JP2001218376A - Device and method for controlling charring condition of single batteries constituting batter pack, and battery module using device, and electric-motor vehicle - Google Patents

Device and method for controlling charring condition of single batteries constituting batter pack, and battery module using device, and electric-motor vehicle

Info

Publication number
JP2001218376A
JP2001218376A JP2000026007A JP2000026007A JP2001218376A JP 2001218376 A JP2001218376 A JP 2001218376A JP 2000026007 A JP2000026007 A JP 2000026007A JP 2000026007 A JP2000026007 A JP 2000026007A JP 2001218376 A JP2001218376 A JP 2001218376A
Authority
JP
Japan
Prior art keywords
unit
cell
variation
cells
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000026007A
Other languages
Japanese (ja)
Inventor
Yukimi Shimada
亨海 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000026007A priority Critical patent/JP2001218376A/en
Publication of JP2001218376A publication Critical patent/JP2001218376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in a conventional battery pack, where a plurality of nickel hydrogen batteries or the like are connected in series, such as in the voltage of each battery cell gradually becomes unequal and that the management takes much time. SOLUTION: A voltage Vi across the terminals of each single battery ECi is detected, and when the maximum value of the dispersion gets over a prescribed value, its discharge switch Ti is closed as to a single battery ECi, where the dispersion is on a certain level or higher, thereby forming a closed circuit passing a discharge resistor Ri. As a result, only the battery ECi where the voltage is high is discharged, and the dispersion of voltage across terminals is equalized. Since there is no need to perform charge separately for each single battery ECi, the circuit is simplified, and leveling can be performed easily. As a result, the rise of reliability and the service life prolongation of a battery pack, where single batteries are combined and a vehicle where this battery pack is mounted, can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、直列接続された複
数の単電池から構成される組電池の電力量を制御する組
電池制御装置に関し、特に電気駆動の移動体(例えば、
少なくとも一時的に電気駆動される自動車、二輪車、フ
ォークリフト、カート、ビークルなど)の電源として搭
載される組電池の管理に最適化な組電池制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery control device for controlling the amount of electric power of an assembled battery composed of a plurality of unit cells connected in series, and more particularly to an electrically driven moving body (for example,
The present invention relates to a battery pack control device optimized for managing a battery pack mounted as a power source of a vehicle, a motorcycle, a forklift, a cart, a vehicle, etc., which is electrically driven at least temporarily.

【0002】[0002]

【従来の技術】従来より電気駆動の移動体の電源として
は、高電圧、大容量の要求に応えるために複数の単電池
を直列接続した組電池を用いることが一般的である。こ
の種の組電池は、組電池全体として充放電が行われてい
るにも拘わらず、それぞれの単電池の残存容量はその製
造ばらつき、温度や湿度などの使用雰囲気に基づいて個
々に異なる値となってしまう。残存容量が異なってしま
った単電池の集合体である組電池をそのまま充放電を繰
り返して使用すると、残存容量の多い単電池は過充電と
なり、他方残存容量の少ない単電池は過放電となってし
まうことがある。特に、高性能のリチウムイオン電池を
単電池に使用している場合には、定格使用電位の幅が狭
いこともあり、過放電による電位の異常低下では劣化が
加速的に進んでしまう。また、電気駆動の移動体の電源
として組電池が利用される場合においては、一回の充電
での移動距離を長くするために、組電池の能力限界まで
に充放電を行なうことがあり、これを繰り返すと、やが
て電圧にバラツキを生じ、単電池の短命化という問題を
招致する。
2. Description of the Related Art Conventionally, as a power source for an electrically driven moving body, it is general to use an assembled battery in which a plurality of cells are connected in series in order to meet demands for high voltage and large capacity. In this type of assembled battery, despite the fact that the entire assembled battery is charged / discharged, the remaining capacity of each unit cell has a different value based on the manufacturing atmosphere and the operating atmosphere such as temperature and humidity. turn into. If the battery pack, which is an aggregate of cells with different remaining capacities, is used repeatedly as it is, the cells with higher remaining capacity will be overcharged, while the cells with lower remaining capacity will be overdischarged. Sometimes. In particular, when a high-performance lithium-ion battery is used as a unit cell, the range of the rated use potential may be narrow, and if the potential is abnormally lowered due to overdischarge, the deterioration will accelerate. In the case where an assembled battery is used as a power source for an electrically driven moving body, charging and discharging may be performed up to the capacity limit of the assembled battery in order to extend the moving distance per charge. When this is repeated, the voltage will eventually fluctuate, leading to a problem of shortening the life of the unit cell.

【0003】そこで、従来より単電池を最適管理するこ
とが行われており、特開平10−32936号公報に
は、単電池の残存容量をそれぞれ検出し、各単電池の残
存容量の差が小さくなるように各単電池を個別に充電あ
るいは放電する制御システムが提案されている。この制
御システムによれば、組電池を構成する単電池の残存容
量を適宜の時期に均等化することができ、単電池を長期
間に渡って有効に利用することができる。
[0003] Conventionally, optimal management of single cells has been performed, and Japanese Patent Application Laid-Open No. 10-32936 has disclosed that the remaining capacity of each single cell is detected, and the difference in the remaining capacity of each single cell is small. A control system for individually charging or discharging each unit cell has been proposed. According to this control system, the remaining capacity of the cells constituting the assembled battery can be equalized at an appropriate time, and the cells can be effectively used for a long period of time.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の制御シ
ステムは次の課題が未解決であり、実用上の大きな課題
となっていた。単電池の残存容量は、使用電力の積算、
内部抵抗の測定などにより測定することができるが、こ
の測定のためには各単電池の電圧−電流の計測と結果の
記憶、電力値の算出などが必要となる。従って、主たる
情報処理を行う制御機器としてCPUを中心とした論理
演算回路、各種センサなどが必要となるばかりでなく、
この制御機器と各単電池との間を複数の信号線により接
続する必要があり、装置全体が大型化、重量化、複雑化
してしまう。このため、電気駆動の移動体に搭載するこ
とが困難になる場合が考えられた。
However, the following problems have not been solved in the conventional control system, which has been a serious problem in practical use. The remaining capacity of the cell is calculated by integrating
It can be measured by measuring the internal resistance or the like, but for this measurement, it is necessary to measure the voltage-current of each cell, store the result, calculate the power value, and the like. Therefore, not only a logical operation circuit centered on a CPU, various sensors, and the like are required as control devices for performing main information processing, but also
It is necessary to connect the control device and each unit cell with a plurality of signal lines, and the whole apparatus becomes large, heavy, and complicated. For this reason, it has been considered that it may be difficult to mount on an electrically driven moving body.

【0005】また、各単電池の充電を個別に制御しよう
とすると、直列に接続された各単電池毎に充電を行なう
仕組みが必要となり、装置が、複雑化、大型化してしま
う。一方、単電池自体に充電量の制御装置を組み込むと
いう対応も考えられるが、この場合には、消耗品である
電池が高価なものとなるばかりか、電池を取り替える際
に制御回路まで取り替えることになり、省資源の観点か
ら、実用性の低いものになってしまう。
[0005] Further, if it is attempted to control the charging of each unit cell individually, a mechanism for charging each unit cell connected in series is required, and the device becomes complicated and large. On the other hand, it is conceivable to incorporate a control device for the amount of charge into the unit cell itself.In this case, however, not only is the expendable battery expensive, but also the control circuit is replaced when the battery is replaced. Therefore, from the viewpoint of resource saving, it becomes less practical.

【0006】なお、組電池における複数の単電池の残存
容量の差を簡易に解消する技術として、特開平5−15
076号公報には、各単電池に放電回路を設けておき、
組電池の充電を行う前に総ての単電池を全部放電させる
技術が提案されている。この技術によれば、単電池の残
存容量を計測する必要がなくなり、上記制御システムの
内包する課題は一応解決されるが、組電池の充電の度に
単電池に残存する電力を総て無駄に消費することにな
り、環境的にも経済的にも採用することができない。例
えば、電池の電力で走行する電気自動車やエンジンと電
動機を併用して走行するハイブリッド車では、二次電池
の残存容量を、60%程度を目処として、組電池の充放
電制御を行なっている。こうした場合に、充電量の均等
化のために残存電力をすべて放電させるとすると、各電
池に充電された電力の半分以上が、無駄になってしま
う。また、組電池を充電する際にのみ単電池の容量を均
等化するものであるから、電気駆動の移動体の移動中な
ど適宜の時期に単電池を均等化することができず、充電
に際しても、かなりの時間を要することになってしま
う。
As a technique for easily eliminating the difference in the remaining capacity of a plurality of cells in an assembled battery, Japanese Patent Laid-Open No. 5-15 / 1993 has been proposed.
No. 076 discloses that a discharge circuit is provided for each cell,
A technique has been proposed in which all cells are completely discharged before charging the assembled battery. According to this technique, it is not necessary to measure the remaining capacity of the unit cell, and the problem included in the control system is temporarily solved. However, every time the assembled battery is charged, all the electric power remaining in the unit cell is wasted. It will be consumed and cannot be adopted environmentally or economically. For example, in an electric vehicle that runs on battery power or a hybrid vehicle that runs using both an engine and an electric motor, charge / discharge control of the assembled battery is performed with a target remaining battery capacity of about 60%. In such a case, if all the remaining power is discharged to equalize the charged amount, more than half of the power charged in each battery is wasted. In addition, since the capacity of the unit cells is equalized only when charging the assembled battery, the unit cells cannot be equalized at an appropriate time, such as when the electrically driven moving body is moving, and even when charging. Would take a considerable amount of time.

【0007】本発明は、上記の問題点を解決するために
なされ、単電池の残存容量を有効に活用しつつ、適宜の
時期に残存容量を容易に均等化することを目的とする。
また、装置の構成を簡略なものとし、信頼性の向上、装
置の小型化、経済性の確保なども併せて実現しようとす
るものである。
The present invention has been made in order to solve the above-mentioned problems, and has as its object to easily equalize the remaining capacity at an appropriate time while effectively utilizing the remaining capacity of a unit cell.
Another object is to simplify the configuration of the device, to improve reliability, to reduce the size of the device, and to ensure economic efficiency.

【0008】[0008]

【課題を解決するための手段およびその作用・効果】上
記した課題を解決するため、本発明の組電池制御装置
は、直列接続された複数の単電池から構成される組電池
の電力量を制御する組電池制御装置であって、前記複数
の単電池それぞれの電圧値のばらつきを検出するばらつ
き検出手段と、任意の前記単電池を放電させる単電池放
電手段と、前記ばらつき検出手段により検出された単電
池の電圧値のばらつきが許容範囲となるように、前記単
電池放電手段を制御する単電池放電制御手段とを備える
ことを要旨としている。
Means for Solving the Problems and Their Functions and Effects In order to solve the above problems, a battery pack control device of the present invention controls the electric energy of a battery pack composed of a plurality of unit cells connected in series. A battery cell control device, wherein the battery cell controller detects a variation in voltage value of each of the plurality of unit cells, a unit cell discharging unit that discharges any of the unit cells, and the unit cell control unit detects the variation. The gist of the invention is to provide a cell discharge control means for controlling the cell discharge means so that the variation of the voltage value of the cell is within an allowable range.

