JP2001192874A - Method for preparing persulfuric acid-dissolving water - Google Patents

Method for preparing persulfuric acid-dissolving water

Info

Publication number
JP2001192874A
JP2001192874A JP37430499A JP37430499A JP2001192874A JP 2001192874 A JP2001192874 A JP 2001192874A JP 37430499 A JP37430499 A JP 37430499A JP 37430499 A JP37430499 A JP 37430499A JP 2001192874 A JP2001192874 A JP 2001192874A
Authority
JP
Japan
Prior art keywords
anode
persulfuric acid
diamond
sulfuric acid
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37430499A
Other languages
Japanese (ja)
Inventor
Tateo Kurosu
楯生 黒須
Miwako Nara
美和子 奈良
Yoshinori Nishiki
善則 錦
Yukie Matsumoto
幸英 松本
Masaaki Kato
昌明 加藤
Kuniaki Yamada
邦晃 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP37430499A priority Critical patent/JP2001192874A/en
Publication of JP2001192874A publication Critical patent/JP2001192874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that persulfuric acid ions has heretofore been prepared by oxidation of sulfuric acid ions because of non-availability of suitable oxidizing agents and the absence of means for efficient preparation thereof. SOLUTION: Conductive diamond is used as an anode 35 in preparing the persulfuric acid ions by the electrolytic oxidation of the sulfuric acid ions. Since the supervoltage of the oxygen generation reaction of diamond is extremely high, the electrolysis of a sulfuric acid ion-containing aqueous solution is substantially the persulfuric acid ion formation reaction by the oxidation of the sulfuric acid ions and the persulfuric acid dissolution water may be efficiently obtained. More particularly, when a two-chamber type electrolytic cell 31 segmented to an anode chamber 41 and a cathode chamber 42 particularly by a diaphragm 32 is used, the contact of the persulfuric acid ions once formed by the anode with the cathode and the reduction to the original sulfuric acid ions do not occur any more and current efficiency is further improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化剤等として有
用な過硫酸の溶解水を電気化学的手法により効率良く製
造するための方法に関する。
The present invention relates to a method for efficiently producing dissolved water of persulfuric acid useful as an oxidizing agent or the like by an electrochemical method.

【0002】[0002]

【従来技術】最近になって水を電気分解することにより
生成する酸化性あるいは還元性を有するいわゆる電解水
が、医療、食品などの様々な分野で利用できることが報
告されている。又電子部品の洗浄工程においても、従来
から薬剤添加に比較してオンサイト型であるため保存や
輸送に伴う危険が少なく、又排水処理コストの低減が可
能であるため、電解水による洗浄が注目を集めている。
電解法は排水処理でも使用され、クリーンな電気エネル
ギーを利用して、電極表面で化学反応を制御することに
より、水素、酸素、オゾン、過酸化水素などを発生さ
せ、排水中の被処理物質を間接的に分解するか、該物質
を電極に吸着し、直接的に電気分解することが可能であ
り、従来から排水処理用として利用されている。陽極で
の酸化反応では、水処理に有効な酸化剤(有効塩素、オ
ゾンなど)が生成し、一部OHラジカルなどの活性種も
発生することが知られており、活性水、機能水、イオン
水、殺菌水等の名称で汎用されている。
2. Description of the Related Art Recently, it has been reported that so-called electrolyzed water having oxidizing or reducing properties, which is generated by electrolyzing water, can be used in various fields such as medicine and food. Also in the washing process of electronic parts, the use of electrolytic water has attracted attention because it is of an on-site type as compared with the addition of chemicals, so there is less danger associated with storage and transportation, and the cost of wastewater treatment can be reduced. Are gathering.
Electrolysis is also used in wastewater treatment, and uses clean electrical energy to control chemical reactions on the electrode surface to generate hydrogen, oxygen, ozone, hydrogen peroxide, etc., and to remove substances to be treated in wastewater. It can be decomposed indirectly, or the substance can be adsorbed on an electrode and electrolyzed directly, and has been conventionally used for wastewater treatment. It is known that the oxidation reaction at the anode generates an oxidizing agent (effective chlorine, ozone, etc.) effective for water treatment, and also generates some active species such as OH radicals. It is widely used under the names of water, sterilized water, and the like.

【0003】電子部品の表面の汚染物を除去するために
従来から数多くの洗浄水が考案されてきた。例えば濃厚
かつ高温に保たれた過酸化水素と塩酸や硫酸を混合した
液は、シリコンウェハー表面の重金属及び有機物を除去
するために使用されている。ここで使用される薬剤、例
えば硫酸は洗浄効果を高めるために高い濃度に設定され
ているが、反応に必要な濃度及び量はこれより遙かに少
量で良い。更に、より酸化力の高い薬剤を使用すればよ
り少量の洗浄水の使用で効率的に洗浄操作を実施でき
る。硫酸より酸化力が強い薬剤として過硫酸が知られて
いるが、現在のところ過硫酸は市販されていない。従っ
て現状では過硫酸は硫酸の酸化により得る以外になく、
適当な酸化剤が見出されておらず、硫酸より強い酸化能
力を有することが知られているにもかかわらず、商業的
に利用するには至っていない。
[0003] Numerous cleaning waters have been devised for removing contaminants on the surface of electronic components. For example, a mixed solution of hydrogen peroxide and hydrochloric acid or sulfuric acid kept at a high concentration and high temperature is used for removing heavy metals and organic substances on the surface of a silicon wafer. Although the chemical used here, for example, sulfuric acid, is set at a high concentration in order to enhance the washing effect, the concentration and amount required for the reaction may be much smaller. Furthermore, if a chemical having a higher oxidizing power is used, the cleaning operation can be efficiently performed using a smaller amount of cleaning water. Persulfuric acid is known as a drug having a higher oxidizing power than sulfuric acid, but at present, persulfuric acid is not commercially available. Therefore, at present, persulfuric acid is not only obtained by oxidation of sulfuric acid,
Although no suitable oxidizing agent has been found and it is known that it has a stronger oxidizing ability than sulfuric acid, it has not been commercially available.

【0004】他方過硫酸は電気化学的に生成することが
知られており、酸性硫酸塩、例えば硫酸アンモニウム
(NH4 2 SO4 の陽極酸化で得られる。このときの
過硫酸の生成効率は硫酸イオン濃度に依存し、硫酸が高
濃度であるほど高効率で過硫酸が得られる。この過硫酸
の電気化学的生成用電解浴としては飽和硫酸−硫酸アン
モニウム混合溶液が使用され、一般に40℃以下の比較的
低温及び0.35〜1A/cm2程度の電流密度で電解が行われ
る。過硫酸生成効率を向上させるためには、競争反応で
ある酸素発生反応を抑制することが必要で、そのために
はフッ化物であるNaFやチオシアン酸アンモニウムN
4 SCN等の添加が有効である。又過硫酸生成を促進
させるためには電極上への硫酸イオンの吸着率を高めて
も良く、そのためにはカチオンの添加が有効で、Na+
<NH4 + <K+ <Cs+ <Rb+ の順に電極上への硫
酸イオンの吸着が促進される(Electrochimica Acta,16
1 (1971))。
On the other hand, persulfuric acid is known to be produced electrochemically and is obtained by anodizing acidic sulphates, for example ammonium sulphate (NH 4 ) 2 SO 4 . The efficiency of persulfuric acid generation at this time depends on the sulfate ion concentration, and the higher the concentration of sulfuric acid, the higher the efficiency of persulfuric acid. As an electrolytic bath for electrochemically producing persulfuric acid, a mixed solution of saturated sulfuric acid and ammonium sulfate is used, and electrolysis is generally performed at a relatively low temperature of 40 ° C. or less and a current density of about 0.35 to 1 A / cm 2 . In order to improve the efficiency of persulfuric acid production, it is necessary to suppress the oxygen evolution reaction, which is a competitive reaction, and for that purpose, NaF or ammonium thiocyanate, which is a fluoride, is used.
Addition of H 4 SCN or the like is effective. Also in order to accelerate the persulfate generation may increase the adsorption rate of sulfate ions onto the electrode, because its effective addition of cations, Na +
The adsorption of sulfate ions on the electrode is promoted in the order of <NH 4 + <K + <Cs + <Rb + (Electrochimica Acta, 16
1 (1971)).

【0005】過硫酸製造用電極としては通常白金リボン
が使用されるが、上述の電解条件では消耗量が非常に大
きいため、不純物の混入が無視できなくなり、用途が限
定され、又電極の交換を頻繁に行わなければならないと
いう問題点が生ずる。
[0005] A platinum ribbon is usually used as an electrode for producing persulfuric acid. However, under the above-mentioned electrolysis conditions, the amount of consumption is very large, so that contamination of impurities cannot be ignored, the application is limited, and the electrode must be replaced. There is a problem that the operation must be performed frequently.

