an insulating film composed of an Al 2 O 3 layer 1 and a TiO 2 layer 2 of 0 nm will be described. The thickness of each of the single layers of the Al 2 O 3 layer 1 and the TiO 2 layer 2 is 5 nm, and the thickness of the flattening layer 3 is 20.
nm. Each of the layers 1 to 3 can be formed to have a desired film thickness by appropriately changing the number of cycles based on the example of the film forming conditions described in the first embodiment. No. 3 can be formed by increasing the number of cycles of the Al 2 O 3 layer 1 (about four times in this example).

【0038】このように、各層1、2の単層の膜厚がそ
れぞれ5nmとなる条件で積層した場合、TEM観察に
よれば、最初の数層は各材料が分離された層構造となる
が、積層するに連れて各材料の層構造が乱れてしまう。
これは、「解決手段」の欄にて述べたように、TiO2
の結晶化がAl23の層に影響を及ぼすと考えられるか
らである。
As described above, when the single layers of the layers 1 and 2 are laminated under the condition that the thickness of each layer is 5 nm, according to TEM observation, the first few layers have a layer structure in which each material is separated. However, the layer structure of each material is disturbed as the layers are stacked.
This is because, as mentioned in the “Solution” section, TiO 2
Is considered to affect the Al 2 O 3 layer.

【0039】しかしながら、図2(a)に示す本実施形
態の絶縁膜では、積層構造の途中に平坦化層3を20n
m程度積層することで、平坦化層3の上面は平坦面とな
るため、層構造が乱れてしまう前に層構造が大きく乱れ
ることを防止できる。よって、本実施形態によれば、平
坦化層3によって、Al23とTiO2との各材料が混
合せずに分離した層構造を実現することができる。
However, in the insulating film of the present embodiment shown in FIG.
By stacking about m layers, the upper surface of the planarizing layer 3 becomes a flat surface, so that it is possible to prevent the layer structure from being significantly disturbed before the layer structure is disturbed. Therefore, according to the present embodiment, it is possible to realize a layer structure in which the respective materials of Al 2 O 3 and TiO 2 are separated without being mixed by the planarization layer 3.

【0040】また、本実施形態の平坦化層3は、ATO
膜の構成材料であるAl23により形成するものである
ため、通常のALE成膜装置を用いて成膜を行うことが
可能である。ただし、当然ではあるが、平坦化層3の厚
さは、絶縁膜の性能を維持できる程度の厚さにとどめる
ことは勿論である。なお、平坦化層3は積層構造の途中
部の2箇所以上に介在させてもよい。
The flattening layer 3 of this embodiment is made of ATO.
Since the film is formed of Al 2 O 3 which is a constituent material of the film, the film can be formed using a normal ALE film forming apparatus. However, needless to say, the thickness of the flattening layer 3 is of course limited to such a level that the performance of the insulating film can be maintained. Note that the planarization layer 3 may be interposed at two or more portions in the middle of the laminated structure.

【0041】(第3実施形態)本第3実施形態に係る絶
縁膜の断面構造を図3に模式的に示し、主として、上記
第1実施形態と異なるところについて述べる。本実施形
態は、個々のTiO2層2に、結晶化の進行を防止する
手段を形成することに着目してなされたものであり、個
々のTiO2層2を、第1のTiO2層2a及び第2のT
iO2層2bでAl23障壁層2cを挟んだサンドイッ
チ状の3層構造とすることを特徴とするものである。
(Third Embodiment) FIG. 3 schematically shows a cross-sectional structure of an insulating film according to a third embodiment, and mainly different points from the first embodiment will be described. This embodiment, the individual TiO 2 layer 2, which has been made in view of forming means for preventing the progress of crystallization, individual TiO 2 layer 2, a first TiO 2 layer 2a And the second T
It is characterized by having a sandwich-like three-layer structure in which an Al 2 O 3 barrier layer 2c is sandwiched between iO 2 layers 2b.