【0009】また、この単電池放電制御装置に対応する
制御方法の発明は、直列接続された複数の単電池から構
成される組電池の充放電を制御する方法であって、前記
複数の単電池それぞれの電圧値のばらつきを検出し、該
検出された単電池の電圧値のばらつきが許容範囲外とな
ったとき、電圧値の高いものから1つ以上の単電池を特
定し、該特定された単電池を放電させることを要旨とし
ている。
Further, the invention of a control method corresponding to the unit cell discharge control device is a method for controlling charging / discharging of an assembled battery composed of a plurality of unit cells connected in series. The variation of each voltage value is detected, and when the variation of the detected voltage value of the single cell is out of the allowable range, one or more single cells are identified from those having the highest voltage values, and the identified single cells are identified. The gist is to discharge the cell.

【0010】これらの発明によれば、単電池の電圧値の
ばらつきが許容値となるように、単電池の放電を制御す
るだけで良く、簡易な構成で、組電池を構成する各単電
池の充電状態のバラツキを許容範囲内に制御することが
できる。かかる構成では、単に単電池の電圧値もしくは
そのばらつきを検出し、放電のみによって各単電池の充
電状態の均等化を行なっているに過ぎないので、回路構
成を簡単なものとすることができる。単電池の充電状態
の均等化は、組電池の長寿命化に極めて有益である。
According to these inventions, it is only necessary to control the discharge of the unit cells so that the variation of the voltage value of the unit cells becomes an allowable value. The variation in the state of charge can be controlled within an allowable range. In such a configuration, the voltage value of the unit cell or its variation is simply detected and the state of charge of each unit cell is equalized only by discharging, so that the circuit configuration can be simplified. Equalizing the state of charge of the cells is extremely useful for extending the life of the assembled battery.

【0011】本発明の組電池制御装置または制御方法
は、単電池の電圧のばらつきを検出し、放電によって残
存容量の均等化を行っているため、単電池の残存容量を
有効に活用しつつ、適宜の時期に残存容量を均等化する
ことができる。しかも、構成を簡略化でき、信頼性に優
れ、小型化が可能である。この結果、電気駆動の移動体
の組電池制御装置としては特に有用である。
[0011] The battery pack control apparatus or control method of the present invention detects variations in the voltage of the cells and equalizes the remaining capacity by discharging, so that the remaining capacity of the cells can be effectively utilized. The remaining capacity can be equalized at an appropriate time. Moreover, the configuration can be simplified, the reliability is excellent, and the size can be reduced. As a result, it is particularly useful as an assembled battery control device for an electrically driven moving body.

【0012】なお、単電池放電制御手段は、単電池の電
圧値を検出し、検出された単電池の最小値を基準として
電圧値のばらつきを検出するものとすることができる。
尚、これらの構成で検出している単電池の電圧値あるい
は電圧値のばらつきは、単電池の充電状態あるいはその
ばらつきに相当したパラメータとして扱われている。電
圧値から充電状態を推定しうるのは、例えばリチウム系
の電池などの二次電池では、電圧と充電状態との間に高
い相関関係が存在するからである。本願発明は、こうし
た単電池の特性を巧みに利用することで、電圧値によっ
て必要な情報を得て、簡単な回路構成で済む放電により
単電池の残存容量の均等化を行うのである。
[0012] The cell discharge control means may detect the voltage value of the cell and detect a variation in the voltage value with reference to the detected minimum value of the cell.
The voltage value of the unit cell or the variation of the voltage value detected by these configurations is treated as a state of charge of the unit cell or a parameter corresponding to the variation. The charge state can be estimated from the voltage value because, for example, in a secondary battery such as a lithium-based battery, a high correlation exists between the voltage and the charge state. In the present invention, the necessary information is obtained by the voltage value by skillfully utilizing such characteristics of the unit cells, and the remaining capacity of the unit cells is equalized by discharging which requires only a simple circuit configuration.

【0013】こうした組電池制御装置において、単電池
放電制御手段は、単電池のばらつきの許容値に所定の幅
を設けることができ、その幅の上限で単電池放電手段を
起動し、その幅の下限で単電池放電手段を停止すること
が好ましい。この許容値の幅により、単電池放電手段の
動作にヒステリシスを持たせることができ、単電池放電
手段による単電池の放電が頻繁に行なわれることを防止
することができる。この結果、組電池の一層の長寿命化
を図ることができる。
[0013] In such a battery pack control device, the cell discharge control means can provide a predetermined width to the allowable value of the variation of the cell, activates the cell discharge means at the upper limit of the width, and sets the predetermined width. It is preferable to stop the cell discharging means at the lower limit. With the width of the allowable value, it is possible to provide hysteresis to the operation of the unit cell discharging unit, and prevent the unit cell discharging unit from frequently discharging the unit cell. As a result, the life of the battery pack can be further extended.

【0014】また、単電池放電制御手段は、単電池放電
手段を制御する経時的な情報に基づいて組電池の状況を
推定することができる。ここで、単電池放電手段を制御
する経時的な情報とは、特定の組電池に対する単電池放
電手段の制御回数の累積値、制御の頻度、制御間隔、単
位時間あたりの制御回数などである。この様な単電池放
電手段を制御する経時的な情報は、前述のように各単電
池の残存容量のばらつき発生頻度を表すものであり、単
電池の劣化を間接的に示すパラメータとして利用するこ
とができる場合がある。従って、この単電池放電手段を
制御する経時的な情報に基づいて、組電池の状況を精度
良く推定することができる。従って、この情報により単
電池充電手段の動作を停止させるものとすることができ
る。なお、その推定結果は、通常の車両情報と同様に利
用することができる。例えば、インジケータパネルに正
常、警告、異常のレベルに分けて表示したり、異常の場
合のみ報知したり、車両の定期検査の際にメンテナンス
情報として出力するなどである。
Further, the cell discharge control means can estimate the condition of the battery pack based on information over time for controlling the cell discharge means. Here, the time-dependent information for controlling the unit cell discharging unit includes a cumulative value of the number of times of control of the unit cell discharging unit for a specific battery pack, a control frequency, a control interval, a number of control times per unit time, and the like. Such time-dependent information for controlling the unit cell discharging means indicates the frequency of occurrence of variation in the remaining capacity of each unit cell as described above, and should be used as a parameter indicating indirectly the deterioration of the unit cell. May be possible. Therefore, it is possible to accurately estimate the state of the battery pack based on the time-dependent information for controlling the cell discharging means. Accordingly, the operation of the unit cell charging means can be stopped based on this information. Note that the estimation result can be used in the same manner as ordinary vehicle information. For example, a normal, warning, or abnormal level is displayed on the indicator panel, a warning is issued only when an abnormality is detected, or the information is output as maintenance information during a periodic inspection of the vehicle.

【0015】単電池放電手段としては、単電池毎に放電
が可能であればどのような回路構成としても差し支えな
いが、例えば各単電池毎に抵抗器とスイッチとを、単電
池−スイッチ−抵抗器からなる閉回路を形成するよう設
け、スイッチの入り切りにより放電を制御するよう構成
することができる。簡略な構成により、単電池の放電を
制御することができる。
The cell discharging means may have any circuit configuration as long as discharging can be performed for each cell. For example, a resistor and a switch are provided for each cell, and a cell-switch-resistance is used. It can be provided to form a closed circuit consisting of a container, and the discharge can be controlled by turning on and off a switch. With a simple configuration, it is possible to control the discharge of the unit cell.

【0016】単電池としては、種々のタイプのものが採
用可能であるが、特に電池の充電管理が厳しいものに用
いると有用である。こうした単電池としては、リチウム
系の電池、例えばリチウムイオン電池、リチウムポリマ
電池、リチウム−ニッケル電池、リチウム−コバルト電
池、など種々のタイプの電池を考えることができる。も
とよりリチウム系電池に限られるものではなく、ニッケ
ル水素など、他のタイプの電池にも適用可能である。
Although various types of cells can be used as the unit cell, it is particularly useful to use a unit cell in which battery charge management is strict. As such a single battery, various types of batteries such as a lithium-based battery, for example, a lithium ion battery, a lithium polymer battery, a lithium-nickel battery, and a lithium-cobalt battery can be considered. Of course, the present invention is not limited to lithium-based batteries, and can be applied to other types of batteries such as nickel-metal hydride.

【0017】本発明の電池モジュールは、複数の単電池
から構成される組電池と、該組電池の充電状態を制御す
る制御装置とを備えた電池モジュールであって、前記組
電池は、前記複数の単電池を、直列接続してなり、前記
制御装置は、前記複数の単電池それぞれの電圧値のばら
つきを検出するばらつき検出手段と、任意の前記単電池
を放電させる単電池放電手段と、前記ばらつき検出手段
により検出された単電池の電圧値のばらつきが許容範囲
となるように、前記単電池放電手段を制御する単電池放
電制御手段とを備えることを要旨とする。
A battery module according to the present invention is a battery module including an assembled battery composed of a plurality of cells and a control device for controlling a state of charge of the assembled battery. The cells are connected in series, and the control device includes: a variation detection unit configured to detect a variation in a voltage value of each of the plurality of unit cells; a unit cell discharge unit configured to discharge any of the unit cells; The gist of the present invention is to provide a cell discharge control means for controlling the cell discharge means such that the fluctuation of the voltage value of the cell detected by the fluctuation detection means is within an allowable range.

【0018】この電池モジュールは、各単電池の充電状
態のばらつきを検出し、これを均等化することができる
ので、簡易な構成により、電池モジュールとしての信頼
性を確保することができる。
This battery module can detect the variation in the state of charge of each cell and equalize it, so that the reliability as a battery module can be ensured with a simple configuration.