【0006】[0006]

【発明が解決しようとする課題】ところで、ダイヤモン
ドは熱伝導性、光学的透過性、高温及び耐酸化性に優れ
ており、特にドーピングにより電気伝導製の制御が可能
であることから、半導体デバイス及びエネルギー変換素
子として広く使用されている。しかし電解用電極として
の使用例は殆どなく、下記の例が報告されているに過ぎ
ない。
By the way, diamond is excellent in thermal conductivity, optical transparency, high temperature and oxidation resistance. In particular, since it is possible to control electric conductivity by doping, it is difficult to use a semiconductor device and a diamond. Widely used as energy conversion elements. However, there is almost no use example as an electrode for electrolysis, and only the following examples are reported.

【0007】つまりSwain[J. Electrochem. Soc., 141,
3382 (1994)] らはダイヤモンドの酸性電解液中の安定
性が他のカーボン材料と比較して遙かに優れ、4.5 eV
ものバンドギャップの大きさに注目して還元反応用電極
への応用を報告し、特にバックグラウンド電流が小さく
電位窓が広いことからセンサとしての用途を注目してい
る。又Patel らはダイヤモンドの光応答性について、Re
ubenらはダイヤモンドを使用する亜硝酸や硝酸イオンの
還元反応についてそれぞれ報告し、更にAlehashem らは
ダイヤモンドを使用する種々の酸化還元系の反応速度を
測定し、又Martinらはダイヤモンドを使用する酸素ガス
や水素ガスの発生を観察した。本出願人も、導電性ダイ
ヤモンドの化学的安定性等に注目して大電流密度を与え
る工業電解への応用の可能性を確認し、導電性ダイヤモ
ンドを陽極として使用するオゾン生成を提案した。本発
明は、酸素発生反応を抑制して過硫酸を効率良く生成で
きるとともに、耐消耗性に優れた長寿命の電極を使用す
る過硫酸溶解水の製造方法を提供することを目的とす
る。
That is, Swain [J. Electrochem. Soc., 141,
3382 (1994)] found that the stability of diamond in acidic electrolytes was much better than that of other carbon materials, with 4.5 eV
The application to the electrode for reduction reaction is reported focusing on the size of the band gap, and the use as a sensor is paid particular attention to the small background current and wide potential window. Patel and colleagues also reported that
Uben et al. reported on the reduction reaction of nitrite and nitrate ions using diamond, Alehashem et al. measured the reaction rates of various redox systems using diamond, and Martin et al. And the generation of hydrogen gas were observed. The present applicant has also confirmed the possibility of application to industrial electrolysis that gives a large current density by paying attention to the chemical stability and the like of conductive diamond, and has proposed ozone generation using conductive diamond as an anode. An object of the present invention is to provide a method for producing persulfuric acid-dissolved water that can efficiently generate persulfuric acid by suppressing the oxygen generation reaction and that uses a long-life electrode with excellent wear resistance.

【0008】[0008]

【課題を解決するための手段】本発明は、硫酸イオンを
含む水溶液を電解槽で電解して過硫酸溶解水を得る方法
において、少なくとも陽極として基体上に担持した導電
性ダイヤモンドを使用することを特徴とする過硫酸溶解
水の製造方法である。
According to the present invention, there is provided a method for obtaining persulfuric acid-dissolved water by electrolyzing an aqueous solution containing sulfate ions in an electrolytic cell, wherein at least the conductive diamond supported on the substrate is used as the anode. This is a method for producing persulfuric acid-dissolved water, which is a feature.

【0009】以下本発明を詳細に説明する。本発明方法
は、過硫酸生成と酸素ガス発生の競争反応となる硫酸の
陽極酸化反応を陽極材料を適切に選択することにより酸
素ガス発生を抑制してほぼ選択的に過硫酸生成を生じさ
せることを特徴としている。過硫酸は、重合開始剤、酸
化剤、漂白剤、写真処理剤、マンガンやクロム等の試薬
用酸化剤、分析試薬、半導体洗浄等に幅広く使用されて
いる。通常の水電解を行うと、次の式に示す陽極反応に
より酸素、オゾン又は過酸化水素が生成する。 2H2 O → O2 + 4H+ + 4e- 0 =1.23V 3H2 O → O3 + 6H+ + 6e- 0 =1.51V 2H2 O → H2 2 + 2H+ + 2e- 0 =1.78V
Hereinafter, the present invention will be described in detail. According to the method of the present invention, an anodic oxidation reaction of sulfuric acid, which is a competitive reaction between persulfuric acid generation and oxygen gas generation, is suppressed by appropriately selecting an anode material to suppress generation of oxygen gas and almost selectively generate persulfuric acid generation. It is characterized by. Persulfuric acid is widely used in polymerization initiators, oxidizing agents, bleaching agents, photographic processing agents, oxidizing agents for reagents such as manganese and chromium, analytical reagents, semiconductor cleaning, and the like. When ordinary water electrolysis is performed, oxygen, ozone, or hydrogen peroxide is generated by an anodic reaction represented by the following equation. 2H 2 O → O 2 + 4H + + 4e - E 0 = 1.23V 3H 2 O → O 3 + 6H + + 6e - E 0 = 1.51V 2H 2 O → H 2 O 2 + 2H + + 2e - E 0 = 1.78V

【0010】平衡論的には酸素発生が優先するが、活性
化過電圧の存在によりオゾンや過酸化水素の生成も可能
になる。陽極液中に硫酸イオンや亜硫酸イオンが存在す
ると、下式に示すように過硫酸の生成も可能になる。 2SO4 2- → S2 8 2- + 2e- 0 =2.01V 2HSO4 - → S2 8 2- + 2H+ + 2e- 0 =2.12V
In terms of equilibrium, the generation of oxygen takes precedence, but the presence of an activation overvoltage also enables the generation of ozone and hydrogen peroxide. When sulfate ions and sulfite ions are present in the anolyte, persulfuric acid can be generated as shown in the following formula. 2SO 4 2- → S 2 O 8 2- + 2e - E 0 = 2.01V 2HSO 4 - → S 2 O 8 2- + 2H + + 2e - E 0 = 2.12V

【0011】通常の陽極を使用して電解を行うと理論電
解電圧の低い陽極反応、特に酸素発生反応が優先して起
こり、過硫酸生成反応は実質的に生じない。しかしなが
らダイヤモンド電極は極端に電位窓が広く、かつ酸素発
生反応に対する過電圧が高くかつ目的の酸化反応が電位
的に進行し得る範囲にあるため、硫酸イオンを含有する
水溶液電解を行うと、高い電流効率で過硫酸生成が起こ
り、酸素発生は僅かに起こるに過ぎない。例えば白金や
ロジウムの酸素発生過電圧が数百mVであるのに対し、
ダイヤモンドでは約1.4 Vである。この酸素発生過電圧
の高さは次のようにして説明できる。通常の電極表面で
はまず水が酸化されて酸素化学種が形成された後、この
酸素化学種から酸素やオゾンが生成すると考えられる
が、ダイヤモンドは通常の電極物質より化学的安定性が
高く帯電していない水がその表面に吸着しにくく従って
水の酸化が起きにくいと考えられる。これに対し硫酸イ
オンはアニオンであり、陽極として機能するダイヤモン
ド表面に低い電位でも吸着しやすく、酸素発生反応より
起こりやすくなると推測できる。
When electrolysis is carried out using a normal anode, an anodic reaction having a low theoretical electrolysis voltage, particularly an oxygen generating reaction, occurs preferentially, and a persulfuric acid forming reaction does not substantially occur. However, the diamond electrode has an extremely wide potential window, has a high overvoltage for the oxygen generation reaction, and is in a range where the intended oxidation reaction can proceed in terms of potential. Therefore, when performing an aqueous electrolysis containing sulfate ions, a high current efficiency is obtained. , Persulfuric acid production occurs, and oxygen evolution occurs only slightly. For example, while the oxygen and oxygen overvoltage of platinum and rhodium are several hundred mV,
It is about 1.4 V for diamond. The height of the oxygen generation overvoltage can be explained as follows. It is thought that water is first oxidized to form oxygen species on the normal electrode surface, and then oxygen and ozone are generated from the oxygen species.However, diamond has a higher chemical stability than normal electrode materials and is charged. It is considered that the unreacted water is less likely to be adsorbed on the surface, so that oxidation of the water is less likely to occur. On the other hand, sulfate ion is an anion, and can be presumed to be easily adsorbed even at a low potential on the diamond surface functioning as an anode, and to be more likely to occur than the oxygen generation reaction.

【0012】なお過硫酸生成の選択率をより上昇させる
ために、従来のようにフッ化ナトリウムやチオシアン酸
アンモニウムを電解液中に添加しても良い。更に電極上
への硫酸イオンの吸着率を高めるために、ナトリウム、
アンモニウム、カリウム、セシウム及びルビジウム等の
アニオンを添加しても良い。なお過硫酸には一般にペル
オキソ一硫酸(H2 SO5 )とペルオキソ二硫酸(H2
2 8 )があり、本発明における過硫酸は主として後
者を指称するが、前者が含まれることもある。
In order to further increase the selectivity of persulfuric acid formation, sodium fluoride or ammonium thiocyanate may be added to the electrolyte as in the prior art. In order to further increase the adsorption rate of sulfate ions on the electrode, sodium,
Anions such as ammonium, potassium, cesium and rubidium may be added. Note Generally peroxomonosulfuric acid is persulfate (H 2 SO 5) and peroxodisulfuric acid (H 2
S 2 O 8 ), and the persulfuric acid in the present invention mainly refers to the latter, but the former may be included in some cases.