【0042】個々のTiO2層2において、両TiO2
2a、2bで挟まれたAl23障壁層2cは、TiO2
の結晶化進行防止手段となるものである。このAl23
障壁層2cの膜厚は、所定膜厚にて積層されるAl23
層1よりも薄いものとなっている。例えば、単層の膜厚
がそれぞれ5nmであるAl23層1とTiO2層2か
らなる総膜厚250nmの絶縁膜を成膜する場合、Ti
2層2の単層は、膜厚が1nm程度のAl23障壁層
2cを、各々膜厚が2nmである両TiO2層2a、2
bにて挟んだ3層構造とすることができる。
In each TiO 2 layer 2, the Al 2 O 3 barrier layer 2c sandwiched between the two TiO 2 layers 2a and 2b is made of TiO 2
Is a means for preventing the progress of crystallization. This Al 2 O 3
The thickness of the barrier layer 2c is Al 2 O 3
It is thinner than layer 1. For example, when forming an insulating film having a total film thickness of 250 nm including an Al 2 O 3 layer 1 and a TiO 2 layer 2 each having a single layer thickness of 5 nm,
A single layer of the O 2 layer 2 includes an Al 2 O 3 barrier layer 2 c having a thickness of about 1 nm and two TiO 2 layers 2 a and 2 each having a thickness of 2 nm.
b to form a three-layer structure.

【0043】本実施形態の絶縁膜の成膜にあたっては、
個々のTiO2層2を形成する際に、その形成途中にお
いてTiO2の成膜を一旦停止し、Al23を成膜した
後、再びTiO2を成膜することにより、個々のTiO2
層2を上記サンドイッチ構造とすることができる。この
とき、上記第1実施形態にて述べた成膜条件の例に基づ
いて、サイクル回数を適宜変更することで所望の膜厚に
て成膜することができる。
In forming the insulating film of this embodiment,
In forming the individual TiO 2 layer 2 once stops the formation of TiO 2 in the course of its formation, after forming the Al 2 O 3, by re-forming the TiO 2, each of the TiO 2
Layer 2 can have the above sandwich structure. At this time, a film can be formed with a desired film thickness by appropriately changing the number of cycles based on the example of the film forming conditions described in the first embodiment.

【0044】そして、本実施形態によれば、個々のTi
2層2において挟まれたAl23障壁層2cが障壁と
なり、TiO2の結晶化の進行を防止することができる
ため、Al23とTiO2とが混合せずに分離した層構
造を実現することができる。なお、当然ではあるが、A
23障壁層2cの厚さは、結晶化進行防止手段として
機能する厚さがあれば良く、絶縁膜の性能を維持できる
程度の厚さにとどめることは勿論である。
According to the present embodiment, each Ti
Since the Al 2 O 3 barrier layer 2 c sandwiched between the O 2 layers 2 serves as a barrier to prevent the progress of crystallization of TiO 2, a layer in which Al 2 O 3 and TiO 2 are separated without being mixed. The structure can be realized. Of course, A
The thickness of the l 2 O 3 barrier layer 2c may be any thickness as long as it functions as a means for preventing the progress of crystallization.

【0045】以上の各実施形態によれば、酸化アルミニ
ウムと酸化チタンとが混合せずに分離した層構造を実現
できるため、リーク電流が発生しにくく、絶縁性に優
れ、しかも、耐久性に優れた絶縁膜(ATO膜)を提供
することができる。そして、本実施形態は、このような
優れた絶縁膜を有するEL(エレクトロルミネッセン
ス)や液晶ディスプレイ、あるいは、半導体装置を実現
するのに有効である。
According to each of the above embodiments, a layer structure in which aluminum oxide and titanium oxide are separated without being mixed can be realized, so that a leak current is hardly generated, insulation is excellent, and durability is excellent. Insulating film (ATO film) can be provided. The present embodiment is effective for realizing an EL (electroluminescence), a liquid crystal display, or a semiconductor device having such an excellent insulating film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基板温度と酸化チタン膜厚との関係を示すグラ
フである。
FIG. 1 is a graph showing a relationship between a substrate temperature and a titanium oxide film thickness.

【図2】(a)は本発明の第2実施形態に係る絶縁膜の
模式的断面図、(b)は従来の絶縁膜の模式的断面図で
ある。
FIG. 2A is a schematic cross-sectional view of an insulating film according to a second embodiment of the present invention, and FIG. 2B is a schematic cross-sectional view of a conventional insulating film.