【0019】更に本発明の電動車両は、複数の単電池か
ら構成される組電池と、該組電池の充電状態を制御する
制御装置と、該組電池により駆動される電動機とを備え
た電動車両であって、前記組電池は、前記複数の単電池
を、直列接続してなり、前記制御装置は、前記複数の単
電池それぞれの電圧値のばらつきを検出するばらつき検
出手段と、任意の前記単電池を放電させる単電池放電手
段と、前記ばらつき検出手段により検出された単電池の
電圧値のばらつきが許容範囲となるように、前記単電池
放電手段を制御する単電池放電制御手段とを備え、前記
電動機は、前記組電池の電力により運転されて、車両駆
動軸に動力を出力することを要旨としている。
An electric vehicle according to the present invention further includes an assembled battery including a plurality of cells, a control device for controlling a state of charge of the assembled battery, and an electric motor driven by the assembled battery. Wherein the assembled battery includes the plurality of cells connected in series, and the control device includes a variation detection unit configured to detect a variation in a voltage value of each of the plurality of cells; A cell discharge means for discharging the battery, and a cell discharge control means for controlling the cell discharge means, such that the variation in the voltage value of the cell detected by the variation detection means is within an allowable range, The gist is that the electric motor is driven by the electric power of the battery pack and outputs power to a vehicle drive shaft.

【0020】この電動車両は、搭載する組電池を構成す
る各単電池の充電状態のばらつきを検出し、これを均等
化することができるので、簡易な構成により、組電池の
信頼性を確保することができる。従って、電動車両とし
て、組電池を採用した場合の車両の軽量化、信頼性の確
保などを図ることができる。
In this electric vehicle, the variation in the state of charge of each cell constituting the assembled battery mounted thereon can be detected and equalized, so that the reliability of the assembled battery can be ensured with a simple configuration. be able to. Therefore, it is possible to reduce the weight and secure the reliability of the vehicle when the battery pack is employed as the electric vehicle.

【0021】[0021]

【発明の実施の形態】以上説明した本発明の構成及び作
用を一層明らかにするために、以下本発明の組電池制御
装置について、その実施の形態を説明する。図1は、本
発明の実施例である組電池制御装置10を採用した電気
自動車の電源部の回路説明図、図2はその組電池制御装
置10の電気回路図、図3はこの組電池制御装置を採用
した電気自動車の概略構成図、である。最初に、図3を
用いて電気自動車の構成について説明し、その上で、図
1及び図2を参照しつつ組電池制御装置10の詳細につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to further clarify the configuration and operation of the present invention described above, an embodiment of a battery pack control device of the present invention will be described below. FIG. 1 is a circuit diagram of a power supply unit of an electric vehicle employing an assembled battery control device 10 according to an embodiment of the present invention, FIG. 2 is an electric circuit diagram of the assembled battery control device 10, and FIG. 1 is a schematic configuration diagram of an electric vehicle employing a device. First, the configuration of the electric vehicle will be described with reference to FIG. 3, and then the details of the battery pack control device 10 will be described with reference to FIGS. 1 and 2.

【0022】図3に示すように、この電気自動車1は、
発電機100と、この発電機100を駆動するガソリン
エンジン110と、車両動力源としての電動機120
と、電動機120に電源部125からの電力を供給する
電力制御回路130と、電動機120の動力を最終的に
は車輪140に伝達する駆動系150とを備える。即
ち、この車両1は、エンジン110の動力により発電機
100で発電し、この電力を必要に応じて電源部125
に内蔵された組電池に充電し、この電源部125の電力
により電動機120を駆動して車両を走行させるいわゆ
るシリーズハイブリッド車両である。
As shown in FIG. 3, this electric vehicle 1
A generator 100, a gasoline engine 110 that drives the generator 100, and an electric motor 120 as a vehicle power source
And a power control circuit 130 that supplies electric power from the power supply unit 125 to the electric motor 120, and a drive system 150 that finally transmits the power of the electric motor 120 to the wheels 140. That is, the vehicle 1 uses the power of the engine 110 to generate electric power with the generator 100, and the electric power is supplied to the power supply unit 125 as needed.
Is a so-called series hybrid vehicle in which the battery pack built in the vehicle is charged and the electric motor 120 is driven by the electric power of the power supply unit 125 to drive the vehicle.

【0023】電気自動車1の電源部125は、図1に示
すように、多数の組電池BAを並列に接続して必要な大
電流を得る電池モジュールSBと、この電池モジュール
SBを制御する電源制御部ECUとから構成されてい
る。電源部125には並列接続された複数の組電池BA
を総合的に管理する通常の組電池管理回路BCが備えら
れており、電源部125の総電圧、総電流、温度などの
管理に必要な情報を電源制御部ECUへ出力している。
なお、本実施例では、電池モジュールSBは、後述する
組電池制御装置10により管理されているので、電源制
御部ECUが、多数の単電池ECあるいは組電池BAの
劣化状況などは管理する必要はなく、安定した電池モジ
ュールSBの存在を前提とした簡素化した通常管理のみ
を実行する。従って、組電池管理回路BCと電源制御部
ECUとの間で送受信される情報量は、電池モジュール
SBの総合的な情報のみでよく、相互間の配線数、接続
は簡素化されている。また組電池BAは、電圧−容量特
性に優れたリチウムイオン電池を単電池ECとしてお
り、必要な高電圧を得るためにその単電池を複数個(本
実施例では約80個)直列接続して構成されている。
As shown in FIG. 1, the power supply unit 125 of the electric vehicle 1 includes a battery module SB for connecting a large number of assembled batteries BA in parallel to obtain a necessary large current, and a power supply control for controlling the battery module SB. And a unit ECU. The power supply unit 125 includes a plurality of battery packs BA connected in parallel.
Is provided, and outputs information necessary for managing the total voltage, total current, temperature, etc. of the power supply unit 125 to the power supply control unit ECU.
In the present embodiment, since the battery module SB is managed by the battery pack control device 10 described later, it is not necessary for the power supply control unit ECU to manage the deterioration state of a large number of single batteries EC or the battery packs BA. Instead, only the simplified normal management based on the existence of the stable battery module SB is executed. Therefore, the amount of information transmitted and received between the battery pack management circuit BC and the power supply control unit ECU only needs to be comprehensive information of the battery module SB, and the number of wires and connections between them are simplified. The assembled battery BA uses a lithium ion battery having excellent voltage-capacity characteristics as a unit cell EC. In order to obtain a required high voltage, a plurality of the unit cells (about 80 in this embodiment) are connected in series. It is configured.

【0024】本実施例の組電池制御装置10は、それぞ
れの組電池BAと一体に構成される電気回路であり、図
1では省略しているが、並列接続された組電池BAのそ
れぞれと対になって備えられている。図2に示すよう
に、組電池BAは、i個の単電池EC1,EC2・・・
ECiからなる。以下、i個の単電池の数に応じて設け
られている部材は、添え字「i」を用いて代表的に表わ
すものとする。
The battery pack control device 10 of the present embodiment is an electric circuit integrally formed with each battery pack BA. Although not shown in FIG. 1, the battery pack control apparatus 10 is paired with each of the battery packs BA connected in parallel. It is equipped with. As shown in FIG. 2, the battery pack BA includes i unit cells EC1, EC2,.
It consists of ECi. Hereinafter, members provided in accordance with the number of the i unit cells are typically represented using a subscript “i”.

【0025】一つの組電池BA毎に設けられた組電池制
御装置10は、組電池BAを構成するi個の単電池EC
iのそれぞれの電圧値を検出する単電池電圧検出回路1
2と、i個の単電池ECiをそれぞれ個別に放電させる
ための単電池放電回路14と、単電池電圧検出回路12
からの信号を入力して単電池放電回路14を駆動する単
電池放電制御部16とから構成されている。ここで、単
電池電圧検出回路12は、各単電池ECの両端子にそれ
ぞれ接続されたi個の差動増幅器DAMiから構成され
ている。また単電池放電回路14は、i個の放電抵抗器
Riと放電スイッチTiとから構成され、放電スイッチ
Tiをオンすることにより、単電池ECiの電力を抵抗
器Riを介して消費する閉回路を形成する簡単な電気回
路である。
The battery pack control device 10 provided for each battery pack BA is used to control the number i of cells EC constituting the battery pack BA.
cell voltage detection circuit 1 for detecting each voltage value of i
2, a unit cell discharging circuit 14 for individually discharging the i unit cells ECi, and a unit cell voltage detecting circuit 12
And a unit cell discharge control unit 16 that drives the unit cell discharge circuit 14 by inputting a signal from the unit. Here, the cell voltage detection circuit 12 is configured by i differential amplifiers DAMi connected to both terminals of each cell EC. The cell discharge circuit 14 is composed of i number of discharge resistors Ri and discharge switches Ti. When the discharge switch Ti is turned on, a closed circuit that consumes the power of the cells ECi via the resistors Ri is provided. It is a simple electric circuit to be formed.

【0026】単電池放電制御部16は、最大値検出部1
6a,最小値検出部16b,ばらつき判定部16c,単
電池電圧ばらつき検出部16d,放電スイッチ操作部1
6eから構成されている。最大値検出部16aは、単電
池電圧検出回路12のi個の差動増幅器DAMiの出力
に接続されており、差動増幅器DAMiからのi個の電
圧値V1,V2・・・の信号を入力して、それぞれの電
圧値V1,V2,V3・・・,Viの最大値Vmaxを
検出する回路である。最小値検出部16bは、同様に、
それぞれの差動増幅器DAMiからの電圧値V1,V
2,V3・・・,Viの最小値Vminを検出する回路
である。これら最大値検出部16aと最小値検出部16
bとの検出結果は、ばらつき判定部16cに出力され
る。
The single-cell discharge control unit 16 includes the maximum value detection unit 1
6a, minimum value detecting section 16b, variation determining section 16c, cell voltage variation detecting section 16d, discharge switch operating section 1
6e. The maximum value detection unit 16a is connected to the outputs of the i number of differential amplifiers DAMi of the cell voltage detection circuit 12, and receives the signals of the i number of voltage values V1, V2,... From the differential amplifier DAMi. The circuit detects the maximum value Vmax of the respective voltage values V1, V2, V3,..., Vi. Similarly, the minimum value detection unit 16b
The voltage values V1, V from the respective differential amplifiers DAMi
2, V3,..., Vi are circuits for detecting the minimum value Vmin. These maximum value detection unit 16a and minimum value detection unit 16
The detection result with b is output to the variation determination unit 16c.

【0027】ばらつき判定部16cでは、最大値検出部
16aからの信号Vmaxと最小値検出部16bからの
信号Vminとに基づいて、組電池BA内の各単電池E
Ciの端子間電圧の最大の偏差であるΔV(=Vmax
−Vmin)を判定して、このばらつきΔVが所定値以
上の場合に、放電実行信号Konを出力する。このた
め、ぱらつき判定部16cには、判定用の所定値に相当
する判定電圧Vref が入力されている。なお、放電実行
信号Konは、放電スイッチ操作部16eのみならず、
電源制御部ECUにも出力されている。
In the variation determining section 16c, based on the signal Vmax from the maximum value detecting section 16a and the signal Vmin from the minimum value detecting section 16b, each cell E in the assembled battery BA is determined.
ΔV which is the maximum deviation of the voltage between the terminals of Ci (= Vmax
−Vmin), and when the variation ΔV is equal to or more than a predetermined value, the discharge execution signal Kon is output. Therefore, the determination voltage Vref corresponding to the predetermined value for determination is input to the fluctuation determining unit 16c. In addition, the discharge execution signal Kon is output not only to the discharge switch operation unit 16e but also to the discharge switch operation unit 16e.
It is also output to the power supply control unit ECU.