【0013】本発明で使用する導電性ダイヤモンド陽極
は、電極基体上に炭素源となる有機化合物の還元析出物
であるダイヤモンドを担持して製造される。基体の材質
及び形状は材質が導電性であれば特に限定されず、導電
性シリコン、炭化珪素、チタン、ニオブ、モリブデン等
から成る板状、メッシュ状あるいは例えばビビリ繊維焼
結体である多孔性板等が使用できる。該基体へのダイヤ
モンドの担持法も特に限定されず従来法のうちの任意の
ものを使用できる。代表的な導電性ダイヤモンド製造方
法としては熱フィラメントCVD(化学蒸着)法、マイ
クロ波プラズマCVD法、プラズマアークジェット法及
び物理蒸着(PVD)法等がある。この他に超高圧で製
造される合成ダイヤモンド粉末を樹脂等の結着剤を用い
て基体に担持したダイヤモンド電極も使用可能であり、
特に電極表面にフッ素樹脂等の疎水性成分が存在すると
処理対象の硫酸イオンを捕捉しやすくなり反応効率が向
上する。
The conductive diamond anode used in the present invention is manufactured by supporting diamond, which is a reduced precipitate of an organic compound serving as a carbon source, on an electrode substrate. The material and shape of the substrate are not particularly limited as long as the material is conductive. A plate made of conductive silicon, silicon carbide, titanium, niobium, molybdenum, or the like, a mesh plate, or a porous plate made of, for example, a vibrating fiber sintered body Etc. can be used. The method of supporting diamond on the substrate is not particularly limited, and any of the conventional methods can be used. Typical conductive diamond production methods include hot filament CVD (chemical vapor deposition), microwave plasma CVD, plasma arc jet, and physical vapor deposition (PVD). In addition to this, it is also possible to use a diamond electrode in which a synthetic diamond powder produced at an ultra-high pressure is supported on a substrate using a binder such as a resin,
In particular, when a hydrophobic component such as a fluororesin is present on the electrode surface, sulfate ions to be treated are easily captured, and the reaction efficiency is improved.

【0014】前記熱フィラメントCVD法は例えば次の
ようにして実施する。炭素源であるアルコール等の有機
化合物を、ダイヤモンドを担持させる電極基体を設置し
た水素ガス等の還元雰囲気に保持し、炭素ラジカルが生
成する温度である1800〜2400℃に昇温する。その後該還
元雰囲気の温度を750 〜950 ℃のダイヤモンドが析出し
やすい温度まで降温させる。この際の水素ガスに対する
有機化合物のガス濃度は好ましくは約0.1 〜10容量%、
供給速度は反応容器のサイズにもよるが通常は0.01〜10
リットル/分、圧力は約2000〜100000Paである。
The hot filament CVD method is performed, for example, as follows. An organic compound such as alcohol as a carbon source is held in a reducing atmosphere such as hydrogen gas provided with an electrode substrate supporting diamond, and the temperature is raised to 1800 to 2400 ° C., which is a temperature at which carbon radicals are generated. After that, the temperature of the reducing atmosphere is lowered to a temperature of 750 to 950 ° C. to easily deposit diamond. At this time, the gas concentration of the organic compound with respect to the hydrogen gas is preferably about 0.1 to 10% by volume,
The feed rate depends on the size of the reaction vessel, but is usually 0.01 to 10
Liter / min, pressure is about 2000-10000 Pa.

【0015】この他にマイクロ波プラズマCVD法もダ
イヤモンド合成に適した方法であり、マイクロ波により
生成した水素プラズマを非ダイヤモンド成分のエッチン
グに用いる。マイクロ波によるプラズマではイオンは殆
ど振動せず、電子のみを振動させた状態で擬似高温を達
成し、化学反応を促進させる効果を奏する。プラズマの
出力は1〜5kWで、出力が大きいほど活性種を多く発
生させることができ、ダイヤモンドの成長速度が増加す
る。プラズマを用いる利点は、大表面積の基体を用いて
高速度でダイヤモンドを成膜できることである。10cm2
程度の面積の基体に、1kWで約0.1 μm/h、5kW
で数μm/hの速度で成膜できる。チャンバ内の圧力は
約4000〜15000 Pa程度に減圧され、水素及び炭素源の
混合ガスを約10〜100 ml/分の流量で導入することが望
ましい。
[0015] In addition, microwave plasma CVD is also a method suitable for diamond synthesis, and hydrogen plasma generated by microwave is used for etching non-diamond components. In a plasma generated by microwaves, ions hardly oscillate, and a pseudo high temperature is achieved in a state in which only electrons are oscillated, thereby producing an effect of promoting a chemical reaction. The output of the plasma is 1 to 5 kW, and the larger the output, the more active species can be generated, and the growth rate of diamond increases. An advantage of using plasma is that diamond can be formed at a high speed using a substrate having a large surface area. 10cm 2
About 0.1 μm / h, 5 kW at 1 kW
At a speed of several μm / h. It is desirable that the pressure in the chamber is reduced to about 4000 to 15000 Pa, and a mixed gas of hydrogen and a carbon source is introduced at a flow rate of about 10 to 100 ml / min.

【0016】陽極としては、この他に基体である炭素粉
末にダイヤモンドを付着させた陽極粉末を樹脂等の結着
剤で一体化し成形した高分子固体電解質型の電解を使用
できる。更に基体である炭素粉末にダイヤモンドを付着
させた多数の陽極粉末を陽極室中に供給する電解液で流
動させて流動床を構成し、又は高表面積の三次元構造の
基体に前記ダイヤモンド粉末を担持した表面積が非常に
大きい固定床を構成することもでき、反応面積が増大し
て処理能力を増大できる。ダイヤモンド粒子の粒径は約
0.01〜100 μmであり、この粒径の粒子を担持して好ま
しくは0.1 〜100 μm、更に好ましくは1〜10μmの膜
厚のダイヤモンド層を形成する。この膜厚は基体への電
解液の浸入を防ぐために適切な厚さである。
As the anode, there can be used a solid polymer electrolyte type electrolysis in which an anode powder obtained by attaching diamond to carbon powder as a base is integrated with a binder such as a resin and molded. Further, a large number of anode powders obtained by adhering diamond to carbon powder as a substrate are fluidized by an electrolytic solution supplied into an anode chamber to form a fluidized bed, or the diamond powder is supported on a substrate having a high surface area and a three-dimensional structure. A fixed bed having a very large surface area can be formed, and the reaction area can be increased to increase the processing capacity. Diamond particle size is about
A diamond layer having a thickness of preferably 0.01 to 100 μm, more preferably 1 to 10 μm is formed by supporting particles having a particle size of 0.01 to 100 μm. This thickness is an appropriate thickness for preventing the infiltration of the electrolytic solution into the base.

【0017】このダイヤモンドに導電性を付与するため
に、原子価の異なる元素を微量添加する。硼素やリンの
好ましい含有率は好ましくは1〜100000ppm 、更に好ま
しくは100 〜10000 ppm である。この添加元素の原料は
毒性の少ない酸化硼素や五酸化二リンなどが使用でき
る。更にダイヤモンドと無定形酸化珪素との複合物質で
あるDLN(Diamond Like Nanocomposite) などの特殊
な材料も本発明で利用できる。このように製造された基
体上に担持された導電性ダイヤモンドは、チタン、ニオ
ブ、タンタル、シリコン、カーボン、ニッケル、タング
ステンカーバイドなどの導電性材料から成る、平板、打
抜き板、金網、粉末焼結体及び金属繊維焼結体等の形態
を有する集電体に接続する。
In order to impart conductivity to the diamond, a small amount of an element having a different valence is added. The preferred content of boron or phosphorus is preferably from 1 to 100,000 ppm, more preferably from 100 to 10,000 ppm. As a raw material of this additional element, boron oxide or diphosphorus pentoxide with low toxicity can be used. Further, special materials such as DLN (Diamond Like Nanocomposite), which is a composite material of diamond and amorphous silicon oxide, can also be used in the present invention. The conductive diamond supported on the substrate thus manufactured is made of a conductive material such as titanium, niobium, tantalum, silicon, carbon, nickel, or tungsten carbide. And a current collector having a form such as a sintered metal fiber body.

【0018】ダイヤモンド層の基体と集電体の密着性の
向上と基体保護の観点から、両者間に中間層を形成して
も良い。その材質は基体や集電体を構成する金属の炭化
物や酸化物が望ましい。又基体や中間層の表面を研磨す
ると密着性向上及び表面積増大に結びつく。このように
して製造した導電性ダイヤモンド電極を陽極として使用
して硫酸水溶液、例えば硫酸アンモニウムを含む飽和硫
酸の電解を行う。
From the viewpoint of improving the adhesion between the substrate of the diamond layer and the current collector and protecting the substrate, an intermediate layer may be formed between them. The material is preferably a metal carbide or oxide constituting the base or the current collector. Polishing the surface of the substrate or the intermediate layer leads to an improvement in adhesion and an increase in surface area. Electrolysis of a sulfuric acid aqueous solution, for example, saturated sulfuric acid containing ammonium sulfate, is performed using the conductive diamond electrode thus produced as an anode.

【0019】使用する電解槽は無隔膜電解槽でも隔膜で
陽極室及び陰極室に区画された2室型電解槽でも良い
が、前者の場合は陽極で一旦生成した過硫酸イオンが陰
極に接触して硫酸イオンに還元される可能性があるた
め、後者の隔膜型電解槽を使用することが望ましい。隔
膜としては商品名Poreflon等の中性膜や商品名Nafion,
Aciplex, Flemion等の陽イオン交換膜が使用できるが、
耐食性の面から後者の陽イオン交換膜の使用が望まし
く、更に陽イオン交換膜は電解液の伝導度が低い場合で
も電解を速やかに進行させることができる。電極と隔膜
を密着させておくことが望ましい場合には、前もって機
械的に結合させておくか、運転時に0.01〜3MPa程度
の圧力を加えれば良い。本発明で使用する陰極は水素発
生電極又は酸素ガス電極であれば良く、酸素ガス電極の
場合に電極材料としてカーボンや金触媒を使用すると過
酸化水素を生成させることができる。その際の酸素供給
量は理論量の1.2 〜10倍程度にする。
The electrolytic cell to be used may be a non-diaphragm electrolytic cell or a two-chamber electrolytic cell separated by a diaphragm into an anode chamber and a cathode chamber. In the former case, persulfate ions once generated at the anode contact the cathode. It is desirable to use the latter type of electrolytic cell because it may be reduced to sulfate ions. Neutral membranes such as Poreflon and Nafion,
Cation exchange membranes such as Aciplex and Flemion can be used,
It is desirable to use the latter cation exchange membrane from the viewpoint of corrosion resistance. Further, the cation exchange membrane can promptly advance electrolysis even when the conductivity of the electrolytic solution is low. When it is desirable to keep the electrode and the diaphragm in close contact, they may be mechanically combined in advance or a pressure of about 0.01 to 3 MPa may be applied during operation. The cathode used in the present invention may be a hydrogen generating electrode or an oxygen gas electrode. In the case of an oxygen gas electrode, if a carbon or gold catalyst is used as an electrode material, hydrogen peroxide can be generated. At this time, the supply amount of oxygen is set to about 1.2 to 10 times the theoretical amount.

【0020】[0020]

【発明の実施の形態】次に添付図面に基づいて本発明の
過硫酸溶解水の製造に使用可能な電解槽及び該電解槽を
使用する過硫酸溶解水の製造の実施形態を説明するが、
本発明はこれらに限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of an electrolytic cell which can be used for producing persulfuric acid-dissolved water of the present invention and a method for producing persulfuric acid-dissolved water using the electrolytic cell will be described with reference to the accompanying drawings.
The present invention is not limited to these.

【0021】図1は、本発明方法の過硫酸製造用に使用
可能なバッチ式の無隔膜電解槽の概略断面図である。上
面が開口する円筒形の電解槽本体1内には、板状の陽極
集電体2の下端部の一方面にドーパントが添加されたダ
イヤモンド粒子から成形された陽極3、及び板状の陰極
集電体4の下端部の一方面に白金金属から成る陰極5が
それぞれ互いに離間して吊支され、両集電体2及び4の
基端同士は電解槽本体1外の電源6を介して接続されて
いる。
FIG. 1 is a schematic sectional view of a batch type diaphragm-free electrolytic cell which can be used for producing persulfuric acid according to the method of the present invention. An anode 3 formed from diamond particles doped with a dopant on one surface of a lower end of a plate-shaped anode current collector 2 and a plate-shaped cathode current collector are provided in a cylindrical electrolytic cell body 1 having an open upper surface. A cathode 5 made of platinum metal is suspended from one side of the lower end of the current collector 4 while being separated from each other, and the base ends of the current collectors 2 and 4 are connected via a power source 6 outside the electrolytic cell body 1. Have been.

【0022】該電解槽本体1内部には少なくとも陽極3
及び陰極5が浸漬するように電解液7が満たされ、かつ
電解槽本体1の底面上には磁力により回転する攪拌子8
が置かれている。このような構成から成る電解槽本体1
を使用して過硫酸溶解水を得るためには、硫酸含有水溶
液、例えば飽和硫酸−硫酸アンモニウム混合溶液を電解
槽内に注入し、攪拌子8を回転させながら両極間に通電
すると、陽極3表面での硫酸酸化により過硫酸が生成し
て電解液7に溶解する。通電停止後、電解槽本体1から
電解液を取り出して過硫酸溶解水とする。
At least the anode 3 is provided inside the electrolytic cell body 1.
The electrolytic solution 7 is filled so that the cathode 5 is immersed, and a stirrer 8 rotated by a magnetic force is provided on the bottom surface of the electrolytic cell body 1.
Is placed. The electrolytic cell main body 1 having such a configuration
In order to obtain persulfuric acid-dissolved water by using, a sulfuric acid-containing aqueous solution, for example, a saturated sulfuric acid-ammonium sulfate mixed solution is poured into the electrolytic cell, and current is applied between both electrodes while rotating the stirrer 8. Persulfuric acid is generated by the sulfuric acid oxidation of and dissolved in the electrolytic solution 7. After the power supply is stopped, the electrolytic solution is taken out of the electrolytic cell main body 1 and used as persulfuric acid-dissolved water.

【0023】図2は、本発明方法の過硫酸製造用に使用
可能なパッチ式の隔膜電解槽の概略断面図である。中央
に縮径部を有する角筒状で、両端部が上向きに開口して
いる電解槽本体11は、前記縮径部に設置され、電解槽本
体の壁面との接触部にパッキング12を有する陽イオン交
換膜等の隔膜13により陽極室14と陰極室15に区画され、
該陽極室14及び陰極室15の両開口部はそれぞれ陽極室シ
ール材16及び陰極室シール材17により封止されている。
陽極室14内には導電性ダイヤモンドを基体に担持させて
成る板状の陽極18が、陰極室15内には白金等から成る板
状陰極19がそれぞれ吊支され、両極は前記両シール材16
及び17を貫通する導線20により電解槽本体11外の電源21
を介して接続されている。
FIG. 2 is a schematic cross-sectional view of a patch type diaphragm electrolytic cell that can be used for the production of persulfuric acid according to the method of the present invention. An electrolytic cell main body 11 having a reduced diameter portion in the center and having both ends open upwardly is provided at the reduced diameter portion and has a packing 12 at a contact portion with a wall surface of the electrolytic cell main body. Partitioned into an anode chamber 14 and a cathode chamber 15 by a membrane 13 such as an ion exchange membrane,
Both openings of the anode chamber 14 and the cathode chamber 15 are sealed by an anode chamber sealing material 16 and a cathode chamber sealing material 17, respectively.
A plate-shaped anode 18 made of a conductive diamond supported on a substrate is supported in the anode chamber 14, and a plate-shaped cathode 19 made of platinum or the like is suspended in the cathode chamber 15.
And a power supply 21 outside the electrolytic cell body 11 by a conducting wire 20 passing through
Connected through.

【0024】陽極室14には陽極液22が満たされかつ陽極
18の真下には陽極用攪拌子23が置かれている。又陰極室
15には陽極液と同じでも異なっていても良い組成の陰極
液24が満たされかつ陰極19の真下には陰極用攪拌子25が
置かれている。26及び27はそれぞれ前記陽極室シール材
16及び陰極室シール材17を貫通して設置された陽極ガス
抜き管及び陰極ガス抜き管である。このような構成から
成る電解槽本体11を使用して過硫酸溶解水を得るために
は、硫酸含有水溶液を陽極液22として陽極室14に満た
し、導電性物質を溶解した水溶液を陰極室15に満たし、
両攪拌子23及び25を回転させながら両極間に通電する
と、陽極22表面での硫酸酸化により過硫酸が生成して陽
極液22に溶解する。通電停止後、電解槽本体11から陽極
液を取り出して過硫酸溶解水とする。
The anolyte compartment 14 is filled with an anolyte 22
An anode stirrer 23 is placed directly below 18. Also cathode room
15 is filled with a catholyte 24 having a composition that may be the same as or different from the anolyte, and a cathode stirrer 25 is placed immediately below the cathode 19. 26 and 27 are the anode chamber sealing materials, respectively.
An anode gas vent tube and a cathode gas vent tube installed through the cathode chamber sealing material 16 and 16. In order to obtain persulfuric acid-dissolved water using the electrolytic cell body 11 having such a configuration, a sulfuric acid-containing aqueous solution is filled in the anode chamber 14 as an anolyte 22, and an aqueous solution in which a conductive substance is dissolved is charged in the cathode chamber 15. Fill,
When current is applied between both electrodes while rotating both stirrers 23 and 25, persulfuric acid is generated by sulfuric acid oxidation on the surface of anode 22 and dissolved in anolyte 22. After the power supply is stopped, the anolyte is taken out of the electrolytic cell main body 11 and used as persulfuric acid-dissolved water.