【図3】本発明の第3実施形態に係る絶縁膜の模式的断
面図である。
FIG. 3 is a schematic sectional view of an insulating film according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2c…酸化アルミニウム層、2…酸化チタン層、2
a…第1の酸化チタン層、2b…第2の酸化チタン層、
2c…酸化アルミニウム障壁層、3…平坦化層。
1, 2c: aluminum oxide layer, 2: titanium oxide layer, 2
a: a first titanium oxide layer, 2b: a second titanium oxide layer,
2c: aluminum oxide barrier layer, 3: flattening layer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 原子層エピタキシャル成長法により酸化
アルミニウムと酸化チタンとが交互に積層された絶縁膜
を成膜する成膜方法において、 酸化アルミニウム及び酸化チタンの膜厚に基づいて、酸
化アルミニウムと酸化チタンとが混合しないような成膜
温度を設定し、この設定された成膜温度にて前記絶縁膜
の成膜を行うことを特徴とする成膜方法。
1. A film forming method for forming an insulating film in which aluminum oxide and titanium oxide are alternately laminated by an atomic layer epitaxial growth method, wherein the aluminum oxide and the titanium oxide are based on the film thickness of the aluminum oxide and the titanium oxide. A film forming temperature that does not cause mixing of the insulating film, and forming the insulating film at the set film forming temperature.
【請求項2】 前記酸化アルミニウムの膜厚を5nmと
したとき、前記成膜温度を400℃以下に設定すること
を特徴とする請求項1に記載の成膜方法。
2. The film forming method according to claim 1, wherein the film forming temperature is set to 400 ° C. or less when the film thickness of the aluminum oxide is 5 nm.
【請求項3】 前記酸化アルミニウムの膜厚を5nmと
し、前記酸化チタンの膜厚を2nm以上としたとき、前
記成膜温度を450℃未満に設定することを特徴とする
請求項1に記載の成膜方法。
3. The method according to claim 1, wherein the film forming temperature is set to less than 450 ° C. when the film thickness of the aluminum oxide is 5 nm and the film thickness of the titanium oxide is 2 nm or more. Film formation method.
【請求項4】 前記酸化アルミニウムの膜厚を5nmと
し、前記酸化チタンの膜厚を1.1nm以上としたと
き、前記成膜温度を500℃未満に設定することを特徴
とする請求項1に記載の成膜方法。
4. The method according to claim 1, wherein when the thickness of the aluminum oxide is 5 nm and the thickness of the titanium oxide is 1.1 nm or more, the film forming temperature is set to less than 500 ° C. The film forming method according to the above.
【請求項5】 原子層エピタキシャル成長法により酸化
アルミニウムと酸化チタンとが、それぞれ所定膜厚にて
交互に積層された絶縁膜を成膜する成膜方法において、 前記積層構造を平坦化するために前記酸化アルミニウム
の所定膜厚よりも膜厚が厚い平坦化用の酸化アルミニウ
ムを、前記積層構造の途中に少なくとも1層以上成膜す
ることを特徴とする成膜方法。
5. A film forming method for forming an insulating film in which aluminum oxide and titanium oxide are respectively alternately laminated with a predetermined film thickness by an atomic layer epitaxial growth method. A film formation method, comprising forming at least one layer of aluminum oxide for planarization having a thickness larger than a predetermined thickness of aluminum oxide in the middle of the laminated structure.
【請求項6】 前記酸化アルミニウムの所定膜厚を5n
mとし、前記平坦化用の酸化アルミニウムの膜厚を20
nmとすることを特徴とする請求項5に記載の成膜方
法。
6. A predetermined film thickness of said aluminum oxide is 5 n
m, and the thickness of the flattening aluminum oxide is 20
The film forming method according to claim 5, wherein the thickness is set to nm.
【請求項7】 原子層エピタキシャル成長法により酸化
アルミニウムと酸化チタンとが交互に積層された絶縁膜
を成膜する成膜方法において、 個々の前記酸化チタンの層を形成する際に、その形成途
中において酸化チタンの成膜を一旦停止し、酸化アルミ
ニウムを成膜した後、再び酸化チタンを成膜することに
より、個々の前記酸化チタンの層を、酸化チタンで酸化
アルミニウムを挟んだサンドイッチ構造とすることを特
徴とする成膜方法。
7. A film forming method for forming an insulating film in which aluminum oxide and titanium oxide are alternately stacked by atomic layer epitaxial growth, wherein when forming each of said titanium oxide layers, By temporarily stopping the formation of titanium oxide, forming aluminum oxide, and then forming titanium oxide again, the individual titanium oxide layers have a sandwich structure in which aluminum oxide is sandwiched between titanium oxides. A film forming method characterized by the above-mentioned.
JP2000032809A 2000-02-04 2000-02-04 Deposition method by atomic layer epitaxial growth method Expired - Fee Related JP4362919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032809A JP4362919B2 (en) 2000-02-04 2000-02-04 Deposition method by atomic layer epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032809A JP4362919B2 (en) 2000-02-04 2000-02-04 Deposition method by atomic layer epitaxial growth method