【0028】単電池電圧ばらつき検出部16dは、単電
池の個数iに対応した数の差動増幅器CM1,CM2・
・・CMiを備える。この単電池電圧ぱらつき検出部1
6dの各差動増幅器CMのマイナス側端子には、最小値
検出部16bの出力が共通に入力されており、各差動増
幅器CMiのプラス端子には、単電池電圧検出回路12
の各差動増幅器DAMiからの電圧値Viが入力されて
いる。従って、単電池ばらつき検出部16dは、各単電
池ECiの電圧と、i個の単電池のうちで一番低い電圧
Vminとの差分に対応した電圧ΔV1,ΔV2・・・
ΔViを出力する。即ち、単電池ばらつき検出部16d
は、各単電池の電圧のばらつきを、最小電圧Vminか
らの偏差であるばらつき電圧ΔViとして検出するので
ある。単電池ぱらつき検出部16dの各差動増幅器CM
iからの各出力は、放電スイッチ操作部16eに出力さ
れている。
The cell voltage variation detecting section 16d includes a number of differential amplifiers CM1, CM2,... Corresponding to the number i of cells.
・ ・ It has CMi. This cell voltage fluctuation detecting unit 1
The output of the minimum value detector 16b is commonly input to the minus terminal of each differential amplifier CM of FIG. 6d, and the cell voltage detection circuit 12 is connected to the plus terminal of each differential amplifier CMi.
Is input from each differential amplifier DAMi. Therefore, the unit cell variation detecting unit 16d calculates the voltages ΔV1, ΔV2,... Corresponding to the difference between the voltage of each unit cell ECi and the lowest voltage Vmin among the i unit cells.
ΔVi is output. That is, the cell variation detecting unit 16d
Detects the variation of the voltage of each cell as a variation voltage ΔVi which is a deviation from the minimum voltage Vmin. Each differential amplifier CM of the cell fluctuation detection unit 16d
Each output from i is output to the discharge switch operation unit 16e.

【0029】この放電スイッチ操作部16eには、単電
池電圧ばらつき検出部16dの出力信号であるi個のば
らつき電圧ΔViの他に、ばらつき判定部16cから出
力される放電実行信号Konと基準電圧ΔVmとが入力
されている。放電スイッチ操作部16eは、放電実行信
号Konがアクティブのとき、次の処理を実行する。即
ち、単電池ばらつき検出部16dからの各ぱらつき電圧
ΔV1,ΔV2・・・ΔViと基準電圧ΔVmとを比較
し、ばらつき電圧ΔViが基準電圧ΔVmより大きいと
判断された単電池ECiについて、単電池放電回路14
の放電スイッチTiを閉成する信号を出力するのであ
る。
The discharge switch operation unit 16e includes, in addition to the i number of variation voltages ΔVi output from the unit cell voltage variation detection unit 16d, a discharge execution signal Kon and a reference voltage ΔVm output from the variation determination unit 16c. Is entered. When the discharge execution signal Kon is active, the discharge switch operation unit 16e executes the following processing. That is, each of the fluctuation voltages ΔV1, ΔV2,... ΔVi from the unit cell variation detection unit 16d is compared with the reference voltage ΔVm. Circuit 14
A signal for closing the discharge switch Ti is output.

【0030】以上説明した第1実施例の電源部125で
は、電池モジュールSBに搭載された組電池BAは、図
3に示したように、電力制御回路130を介して、発電
機100により発電された電力で充電されたり、電力制
御回路130を介して、電動機120を運転するよう電
力を放電したりしている。こうした充放電を繰り返す間
も、組電池制御装置10は、対応する組電池BAの充放
電状態の制御を継続しており、組電池BAの各単電池E
Cの端子間電圧のばらつきが、即ちi個の単電池ECi
の出力電圧の最大値Vmaxと最小値Vminとの最大
偏差ΔVが判定電圧ΔVref より大きくなった場合に
は、単電池放電回路14の放電スイッチTiをターンオ
ン(閉成)し、対応する単電池ECiからの放電を開始
する。このとき、総ての単電池ECiに対応したスイッ
チTiが閉成されるのではなく、端子間電圧Viと最小
値Vminとの偏差であるばらつき電圧ΔViが基準電
圧ΔVmより大きい単電池ECiに対応するスイッチT
iのみが閉成される。
In the power supply unit 125 of the first embodiment described above, the assembled battery BA mounted on the battery module SB is generated by the generator 100 via the power control circuit 130 as shown in FIG. The electric power is charged by the electric power, or the electric power is discharged through the power control circuit 130 to operate the electric motor 120. While repeating such charging / discharging, the battery pack control device 10 continues to control the charging / discharging state of the corresponding battery pack BA.
The variation in the voltage between the terminals of C, that is, i cells ECi
When the maximum deviation ΔV between the maximum value Vmax and the minimum value Vmin of the output voltage becomes larger than the determination voltage ΔVref, the discharge switch Ti of the cell discharge circuit 14 is turned on (closed), and the corresponding cell ECi To start discharging from. At this time, the switches Ti corresponding to all the cells ECi are not closed, but the variation voltage ΔVi, which is the deviation between the terminal voltage Vi and the minimum value Vmin, corresponds to the cell ECi larger than the reference voltage ΔVm. Switch T
Only i is closed.

【0031】この様子を図4(A)(B)に示した。図
4では、説明を簡略化するために、組電池BAは、4個
の単電池EC1,EC2,EC3,EC4から構成され
ているものとした。図4(A)に示すように、同一の電
圧で使用が開始された4個の単電池ECは、充放電が繰
り返されるたびに次第にその端子間電圧V1,V2,V
3,V4が隔たっていき、タイミングt1では、最大値
Vmax(=V3)と最小値Vmin(=V1)との偏
差ΔVが、判定値ΔVref を超えた。このとき、放電実
行信号Konは、アクティブとなり、端子間電圧Viと
最小値Vminとの偏差であるばらつき電圧ΔViが、
基準電圧ΔVmより大きい単電池である単電池EC3,
EC4は、対応するスイッチT3,T4が閉成するた
め、放電抵抗器Riを通る閉回路により、放電を開始す
る。放電を行なった結果、これらの単電池EC3,EC
4の端子間電圧は低下する。こうして各単電池ECiの
端子間電圧のばらつきが十分に小さくなれば、放電実行
信号Konはインアクティブとなり、スイッチTiはす
べてターンオフ(開放状態)となり、単電池EC3,E
C4からの放電は停止される。放電による均等化処理前
後の電圧のばらつきの様子を図4(B)に示した。
This situation is shown in FIGS. 4A and 4B. In FIG. 4, for simplicity of explanation, the battery pack BA is assumed to be composed of four unit cells EC1, EC2, EC3, EC4. As shown in FIG. 4A, the four unit cells EC whose use has been started at the same voltage gradually have their terminal voltages V1, V2, V each time charge and discharge are repeated.
3 and V4, the deviation ΔV between the maximum value Vmax (= V3) and the minimum value Vmin (= V1) exceeds the determination value ΔVref at timing t1. At this time, the discharge execution signal Kon becomes active, and the variation voltage ΔVi, which is the deviation between the terminal voltage Vi and the minimum value Vmin, becomes:
The cell EC3 which is a cell larger than the reference voltage ΔVm
Since the corresponding switches T3 and T4 are closed, the EC4 starts discharging by a closed circuit passing through the discharge resistor Ri. As a result of discharging, these cells EC3, EC
4, the voltage between the terminals decreases. If the variation in the voltage between the terminals of each cell ECi becomes sufficiently small in this way, the discharge execution signal Kon becomes inactive, all the switches Ti are turned off (open state), and the cells EC3, EC3
The discharge from C4 is stopped. FIG. 4B shows a state of the voltage variation before and after the equalization processing by the discharge.

【0032】以上説明した本実施例によれば、簡単なハ
ードロジックにより複数の単電池ECiの端子間電圧の
ばらつきを所定範囲内に制御することができる。しか
も、こうした制御を、電池モジュールSB内で行なうこ
とができるので、電池モジュールSBを管理する電源制
御部ECUの負担を低減できるばかりでなく、電池モジ
ュールSBと電源制御部ECUとの配線を減らし、装置
の信頼性を向上することができる。更に、この実施例で
は、放電によって各単電池ECiの端子間電圧の均一化
を行なっているので、単電池ECi毎に充電装置を設け
る必要がなく、装置構成を簡略化することができる。
According to the present embodiment described above, it is possible to control the variation in the voltage between the terminals of the plurality of unit cells ECi within a predetermined range by using a simple hardware logic. Moreover, since such control can be performed in the battery module SB, not only can the load on the power supply control unit ECU managing the battery module SB be reduced, but also the wiring between the battery module SB and the power supply control unit ECU can be reduced. The reliability of the device can be improved. Further, in this embodiment, since the voltage between the terminals of each unit cell ECi is made uniform by discharging, it is not necessary to provide a charging device for each unit cell ECi, and the device configuration can be simplified.

【0033】なお、上記の説明では、放電実行信号Ko
nは、判定値Vref との大小を判断してオン・オフされ
るものとして説明したが、実際には、この判定値Vref
には、ヒステリシスが設けられている。コンパレータな
どを用いた判定回路では、判定結果である放電実行信号
Konの電圧を判定値Vref から減じることにより、判
定値Vref にヒステリシスを設けることは容易である。
かかる構成を採用すれば、放電実行信号が一旦オン状態
となると、判定値Vref が所定値だけ小さくなるので、
端子間電圧が高い単電池ECiからの放電が行なわれ
て、単電池の端子間電圧のばらつきの最大値である偏差
ΔVが低下しても、この偏差ΔVが十分に小さくなるま
では、放電実行信号Konは、アクティブのまま保たれ
る。
In the above description, the discharge execution signal Ko
n has been described as being turned on / off by judging the magnitude of the judgment value Vref, but in practice, this judgment value Vref
Is provided with hysteresis. In a determination circuit using a comparator or the like, it is easy to provide hysteresis to the determination value Vref by subtracting the voltage of the discharge execution signal Kon, which is the determination result, from the determination value Vref.
With this configuration, once the discharge execution signal is turned on, the determination value Vref decreases by a predetermined value.
Even if the unit cell ECi having a high inter-terminal voltage is discharged and the deviation ΔV which is the maximum value of the inter-terminal voltage variation of the unit cell is reduced, the discharge is executed until the deviation ΔV becomes sufficiently small. The signal Kon is kept active.

【0034】次に、本発明の第2実施例について説明す
る。第2実施例では、組電池制御装置10は、ハードロ
ジックではなく、1チップマイクロコンピュータとして
構成されている。この1チップマイクロコンピュータ
は、単電池ECiの数に対応したアナログ電圧入力ポー
トを備え、各単電池ECiの端子間電圧Viを検出する
ことができる。かかる組電池制御装置10の1チップマ
イクロコンピュータが実行する処理について、図5のフ
ローチャートを用いて説明する。
Next, a second embodiment of the present invention will be described. In the second embodiment, the battery pack control device 10 is configured as a one-chip microcomputer instead of hardware logic. The one-chip microcomputer includes analog voltage input ports corresponding to the number of the single cells ECi, and can detect the terminal voltage Vi of each single cell ECi. The processing executed by the one-chip microcomputer of the battery pack control device 10 will be described with reference to the flowchart of FIG.

【0035】図5に示した処理は、エンドレスに実行さ
れているが、とりあえずステップS100から説明す
る。ステップS100では、n個の単電池ECiの電圧
を入力しこれを検出する処理を行なう。次に、検出した
各電圧Viの中から、電圧の最大値Vmax及び最小値
Vminを検出する(ステップS102)。この検出結
果から組電池BAに発生している最大電圧ΔVmax
(=Vmax−Vmin)を算出し(ステップS10
4)、そのΔVmaxと電圧ばらつきを解消するための
放電処理を起動する所定の起動電圧Vref_onとを比較
し、単電池の平均化のための処理を実行するか否かを決
定する(ステップS106)。ΔVmaxが起動電圧V
ref_onより大きければ、放電処理を実行する判断し、放
電実行フラグKonを値1とし、条件が解消するまで、
その状態を維持する(ステップ108)。
Although the processing shown in FIG. 5 is executed endlessly, the processing will be described from step S100 for the time being. In step S100, a process of inputting and detecting the voltages of the n unit cells ECi is performed. Next, the maximum value Vmax and the minimum value Vmin of the voltage are detected from the detected voltages Vi (step S102). From this detection result, the maximum voltage ΔVmax generated in the battery pack BA
(= Vmax−Vmin) (Step S10)
4) The ΔVmax is compared with a predetermined starting voltage Vref_on for starting a discharging process for eliminating voltage variations, and it is determined whether or not to execute a process for averaging the cells (step S106). . ΔVmax is the starting voltage V
If it is larger than ref_on, it is determined that the discharge process is to be performed, the discharge execution flag Kon is set to a value of 1, and until the condition is resolved.
This state is maintained (step 108).

【0036】次に、放電実行フラグKonが値1である
ことを再度確認してから、ステップS102で検出した
単電池の電圧の最小値Vminを基準とした単電池電圧
ばらつきΔV1,ΔV2,ΔV3,・・・,ΔViを演
算する処理を行なう(ステップS112)。以上の処理
により、実際に放電処理を行なうための準備が整ったこ
とになる。
Next, after confirming again that the discharge execution flag Kon has the value 1, the cell voltage variations ΔV1, ΔV2, ΔV3, based on the minimum cell voltage Vmin detected in step S102. , .DELTA.Vi is calculated (step S112). With the above processing, preparations for actually performing the discharge processing are completed.

【0037】次に、実際の放電処理を開始する。放電処
理の終了条件は、単電池電圧のばらつきΔV1,ΔV2
・・・の中の最大のもの、即ち最大ばらつきΔVmax
が、予め定めた終了電圧Vref_off 未満となることであ
る。ここで、起動電圧Vref_onと終了電圧Vref_off と
の関係について説明しておくと、両者は、図6に示した
ように、フラグKonのオン・オフにヒステリシスを持
たせるために設けられている。即ち、放電処理の開始を
行なうか否かを判断した時点では、起動電圧Vref_onと
比較を行ない、一旦放電処理を実行すると判断した後は
(Kon←1)、起動電圧より低い終了電圧Vref_off
と比較することで、放電処理の終了を判断するのであ
る。この結果、放電処理の開始が一旦判断されれば、各
単電池電圧のばらつきがある程度低くなるまで、放電処
理が継続されることになる。
Next, the actual discharge process is started. The conditions for terminating the discharge process are the cell voltage variations ΔV1, ΔV2.
.., The maximum variation ΔVmax
Is lower than a predetermined end voltage Vref_off. Here, the relationship between the start voltage Vref_on and the end voltage Vref_off will be described. As shown in FIG. 6, both of them are provided to provide a hysteresis to the ON / OFF of the flag Kon. That is, when it is determined whether or not to start the discharging process, the starting voltage Vref_on is compared with the starting voltage Vref_on. After it is determined that the discharging process is performed once (Kon ← 1), the end voltage Vref_off lower than the starting voltage is determined.
By comparing with, the end of the discharge process is determined. As a result, once the start of the discharge process is determined, the discharge process is continued until the variation in the voltage of each unit cell is reduced to some extent.

【0038】そこで、次のステップS114では、各単
電池電圧のばらつきΔViが終了電圧を超えているいか
否かを個々に判定する処理を行なう。即ち、変数iを順
次インクリメントしつつ、全単電池電圧のばらつきにつ
いて、ΔVi>Vref_off の判定を行なうのである。こ
の結果、ΔVi>Vref_off と判断された単電池(セ
ル)iについて、放電を許可する信号を出力する(ステ
ップS116)。放電を許可する信号が出力されると、
対応する放電回路のスイッチTiは閉成され、対応する
セルiの放電が開始される。この処理を、図5では、ス
テップS118として示した。なお、ΔVi≦Vref_of
fである単電池については単電池放電回路14への放電
許可信号の出力は行なわれず、単電池の電力はそのまま
維持される(ステップS120)。この様にして単電池
放電回路14の放電スイッチTiが閉成された単電池で
は、放電抵抗器Riを通じて電力が消費され、その容量
−電圧特性に応じてその単電池電圧Viが低下すること
になる。
Therefore, in the next step S114, a process for individually determining whether or not the variation ΔVi of each cell voltage exceeds the end voltage is performed. That is, while the variable i is incremented sequentially, the determination of ΔVi> Vref_off is performed for the variation of the voltage of all the cells. As a result, a signal permitting discharge is output for the unit cell (cell) i determined as ΔVi> Vref_off (step S116). When a signal that allows discharge is output,
The switch Ti of the corresponding discharge circuit is closed, and the discharge of the corresponding cell i is started. This processing is shown as step S118 in FIG. Note that ΔVi ≦ Vref_of
No output of the discharge permission signal to the single cell discharging circuit 14 is performed for the single cell f, and the power of the single cell is maintained as it is (step S120). In the unit cell in which the discharge switch Ti of the unit cell discharge circuit 14 is closed in this manner, power is consumed through the discharge resistor Ri, and the unit cell voltage Vi decreases in accordance with the capacity-voltage characteristic. Become.

【0039】こうして全単電池について、その電圧のば
らつきΔViが終了電圧Vref_offを超えている単電池
(セル)iの放電が行なわれ、その単電池の電圧が次第
に低下していくと、電圧の最大ばらつきΔVmaxが次
第に小さな値へと変化する。そして、その値ΔVmax
が基準電圧Vref_off を下回る値となるまで上記の放電
処理をくり返し、ΔVmax<Vref_off となったとき
(ステップS122)、均等化の処理を終了するとし
て、放電実行フラグKonをローレベル(0)にリセッ
トする(ステップS124)。この結果、単電池の電圧
ばらつきを解消する均等化処理は終了する(ステップS
126)。
As described above, with respect to all the cells, the cell (cell) i whose voltage variation ΔVi exceeds the end voltage Vref_off is discharged, and as the voltage of the cells gradually decreases, the maximum voltage is reached. The variation ΔVmax gradually changes to a smaller value. Then, the value ΔVmax
Is repeated below until the value falls below the reference voltage Vref_off, and when ΔVmax <Vref_off (step S122), the discharge execution flag Kon is reset to low level (0) assuming that the equalization process is to be ended. (Step S124). As a result, the equalization process for eliminating the voltage variation of the unit cell ends (Step S
126).

【0040】この様に動作する本実施例の組電池制御装
置10によれば、組電池BAの電圧の最大ばらつきΔV
maxが基準電圧Vref_onを上回る値となったとき、単
電池の電圧のばらつきを解消する均等化処理が開始さ
れ、この処理を行なうことによりそれぞれの単電池の電
圧値は最小値Vmin〜(Vmin+Vref_off )の範
囲に均等化されることになる。単電池の電圧値の均等化
がなされることで、組電池BAを安定に使用し続けるこ
とができる。すなわち、本実施例の組電池制御装置10
によれば、単電池の電圧の均等化を、簡略な放電用の閉
回路を用いて行なうことができる。このため、装置の信
頼性に優れるだけでなく、小型化が可能であり、更に組
電池BAと一体に構成することができる。また、その均
等化処理は、組電池制御装置10により単独に実行され
るため、電源制御部ECUによる組電池BAの管理が簡
素化されると共に電源部125の充放電制御とは非同期
に組電池BAの均等化処理を行うことができる。
According to the assembled battery control device 10 of the present embodiment that operates as described above, the maximum variation ΔV of the voltage of the assembled battery BA
When the value of max exceeds the reference voltage Vref_on, an equalization process for eliminating the variation in the voltage of the unit cells is started. By performing this process, the voltage value of each unit cell becomes the minimum value Vmin to (Vmin + Vref_off). Will be equalized. By equalizing the voltage values of the cells, the assembled battery BA can be stably used. That is, the battery pack control device 10 of the present embodiment
According to this, the voltage of the cells can be equalized using a simple closed circuit for discharging. For this reason, not only the reliability of the device is excellent, but also the size can be reduced, and the device can be configured integrally with the battery pack BA. Further, since the equalization process is independently executed by the battery pack control device 10, the management of the battery pack BA by the power supply control unit ECU is simplified, and the battery pack control is performed asynchronously with the charge / discharge control of the power supply unit 125. BA equalization processing can be performed.

【0041】なお、上記の実施例では、放電処理の開始
(Kon←1)と終了(Kon←0)とにヒステリシス
を設けており、この様子を、図6に示す。図示するよう
に、本実施例では、全単電池の電圧の最大ばらつきΔV
maxが開始電圧Vref_onを上回る値となったとき、放
電実行フラグKonをハイアクティブとし、最大ばらつ
きΔVmaxが、開始電圧Vref_onより低い終了電圧V
ref_off を下回る値となったとき、放電実行フラグKo
nをローに反転している。この結果、最大ばらつきΔV
maxが僅かに異なるだけで放電実行フラグKonの出
力がハイ,ロウに頻繁に変化することが防止される。こ
れにより、単電池の放電が頻繁に繰り返し行なわれるこ
とが防止され、組電池BAの長寿命化を図ることができ
る。
In the above embodiment, hysteresis is provided at the start (Kon ← 1) and the end (Kon ← 0) of the discharge process, and this is shown in FIG. As shown in the drawing, in the present embodiment, the maximum variation ΔV
When the value of max becomes higher than the start voltage Vref_on, the discharge execution flag Kon is set to a high active state, and the maximum variation ΔVmax is lower than the start voltage Vref_on.
When the value falls below ref_off, the discharge execution flag Ko
n is inverted to low. As a result, the maximum variation ΔV
The output of the discharge execution flag Kon is prevented from frequently changing from high to low when the max is slightly different. This prevents the unit cell from being repeatedly discharged, and can extend the life of the battery pack BA.

【0042】以上説明した二つの実施例では、共に、放
電処理の実行中であるか否かを容易に監視することがで
きる。第1実施例では、放電実行信号Konを直接監視
すれば良く、第2実施例では、放電実行フラグKonの
値を組電池制御装置10から受け取ればよい。こうした
構成を取ることにより、電源制御部ECUは、組電池B
Aにおいて行なわれる均等化処理の実行回数をカウント
することができ、このカウント値から組電池BAの使用
状況を推定することができる。すなわち、電源制御部E
CUは、簡単なカウント処理のみで組電池BAの使用状
況を管理することが可能となる。こうして推定された組
電池BAの使用状況は、電気自動車のインジケータパネ
ルに備えられる専用の表示部などを用いて運転者へ報知
したり、メンテナンスで利用したりすることができる。
本実施例では、組電池BAの使用状況として、劣化に伴
う交換時期の表示として利用している。表示の一例を図
7に示す。この例では、均等化の処理回数nのカウント
値が第一の基準値n1までは正常表示を、n1以上であ
って第二の基準値n2までは警告表示を、n2以上であ
って第三の基準値n3までは異常表示を行なっている。
In the two embodiments described above, it is possible to easily monitor whether or not the discharge process is being performed. In the first embodiment, the discharge execution signal Kon may be directly monitored. In the second embodiment, the value of the discharge execution flag Kon may be received from the battery pack control device 10. With this configuration, the power supply control unit ECU
It is possible to count the number of times the equalization process performed in A is performed, and it is possible to estimate the use state of the battery pack BA from this count value. That is, the power control unit E
The CU can manage the usage status of the assembled battery BA only by a simple counting process. The usage status of the battery pack BA estimated in this manner can be reported to the driver using a dedicated display unit or the like provided on the indicator panel of the electric vehicle or used for maintenance.
In this embodiment, the usage status of the battery pack BA is used as an indication of a replacement time due to deterioration. FIG. 7 shows an example of the display. In this example, a normal display is performed until the count value of the number of equalization processes n reaches the first reference value n1, a warning display is performed until the count value is equal to or more than n1 and the second reference value n2, and a third display is performed when the count value is n2 or more. Up to the reference value n3.

【0043】以上、本発明が実施される形態を説明した
が、本発明はこうした実施例に何等限定されるものでは
なく、本発明の要旨を逸脱しない範囲内において種々な
る様態で実施し得ることは勿論である。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments and can be implemented in various modes without departing from the gist of the present invention. Of course.

【0044】例えば、上記実施例では、判定値Vref、
開始電圧Vref_on,終了値Vref_off等を固定値として
いるが、これらの値を組電池の温度などの関数として決
定するなど、所定のパラメータに応じて可変する構成と
することもできる。また、本発明の組電池制御装置10
を電気自動車に適用した場合を例として説明したが、そ
の他の電気駆動の移動体の何れにも簡単に適用すること
ができる。例えばパーソナルコンピュータの電源、無線
機,携帯電話などの電源などに利用することができる。
もとより、無停電電源用の電源等、移動体以外の分野で
も利用することができる。
For example, in the above embodiment, the judgment value Vref,
The start voltage Vref_on, the end value Vref_off, and the like are fixed values. However, the values may be varied according to predetermined parameters, such as determining these values as a function of the temperature of the battery pack or the like. Further, the battery pack control device 10 of the present invention
Has been described as an example in which the present invention is applied to an electric vehicle, but the present invention can be easily applied to any other electric-driven moving body. For example, it can be used as a power source of a personal computer, a power source of a wireless device, a mobile phone, and the like.
Of course, the present invention can be used in fields other than the moving body, such as a power supply for an uninterruptible power supply.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である組電池制御装置10を採
用した電源部の回路説明図である。
FIG. 1 is a circuit diagram of a power supply unit employing a battery pack control device 10 according to an embodiment of the present invention.

【図2】その組電池制御装置10の電気回路図である。FIG. 2 is an electric circuit diagram of the battery pack control device 10.

【図3】本実施例の電源部125が搭載された電気自動
車1の概略構成図である。
FIG. 3 is a schematic configuration diagram of the electric vehicle 1 on which the power supply unit 125 of the embodiment is mounted.

【図4】第1実施例における放電処理の様子を示す説明
図である。
FIG. 4 is an explanatory diagram showing a state of a discharge process in the first embodiment.

【図5】第2実施例における放電処理の内容を説明する
フローチャートである。
FIG. 5 is a flowchart illustrating the contents of a discharge process in a second embodiment.

【図6】放電処理の開始ー終了のリステリシス動作を示
す説明図である。
FIG. 6 is an explanatory diagram showing a start-end re-steresis operation of a discharge process.

【図7】電源制御部ECUにて実行される組電池BAの
劣化状況の表示例の説明図である。
FIG. 7 is an explanatory diagram of a display example of a deterioration state of the assembled battery BA executed by the power supply control unit ECU.

【符号の説明】[Explanation of symbols]

1…電気自動車 10…組電池制御装置 12…単電池電圧検出回路 14…単電池放電回路 16…単電池放電制御部 16a…最大値検出部 16b…最小値検出部 16c…ばらつき判定部 16d…単電池ばらつき検出部 16e…放電スイッチ操作部 100…発電機 110…ガソリンエンジン 120…電動機 125…電源部 130…電力制御回路 140…車輪 150…駆動系 BA…組電池 BC…組電池管理回路 CMi…差動増幅器 DAMi…差動増幅器 ECU…電源制御部 ECi…単電池 Ri…放電抵抗器 SB…電池モジュール Ti…放電スイッチ DESCRIPTION OF SYMBOLS 1 ... Electric vehicle 10 ... Assembly battery control device 12 ... Single cell voltage detection circuit 14 ... Single cell discharge circuit 16 ... Single cell discharge control part 16a ... Maximum value detection part 16b ... Minimum value detection part 16c ... Variation judgment part 16d ... Single Battery variation detection unit 16e: Discharge switch operation unit 100: Generator 110: Gasoline engine 120: Electric motor 125: Power supply unit 130: Power control circuit 140: Wheels 150: Drive system BA: Battery pack BC: Battery pack management circuit CMi: Difference Dynamic amplifier DAMi: Differential amplifier ECU: Power supply control unit ECi: Single cell Ri: Discharge resistor SB: Battery module Ti: Discharge switch

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/44 H01M 10/44 P Fターム(参考) 2G016 CA03 CB11 CB12 CC01 CC04 CC05 CC12 CC27 CD14 5G003 AA07 BA03 DA07 DA12 FA06 GC05 5H030 AA03 AA06 AA10 AS08 BB18 BB21 DD08 FF43 FF44 5H115 PA08 PG04 PG05 PG07 PG10 PI14 PI16 PI22 PI29 PU01 PU26 QN03 QN25 TI05 TI06 TI10 TO05 TR19 TU04 TU20 TZ07 UB05 UB08 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01M 10/44 H01M 10/44 PF term (Reference) 2G016 CA03 CB11 CB12 CC01 CC04 CC05 CC12 CC27 CD14 5G003 AA07 BA03 DA07 DA12 FA06 GC05 5H030 AA03 AA06 AA10 AS08 BB18 BB21 DD08 FF43 FF44 5H115 PA08 PG04 PG05 PG07 PG10 PI14 PI16 PI22 PI29 PU01 PU26 QN03 QN25 TI05 TI06 TI10 TO05 TR19 TU04 TU20 TZ07 UB05 UB08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 直列接続された複数の単電池から構成さ
れる組電池の電力量を制御する組電池制御装置であっ
て、 前記複数の単電池それぞれの電圧値のばらつきを検出す
るばらつき検出手段と、 任意の前記単電池を放電させる単電池放電手段と、 前記ばらつき検出手段により検出された単電池の電圧値
のばらつきが許容範囲となるように、前記単電池放電手
段を制御する単電池放電制御手段とを備える組電池制御
装置。
1. An assembled battery control device for controlling an electric energy of an assembled battery including a plurality of unit cells connected in series, comprising: a variation detecting unit configured to detect a variation in a voltage value of each of the plurality of unit cells. A cell discharging means for discharging any of the cells; and a cell discharging control for controlling the cell discharging means such that a variation in voltage value of the cells detected by the variation detecting means is within an allowable range. An assembled battery control device comprising a control unit.
【請求項2】 請求項1記載の組電池制御装置であっ
て、 前記ばらつき検出手段は、 前記単電池それぞれの電圧値を検出する単電池電圧検出
手段を備えると共に、 該単電池電圧検出手段により検出された単電池の電圧の
うち、最小値を基準として電圧値のばらつきを検出する
手段である組電池制御装置。
2. The assembled battery control device according to claim 1, wherein the variation detecting means includes a single cell voltage detecting means for detecting a voltage value of each of the single cells, and An assembled battery control device which is means for detecting a variation in a voltage value based on a minimum value among detected cell voltages.
【請求項3】 単電池放電制御手段は、単電池のばらつ
きの許容値に所定の幅を有し、その幅の上限で単電池放
電手段の動作を起動し、その幅の下限で単電池放電手段
の動作を停止する請求項1または請求項2記載の組電池
制御装置。
3. The unit cell discharge control unit has a predetermined range for an allowable value of unit cell variation, activates the operation of the unit cell discharge unit at the upper limit of the width, and sets the unit cell discharge unit at the lower limit of the width. 3. The battery pack control device according to claim 1, wherein the operation of the means is stopped.
【請求項4】 単電池放電制御手段は、単電池放電手段
を制御する経時的な情報に基づいて組電池の状況を推定
し、該単電池放電手段の動作を停止する手段である請求
項1記載の組電池制御装置。
4. The unit cell discharge control unit estimates a condition of the battery pack based on temporal information for controlling the unit cell discharge unit, and stops the operation of the unit cell discharge unit. The battery pack control device as described in the above.
【請求項5】 請求項1ないし請求項4のいずれか記載
の組電池制御装置であって、 前記単電池放電手段は、前記各単電池毎に設けられ、該
各単電池毎に閉回路を形成する抵抗器であり、 前記単電池放電制御手段は、該閉回路に介装されて、該
回路を入り切りするスイッチである組電池制御装置。
5. The battery pack control device according to claim 1, wherein the unit cell discharging unit is provided for each of the unit cells, and a closed circuit is provided for each of the unit cells. An assembled battery control device, comprising: a resistor to be formed; and the unit cell discharge control means is a switch that is interposed in the closed circuit and switches on and off the circuit.
【請求項6】 前記単電池は、リチウム系の電池である
請求項1ないし請求項5のいずれか記載の組電池制御装
置。
6. The battery pack control device according to claim 1, wherein the single battery is a lithium-based battery.
【請求項7】 直列接続された複数の単電池から構成さ
れる組電池の充放電を制御する方法であって、 前記複数の単電池それぞれの電圧値のばらつきを検出
し、 該検出された単電池の電圧値のばらつきが許容範囲外と
なったとき、電圧値の高いものから1つ以上の単電池を
特定し、 該特定された単電池を放電させる制御方法。
7. A method for controlling charging / discharging of a battery pack composed of a plurality of unit cells connected in series, comprising: detecting a variation in voltage value of each of the plurality of unit cells; A control method for, when a variation in battery voltage value falls outside an allowable range, specifying one or more unit cells from those having higher voltage values and discharging the specified unit cells.
【請求項8】 複数の単電池から構成される組電池と、
該組電池の充電状態を制御する制御装置とを備えた電池
モジュールであって、 前記組電池は、前記複数の単電池を、直列接続してな
り、 前記制御装置は、 前記複数の単電池それぞれの電圧値のばらつきを検出す
るばらつき検出手段と、 任意の前記単電池を放電させる単電池放電手段と、 前記ばらつき検出手段により検出された単電池の電圧値
のばらつきが許容範囲となるように、前記単電池放電手
段を制御する単電池放電制御手段とを備える電池モジュ
ール。
8. An assembled battery comprising a plurality of cells,
A battery module comprising: a control device that controls a state of charge of the assembled battery, wherein the assembled battery is configured by connecting the plurality of cells in series, and the control device includes: A variation detecting means for detecting the variation of the voltage value of, and a single cell discharging means for discharging any of the single cells, so that the variation of the voltage value of the single cell detected by the variation detecting means is within an allowable range, A battery module comprising: a unit cell discharge control unit that controls the unit cell discharge unit.
【請求項9】 複数の単電池から構成される組電池と、
該組電池の充電状態を制御する制御装置と、該組電池に
より駆動される電動機とを備えた電動車両であって、 前記組電池は、前記複数の単電池を、直列接続してな
り、 前記制御装置は、 前記複数の単電池それぞれの電圧値のばらつきを検出す
るばらつき検出手段と、 任意の前記単電池を放電させる単電池放電手段と、 前記ばらつき検出手段により検出された単電池の電圧値
のばらつきが許容範囲となるように、前記単電池放電手
段を制御する単電池放電制御手段とを備え、 前記電動機は、前記組電池の電力により運転されて、車
両駆動軸に動力を出力する電動車両。
9. An assembled battery comprising a plurality of cells,
An electric vehicle including: a control device that controls a state of charge of the battery pack; and an electric motor driven by the battery pack, wherein the battery pack is configured by connecting the plurality of cells in series, A control unit configured to detect a variation in voltage value of each of the plurality of unit cells; a unit cell discharging unit configured to discharge any of the unit cells; and a voltage value of the unit cell detected by the variation detecting unit. Cell discharge control means for controlling the cell discharge means so that the variation of the electric power is within an allowable range. The electric motor is driven by the electric power of the battery pack to output power to a vehicle drive shaft. vehicle.
JP2000026007A 2000-02-03 2000-02-03 Device and method for controlling charring condition of single batteries constituting batter pack, and battery module using device, and electric-motor vehicle Pending JP2001218376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026007A JP2001218376A (en) 2000-02-03 2000-02-03 Device and method for controlling charring condition of single batteries constituting batter pack, and battery module using device, and electric-motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026007A JP2001218376A (en) 2000-02-03 2000-02-03 Device and method for controlling charring condition of single batteries constituting batter pack, and battery module using device, and electric-motor vehicle

Publications (1)

Publication Number Publication Date
JP2001218376A true JP2001218376A (en) 2001-08-10

Family

ID=18551789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026007A Pending JP2001218376A (en) 2000-02-03 2000-02-03 Device and method for controlling charring condition of single batteries constituting batter pack, and battery module using device, and electric-motor vehicle

Country Status (1)

Country Link
JP (1) JP2001218376A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408396A (en) * 2003-11-19 2005-05-25 Milwaukee Electric Tool Corp Battery pack and charge equaliser
GB2420031A (en) * 2003-11-19 2006-05-10 Milwaukee Electric Tool Corp Battery pack for a cordless power tool
US7109875B2 (en) 2001-10-04 2006-09-19 Omron Corporation Sensor network system managing method, sensor network system managing program, storage medium containing sensor network system managing program, sensor network system managing device, relay network managing method, relay network managing program, storage medium containing relay network managing program, and relay network managing device
US7157883B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing averaging of measurements
US7176654B2 (en) 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US7253585B2 (en) 2002-11-22 2007-08-07 Milwaukee Electric Tool Corporation Battery pack
US7425816B2 (en) 2002-11-22 2008-09-16 Milwaukee Electric Tool Corporation Method and system for pulse charging of a lithium-based battery
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7714538B2 (en) 2002-11-22 2010-05-11 Milwaukee Electric Tool Corporation Battery pack
EP2276138A2 (en) 2009-07-17 2011-01-19 Kabushiki Kaisha Toshiba Assembled battery unit and vehicle
WO2011007329A2 (en) * 2009-07-15 2011-01-20 Clean Mobile Ag Method for the operation of an energy storage arrangement in a vehicle and vehicle with an energy storage arrangement
US7923969B2 (en) 2007-12-27 2011-04-12 Sanyo Electric Co., Ltd. State of charge equalizing device and assembled battery system including same
JP2011076947A (en) * 2009-09-30 2011-04-14 Toshiba Corp Secondary battery device, and vehicle
JP2011188618A (en) * 2010-03-08 2011-09-22 Honda Motor Co Ltd Electric vehicle and method of informing recovery state of storage battery
US8143852B2 (en) 2007-09-27 2012-03-27 Sanyo Electric Co., Ltd. State of charge optimizing device and assembled battery system including same
CN102426339A (en) * 2011-09-03 2012-04-25 镇江恒驰科技有限公司 Voltage collecting circuit for monomer batteries of battery pack
JP2012137877A (en) * 2010-12-24 2012-07-19 Toshiba Corp Secondary battery device, processor, monitoring program and vehicle
WO2012105448A1 (en) * 2011-01-31 2012-08-09 三洋電機株式会社 Battery module, battery system, power supply apparatus, and moving body
JP2012209994A (en) * 2011-03-29 2012-10-25 Ntt Facilities Inc Charge control device for lithium ion battery pack, control method and lithium ion battery pack system
WO2013032214A1 (en) * 2011-08-30 2013-03-07 킴스테크날리지 주식회사 Voltage equalization circuit
KR101273727B1 (en) 2010-09-10 2013-06-12 히다치 비클 에너지 가부시키가이샤 Cell controller and voltage abnormality detecting method
US8471532B2 (en) 2002-11-22 2013-06-25 Milwaukee Electric Tool Corporation Battery pack
US20130285581A1 (en) * 2012-04-30 2013-10-31 GM Global Technology Operations LLC Passive high-voltage dc bus discharge circuit for a vehicle
WO2014024030A1 (en) 2012-08-08 2014-02-13 Toyota Jidosha Kabushiki Kaisha Electrical storage system and equalizing method
CN104237795A (en) * 2013-06-11 2014-12-24 福特全球技术公司 Detection of Imbalance Across Multiple Battery Cells Measured by the Same Voltage Sensor
WO2015030392A1 (en) * 2013-08-28 2015-03-05 주식회사 엘지화학 Method for balancing rack voltage of battery pack including rack
WO2015049568A1 (en) 2013-10-01 2015-04-09 Toyota Jidosha Kabushiki Kaisha Power storage system
WO2015056068A1 (en) 2013-10-16 2015-04-23 Toyota Jidosha Kabushiki Kaisha Electric storage system
JP2015185501A (en) * 2014-03-26 2015-10-22 三菱自動車工業株式会社 Excitation device
WO2018012151A1 (en) * 2016-07-12 2018-01-18 Necエナジーデバイス株式会社 Information processing device, control method, and program

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109875B2 (en) 2001-10-04 2006-09-19 Omron Corporation Sensor network system managing method, sensor network system managing program, storage medium containing sensor network system managing program, sensor network system managing device, relay network managing method, relay network managing program, storage medium containing relay network managing program, and relay network managing device
US8822067B2 (en) 2002-11-22 2014-09-02 Milwaukee Electric Tool Corporation Battery Pack
US10886762B2 (en) 2002-11-22 2021-01-05 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US7157883B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing averaging of measurements
US7157882B2 (en) 2002-11-22 2007-01-02 Milwaukee Electric Tool Corporation Method and system for battery protection employing a selectively-actuated switch
US7164257B2 (en) 2002-11-22 2007-01-16 Milwaukee Electric Tool Corporation Method and system for protection of a lithium-based multicell battery pack including a heat sink
US7176654B2 (en) 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US7253585B2 (en) 2002-11-22 2007-08-07 Milwaukee Electric Tool Corporation Battery pack
US7262580B2 (en) 2002-11-22 2007-08-28 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US7321219B2 (en) 2002-11-22 2008-01-22 Milwaukee Electric Tool Corporation Method and system for battery charging employing a semiconductor switch
US7323847B2 (en) 2002-11-22 2008-01-29 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US7425816B2 (en) 2002-11-22 2008-09-16 Milwaukee Electric Tool Corporation Method and system for pulse charging of a lithium-based battery
US7508167B2 (en) 2002-11-22 2009-03-24 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US7554290B2 (en) 2002-11-22 2009-06-30 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand-held power tool
US7557535B2 (en) 2002-11-22 2009-07-07 Milwaukee Electric Tool Corporation Lithium-based battery for a hand held power tool
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7667437B2 (en) 2002-11-22 2010-02-23 Milwaukee Electric Tool Corporation Method and system for protection of a lithium-based multicell battery pack including a heat sink
US7714538B2 (en) 2002-11-22 2010-05-11 Milwaukee Electric Tool Corporation Battery pack
US11837694B2 (en) 2002-11-22 2023-12-05 Milwaukee Electric Tool Corporation Lithium-based battery pack
US9660293B2 (en) 2002-11-22 2017-05-23 Milwaukee Electric Tool Corporation Method and system for battery protection
US11682910B2 (en) 2002-11-22 2023-06-20 Milwaukee Electric Tool Corporation Method of operating a lithium-based battery pack for a hand held power tool
US9680325B2 (en) 2002-11-22 2017-06-13 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US11469608B2 (en) 2002-11-22 2022-10-11 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US7944181B2 (en) 2002-11-22 2011-05-17 Milwaukee Electric Tool Corporation Battery pack
US7944173B2 (en) 2002-11-22 2011-05-17 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US7952326B2 (en) 2002-11-22 2011-05-31 Milwaukee Electric Tool Corporation Method and system for battery protection employing over-discharge control
US11196080B2 (en) 2002-11-22 2021-12-07 Milwaukee Electric Tool Corporation Method and system for battery protection
US7999510B2 (en) 2002-11-22 2011-08-16 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US8018198B2 (en) 2002-11-22 2011-09-13 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US11063446B2 (en) 2002-11-22 2021-07-13 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US9793583B2 (en) 2002-11-22 2017-10-17 Milwaukee Electric Tool Corporation Lithium-based battery pack
US8154249B2 (en) 2002-11-22 2012-04-10 Milwaukee Electric Tool Corporation Battery pack
US10998586B2 (en) 2002-11-22 2021-05-04 Milwaukee Electric Tool Corporation Lithium-based battery pack including a balancing circuit
US8207702B2 (en) 2002-11-22 2012-06-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9673648B2 (en) 2002-11-22 2017-06-06 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10862327B2 (en) 2002-11-22 2020-12-08 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8269459B2 (en) 2002-11-22 2012-09-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US10714948B2 (en) 2002-11-22 2020-07-14 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US10593991B2 (en) 2002-11-22 2020-03-17 Milwaukee Electric Tool Corporation Method and system for battery protection
US10566810B2 (en) 2002-11-22 2020-02-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8450971B2 (en) 2002-11-22 2013-05-28 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10536022B2 (en) 2002-11-22 2020-01-14 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8471532B2 (en) 2002-11-22 2013-06-25 Milwaukee Electric Tool Corporation Battery pack
US8487585B2 (en) 2002-11-22 2013-07-16 Milwaukee Electric Tool Corporation Battery pack
US8525479B2 (en) 2002-11-22 2013-09-03 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based batteries
US10431857B2 (en) 2002-11-22 2019-10-01 Milwaukee Electric Tool Corporation Lithium-based battery pack
US10374443B2 (en) 2002-11-22 2019-08-06 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US9379569B2 (en) 2002-11-22 2016-06-28 Milwaukee Electric Tool Corporation Lithium-battery pack for a hand held power tool
US9819051B2 (en) 2002-11-22 2017-11-14 Milwaukee Electric Tool Corporation Method and system for battery protection
US10224566B2 (en) 2002-11-22 2019-03-05 Milwaukee Electric Tool Corporation Method and system for battery protection
US10218194B2 (en) 2002-11-22 2019-02-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10141614B2 (en) 2002-11-22 2018-11-27 Milwaukee Electric Tool Corporation Battery pack
US10097026B2 (en) 2002-11-22 2018-10-09 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10008864B2 (en) 2002-11-22 2018-06-26 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US9018903B2 (en) 2002-11-22 2015-04-28 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9048515B2 (en) 2002-11-22 2015-06-02 Milwaukee Electric Tool Corporation Battery pack
US9112248B2 (en) 2002-11-22 2015-08-18 Milwaukee Electric Tool Corporation Method and system for battery protection
US9118189B2 (en) 2002-11-22 2015-08-25 Milwaukee Electric Tool Corporation Method and system for charging multi-cell lithium-based battery packs
US9941718B2 (en) 2002-11-22 2018-04-10 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9312721B2 (en) 2002-11-22 2016-04-12 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9368842B2 (en) 2002-11-22 2016-06-14 Milwaukee Electric Tool Corporation Battery pack
US8653790B2 (en) 2002-11-22 2014-02-18 Milwaukee Electric Tool Corporation Battery pack
GB2420031A (en) * 2003-11-19 2006-05-10 Milwaukee Electric Tool Corp Battery pack for a cordless power tool
GB2408396A (en) * 2003-11-19 2005-05-25 Milwaukee Electric Tool Corp Battery pack and charge equaliser
US8143852B2 (en) 2007-09-27 2012-03-27 Sanyo Electric Co., Ltd. State of charge optimizing device and assembled battery system including same
US7923969B2 (en) 2007-12-27 2011-04-12 Sanyo Electric Co., Ltd. State of charge equalizing device and assembled battery system including same
WO2011007329A2 (en) * 2009-07-15 2011-01-20 Clean Mobile Ag Method for the operation of an energy storage arrangement in a vehicle and vehicle with an energy storage arrangement
WO2011007329A3 (en) * 2009-07-15 2011-07-14 Clean Mobile Ag Method for the operation of an energy storage arrangement in a vehicle and vehicle with an energy storage arrangement
JP2011041452A (en) * 2009-07-17 2011-02-24 Toshiba Corp Assembled battery unit and vehicle
EP2276138A2 (en) 2009-07-17 2011-01-19 Kabushiki Kaisha Toshiba Assembled battery unit and vehicle
US8400102B2 (en) 2009-07-17 2013-03-19 Kabushiki Kaisha Toshiba Assembled battery unit and vehicle
JP2011076947A (en) * 2009-09-30 2011-04-14 Toshiba Corp Secondary battery device, and vehicle
JP2011188618A (en) * 2010-03-08 2011-09-22 Honda Motor Co Ltd Electric vehicle and method of informing recovery state of storage battery
KR101273727B1 (en) 2010-09-10 2013-06-12 히다치 비클 에너지 가부시키가이샤 Cell controller and voltage abnormality detecting method
JP2012137877A (en) * 2010-12-24 2012-07-19 Toshiba Corp Secondary battery device, processor, monitoring program and vehicle
WO2012105448A1 (en) * 2011-01-31 2012-08-09 三洋電機株式会社 Battery module, battery system, power supply apparatus, and moving body
JP2012209994A (en) * 2011-03-29 2012-10-25 Ntt Facilities Inc Charge control device for lithium ion battery pack, control method and lithium ion battery pack system
WO2013032214A1 (en) * 2011-08-30 2013-03-07 킴스테크날리지 주식회사 Voltage equalization circuit
CN102426339A (en) * 2011-09-03 2012-04-25 镇江恒驰科技有限公司 Voltage collecting circuit for monomer batteries of battery pack
US9018865B2 (en) * 2012-04-30 2015-04-28 GM Global Technology Operations LLC Passive high-voltage DC bus discharge circuit for a vehicle
US20130285581A1 (en) * 2012-04-30 2013-10-31 GM Global Technology Operations LLC Passive high-voltage dc bus discharge circuit for a vehicle
US9634498B2 (en) 2012-08-08 2017-04-25 Toyota Jidosha Kabushiki Kaisha Electrical storage system and equalizing method
WO2014024030A1 (en) 2012-08-08 2014-02-13 Toyota Jidosha Kabushiki Kaisha Electrical storage system and equalizing method
CN104237795A (en) * 2013-06-11 2014-12-24 福特全球技术公司 Detection of Imbalance Across Multiple Battery Cells Measured by the Same Voltage Sensor
WO2015030392A1 (en) * 2013-08-28 2015-03-05 주식회사 엘지화학 Method for balancing rack voltage of battery pack including rack
US9641013B2 (en) 2013-08-28 2017-05-02 Lg Chem, Ltd. Method of balancing rack voltages of battery pack including racks
EP3018792A4 (en) * 2013-08-28 2016-07-27 Lg Chemical Ltd Method for balancing rack voltage of battery pack including rack
WO2015049568A1 (en) 2013-10-01 2015-04-09 Toyota Jidosha Kabushiki Kaisha Power storage system
US9948116B2 (en) 2013-10-01 2018-04-17 Toyota Jidosha Kabushiki Kaisha Power storage system
US10044199B2 (en) 2013-10-16 2018-08-07 Toyota Jidosha Kabushiki Kaisha Electric storage system that detects voltage values of a plurality of electric storage elements
WO2015056068A1 (en) 2013-10-16 2015-04-23 Toyota Jidosha Kabushiki Kaisha Electric storage system
JP2015185501A (en) * 2014-03-26 2015-10-22 三菱自動車工業株式会社 Excitation device
US10901046B2 (en) 2016-07-12 2021-01-26 Envision Aesc Energy Devices, Ltd. Information processing apparatus, control method, and program
JPWO2018012151A1 (en) * 2016-07-12 2019-05-09 Necエナジーデバイス株式会社 INFORMATION PROCESSING APPARATUS, CONTROL METHOD, AND PROGRAM
JP7004650B2 (en) 2016-07-12 2022-01-21 株式会社エンビジョンAescジャパン Information processing equipment, control methods, and programs
WO2018012151A1 (en) * 2016-07-12 2018-01-18 Necエナジーデバイス株式会社 Information processing device, control method, and program

Similar Documents

Publication Publication Date Title
JP2001218376A (en) Device and method for controlling charring condition of single batteries constituting batter pack, and battery module using device, and electric-motor vehicle
JP6445190B2 (en) Battery control device
US7514905B2 (en) Battery management system
EP2587621B1 (en) Power storage unit control circuit and power storage apparatus
JP5819443B2 (en) Battery control device, battery system
JP5668136B2 (en) Power storage device
JP5687340B2 (en) Battery control device, battery system
EP2083494B1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program
JP6084225B2 (en) Battery control device, secondary battery system
US9634498B2 (en) Electrical storage system and equalizing method
CN106662620B (en) Battery state detection device, secondary battery system, storage medium, and battery state detection method
US9680320B2 (en) Battery control apparatus
EP3958006B1 (en) Battery diagnosis apparatus and method
US20190157896A1 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
WO2010010662A1 (en) Imbalance determination circuit, power supply device, and imbalance determination method
JP3855497B2 (en) Charged / discharged state determination method and apparatus for assembled battery
JP3997707B2 (en) Monitoring device, control device and battery module
JP2001186682A (en) Method of controlling discharge of battery
KR20190102814A (en) Apparatus and method for managing battery
WO2022138745A1 (en) Battery control device, and battery system
US20240162721A1 (en) System and method for using multiple high voltage battery packs in parallel