【0025】図3は、本発明方法の過硫酸製造用に使用
可能な一過式の高分子固体電解質型隔膜電解槽の概略断
面図である。箱型の電解槽本体31は中央に設置した隔膜
32により陽極室33と陰極室34に区画され、前記隔膜32の
陽極室33側には、導電性ダイヤモンド粉末を結着剤で固
めて基体に担持した高分子固体電解質型陽極35が、又前
記隔膜32の陰極室34側には、同様にダイヤモンド粉末を
結着剤で固めた高分子固体電解質型陰極36が、それぞれ
隔膜32に密着して設置され、前記陽極35及び陰極36はそ
れぞれ集電体(図示略)を介して電解槽本体31外に導か
れ、電源(図示略)を介して接続されている。なお陽極
及び陰極として図示の通りの高分子固体電解質型電極を
使用することは必須ではなく、図1及び2に示すような
多孔状の板状電極を使用しても良い。
FIG. 3 is a schematic sectional view of a one-pass type solid polymer electrolyte membrane electrolyzer for use in the production of persulfuric acid according to the method of the present invention. The box-shaped electrolytic cell body 31 is a diaphragm installed in the center
An anode chamber 33 and a cathode chamber 34 are defined by 32.On the anode chamber 33 side of the diaphragm 32, a solid polymer electrolyte type anode 35 in which conductive diamond powder is solidified with a binder and supported on a substrate, On the cathode chamber 34 side of the diaphragm 32, similarly, a polymer solid electrolyte type cathode 36 in which diamond powder is solidified with a binder is installed in close contact with the diaphragm 32, and the anode 35 and the cathode 36 are each a current collector. It is guided to the outside of the electrolytic cell main body 31 via a body (not shown), and is connected via a power supply (not shown). It is not essential to use a solid polymer electrolyte type electrode as shown in the figure as the anode and the cathode, and a porous plate-like electrode as shown in FIGS. 1 and 2 may be used.

【0026】陽極室32の側壁下端近傍及び上端近傍には
それぞれ陽極液供給口37及び過硫酸溶解水取出口38が形
成され、又陰極室33の側壁下端近傍及び上端近傍にはそ
れぞれ陰極液供給口39及び陰極液取出口40が形成されて
いる。このような構成から成る電解槽本体31を使用して
過硫酸溶解水を得るためには、硫酸含有水溶液を陽極液
供給口37から陽極液41として陽極室32に供給し、同様に
電解質含有水溶液を陰極液供給口39から陰極液42として
陰極室33に供給しながら、陽極35及び陰極36間に通電す
ると、陽極35表面での硫酸酸化により過硫酸が生成しか
つ通常の水電解による酸素(及び場合によってはオゾ
ン)が発生し、酸素(及びオゾン)が溶解した水溶液が
過硫酸溶解水として過硫酸溶解水取出口38から取り出さ
れる。陰極室33に供給された電解質含有水溶液は陰極36
で電解されて過酸化水素等が発生し、過酸化水素溶解硫
酸水溶液として陰極液取出口40から取り出される。
An anolyte supply port 37 and a persulfuric acid dissolved water outlet 38 are formed near the lower end and the upper end of the side wall of the anode chamber 32, respectively. An opening 39 and a catholyte outlet 40 are formed. In order to obtain persulfuric acid-dissolved water using the electrolytic cell main body 31 having such a configuration, an aqueous solution containing sulfuric acid is supplied to the anode chamber 32 as an anolyte 41 from an anolyte supply port 37, and an aqueous solution containing an electrolyte is similarly prepared. When electricity is supplied between the anode 35 and the cathode 36 while supplying as a catholyte 42 from the catholyte supply port 39 to the cathode chamber 33, persulfuric acid is generated by sulfuric acid oxidation on the surface of the anode 35 and oxygen ( In some cases, ozone is generated, and an aqueous solution in which oxygen (and ozone) is dissolved is taken out from the persulfuric acid dissolved water outlet 38 as persulfuric acid dissolved water. The electrolyte-containing aqueous solution supplied to the cathode chamber 33 is the cathode 36.
To generate hydrogen peroxide and the like, and are taken out from the catholyte outlet 40 as an aqueous solution of sulfuric acid dissolved in hydrogen peroxide.

【0027】次に本発明の過硫酸溶解水の製造方法に係
る実施例を記載するが、これらは本発明を限定するもの
ではない。 (実施例1)総面積10cm2 で厚さ3mmのシリコン基板
(基体)にエチルアルコールを炭素源とする熱フィラメ
ントCVD法により10μm厚でB/C濃度が10,000ppm
のダイヤモンド層を形成して陽極とした。又ジルコニウ
ム製の多孔性基体に白金触媒を担持して陰極とした。
Next, examples relating to the method for producing persulfuric acid-dissolved water of the present invention will be described, but these do not limit the present invention. (Example 1) A silicon substrate (substrate) having a total area of 10 cm 2 and a thickness of 3 mm was formed to a thickness of 10 μm and a B / C concentration of 10,000 ppm by a hot filament CVD method using ethyl alcohol as a carbon source.
Was formed as an anode. Further, a platinum catalyst was carried on a porous substrate made of zirconium to form a cathode.

【0028】前記陽極及び陰極を使用して図1に示した
無隔膜電解槽を組み立て、電解槽内に3モル/dm3 の硫
酸水溶液を満たし、両極間に0.5 A/cm2 の電流密度で20
分間通電した。通電停止後に電解槽から電解液を取り出
し、電解液中に含有されている過硫酸イオン濃度を過マ
ンガン酸カリウムを用いた逆滴定法で定量した。分析の
結果、65%の電流効率で過硫酸イオンが生成していた。
又陽極のダイヤモンドには殆ど消耗は認められなかっ
た。
The non-diaphragm electrolytic cell shown in FIG. 1 was assembled using the anode and the cathode. The electrolytic cell was filled with a 3 mol / dm 3 sulfuric acid aqueous solution, and a current density of 0.5 A / cm 2 was applied between both electrodes. 20
Energized for minutes. After the energization was stopped, the electrolytic solution was taken out of the electrolytic cell, and the concentration of persulfate ion contained in the electrolytic solution was quantified by a reverse titration method using potassium permanganate. As a result of analysis, it was found that persulfate ions were generated at a current efficiency of 65%.
The anode diamond was hardly consumed.

【0029】(実施例2)シリコン基板の代わりに、総
面積10cm2 で厚さ3mmの炭化珪素から成る多孔板(シリ
コン基板の約1.5 倍の表面積を有する)を基板として使
用して実施例1と同様の条件下で10μm厚のダイヤモン
ド層を形成し、更に実施例1と同様の条件で電解後の電
解液の分析を行った。分析の結果、75%の電流効率で過
硫酸イオンが生成していた。実施例1と実施例2を比較
すると基板の表面積が大きくなるほど過硫酸イオン生成
に関する電流効率が上昇したことが分かる。
(Example 2) In place of a silicon substrate, a perforated plate (having a surface area approximately 1.5 times that of a silicon substrate) made of silicon carbide and having a total area of 10 cm 2 and a thickness of 3 mm was used as a substrate. A diamond layer having a thickness of 10 μm was formed under the same conditions as in Example 1, and the electrolytic solution after electrolysis was further analyzed under the same conditions as in Example 1. As a result of the analysis, persulfate ions were generated at a current efficiency of 75%. Comparison between Example 1 and Example 2 shows that the larger the surface area of the substrate, the higher the current efficiency with respect to persulfate ion generation.

【0030】(実施例3)シリコン基板の代わりに、総
面積10cm2 で厚さ3mmのメッシュ状のチタンから成る多
孔板(シリコン基板の約2.5 倍の表面積を有する)を基
板として使用して実施例1と同様の条件下で10μm厚の
ダイヤモンド層を形成し、更に硫酸濃度を6モル/dm3
としたこと以外は実施例1と同様の条件で電解し、その
後電解液の分析を行った。分析の結果、85%の電流効率
で過硫酸イオンが生成していた。
Example 3 In place of a silicon substrate, a perforated plate made of mesh-like titanium having a total area of 10 cm 2 and a thickness of 3 mm (having a surface area about 2.5 times that of a silicon substrate) was used as a substrate. A 10 μm-thick diamond layer was formed under the same conditions as in Example 1, and the sulfuric acid concentration was increased to 6 mol / dm 3.
Electrolysis was performed under the same conditions as in Example 1 except that the above conditions were followed, and then the electrolytic solution was analyzed. As a result of analysis, it was found that persulfate ions were generated at a current efficiency of 85%.

【0031】(実施例4)熱フィラメントCVD法をマ
イクロ波プラズマCVD法に代えたこと以外は実施例3
と同様の条件でダイヤモンド層形成を行い、その後隔膜
として中性隔膜(住友電気工業株式会社製の商品名ポア
フロン)を有する図2に示した2室型隔膜式電解槽を使
用したこと以外は実施例3と同様の条件で電解を行い、
その後電解液の分析を行った。分析の結果、90%の電流
効率で過硫酸イオンが生成していた。
Example 4 Example 3 except that the hot filament CVD method was replaced with the microwave plasma CVD method.
A diamond layer was formed under the same conditions as described above, and thereafter the two-chamber diaphragm electrolytic cell having a neutral diaphragm (Pouflon manufactured by Sumitomo Electric Industries, Ltd.) was used as the diaphragm, as shown in FIG. 2. Electrolysis was performed under the same conditions as in Example 3,
After that, the electrolyte was analyzed. As a result of the analysis, persulfate ions were generated at a current efficiency of 90%.

【0032】(実施例5)陽極及び陰極を実施例1と同
様の条件で作製し、隔膜としてデュポン社製の陽イオン
交換膜ナフィオン350 を使用して、両電極を隔膜の両側
から押し付けかつ締め付けて一体化し、図3に示す一過
式の隔膜電解槽を組み立てた。陰陽両極室に6モル/dm
3 の硫酸水溶液を別個に供給しながら両極間に0.5 A/cm
2 の電流密度で通電し、硫酸水溶液の供給分に相当する
陽極液及び陰極液を取り出して分析を行った。陽極液中
には85%の電流効率で過硫酸イオンが生成し、陰極液中
には0.4 %の電流効率で過酸化水素が生成していた。な
お過酸化水素の定量は硫酸チタン試薬を用いる比色法に
より行った。
Example 5 An anode and a cathode were prepared under the same conditions as in Example 1, and both electrodes were pressed and tightened from both sides of the membrane using a cation exchange membrane Nafion 350 manufactured by DuPont as a membrane. Then, a one-time type diaphragm electrolytic cell shown in FIG. 3 was assembled. 6 mol / dm for the Yin and Yang bipolar rooms
0.5 A / cm between both electrodes while supplying sulfuric acid aqueous solution 3 separately
A current was passed at a current density of 2 , and the anolyte and catholyte corresponding to the supply of the aqueous sulfuric acid solution were taken out and analyzed. Persulfate ions were generated in the anolyte at a current efficiency of 85%, and hydrogen peroxide was generated in the catholyte at a current efficiency of 0.4%. The amount of hydrogen peroxide was determined by a colorimetric method using a titanium sulfate reagent.

【0033】(比較例1)陽極として有効電解面積が10
cm2 の白金板を使用したこと以外は実施例1と同一条件
で電解を行った。電解後の陽極液の分析を行ったが、過
硫酸イオンの生成は全く認められなかった。
(Comparative Example 1) The effective electrolysis area of the anode was 10
Electrolysis was performed under the same conditions as in Example 1 except that a platinum plate of cm 2 was used. Analysis of the anolyte after electrolysis showed no production of persulfate ions.

【0034】(比較例2)陽極として有効電解面積が10
cm2 の白金板を使用し、かつ中性隔膜(住友電気工業株
式会社製の商品名ポアフロン)を有する図2に示した2
室型隔膜式電解槽を使用したこと、及び陰陽両極液の硫
酸イオン濃度を8モル/dm3 としたこと以外は実施例1
と同様の条件で電解を行い、その後電解液の分析を行っ
た。分析の結果、陽極液中の過硫酸イオン生成に関する
電流効率は8%であった。
(Comparative Example 2) The effective electrolysis area of the anode was 10
2 using a platinum plate of cm 2 and having a neutral diaphragm (Pouflon, trade name, manufactured by Sumitomo Electric Industries, Ltd.)
Example 1 except that a room-diaphragm type electrolytic cell was used and that the sulfate ion concentration of the anionic and anodic solutions was 8 mol / dm 3.
Electrolysis was performed under the same conditions as described above, and then the electrolytic solution was analyzed. As a result of the analysis, the current efficiency for persulfate ion generation in the anolyte was 8%.

【0035】(比較例3)陽極として有効電解面積が10
cm2 のグラファイト板を使用したこと以外は比較例2と
同様の条件で電解を行い、その後電解液の分析を行っ
た。分析の結果、陽極液中の過硫酸イオン生成に関する
電流効率は45%であった。電解終了後のグラファイトの
消耗は著しく、長時間の電解に耐え得るものでないこと
が分かった。
(Comparative Example 3) The effective electrolysis area of the anode was 10
Electrolysis was performed under the same conditions as in Comparative Example 2 except that a graphite plate of cm 2 was used, and then the electrolytic solution was analyzed. As a result of the analysis, the current efficiency regarding persulfate ion generation in the anolyte was 45%. It was found that the consumption of graphite after the completion of the electrolysis was remarkable, and that the graphite could not withstand long-time electrolysis.

【0036】[0036]

【発明の効果】本発明は、硫酸イオンを含む水溶液を電
解槽で電解して過硫酸化合物を含む水溶液を得る方法に
おいて、少なくとも陽極として導電性ダイヤモンドを使
用することを特徴とする過硫酸溶解水の製造方法であ
る。陽極物質としての導電性ダイヤモンドは、酸素発生
反応に対する過電圧が高く、この導電性ダイヤモンドを
陽極として硫酸イオンを含む水溶液の電解を行うと、水
電解による酸素発生反応と硫酸イオンの酸化による過硫
酸イオン生成反応が競争反応となるが、前述のように導
電性ダイヤモンド電極の酸素発生反応に対する過電圧が
高いため、酸素発生反応の進行が抑制されて、ほぼ選択
的に硫酸イオンの酸化による過硫酸イオン生成が進行す
る。
According to the present invention, there is provided a method for obtaining an aqueous solution containing a persulfate compound by electrolyzing an aqueous solution containing a sulfate ion in an electrolytic cell, wherein at least an electrically conductive diamond is used as an anode. It is a manufacturing method of. Conductive diamond as an anode material has a high overvoltage against the oxygen generation reaction. When electrolysis of an aqueous solution containing sulfate ions is performed using the conductive diamond as an anode, the oxygen generation reaction by water electrolysis and the persulfate ion by oxidation of sulfate ions are performed. The formation reaction is a competitive reaction, but as described above, the overvoltage of the conductive diamond electrode with respect to the oxygen generation reaction is high, so that the progress of the oxygen generation reaction is suppressed, and the persulfate ion generation by oxidation of the sulfate ion is almost selectively performed. Progresses.

【0037】このように本発明方法によると、従来は適
切な酸化剤がなく、効率良く製造できなかった過硫酸を
硫酸の電解酸化により容易に製造できるようになる。特
に電解操作というオンサイト製造に適した方法で比較的
高濃度の過硫酸溶解水を製造できる。従来の薬剤酸化に
よる方法と比較して高濃度の過硫酸溶解水が得られるだ
けでなく、保存や輸送に伴う危険を大幅に低減すること
ができる。その際に使用する電解槽は隔膜型電解槽が望
ましく、該電解槽の使用により一旦陽極酸化により生成
した過硫酸イオンがその後陰極に接触し還元されて元の
硫酸イオンに戻って電流効率を低下させることがなくな
る。
As described above, according to the method of the present invention, persulfuric acid which could not be produced efficiently without a suitable oxidizing agent can be easily produced by electrolytic oxidation of sulfuric acid. In particular, persulfuric acid-dissolved water having a relatively high concentration can be produced by a method suitable for on-site production called an electrolytic operation. Compared to the conventional method using chemical oxidation, not only can a higher concentration of persulfuric acid-dissolved water be obtained, but also the risk associated with storage and transport can be significantly reduced. The electrolytic cell used at this time is desirably a diaphragm type electrolytic cell, and the persulfate ion once generated by anodic oxidation is then brought into contact with the cathode and reduced by the use of the electrolytic cell to return to the original sulfate ion to reduce the current efficiency. No longer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の過硫酸製造用に使用可能な無隔膜
電解槽の概略断面図。
FIG. 1 is a schematic sectional view of a diaphragm-free electrolytic cell that can be used for the production of persulfuric acid according to the method of the present invention.

【図2】本発明方法の過硫酸製造用に使用可能な隔膜電
解槽の概略断面図。
FIG. 2 is a schematic cross-sectional view of a diaphragm electrolytic cell that can be used for producing persulfuric acid according to the method of the present invention.

【図3】本発明方法の過硫酸製造用に使用可能な高分子
固体電解質型隔膜電解槽の概略断面図。
FIG. 3 is a schematic cross-sectional view of a solid polymer electrolyte membrane cell that can be used for the production of persulfuric acid according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽本体 3 陽極 5 陰極 7 電解液 11 電解槽本体 13 隔膜 14 陽極室 15 陰極室 18 陽極 19 陰極 21 電源 31 電解槽本体 32 隔膜 33 陽極室 34 陰極室 35 陽極 36 陰極 1 Electrolyte body 3 Anode 5 Cathode 7 Electrolyte 11 Electrolyte body 13 Diaphragm 14 Anode chamber 15 Cathode chamber 18 Anode 19 Cathode 21 Power supply 31 Electrolyzer body 32 Diaphragm 33 Anode chamber 34 Cathode chamber 35 Anode 36 Cathode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 幸英 神奈川県藤沢市高倉519−5 (72)発明者 加藤 昌明 神奈川県横浜市旭区二俣川1−79−2 M Aハイツ210号 (72)発明者 山田 邦晃 神奈川県藤沢市石川1145 Fターム(参考) 4K011 AA21 DA11 4K021 AB15 BA04 DB05 DB12 DB18 DB19 DB31 DB53 DC15  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yukihide Matsumoto 519-5 Takakura, Fujisawa-shi, Kanagawa Prefecture (72) Inventor Masaaki Kato 1-79-2 Futamagawa, Asahi-ku, Yokohama-shi, Kanagawa Prefecture MA Heights 210 (72) Invention Person Kuniaki Yamada 1145 Ishikawa, Fujisawa-shi, Kanagawa F-term (reference) 4K011 AA21 DA11 4K021 AB15 BA04 DB05 DB12 DB18 DB19 DB31 DB53 DC15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硫酸イオンを含む水溶液を電解槽で電解
して過硫酸溶解水を得る方法において、少なくとも陽極
として基体上に担持した導電性ダイヤモンドを使用する
ことを特徴とする過硫酸溶解水の製造方法。
1. A method for obtaining persulfuric acid-dissolved water by electrolyzing an aqueous solution containing sulfate ions in an electrolytic cell, comprising using conductive diamond supported on a substrate as at least an anode. Production method.
【請求項2】 電解槽として陽イオン交換膜で陽極室及
び陰極室に区画した隔膜型電解槽を使用する請求項1に
記載の方法。
2. The method according to claim 1, wherein a diaphragm type electrolytic cell partitioned by a cation exchange membrane into an anode chamber and a cathode chamber is used as the electrolytic cell.
JP37430499A 1999-12-28 1999-12-28 Method for preparing persulfuric acid-dissolving water Pending JP2001192874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37430499A JP2001192874A (en) 1999-12-28 1999-12-28 Method for preparing persulfuric acid-dissolving water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37430499A JP2001192874A (en) 1999-12-28 1999-12-28 Method for preparing persulfuric acid-dissolving water

Publications (1)

Publication Number Publication Date
JP2001192874A true JP2001192874A (en) 2001-07-17

Family

ID=18503621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37430499A Pending JP2001192874A (en) 1999-12-28 1999-12-28 Method for preparing persulfuric acid-dissolving water

Country Status (1)

Country Link
JP (1) JP2001192874A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004073A (en) * 2000-04-20 2002-01-09 Degussa Ag Method for preparing peroxodisulfate
WO2005106079A1 (en) * 2004-04-28 2005-11-10 Central Japan Railway Company Electrode, ozone generator and ozone generating method
JP2006045026A (en) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd Substrate coated with electric conductive diamond
WO2006030816A1 (en) * 2004-09-17 2006-03-23 Kurita Water Industries Ltd. Cleaning system of sulfuric acid recycling type and persulfuric acid feeder of sulfuric acid recycling type
JP2006111943A (en) * 2004-10-18 2006-04-27 Kurita Water Ind Ltd Sulfuric-acid-recycling type cleaning system and operating method therefor
JPWO2004104272A1 (en) * 2003-05-26 2006-07-20 住友電気工業株式会社 Diamond-coated electrode and manufacturing method thereof
EP1703001A2 (en) 2005-03-14 2006-09-20 Permelec Electrode Ltd. Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
JP2006278915A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP2006314952A (en) * 2005-05-13 2006-11-24 Kurita Water Ind Ltd Hardly biodegradable organic matter-containing water treatment apparatus and method
EP1730508A1 (en) * 2004-03-09 2006-12-13 Element Six B.V. Electrochemical sensor comprising diamond particles
JP2006348329A (en) * 2005-06-14 2006-12-28 Mitsubishi Materials Corp Porous titanium having titanium carbide layer on surface of skeleton, and method for producing the same
EP1741676A2 (en) 2005-06-16 2007-01-10 Permelec Electrode Ltd. Method of sterilization and electrolytic water ejecting apparatus
JP2007046136A (en) * 2005-08-12 2007-02-22 Kurita Water Ind Ltd Sulfuric acid recycle type cleaning system
JP2007059603A (en) * 2005-08-24 2007-03-08 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP2007103516A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Sulfuric acid recycling cleaning system
WO2007083740A1 (en) 2006-01-20 2007-07-26 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP2007332441A (en) * 2006-06-16 2007-12-27 Chlorine Eng Corp Ltd Method of manufacturing persulfuric acid and electrolytic cell for manufacture
JP2008019507A (en) * 2006-06-16 2008-01-31 Toshiba Corp Cleaning system and cleaning method
KR100803931B1 (en) * 2004-09-28 2008-02-18 페르메렉덴꾜꾸가부시끼가이샤 Conductive diamond electrode and process for producing the same
WO2008029848A1 (en) * 2006-09-06 2008-03-13 Kurita Water Industries Ltd. Substrate processing apparatus and substrate processing method
JP2008095144A (en) * 2006-10-11 2008-04-24 Kurita Water Ind Ltd Method and apparatus for forming high-temperature high concentration persulfuric acid solution
JP2008111184A (en) * 2006-10-04 2008-05-15 Kurita Water Ind Ltd Persulfuric acid supply system
JP2008133491A (en) * 2006-11-27 2008-06-12 Japan Atomic Energy Agency Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same
JP2008164504A (en) * 2006-12-28 2008-07-17 Chlorine Eng Corp Ltd Quantity determination method of oxidizing component in electrolysis sulfuric acid
KR100913449B1 (en) 2006-06-16 2009-08-25 가부시끼가이샤 도시바 Cleaning system and cleaning method
EP2143826A1 (en) 2008-07-10 2010-01-13 Permelec Electrode Ltd. Method of electrolytically synthesizing nitrogen trifluoride
JP2010156033A (en) * 2009-01-05 2010-07-15 Japan Organo Co Ltd Apparatus and method for producing persulfuric acid
WO2010110125A1 (en) * 2009-03-24 2010-09-30 栗田工業株式会社 Supply system and supply method for functional solution
WO2010113587A1 (en) * 2009-03-31 2010-10-07 栗田工業株式会社 Method for cleaning electronic material and device for cleaning electronic material
US7951274B2 (en) 2005-11-24 2011-05-31 Sumitomo Electric Hardmetal Corp. Diamond electrode, method for producing same, and electrolytic cell
JP2011127166A (en) * 2009-12-16 2011-06-30 Toshiba Corp Etching method, method for manufacturing microstructure, and etching apparatus
US8236161B2 (en) 2007-01-15 2012-08-07 Shibaura Mechatronics Corporation Apparatus for electrolyzing sulfuric acid, method of performing electrolysis, and apparatus for processing a substrate
JP2014040639A (en) * 2012-08-23 2014-03-06 Sumitomo Electric Ind Ltd Method for manufacturing a metal
US9175004B2 (en) 2009-07-21 2015-11-03 National University Corporation Hokkaido University Catalyst precursor, method for producing the same, method for using the same, and reactor that uses the same
CN106917104A (en) * 2017-03-17 2017-07-04 南开大学 A kind of method of use BDD electrodes electro synthesis persulfate
JP2017171830A (en) * 2016-03-25 2017-09-28 独立行政法人国立高等専門学校機構 Processing method of composite material
KR20200125137A (en) 2019-04-26 2020-11-04 주식회사 성창 A Washing System for Electron Material
JP2020203997A (en) * 2019-06-18 2020-12-24 旭化成株式会社 Method of treating reinforced composite material

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136842A (en) * 2000-04-20 2013-07-11 Evonik Degussa Gmbh Method for producing peroxodisulfate
JP2002004073A (en) * 2000-04-20 2002-01-09 Degussa Ag Method for preparing peroxodisulfate
JPWO2004104272A1 (en) * 2003-05-26 2006-07-20 住友電気工業株式会社 Diamond-coated electrode and manufacturing method thereof
JP4581998B2 (en) * 2003-05-26 2010-11-17 住友電気工業株式会社 Diamond-coated electrode and manufacturing method thereof
JP2007528495A (en) * 2004-03-09 2007-10-11 エレメント シックス ベスローテン フェンノートシャップ Electrochemical sensor containing diamond particles
JP4685089B2 (en) * 2004-03-09 2011-05-18 エレメント シックス ベスローテン フェンノートシャップ Electrochemical sensor containing diamond particles
EP1730508A1 (en) * 2004-03-09 2006-12-13 Element Six B.V. Electrochemical sensor comprising diamond particles
WO2005106079A1 (en) * 2004-04-28 2005-11-10 Central Japan Railway Company Electrode, ozone generator and ozone generating method
US8734626B2 (en) 2004-04-28 2014-05-27 Central Japan Railway Company Electrode, ozone generator, and ozone production method
JP2006045026A (en) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd Substrate coated with electric conductive diamond
JP4743473B2 (en) * 2004-08-06 2011-08-10 住友電気工業株式会社 Conductive diamond coated substrate
KR101222880B1 (en) * 2004-09-17 2013-01-17 쿠리타 고교 가부시키가이샤 Cleaning system of sulfuric acid recycling type
EP1801265A4 (en) * 2004-09-17 2009-06-17 Kurita Water Ind Ltd Cleaning system of sulfuric acid recycling type and persulfuric acid feeder of sulfuric acid recycling type
US9593424B2 (en) 2004-09-17 2017-03-14 Kurita Water Industries, Ltd. Sulfuric acid recycling type cleaning system and a sulfuric acid recycling type persulfuric acid supply apparatus
EP1801265A1 (en) * 2004-09-17 2007-06-27 Kurita Water Industries Ltd. Cleaning system of sulfuric acid recycling type and persulfuric acid feeder of sulfuric acid recycling type
WO2006030816A1 (en) * 2004-09-17 2006-03-23 Kurita Water Industries Ltd. Cleaning system of sulfuric acid recycling type and persulfuric acid feeder of sulfuric acid recycling type
KR100803931B1 (en) * 2004-09-28 2008-02-18 페르메렉덴꾜꾸가부시끼가이샤 Conductive diamond electrode and process for producing the same
JP2006111943A (en) * 2004-10-18 2006-04-27 Kurita Water Ind Ltd Sulfuric-acid-recycling type cleaning system and operating method therefor
EP1703001A2 (en) 2005-03-14 2006-09-20 Permelec Electrode Ltd. Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
JP4600667B2 (en) * 2005-03-30 2010-12-15 栗田工業株式会社 Sulfuric acid recycling type cleaning system and sulfuric acid recycling type cleaning method
JP2006278915A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP4760120B2 (en) * 2005-05-13 2011-08-31 栗田工業株式会社 Apparatus and method for treating water containing hardly biodegradable organic matter
JP2006314952A (en) * 2005-05-13 2006-11-24 Kurita Water Ind Ltd Hardly biodegradable organic matter-containing water treatment apparatus and method
JP2006348329A (en) * 2005-06-14 2006-12-28 Mitsubishi Materials Corp Porous titanium having titanium carbide layer on surface of skeleton, and method for producing the same
EP1741676A2 (en) 2005-06-16 2007-01-10 Permelec Electrode Ltd. Method of sterilization and electrolytic water ejecting apparatus
JP2007046136A (en) * 2005-08-12 2007-02-22 Kurita Water Ind Ltd Sulfuric acid recycle type cleaning system
JP4557167B2 (en) * 2005-08-12 2010-10-06 栗田工業株式会社 Sulfuric acid recycling cleaning system
JP2007059603A (en) * 2005-08-24 2007-03-08 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP2007103516A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Sulfuric acid recycling cleaning system
JP4573043B2 (en) * 2005-09-30 2010-11-04 栗田工業株式会社 Sulfuric acid recycling cleaning system
US7951274B2 (en) 2005-11-24 2011-05-31 Sumitomo Electric Hardmetal Corp. Diamond electrode, method for producing same, and electrolytic cell
WO2007083740A1 (en) 2006-01-20 2007-07-26 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP2007332441A (en) * 2006-06-16 2007-12-27 Chlorine Eng Corp Ltd Method of manufacturing persulfuric acid and electrolytic cell for manufacture
JP2008019507A (en) * 2006-06-16 2008-01-31 Toshiba Corp Cleaning system and cleaning method
US8303797B2 (en) 2006-06-16 2012-11-06 Kabushiki Kaisha Toshiba Cleaning system and cleaning method
KR100913449B1 (en) 2006-06-16 2009-08-25 가부시끼가이샤 도시바 Cleaning system and cleaning method
JP2008066464A (en) * 2006-09-06 2008-03-21 Kurita Water Ind Ltd Substrate treatment equipment and substrate treatment method
JP4644170B2 (en) * 2006-09-06 2011-03-02 栗田工業株式会社 Substrate processing apparatus and substrate processing method
WO2008029848A1 (en) * 2006-09-06 2008-03-13 Kurita Water Industries Ltd. Substrate processing apparatus and substrate processing method
US8038799B2 (en) 2006-09-06 2011-10-18 Kurita Water Industries Ltd. Substrate processing apparatus and substrate processing method
JP2008111184A (en) * 2006-10-04 2008-05-15 Kurita Water Ind Ltd Persulfuric acid supply system
JP2008095144A (en) * 2006-10-11 2008-04-24 Kurita Water Ind Ltd Method and apparatus for forming high-temperature high concentration persulfuric acid solution
JP2008133491A (en) * 2006-11-27 2008-06-12 Japan Atomic Energy Agency Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same
JP2008164504A (en) * 2006-12-28 2008-07-17 Chlorine Eng Corp Ltd Quantity determination method of oxidizing component in electrolysis sulfuric acid
US8236161B2 (en) 2007-01-15 2012-08-07 Shibaura Mechatronics Corporation Apparatus for electrolyzing sulfuric acid, method of performing electrolysis, and apparatus for processing a substrate
EP2143826A1 (en) 2008-07-10 2010-01-13 Permelec Electrode Ltd. Method of electrolytically synthesizing nitrogen trifluoride
JP2010156033A (en) * 2009-01-05 2010-07-15 Japan Organo Co Ltd Apparatus and method for producing persulfuric acid
JP2010248618A (en) * 2009-03-24 2010-11-04 Kurita Water Ind Ltd Supply system and supply method for functional solution
WO2010110125A1 (en) * 2009-03-24 2010-09-30 栗田工業株式会社 Supply system and supply method for functional solution
WO2010113587A1 (en) * 2009-03-31 2010-10-07 栗田工業株式会社 Method for cleaning electronic material and device for cleaning electronic material
US9175004B2 (en) 2009-07-21 2015-11-03 National University Corporation Hokkaido University Catalyst precursor, method for producing the same, method for using the same, and reactor that uses the same
JP2011127166A (en) * 2009-12-16 2011-06-30 Toshiba Corp Etching method, method for manufacturing microstructure, and etching apparatus
JP2014040639A (en) * 2012-08-23 2014-03-06 Sumitomo Electric Ind Ltd Method for manufacturing a metal
JP2017171830A (en) * 2016-03-25 2017-09-28 独立行政法人国立高等専門学校機構 Processing method of composite material
CN106917104A (en) * 2017-03-17 2017-07-04 南开大学 A kind of method of use BDD electrodes electro synthesis persulfate
KR20200125137A (en) 2019-04-26 2020-11-04 주식회사 성창 A Washing System for Electron Material
JP2020203997A (en) * 2019-06-18 2020-12-24 旭化成株式会社 Method of treating reinforced composite material

Similar Documents

Publication Publication Date Title
JP2001192874A (en) Method for preparing persulfuric acid-dissolving water
EP0949205B1 (en) Use of an anode having an electroconductive diamond structure for producing acidic water containing dissolved hydrogen peroxide
JP4116726B2 (en) Electrochemical treatment method and apparatus
KR100504412B1 (en) Electrolytes and electrolytic baths using the electrodes
US6235186B1 (en) Apparatus for producing electrolytic water
JPH09268395A (en) Electrode for electrolysis and electrolytic cell using this electrode
AU2002248306B2 (en) Electrode coating and its use in the production of chlorate
JP5570627B2 (en) Method for producing peroxodisulfate
JP4808551B2 (en) Method for producing persulfuric acid
KR101286426B1 (en) Sulfuric acid electrolysis process
US7094329B2 (en) Process of producing peroxo-carbonate
JP4157615B2 (en) Method for producing insoluble metal electrode and electrolytic cell using the electrode
US20190048481A1 (en) Electrolysis electrode featuring metal-doped nanotube array and methods of manufacture and using same
US8088266B2 (en) Electrodialysis method for purifying of silicate-containing potassium hydroxide etching solution
TWI252216B (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
EP2228123B1 (en) Electrodialysis method for purifying of silicate-containing potassium hydroxide etching solution
JP2004099914A (en) Method for producing peroxodisulfate
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JPH101794A (en) Electrolytic cell and electrolyzing method
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JP3673000B2 (en) Electrolyzer for electrolyzed water production
JP3844303B2 (en) Method for electrolytic synthesis of percarbonate compound and electrolytic synthesis cell
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JPH11333457A (en) Production of electrolytic water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060626