Publications (2)

Publication Number Publication Date
JP2001220294A true JP2001220294A (en) 2001-08-14
JP4362919B2 JP4362919B2 (en) 2009-11-11

Family

ID=18557362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032809A Expired - Fee Related JP4362919B2 (en) 2000-02-04 2000-02-04 Deposition method by atomic layer epitaxial growth method

Country Status (1)

Country Link
JP (1) JP4362919B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US6821563B2 (en) 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
JP2007287821A (en) * 2006-04-14 2007-11-01 Jsr Corp Method of forming alumina film
JP2008085327A (en) * 2006-09-27 2008-04-10 Sino-American Silicon Products Inc Solar cell, and method of manufacturing solar cell
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US7670945B2 (en) 1998-10-01 2010-03-02 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
US7682946B2 (en) 2005-11-04 2010-03-23 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
US7695563B2 (en) 2001-07-13 2010-04-13 Applied Materials, Inc. Pulsed deposition process for tungsten nucleation
US7709385B2 (en) 2000-06-28 2010-05-04 Applied Materials, Inc. Method for depositing tungsten-containing layers by vapor deposition techniques
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7780788B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7779784B2 (en) 2002-01-26 2010-08-24 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7838441B2 (en) 2006-10-09 2010-11-23 Applied Materials, Inc. Deposition and densification process for titanium nitride barrier layers
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7892602B2 (en) 2001-12-07 2011-02-22 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US8114789B2 (en) 2001-02-02 2012-02-14 Applied Materials, Inc. Formation of a tantalum-nitride layer
US8123860B2 (en) 2002-01-25 2012-02-28 Applied Materials, Inc. Apparatus for cyclical depositing of thin films
US8187970B2 (en) 2001-07-25 2012-05-29 Applied Materials, Inc. Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
KR101467237B1 (en) * 2013-07-01 2014-12-01 성균관대학교산학협력단 Semiconductor device having superlattice-structured thin film laminated by semiconducting thin film and insulating thin film
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US9080065B2 (en) 2012-03-02 2015-07-14 Jsr Corporation Composition for forming aluminum-containing film, and method for forming aluminum-containing film
US9418890B2 (en) 2008-09-08 2016-08-16 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670945B2 (en) 1998-10-01 2010-03-02 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
US6831004B2 (en) 2000-06-27 2004-12-14 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7709385B2 (en) 2000-06-28 2010-05-04 Applied Materials, Inc. Method for depositing tungsten-containing layers by vapor deposition techniques
US7674715B2 (en) 2000-06-28 2010-03-09 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US7846840B2 (en) 2000-06-28 2010-12-07 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer
US8114789B2 (en) 2001-02-02 2012-02-14 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US7695563B2 (en) 2001-07-13 2010-04-13 Applied Materials, Inc. Pulsed deposition process for tungsten nucleation
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US8187970B2 (en) 2001-07-25 2012-05-29 Applied Materials, Inc. Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US9209074B2 (en) 2001-07-25 2015-12-08 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US8563424B2 (en) 2001-07-25 2013-10-22 Applied Materials, Inc. Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US8293328B2 (en) 2001-10-26 2012-10-23 Applied Materials, Inc. Enhanced copper growth with ultrathin barrier layer for high performance interconnects
US8668776B2 (en) 2001-10-26 2014-03-11 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US8318266B2 (en) 2001-10-26 2012-11-27 Applied Materials, Inc. Enhanced copper growth with ultrathin barrier layer for high performance interconnects
US7780788B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US7892602B2 (en) 2001-12-07 2011-02-22 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US8123860B2 (en) 2002-01-25 2012-02-28 Applied Materials, Inc. Apparatus for cyclical depositing of thin films
US7779784B2 (en) 2002-01-26 2010-08-24 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US7745329B2 (en) 2002-02-26 2010-06-29 Applied Materials, Inc. Tungsten nitride atomic layer deposition processes
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
US6821563B2 (en) 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8282992B2 (en) 2004-05-12 2012-10-09 Applied Materials, Inc. Methods for atomic layer deposition of hafnium-containing high-K dielectric materials
US8343279B2 (en) 2004-05-12 2013-01-01 Applied Materials, Inc. Apparatuses for atomic layer deposition
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US7850779B2 (en) 2005-11-04 2010-12-14 Applied Materisals, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
US9032906B2 (en) 2005-11-04 2015-05-19 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
US7682946B2 (en) 2005-11-04 2010-03-23 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
JP2007287821A (en) * 2006-04-14 2007-11-01 Jsr Corp Method of forming alumina film
JP4706544B2 (en) * 2006-04-14 2011-06-22 Jsr株式会社 Alumina film forming method
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
JP2008085327A (en) * 2006-09-27 2008-04-10 Sino-American Silicon Products Inc Solar cell, and method of manufacturing solar cell
US7838441B2 (en) 2006-10-09 2010-11-23 Applied Materials, Inc. Deposition and densification process for titanium nitride barrier layers
US8043907B2 (en) 2008-03-31 2011-10-25 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US9418890B2 (en) 2008-09-08 2016-08-16 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US9080065B2 (en) 2012-03-02 2015-07-14 Jsr Corporation Composition for forming aluminum-containing film, and method for forming aluminum-containing film
KR101467237B1 (en) * 2013-07-01 2014-12-01 성균관대학교산학협력단 Semiconductor device having superlattice-structured thin film laminated by semiconducting thin film and insulating thin film

Also Published As

Publication number Publication date
JP4362919B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP2001220294A (en) Method for forming film by atomic layer epitaxial growing method
KR100722989B1 (en) Capacitor and method of manufacturing the same
JP3152859B2 (en) Method for manufacturing semiconductor device
US8592294B2 (en) High temperature atomic layer deposition of dielectric oxides
JP3670628B2 (en) Film forming method, film forming apparatus, and semiconductor device manufacturing method
JP5013662B2 (en) Capacitor and manufacturing method thereof
US7888726B2 (en) Capacitor for semiconductor device
US8580671B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
TWI576916B (en) Semiconductor device manufacturing method and substrate processing system
JP5998232B2 (en) Thin film transistor and manufacturing method thereof
US9502686B2 (en) Fluorine-containing polymerized HMDSO applications for OLED thin film encapsulation
KR101812702B1 (en) Thin film transistor and Method of manufacturing the same
KR101898161B1 (en) Method of forming a metal oxide comprising buffer layer
JP3817068B2 (en) Laminated thin film
JP2004165625A (en) Plasma method for manufacturing oxide thin film
JP4230596B2 (en) Thin film formation method
KR102184699B1 (en) Transition metal dichalcogenide thin film and manufacturing method of the same
WO1999032691A1 (en) Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device
KR101884555B1 (en) Method of forming a metal oxide by plasma enhanced atomic layer deposition
JPH06275548A (en) Formation of cvd thin film
US20030049943A1 (en) Method of forming a metal oxide film
JPH05121731A (en) Semiconductor element having ferroelectric layer
Li et al. Quantum confinement induced ultra-high intensity interfacial radiative recombination in nanolaminates
Shimizu et al. MOCVD of ferroelectric Pb (Zr, Ti) O3 and (Pb, La)(Zr, Ti) O3 thin films for memory device applications
JP2007081410A (en) Ferroelectric film, ferroelectric capacitor forming method, and ferroelectric capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees