JP2001168368A - Terminal box - Google Patents

Terminal box

Info

Publication number
JP2001168368A
JP2001168368A JP34977499A JP34977499A JP2001168368A JP 2001168368 A JP2001168368 A JP 2001168368A JP 34977499 A JP34977499 A JP 34977499A JP 34977499 A JP34977499 A JP 34977499A JP 2001168368 A JP2001168368 A JP 2001168368A
Authority
JP
Japan
Prior art keywords
bare chip
temperature
terminal box
conductive metal
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34977499A
Other languages
Japanese (ja)
Inventor
Yuzuru Kondo
譲 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP34977499A priority Critical patent/JP2001168368A/en
Publication of JP2001168368A publication Critical patent/JP2001168368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Connections Arranged To Contact A Plurality Of Conductors (AREA)
  • Photovoltaic Devices (AREA)
  • Connection Or Junction Boxes (AREA)
  • Cable Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a terminal box which can maintain the heat radiating property of a bypass diode while securing a specified diode capacity under a high temperature environment. SOLUTION: A thin bare chip 2 is used as a bypass diode. The bare chip 2 is held between overlapping parts 31 of a set of two conductive metal thin plates fastened to respective relay terminals and extended between these relay terminals in such a manner as to face each other, to form a bypass circuit structure 7. When supplying a specified necessary amount of current to the bypass circuit, a cross-sectional area of each conductive metal thin plate and a joint area of each conductive metal thin plate with a corresponding electrode layer are so set that the surface temperature of the bare chip with the following changes in temperature considered may be the thermal destruction temperature or below: the temperature change elements include at least (A) a change of the ambient temperature of the bare chip based on the influence by the sun beam, the temperatures of roof tiles or the like, (B) the increase in temperature of the bare chip itself based on the generation of heat by conduction, and (C) the decrease in heat radiation temperature of the bare chip based on the thermal conduction through the conductive metal thin plates joined to the upper and lower electrode layers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光発電システ
ムに好適な太陽電池モジュールの出力部を構成する端子
ボックスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal box constituting an output section of a solar cell module suitable for a solar power generation system.

【0002】[0002]

【従来の技術】近年普及している太陽光発電システム
は、住宅等の屋根の上に配列設置される複数の太陽電池
モジュールから構成され、図17に示すように、所定個
数の太陽電池モジュール100、…をその裏面側出力部
110を介して互いに直列接続し且つ当該直列接続の始
端及び末端に位置する各太陽電池モジュールをそれぞれ
屋内へ延びる引込みケーブル140、140に接続して
なる直列一系統が多数連設されたものであり、屋内のイ
ンバータを通じて商用電力系統と連系し、屋内の電気配
線に供給されるシステムが一般的である。
2. Description of the Related Art A photovoltaic power generation system which has been widely used in recent years is composed of a plurality of solar cell modules arranged and arranged on a roof of a house or the like. As shown in FIG. Are serially connected to each other via the back side output unit 110, and each of the solar cell modules located at the beginning and end of the series connection is connected to a lead-in cable 140, 140 extending indoors, respectively. A general system is a system in which a large number of units are provided in series, connected to a commercial power system through an indoor inverter, and supplied to indoor electric wiring.

【0003】太陽電池モジュール100としては、図1
8に示すように、太陽電池120、該太陽電池を支持す
る支持台130、太陽電池120の裏面側に設けた出力
部110を構成する端子ボックス101、及び該端子ボ
ックスより延出する互いに極性の異なる二本の出力ケー
ブル106、106より為るものがあり、各出力ケーブ
ル106をそれぞれ前記支持台130の挿通溝130a
及び図示しない棟側モジュールの挿通溝を介し軒側及び
棟側に延出させることで、隣接する他のモジュールの出
力部又は上記した引込みケーブル140に接続されてい
る。
[0003] As a solar cell module 100, FIG.
As shown in FIG. 8, a solar cell 120, a support 130 supporting the solar cell, a terminal box 101 constituting an output unit 110 provided on the back side of the solar cell 120, and polarities extending from the terminal box. There are two different output cables 106, 106. Each output cable 106 is inserted into the insertion groove 130a of the support 130.
Further, by extending to the eaves side and the ridge side through the insertion groove of the ridge side module (not shown), it is connected to the output part of another adjacent module or the above-described lead-in cable 140.

【0004】これら太陽電池モジュールの出力部を構成
する端子ボックス101は、特開平11−026035
号公報にも開示されている如く、例えば図19に示す内
部構造を有している。
[0004] The terminal box 101 constituting the output section of these solar cell modules is disclosed in Japanese Patent Application Laid-Open No. H11-026035.
For example, as disclosed in Japanese Patent Application Publication No. H10-209, the internal structure shown in FIG. 19 is provided.

【0005】すなわち、太陽電池裏面側に当接する底壁
152の所定部位において当該太陽電池の裏面側に突設
した出力取出用電極材を挿通するための挿通口105a
を備えた箱状の筐体105内部に、二個の中継端子10
4、104が左右対称で配置され、各中継端子104の
基端側には筐体外部へ延出する上記出力ケーブル106
が接続されている。各中継端子104、104の間には
バイパスダイオード102が接続され、太陽電池を構成
する複数のセルの一部が影になっているときや夜間など
に、該モジュールへ逆方向電流が流入することを未然に
阻止するバイパス回路が構成されている。
[0005] That is, at a predetermined portion of the bottom wall 152 abutting on the back surface of the solar cell, an insertion opening 105a for inserting an output extraction electrode material protruding from the back surface of the solar cell.
Inside the box-shaped housing 105 provided with the two relay terminals 10
4, 104 are arranged symmetrically, and the output cable 106 extending to the outside of the housing is provided at the base end side of each relay terminal 104.
Is connected. A bypass diode 102 is connected between the relay terminals 104, 104, and a reverse current flows into the module when a part of a plurality of cells constituting a solar cell is shaded or at night. , A bypass circuit is configured to prevent the occurrence of such a situation.

【0006】[0006]

【発明が解決しようとする課題】ところで、中継端子1
04、104間に接続されるバイパスダイオード102
は、従来から樹脂封止によりパッケージングされた汎用
のダイオードが用いられており、中継端子104との具
体的な接続形態は、該パッケージング内でダイオードの
電極層にワイヤボンディングした導電性の細線と、これ
に連接して中継端子104に直接はんだ付されるリード
線121を介して行われているが、住宅等の屋根上に設
置される太陽電池モジュールの裏面側では、昼夜や季節
等の変化による温度差が約−40℃〜90℃と大きく、
夏の昼間では80℃を超える高温環境となるため、上記
のような接続形態のバイパスダイオードでは、該ダイオ
ードに発生した熱を細線及びリード線を通じて充分に放
熱させることができず、特に高温環境下においては、期
待されるダイオードの特性が確保されず、必要なバイパ
ス機能が発揮されないばかりか、上昇した熱エネルギに
よりダイオードが断線若しくは破壊されるといった問題
も有していた。
By the way, the relay terminal 1
04, 104 connected between the bypass diode 102
Conventionally, a general-purpose diode packaged by resin sealing is used, and a specific connection form with the relay terminal 104 is a conductive thin wire wire-bonded to an electrode layer of the diode in the packaging. And through a lead wire 121 connected to the relay terminal 104 and directly soldered to the relay terminal 104. However, on the back side of the solar cell module installed on the roof of a house or the like, day and night, season, etc. The temperature difference due to the change is as large as about -40 ° C to 90 ° C,
In a daytime in summer, the environment becomes a high temperature environment exceeding 80 ° C. Therefore, in the bypass diode having the above connection form, the heat generated in the diode cannot be sufficiently dissipated through the fine wires and the lead wires. However, there is a problem that not only the expected characteristics of the diode are not ensured, the required bypass function is not exhibited, but also the diode is disconnected or broken by the increased heat energy.

【0007】本発明は係る現況に鑑み為されたものであ
り、バイパスダイオードの放熱性が維持され、高温環境
下においても所定のダイオード容量が確保される端子ボ
ックスを提供せんとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a terminal box in which the heat dissipation of a bypass diode is maintained and a predetermined diode capacity is ensured even in a high temperature environment.

【0008】[0008]

【課題を解決するための手段】本発明者は前述の課題を
解決するにあたり鋭意検討を進めた結果、薄型ベアチッ
プのバイパスダイオードを各導電性金属薄板の間に挾装
することで、当該ベアチップと導電性金属薄板との間に
充分な接触面積が維持され、ベアチップに生じた熱が導
電性金属薄板を通じて速やかに放熱されること、及び前
記導電性金属薄板の断面積及び前記接触面積を適宜設定
することで、夏場等の高温環境下においてもベアチップ
に所定の必要電流量が通電可能となり、バイパス機能を
確実に維持できることを見出し、本発明を完成するに至
った。
The inventor of the present invention has made intensive studies to solve the above-mentioned problems. As a result, the bypass diode of the thin bare chip is sandwiched between the conductive metal thin plates, so that the bare chip and the bare chip can be connected to each other. A sufficient contact area is maintained between the conductive metal sheet and the heat generated in the bare chip is quickly radiated through the conductive metal sheet, and the cross-sectional area of the conductive metal sheet and the contact area are appropriately set. As a result, it has been found that a predetermined required amount of current can be supplied to the bare chip even in a high-temperature environment such as summer, and the bypass function can be reliably maintained, and the present invention has been completed.

【0009】すなわち本発明は、太陽電池の出力取出用
電極材が挿通される挿通口を有した筐体の内部に、前記
電極材が電気的に接続される接続部を備えた複数の中継
端子、及びこれら中継端子間に接続される単又は複数の
バイパスダイオードを配設した太陽電池モジュールの出
力部を構成する端子ボックスであって、前記バイパスダ
イオードとして薄型ベアチップを用い、それぞれ中継端
子に固着され且つ互いに対向して前記中継端子間に延出
する二枚一組の導電性金属薄板の重合部に前記薄型ベア
チップを挾装してなるバイパス回路構成体を備え、当該
バイパス回路に所定の必要電流量が通電する際、少なく
とも下記(A)〜(C): (A)日光、瓦温度等の影響に基づくベアチップ周囲温
度の変化 (B)通電による発熱に基づくベアチップの自己温度上
昇 (C)上下電極層に接合している各導電性金属薄板を介
した熱伝導に基づくベアチップの放熱温度降下 の各温度変化要素を総合したベアチップの表面温度が熱
破壊温度以下となるように、各導電性金属薄板における
断面積及び前記電極層に対する接合面積をそれぞれ設定
してなる端子ボックスを提供する。
That is, according to the present invention, there are provided a plurality of relay terminals having a connection portion to which the electrode material is electrically connected inside a housing having an insertion hole through which the output electrode material of the solar cell is inserted. And a terminal box constituting an output unit of a solar cell module provided with one or more bypass diodes connected between these relay terminals, wherein a thin bare chip is used as the bypass diode, and each is fixed to the relay terminal. And a bypass circuit comprising a thin bare chip sandwiched between overlapping portions of a pair of conductive metal sheets extending between the relay terminals so as to face each other. (A) Change in ambient temperature of bare chip based on the influence of sunlight, roof temperature, etc. (B) Bear based on heat generated by current (C) The temperature of the bare chip surface, which is a combination of the temperature change factors of the heat radiation temperature drop of the bare chip based on the heat conduction through each conductive metal sheet bonded to the upper and lower electrode layers, is the thermal breakdown temperature. As described below, a terminal box is provided in which a cross-sectional area of each conductive metal sheet and a bonding area with respect to the electrode layer are set.

【0010】このような端子ボックスは、中継端子間に
延出する導電性金属薄板の重合部に薄型ベアチップのバ
イパスダイオードを挟装した構成であるため、前記ベア
チップに発生した熱は、上下電極層に接合している導電
性金属薄板等を介した熱伝導により速やかに放熱される
とともに、上記(A)〜(C)の各温度変化要素に基づ
いて導電性金属薄板の断面積及び接合面積が設定されて
いるため、端子ボックス設置環境の急激な温度変化にも
拘らず、前記導電性金属薄板を介した優れた放熱性が維
持され、バイパス回路に必要電流量を通電するベアチッ
プのバイパス機能が確実に維持される。
[0010] Since such a terminal box has a configuration in which a bypass diode of a thin bare chip is sandwiched between overlapping portions of a conductive metal sheet extending between relay terminals, heat generated in the bare chip is not transferred to the upper and lower electrode layers. The heat is quickly dissipated by heat conduction through the conductive metal sheet or the like bonded to the metal sheet, and the cross-sectional area and the bonding area of the conductive metal sheet are reduced based on the temperature change factors (A) to (C). Because it is set, despite the rapid temperature change of the terminal box installation environment, excellent heat dissipation through the conductive metal sheet is maintained, and the bypass function of the bare chip that supplies the necessary current to the bypass circuit is provided. It is surely maintained.

【0011】ここで、温度変化要素(B)と温度変化要
素(C)を総合したバイパス回路通電時のベアチップの
表面温度変化が、電流量1A当たり17℃以下の温度上
昇である端子ボックスでは、夏場等の高温環境下におい
ても充分なバイパス機能が維持される。
Here, in the terminal box in which the temperature change of the bare chip surface when the bypass circuit combining the temperature change element (B) and the temperature change element (C) is energized is a temperature rise of 17 ° C. or less per 1 A of current, A sufficient bypass function is maintained even in a high temperature environment such as summer.

【0012】また、バイパスダイオードを配設した後、
筐体内部にポッティング材が注入される端子ボックスで
あって、温度変化要素(C)に前記ポッティング材によ
る熱伝導を考慮してなる端子ボックスでは、該ポッティ
ング材を通じた放熱作用が加算されるため、温度変化要
素(C)のベアチップの放熱温度降下が大きくなり、特
にポッティング材として熱伝導性に優れたシリコン樹脂
を用いれば、より効果的である。
After the bypass diode is provided,
In a terminal box into which a potting material is injected into the inside of a housing, and in a terminal box in which heat conduction by the potting material is taken into consideration as a temperature change element (C), a heat radiation effect through the potting material is added. In addition, the heat radiation temperature drop of the bare chip of the temperature changing element (C) becomes large, and it is more effective when a silicon resin excellent in heat conductivity is used as a potting material.

【0013】さらに、前記導電性金属薄板として熱伝導
率の大きい銅板を用いれば、温度変化要素(C)である
当該導電性金属薄板を介したベアチップの放熱温度降下
が大きくなる。
Further, if a copper plate having a high thermal conductivity is used as the conductive metal thin plate, the heat radiation temperature drop of the bare chip through the conductive metal thin plate which is a temperature changing element (C) becomes large.

【0014】[0014]

【発明の実施の形態】次に本発明の実施形態を添付図面
に基づき詳細に説明する。図1は、本発明における太陽
電池モジュール出力部10の全体構成を示しており、図
1〜14は本発明に係る端子ボックスの代表的実施形態
を示し、図中符号1は端子ボックス、2はベアチップ、
3a、3bは導電性金属薄板をそれぞれ示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1: has shown the whole structure of the solar cell module output part 10 in this invention, FIGS. 1-14 show the typical embodiment of the terminal box which concerns on this invention, and the code | symbol 1 in a figure is a terminal box, 2 is a terminal box. Bare chips,
Reference numerals 3a and 3b denote conductive metal sheets, respectively.

【0015】本発明に係る端子ボックス1は、図1及び
図2に示すように、太陽電池の出力取出用電極材、例え
ば、太陽電池のプラス電極とマイナス電極にそれぞれ結
線した二本のリード線が挿通される挿通口5aを有する
筐体5の内部に、前記電極材がはんだ付等の接合手段に
よって電気的に接続される接続部41を備えた複数の中
継端子4、4、並びに、これら中継端子4、4間に接続
されるバイパスダイオードを配設した太陽電池モジュー
ルの出力部10を構成する端子ボックス1であって、バ
イパスダイオードとして薄型ベアチップ2を用い、それ
ぞれ中継端子4に固着され且つ互いに対向して中継端子
4、4間に延出する二枚一組の導電性金属薄板3a、3
bの重合部31に、前記ベアチップ2を挾装してなるバ
イパス回路構成体7を備えることで、ベアチップ2に発
生した熱が、該ベアチップに対し広範囲な接触面積を有
する導電性金属薄板3a、3bや中継端子4等を通じた
熱伝導により速やかに放熱され、更に、図3の簡略図に
示す各導電性金属薄板3a、3bの断面積S1及び前記
電極層に対する接合面積S2を以下に示すように設定す
ることで、端子ボックス設置環境の急激な温度変化にも
拘らず、前記導電性金属薄板3a、3bを介した優れた
放熱性が維持され、バイパス回路に必要電流量を通電す
るベアチップ2のバイパス機能が確実に維持された端子
ボックスである。
As shown in FIGS. 1 and 2, a terminal box 1 according to the present invention comprises two lead wires connected to an output material of a solar cell, for example, a positive electrode and a negative electrode of a solar cell, respectively. A plurality of relay terminals 4, 4 having a connection portion 41 in which the electrode material is electrically connected by a joining means such as soldering inside a housing 5 having an insertion port 5a through which A terminal box 1 constituting an output unit 10 of a solar cell module provided with a bypass diode connected between the relay terminals 4 and 4. The thin box 2 is used as the bypass diode. A pair of conductive metal thin plates 3a, 3a extending between the relay terminals 4, 4 facing each other.
By providing the bypass circuit structure 7 sandwiching the bare chip 2 in the overlapping portion 31 of b, the heat generated in the bare chip 2 allows the conductive metal thin plate 3a having a wide contact area with the bare chip to be used. is rapidly radiated by heat conduction through 3b and the relay terminal 4 or the like, each of the conductive metal sheet 3a shown in simplified view of FIG. 3, the junction area S 2 to the cross-sectional area S 1 and the electrode layer 3b below By setting as shown, excellent heat dissipation through the conductive thin metal plates 3a and 3b is maintained despite the rapid temperature change of the terminal box installation environment, and the necessary current is supplied to the bypass circuit. This is a terminal box in which the bypass function of the bare chip 2 is reliably maintained.

【0016】すなわち、本発明における導電性金属薄板
3a(3b)の断面積S1及び接合面積S2は、バイパス
回路構成体7で形成されるバイパス回路に所定の必要電
流量が通電した場合に、少なくとも下記(A)〜
(C): (A)日光、瓦温度等の影響に基づくベアチップ周囲温
度の変化 (B)通電による発熱に基づくベアチップの自己温度上
昇 (C)上下電極層に接合している各導電性金属薄板を介
した熱伝導に基づくベアチップの放熱温度降下 の各温度変化要素を総合したベアチップ2の表面温度
が、当該ベアチップ2の熱破壊温度以下となるように設
定される。
That is, in the present invention, the cross-sectional area S 1 and the joint area S 2 of the conductive metal thin plate 3a (3b) are determined when a predetermined required amount of current flows through the bypass circuit formed by the bypass circuit structure 7. And at least the following (A)
(C): (A) Change in ambient temperature of bare chip due to the influence of sunlight, roof temperature, etc. (B) Self-temperature rise of bare chip due to heat generated by energization (C) Each conductive metal sheet bonded to upper and lower electrode layers The surface temperature of the bare chip 2 obtained by integrating the temperature change factors of the temperature drop of the heat radiation of the bare chip based on the heat conduction through the substrate is set to be equal to or lower than the thermal breakdown temperature of the bare chip 2.

【0017】温度変化要素(A)のベアチップ周囲温度
は、太陽電池モジュールが稼動しており且つバイパス回
路が非通電状態のときのベアチップ表面温度であり、上
記日光及び瓦温度の影響以外に、気温や、筐体を含む端
子ボックス各部の素材特性、構造、太陽電池モジュール
の動作温度等に影響を受ける。
The bare chip ambient temperature of the temperature change element (A) is the bare chip surface temperature when the solar cell module is operating and the bypass circuit is in a non-energized state. And the material properties and structure of each part of the terminal box including the housing, the operating temperature of the solar cell module, and the like.

【0018】温度変化要素(B)の自己温度上昇は、太
陽電池モジュールの容量等に応じて適宜選択される個々
のベアチップの発熱特性に基づくものである。
The self-temperature rise of the temperature changing element (B) is based on the heat generation characteristics of each bare chip appropriately selected according to the capacity of the solar cell module and the like.

【0019】温度変化要素(C)の放熱温度降下は、ベ
アチップ2の上下電極層に接合される各導電性金属薄板
3a、3bを介した熱伝導に基づくものであり、導電性
金属薄板3a、3bの熱伝導率、比熱、断面積S1、接
合面積S2、長さL等により特定される。
The heat radiation temperature drop of the temperature change element (C) is based on heat conduction through the conductive metal sheets 3a, 3b joined to the upper and lower electrode layers of the bare chip 2, and the conductive metal sheets 3a, 3b 3b is specified by the thermal conductivity, specific heat, cross-sectional area S 1 , joining area S 2 , length L, and the like.

【0020】そして、温度変化要素(B)と温度変化要
素(C)を総合したバイパス回路通電時におけるベアチ
ップ2の表面温度変化は、当該ベアチップ2の発熱量、
前記導電性金属薄板3a、3bその他部材の熱伝導率、
比熱等を用いた周知な熱伝導の微分方程式に基づく解析
的方法や、差分法、有限要素法等の数値解法、その他の
解法により予測することが可能であり、この表面温度変
化が、電流量1A当たり17℃以下の温度上昇となるよ
うな上記断面積S1、接合面積S2を設定することで、夏
場等の高温環境下においても充分なバイパス機能を維持
する端子ボックスが構成されるのである。
The surface temperature change of the bare chip 2 when the bypass circuit energizes the temperature changing element (B) and the temperature changing element (C) is determined by the calorific value of the bare chip 2,
Thermal conductivity of the conductive metal sheets 3a, 3b and other members,
It is possible to predict by an analytical method based on the well-known differential equation of heat conduction using specific heat, a numerical method such as a difference method and a finite element method, and other methods. By setting the cross-sectional area S 1 and the joint area S 2 so that the temperature rises to 17 ° C. or less per 1 A , a terminal box that maintains a sufficient bypass function even in a high-temperature environment such as summertime is configured. is there.

【0021】以下に各部の構成を更に詳しく説明する。Hereinafter, the configuration of each section will be described in more detail.

【0022】中継端子4は、平面視略長方形状の長尺な
金属製板状部材で構成されており、筐体底部の挿通口5
aに臨む先端側43に余備はんだが上面に添着される接
続部41を設け、且つ、他方の基端側44に芯線をカシ
メ止めすることで出力ケーブル6を接続した後、図4に
示すように、筐体底壁52から上方に突設した取付け突
起93及び位置決め突起94を、対応する取付け孔4
5、46にそれぞれ挿通した上、取付け突起93に圧着
リング14を装着することで、当該中継端子4を底壁5
2に係止するとともに、出力ケーブル6、6は、筐体底
部から当該出力ケーブルの延出方向に沿って突設されて
いる固定基台56とこれに上方から嵌合する固定部材5
7との間に挾扼した上、前記固定基台56、固定部材5
7及び出力ケーブル6、6の外皮を互いに超音波溶着で
筐体5と一体に固定することにより、前記中継端子4と
共に筐体5内部に配設される。
The relay terminal 4 is formed of a long metal plate member having a substantially rectangular shape in a plan view, and has an insertion port 5 at the bottom of the housing.
After connecting the output cable 6 by providing a connecting portion 41 on the top surface 43 to which a surplus solder is attached on the upper surface and facing the other end 44 and crimping a core wire to the other base end 44, as shown in FIG. As described above, the mounting protrusion 93 and the positioning protrusion 94 projecting upward from the housing bottom wall 52 are aligned with the corresponding mounting holes 4.
5 and 46, and by attaching the crimp ring 14 to the mounting projection 93, the relay terminal 4 is attached to the bottom wall 5
The output cables 6 and 6 are fixed to the fixing base 56 projecting from the bottom of the housing along the extending direction of the output cable, and the fixing members 5 fitted to the fixing base 56 from above.
7 and the fixing base 56, the fixing member 5
By fixing the outer sheath of the output cable 6 and the outer sheath of the output cable 6 and the housing 5 integrally with each other by ultrasonic welding, the relay cable 4 is disposed inside the housing 5 together with the relay terminal 4.

【0023】尚、中継端子4と出力ケーブル6との接続
手段は、前記カシメ止めした上から更にスポット溶接を
施すことや、出力ケーブルを中継端子にネジ止めするこ
とも好ましく、また、中継端子4を筐体5内部に配する
手段は、前記圧着リング14の代わりに取付け突起93
先端を超音波等で溶融して大径化することや、ネジ止め
することも好ましく、また、出力ケーブル6を筐体5に
固定する手段は、該ケーブルを挾扼した固定基台56及
び固定部材57をネジ止めすることや、クランプにより
直接筐体に固定することも好ましい。
The connecting means between the relay terminal 4 and the output cable 6 is preferably further spot-welded after the crimping, and the output cable is screwed to the relay terminal. The means for arranging the inside of the housing 5 includes a mounting projection 93 instead of the crimp ring 14.
It is preferable that the tip is melted by ultrasonic waves or the like to increase the diameter, or it is screwed. The means for fixing the output cable 6 to the housing 5 includes a fixing base 56 holding the cable and a fixing base 56. It is also preferable to screw the member 57 or fix it directly to the housing by a clamp.

【0024】出力ケーブル6、6の先端には、プラグ若
しくはソケットを内装した防水コネクタ61、62が設
けられており、これら出力ケーブル6、6は前記防水コ
ネクタを介して隣接する太陽電池モジュールの出力ケー
ブル又は引込みケーブルに結線される。
At the ends of the output cables 6, 6, waterproof connectors 61, 62 having plugs or sockets are provided, and these output cables 6, 6 are connected to the output of the adjacent solar cell module via the waterproof connectors. Connected to cable or incoming cable.

【0025】薄型ベアチップ2のバイパスダイオード
は、例えば、N型シリコンウエハの表面に拡散処理によ
りP型層を形成し、表面に格子状の凹溝をエッチング形
成して、該凹溝に現出しているPN接合部にガラスパシ
ベーションを施した後、該凹溝で画設されたダイオード
素子及びウエハ裏面に電極層を形成するとともに、該凹
溝に沿って複数に分離して得られるメサ型ダイオードチ
ップが用いられている。この薄型ベアチップのPN接合
部における接合部温度は約150℃で、この接合部温度
が当該ベアチップ2の熱破壊温度となる。したがって、
バイパス回路構成体7の作製に際しては、各導電性金属
薄板3a、3bの断面積及びベアチップ上下の電極層に
対する接合面積を、上述の各温度変化要素(A)〜
(C)を総合したベアチップの表面温度が150℃以下
となるように設定するのであり、本実施形態では、図5
に示すように、周囲にガラスパシベーション層を被覆し
た薄型ベアチップ2の上下各電極層の略全面にわたっ
て、無酸素銅からなる厚み約0.2mmの各導電性金属
薄板3a、3bの一端側がそれぞれ接合され、二枚一組
の導電性金属薄板3a、3b及び薄型ベアチップ2から
なるバイパス回路構成体7が筐体外で迅速且つ確実に構
成される。尚、各導電性金属薄板3a、3bは、銅以外
に熱伝導性に優れたアルミニウムや、金、銀の単体又は
合金が好適に使用できる。
The bypass diode of the thin bare chip 2 is formed, for example, by forming a P-type layer on the surface of an N-type silicon wafer by a diffusion process, etching a lattice-like groove on the surface, and appearing in the groove. A glass mesa diode chip obtained by subjecting a PN junction to glass passivation, forming a diode element defined by the groove and an electrode layer on the back surface of the wafer, and separating the diode element into a plurality along the groove. Is used. The junction temperature at the PN junction of the thin bare chip is about 150 ° C., and this junction temperature is the thermal breakdown temperature of the bare chip 2. Therefore,
When manufacturing the bypass circuit structure 7, the cross-sectional area of each conductive metal thin plate 3a, 3b and the bonding area to the upper and lower electrode layers of the bare chip are determined by the above-mentioned temperature change factors (A) to
(C) is set so that the surface temperature of the bare chip is 150 ° C. or less.
As shown in FIG. 1, one end of each of the conductive metal thin plates 3a and 3b of about 0.2 mm in thickness made of oxygen-free copper is joined over substantially the entire upper and lower electrode layers of the thin bare chip 2 covered with a glass passivation layer. Thus, the bypass circuit structure 7 composed of a pair of conductive metal thin plates 3a and 3b and the thin bare chip 2 is quickly and reliably formed outside the housing. In addition, besides copper, aluminum, gold, or a simple substance or alloy of gold and silver other than copper can be suitably used for the conductive metal thin plates 3a and 3b.

【0026】各電極層の形状は、アノード電極側が2.
45×2.45mm、カソード電極側が2.7×2.7
mmの略正方形で、これら電極層に接合される各導電性
金属薄板の重合部における幅は、アノード電極側の薄板
3aが2.3mm、カソード電極側の薄板3bが4.0
mmで、クリームハンダ等のろう接合金8を介し、それ
ぞれ電極層の略全面を保持しており、アノード電極側の
接合面積S2が約5.6mm2、カソード電極側の接合面
積が約17.3mm2にそれぞれ設定されている。
The shape of each electrode layer is as follows.
45 × 2.45 mm, 2.7 × 2.7 on the cathode electrode side
mm, the width of the overlapped portion of each conductive metal thin plate joined to these electrode layers is 2.3 mm for the thin plate 3a on the anode electrode side and 4.0 mm for the thin plate 3b on the cathode electrode side.
mm, the entire surface of each electrode layer is held via a brazing metal 8 such as cream solder or the like. The bonding area S 2 on the anode electrode side is about 5.6 mm 2 , and the bonding area on the cathode electrode side is about 17 mm. .3 mm 2 .

【0027】このように、導電性金属薄板3a、3bと
その重合部31に挟装した薄型ベアチップ2のバイパス
ダイオードとから構成されるバイパス回路構成体7は、
上述の優れた放熱性以外に、樹脂封止されていない分、
従来のバイパスダイオードに比べて薄肉となり、筐体を
よりコンパクト化できるといった効果を奏している。た
だし、本発明はこのような構造に限定されるものではな
く、重合部31の周囲を樹脂封止でパッケージングして
おくことで、当該バイパス回路構成体の組み付け時の作
業性や放熱性をさらに高め、且つ、後述の保護リブと同
様、薄型ベアチップ2のバイパスダイオードに、はんだ
こて、工具その他の物体が直接当たり、熱ダメージや破
損を与えることを未然に防止することも好ましい。
As described above, the bypass circuit structure 7 composed of the conductive metal thin plates 3a and 3b and the bypass diode of the thin bare chip 2 sandwiched between the overlapping portions 31 is:
In addition to the excellent heat dissipation described above, because it is not sealed with resin,
It is thinner than a conventional bypass diode, and has the effect of making the housing more compact. However, the present invention is not limited to such a structure, and by packaging the periphery of the overlapped portion 31 with resin sealing, workability and heat dissipation at the time of assembling the bypass circuit structure can be reduced. Further, it is also preferable to prevent a soldering iron, a tool or other objects from directly hitting the bypass diode of the thin bare chip 2 to cause thermal damage or breakage, as in the case of a protective rib described later.

【0028】上記中継端子4、4を配設する際に、位置
決め突起94が挿通される取付け孔46は、何れか一方
の中継端子4の長手方向中央部に対して基端側44寄り
に穿設されており、既にこれら中継端子4、4並びに出
力ケーブル6が配設された筐体5内に、バイパス回路構
成体7を組み付ける際には、図6に示す如く、前記取付
け孔46を貫通して中継端子4上方へ突出した位置決め
突起94を、一方の導電性金属薄板3bに穿設される位
置決め孔34に係合することで、中継端子4、4の上面
間に位置決めされた状態で容易且つ迅速に橋渡され、且
つ各導電性金属薄板3a、3bを中継端子4の上面には
んだ付で固着することで、当該バイパス回路構成体7の
橋渡し方向を誤ることなく、中継端子4、4の各基端寄
りに接合される。
When arranging the relay terminals 4, the mounting holes 46 into which the positioning protrusions 94 are inserted are formed near the base end 44 with respect to the longitudinal center of one of the relay terminals 4. When assembling the bypass circuit component 7 into the housing 5 in which the relay terminals 4 and 4 and the output cable 6 are already arranged, as shown in FIG. Then, the positioning protrusion 94 projecting upward from the relay terminal 4 is engaged with the positioning hole 34 formed in the one conductive thin metal plate 3b, so that the positioning protrusion 94 is positioned between the upper surfaces of the relay terminals 4 and 4. It is easily and quickly bridged, and the conductive metal thin plates 3a, 3b are fixed to the upper surface of the relay terminal 4 by soldering, so that the bridge direction of the bypass circuit structure 7 is not mistaken and the relay terminals 4, 4 Near each base end.

【0029】バイパス回路構成体7における導電性金属
薄板3a、3bの側縁部には、筐体5の底壁52から当
該導電性金属薄板3よりも上方に起立する複数対のリブ
9、…が当該側縁部に沿って付設されており、詳しく
は、図2に示したように、各導電性金属薄板3a、3b
の端側71a、71b両側縁に沿って付設した二対の規
制リブ91a、91b、並びに、ベアチップ2が挟装さ
れている重合部31両側縁に沿って付設した一対の保護
リブ92が、それぞれ付設されている。
On the side edges of the conductive metal sheets 3a and 3b in the bypass circuit structure 7, a plurality of pairs of ribs 9 rising from the bottom wall 52 of the housing 5 above the conductive metal sheet 3 are provided. Are provided along the side edges. Specifically, as shown in FIG. 2, each of the conductive metal thin plates 3a, 3b
The two pairs of regulating ribs 91a and 91b provided along both side edges of the end sides 71a and 71b, and the pair of protection ribs 92 provided along both side edges of the overlapping portion 31 where the bare chip 2 is sandwiched, respectively. It is attached.

【0030】ここで、規制リブ91a、91bは、バイ
パス回路構成体7を中継端子4、4の上面間に橋渡しす
る際、当該リブ間に導電性金属薄板3の端側71a、7
1bをそれぞれ挟入することで、該導電性金属薄板3の
位置決め手段として機能し、当該バイパス回路構成体7
の組み付け作業を容易且つ迅速にするものであり、さら
に詳しくは、一方の導電性金属薄板における重合部を構
成しない端側71aに、中継端子4の外側に延出する幅
狭部35を予め形成しておき、該幅狭部35をこれに対
応する規制リブ91aの間に挟入することで、橋渡し方
向を誤ることなく組み付けできる。
Here, the regulating ribs 91a and 91b are used to bridge the bypass circuit structure 7 between the upper surfaces of the relay terminals 4 and 4 so that the ends 71a and 7b of the conductive metal sheet 3 are located between the ribs.
1b respectively function as positioning means for the conductive metal sheet 3, and the bypass circuit construct 7
More specifically, a narrow portion 35 extending outside the relay terminal 4 is formed in advance on the end side 71a of the one conductive metal sheet that does not form the overlapped portion. In addition, by inserting the narrow portion 35 between the corresponding restricting ribs 91a, it is possible to assemble the bridge portion without erroneous bridging directions.

【0031】また、保護リブ92は、同じくバイパス回
路構成体7を中継端子4、4の上面間に橋渡しする際、
当該リブ間に重合部31を挟入することで、橋渡したバ
イパス回路構成体7と中継端子4との接合、または後述
の出力取出用電極材と中継端子4との接合に用いるはん
だこて等の加熱手段が重合部31に直接接触すること
や、当該バイパス回路構成体7を筐体内に組み込んだボ
ックス本体11を移送する際、工具その他の物体が重合
部31に直接衝撃を与えることなどを回避し、バイパス
ダイオードの熱ダメージや衝撃による破損を未然に防止
するものである。
The protective ribs 92 also serve to bridge the bypass circuit structure 7 between the upper surfaces of the relay terminals 4, 4.
By sandwiching the overlapping portion 31 between the ribs, a soldering iron or the like used for joining the bridge circuit component 7 and the relay terminal 4 that have been bridged or for joining the output extraction electrode material and the relay terminal 4 described below. The heating means of the present invention directly contacts the overlapping portion 31 and the tool and other objects directly impact the overlapping portion 31 when the box body 11 in which the bypass circuit structure 7 is incorporated in the housing is transferred. This is intended to prevent the bypass diode from being damaged by thermal damage and impact.

【0032】尚、筐体内には、規制リブ91a、91b
及び保護リブ92以外に、他のリブを設けても良いが、
これらリブは、前記バイパス回路構成体その他の部材と
筐体底壁との間などにポッティング材が隙間なくスムー
ズに充填されるよう、導電性金属薄板3a、3bの延出
方向、すなわち規制リブ91a、91b又は保護リブ9
2に対して平行に設けておくことが好ましい。
In the housing, regulating ribs 91a and 91b are provided.
In addition to the protection rib 92 and other ribs, other ribs may be provided,
These ribs extend in the extending direction of the conductive metal thin plates 3a, 3b, that is, the regulating ribs 91a, so that the potting material is smoothly filled without gaps between the bypass circuit constituting body and other members and the housing bottom wall. , 91b or protective rib 9
Preferably, it is provided in parallel to 2.

【0033】筐体5の内部に設けるバイパスダイオード
の個数は、太陽電池モジュールの容量等に応じて適宜決
定され、例えば二つのバイパスダイオードを中継端子
4、4間に並列接続するときには、図7に示すように、
当該中継端子4、4の上面間に上記したバイパス回路構
成体7を二本隣接して平行に橋渡し且つ接合すれば良
い。このように複数のバイパス回路構成体7を並列接続
すれば、通電時の電流量が分散され、上述した温度変化
要素(B)の各ベアチップの発熱による自己温度上昇を
抑えることが可能となる。
The number of bypass diodes provided inside the housing 5 is appropriately determined according to the capacity of the solar cell module and the like. For example, when two bypass diodes are connected in parallel between the relay terminals 4, 4, FIG. As shown,
What is necessary is just to bridge and join two bypass circuit components 7 adjacent to each other between the upper surfaces of the relay terminals 4 and 4 in parallel. When a plurality of bypass circuit components 7 are connected in parallel in this way, the amount of current when energized is dispersed, and it is possible to suppress a rise in self-temperature due to heat generation of each bare chip of the temperature change element (B) described above.

【0034】また、バイパス回路構成体7を構成してい
る各導電性金属薄板3a、3bは、扁平な板状体で且つ
長手方向に略真直な形状を有しているが、昼夜等の温度
変化に起因する熱膨張により前記導電性金属薄板が伸縮
を繰り返し、その重合部31に挟装した薄型ベアチップ
2のバイパスダイオードに大きな剪断力が生じる可能性
があるため、特に中継端子4、4間の離間距離が大き
く、各導電性金属薄板3の延出寸法が大きくなる場合に
は、図8の(a)、(b)に例示するように、該導電性
金属薄板3a、3bの延出方向に沿った全体又は一部
に、湾曲した部位32又は屈曲した部位33を設けたも
のも好ましい。
Each of the conductive thin metal plates 3a and 3b constituting the bypass circuit structure 7 is a flat plate and has a substantially straight shape in the longitudinal direction. The conductive metal sheet repeatedly expands and contracts due to thermal expansion caused by the change, and a large shearing force may be generated in the bypass diode of the thin bare chip 2 sandwiched between the overlapping portions 31. In the case where the separation distance of the conductive metal thin plates 3 is large and the extending dimension of each conductive metal thin plate 3 is large, as shown in FIGS. It is also preferable to provide a curved part 32 or a bent part 33 on the whole or a part along the direction.

【0035】本実施形態に係る端子ボックス1は、筐体
5の上端開口部53に嵌装される蓋体51を備えてお
り、上記の如く、中継端子4、4の上面間にバイパス回
路構成体7を橋渡し且つ接合してなるボックス本体11
は、挿通口5aを介して出力取出用電極材を筐体内部に
挿通した状態で、ネジや接着剤、粘着剤等により太陽電
池裏面側に固定され、前記電極材を中継端子4の接続部
41に接続した後、図9に示すように、これら電極材1
2、バイパス回路構成体7、及び中継端子4、4が収装
され且つ隔壁54で囲繞された筐体内の所定空間55
に、エポキシ樹脂やポリウレタン、シリコン樹脂等から
なるポッティング材13を注入、充填することで、各部
材及びその接続部分を気密に封止した上、前記蓋体51
により上端開口部53を閉塞して端子ボックス1の組み
立てが完了される。
The terminal box 1 according to the present embodiment has the lid 51 fitted in the upper end opening 53 of the housing 5, and as described above, the bypass circuit is formed between the upper surfaces of the relay terminals 4, 4. Box body 11 formed by bridging and joining bodies 7
Is fixed to the back surface of the solar cell with screws, an adhesive, an adhesive, or the like in a state where the electrode member for output extraction is inserted into the inside of the housing through the insertion port 5a. After connection to the electrode material 41, as shown in FIG.
2, a predetermined space 55 in a housing in which the bypass circuit structure 7 and the relay terminals 4 and 4 are housed and surrounded by the partition wall 54
Then, a potting material 13 made of epoxy resin, polyurethane, silicon resin, or the like is injected and filled to hermetically seal each member and a connection portion thereof, and then,
As a result, the upper end opening 53 is closed, and the assembly of the terminal box 1 is completed.

【0036】前記ポッティング材13は、筐体5の内部
に配する各部材及び接続部分を気密に封止することで、
湿気や雨水、埃等の浸入を防ぎ、その腐食や劣化、衝撃
による破損を防止しつつ絶縁性を維持するものであり、
前記ポッティング材として特に熱伝導性に優れたものを
採用すれば、重合部31の上下に充填される当該ポッテ
ィング材を通じて、ベアチップ2の放熱性をより高める
ことができる。
The potting material 13 hermetically seals each of the members and connection portions disposed inside the housing 5,
Prevents ingress of moisture, rainwater, dust, etc., and maintains insulation while preventing corrosion, deterioration, and damage due to impact.
If a material having particularly excellent thermal conductivity is adopted as the potting material, the heat dissipation of the bare chip 2 can be further improved through the potting material filled above and below the overlapping portion 31.

【0037】そして、このような端子ボックス1におい
ては、図10に示すように、ベアチップ2で発熱した熱
が、ベアチップ2の上下電極層に熱接触している導電性
金属薄板3a、3b、各薄板3a(3b)に熱接触して
いる中継端子4とポッティング材13、及びこれに熱接
触している出力ケーブルや筐体5を伝熱部材とした熱流
路を仮定することで、上述した温度変化要素(B)と温
度変化要素(C)を総合してなるバイパス回路通電時の
ベアチップ表面温度が予測できるのである。
In such a terminal box 1, as shown in FIG. 10, heat generated by the bare chip 2 is transferred to the conductive metal thin plates 3 a, 3 b which are in thermal contact with the upper and lower electrode layers of the bare chip 2. By assuming the relay terminal 4 and the potting material 13 that are in thermal contact with the thin plate 3a (3b) and the heat flow path using the output cable and the housing 5 that are in thermal contact with the relay terminal 4 and the potting material 13, the above-described temperature is obtained. It is possible to predict the bare chip surface temperature when the bypass circuit is energized by integrating the variable element (B) and the temperature variable element (C).

【0038】尚、上記ポッティング材13は必ずしも必
要ではなく、この場合には図11に示すように、ベアチ
ップ2で発熱した熱が、ベアチップ2の上下電極層に熱
接触している導電性金属薄板3a、3b、各薄板3a
(3b)に熱接触している中継端子4及び各中継端子4
に熱接触している出力ケーブルや筐体5を伝熱部材とし
た熱流路を仮定することで、同じくベアチップ表面温度
が予測できる。
The potting material 13 is not always necessary. In this case, as shown in FIG. 11, the heat generated by the bare chip 2 is applied to the conductive metal sheet which is in thermal contact with the upper and lower electrode layers of the bare chip 2. 3a, 3b, each thin plate 3a
The relay terminals 4 and the respective relay terminals 4 which are in thermal contact with (3b)
Similarly, the bare chip surface temperature can be predicted by assuming a heat flow path using the output cable or the housing 5 as a heat transfer member that is in thermal contact with the chip.

【0039】また、中継端子間に延出した二枚一組の導
電性金属薄板3、3及びその重合部31に挟装された薄
型ベアチップ2のバイパスダイオードからなるバイパス
回路構成体7は、筐体底壁52より上方に浮いた状態に
設けられているが、本発明はこのように下方に空間を設
けた構造に限定されるものではなく、図12に示すよう
に、薄型ベアチップ2を挟装している重合部31の下面
を筐体底壁52に密着させ、該底壁52を通じて放熱性
の向上を図るものも好ましい。この場合、導電性金属薄
板3aから筐体底壁52への熱流路が追加され、ベアチ
ップの放熱効果が向上する。
A bypass circuit structure 7 composed of a pair of conductive thin metal plates 3 and 3 extending between the relay terminals and a bypass diode of the thin bare chip 2 sandwiched between the overlapping portions 31 is provided in a housing. Although provided above the body bottom wall 52, the present invention is not limited to such a structure in which a space is provided below, and as shown in FIG. It is also preferable that the lower surface of the mounted overlapping portion 31 is brought into close contact with the housing bottom wall 52 so as to improve heat radiation through the bottom wall 52. In this case, a heat flow path from the conductive metal thin plate 3a to the housing bottom wall 52 is added, and the heat dissipation effect of the bare chip is improved.

【0040】端子ボックスの他の例として、例えば図1
3及び図14に示すように、前記中継端子4に出力取出
用電極材12を接続する接続部41、導電性金属薄板3
を固着する固着部及びその近傍部を除いた当該中継端子
4全体と、該中継端子4の基端側に接続され、筐体5外
部に延出する出力ケーブル6とを、筐体5と一体的に成
形してなる端子ボックス1’も好ましく、筐体底壁53
にはポッティング材の充填により気密に封止すべき接続
部41及び固着部を囲繞する隔壁54’が立設されてい
る。
FIG. 1 shows another example of the terminal box.
As shown in FIG. 3 and FIG. 14, the connecting portion 41 for connecting the output extraction electrode material 12 to the relay terminal 4,
The entirety of the relay terminal 4 excluding the fixing portion for fixing the relay terminal and the vicinity thereof, and the output cable 6 connected to the base end side of the relay terminal 4 and extending outside the housing 5 are integrated with the housing 5. The terminal box 1 ′ which is formed in a suitable manner is also preferable, and the housing bottom wall 53
Is provided with a partition wall 54 'surrounding the connecting portion 41 to be hermetically sealed by filling with a potting material and a fixing portion.

【0041】このような端子ボックス1’のボックス本
体11は、筐体5を成形する際に、中継端子4とこの基
端側に既に接続した出力ケーブル6とを金型内にインサ
ートして、当該筐体5と一体的に射出成形して作製さ
れ、上述の端子ボックス1において必要な中継端子4及
び出力ケーブル6を筐体に固定するための取付け突起9
3や取付け孔45、圧着リング14、固定部材57等が
不要となり、部品点数が少なく組立工程が簡略化される
とともに製造コストが大幅に低減される。また、隔壁5
4’で囲繞される空間は、上述の端子ボックス1の隔壁
54で囲繞される空間55に比べ、中継端子基端側44
における出力ケーブル6との接続部分を含まない分だけ
小さくなり、充填するポッティング材の使用量も低減さ
れるのである。
The box main body 11 of such a terminal box 1 ′ inserts the relay terminal 4 and the output cable 6 already connected to the base end thereof into a mold when forming the housing 5. A mounting projection 9 formed integrally with the housing 5 by injection molding to fix the relay terminal 4 and the output cable 6 necessary for the terminal box 1 to the housing.
3, the mounting hole 45, the pressure ring 14, the fixing member 57, etc. are not required, the number of parts is small, the assembling process is simplified, and the manufacturing cost is greatly reduced. Also, partition 5
The space surrounded by 4 ′ is smaller than the space 55 surrounded by the partition wall 54 of the terminal box 1 described above, and the relay terminal base end side 44.
In this case, the size is reduced by the amount not including the connection portion with the output cable 6, and the amount of potting material to be filled is also reduced.

【0042】[0042]

【実施例】次に、本発明に係る端子ボックスと従来の端
子ボックスとを比較する。
Next, a comparison will be made between a terminal box according to the present invention and a conventional terminal box.

【0043】実施例1は上記代表的実施形態に示すよう
に、メサ型ベアチップPTD27K(パワード有限会社製)の
上下電極層の略全面に厚さ0.2mmの銅板3a、3b
をそれぞれ接合したバイパス回路構成体7を備え、内部
にポッティング材としてシリコン樹脂を封入した端子ボ
ックス1、実施例2は、同じくバイパス回路構成体7を
備え、内部にポッティング材を封入しない端子ボックス
1、比較例1と比較例2は、それぞれ10A、20A用
のバイパスダイオードFSF10A60、FSKF20A(何れも日本
インター株式会社製)を用いた図19に示す従来からの
端子ボックス101である。
In the first embodiment, as shown in the representative embodiment, the copper plates 3a and 3b each having a thickness of 0.2 mm are formed on substantially the entire upper and lower electrode layers of the mesa type bare chip PTD27K (manufactured by Powered Limited).
And a terminal box 1 having a bypass circuit component 7 and a potting material therein, and a terminal box 1 having a bypass circuit component 7 therein and not having a potting material enclosed therein. Comparative Example 1 and Comparative Example 2 are conventional terminal boxes 101 shown in FIG. 19 using bypass diodes FSF10A60 and FSKF20A for 10A and 20A, respectively (both manufactured by Nippon Inter Corporation).

【0044】図15は、実施例1及び実施例2の各端子
ボックスにおいて、ベアチップに通電される電流量と、
そのときにベアチップの表面で実測される上昇温度との
関係を示すグラフであり、上述の温度変化要素(B)及
び(C)を総合したベアチップ表面温度変化の実測値に
基づいている。図16は、上記実施例1、実施例2、比
較例1、比較例2の各端子ボックスにおいて、周囲温度
と該周囲温度で通電可能な電流量との関係を示すグラフ
である。
FIG. 15 shows the amount of current supplied to the bare chip in each terminal box of the first and second embodiments.
It is a graph which shows the relationship with the temperature rise measured on the surface of a bare chip at that time, and is based on the measured value of the bare chip surface temperature change which integrated the above-mentioned temperature change factors (B) and (C). FIG. 16 is a graph showing the relationship between the ambient temperature and the amount of current that can flow at the ambient temperature in each of the terminal boxes of Example 1, Example 2, Comparative Example 1, and Comparative Example 2.

【0045】図15のグラフから分かるように、本発明
に係る実施例1の端子ボックス1は電流量1A当たり約
11℃の温度上昇、実施例2の端子ボックス1は電流量
1A当たり約14℃の温度上昇で、何れも上昇温度17
℃以下を満たしている。また、端子ボックス内部にシリ
コン樹脂を封入した実施例1が、封入していない実施例
2に比べて温度上昇が抑制されており、シリコン樹脂の
封入でベアチップの放熱が促進されることが分かる。
As can be seen from the graph of FIG. 15, the terminal box 1 of the first embodiment according to the present invention has a temperature rise of about 11 ° C. per 1 A of current, and the terminal box 1 of the second embodiment has a temperature rise of about 14 ° C. per 1 A of current. Temperature rise of 17
℃ or less. Further, it can be seen that in Example 1 in which the silicone resin was sealed inside the terminal box, the temperature rise was suppressed as compared with Example 2 in which the silicone resin was not sealed, and heat dissipation of the bare chip was promoted by sealing the silicon resin.

【0046】そして、図16のグラフによれば、周囲温
度が80〜90℃以上となる夏場等においては、比較例
1のバイパスダイオードに流れる電流量が約1.07A
以下、比較例2のバイパスダイオードに流れる電流量が
約1.37A以下となり、充分なバイパス機能が維持さ
れないのに対し、実施例1のベアチップでは、周囲温度
が約107℃で電流量4A、実施例2のベアチップで
は、周囲温度94℃で電流量4Aが確保され、周囲温度
90℃以上となる高温環境下においても充分なバイパス
機能を発揮することが分かる。
According to the graph of FIG. 16, in summer or the like when the ambient temperature is 80 to 90 ° C. or more, the amount of current flowing through the bypass diode of Comparative Example 1 is about 1.07 A.
Hereinafter, the amount of current flowing through the bypass diode of Comparative Example 2 was about 1.37 A or less, and a sufficient bypass function was not maintained. On the other hand, in the bare chip of Example 1, the amount of current was 4 A at an ambient temperature of about 107 ° C. It can be seen that the bare chip of Example 2 secures a current amount of 4 A at an ambient temperature of 94 ° C. and exhibits a sufficient bypass function even in a high-temperature environment where the ambient temperature is 90 ° C. or higher.

【0047】[0047]

【発明の効果】請求項1記載の端子ボックスによれば、
中継端子間に延出する導電性金属薄板の重合部に薄型ベ
アチップのバイパスダイオードを挟装した構成であるの
で、前記ベアチップに発生した熱が、上下電極層に接合
している導電性金属薄板等を介した熱伝導により速やか
に放熱されるとともに、当該バイパス回路に所定の必要
電流量が通電する際、常にバイパス回路が機能するよう
に導電性金属薄板の断面積及び接合面積が設定されてい
るので、端子ボックス設置環境の急激な温度変化にも拘
らず、ベアチップのバイパス機能が確実に維持される。
According to the terminal box of the first aspect,
Since the bypass diode of the thin bare chip is sandwiched between the overlapping portions of the conductive metal sheet extending between the relay terminals, the heat generated in the bare chip causes the conductive metal sheet or the like bonded to the upper and lower electrode layers. The cross-sectional area and junction area of the conductive metal sheet are set such that the heat is quickly dissipated by the heat conduction through and the bypass circuit always functions when a predetermined required amount of current flows through the bypass circuit. Therefore, the bypass function of the bare chip is reliably maintained irrespective of a sudden temperature change in the terminal box installation environment.

【0048】請求項2記載の端子ボックスによれば、バ
イパス回路通電時の薄型ベアチップの表面温度変化が、
電流量1A当たり17℃以下の温度上昇であるので、夏
場等の高温環境下でも充分なバイパス機能が維持され
る。
According to the terminal box of the second aspect, the surface temperature change of the thin bare chip when the bypass circuit is energized is:
Since the temperature rise is 17 ° C. or less per 1 A of current, a sufficient bypass function is maintained even in a high temperature environment such as summertime.

【0049】請求項3記載の端子ボックスによれば、ポ
ッティング材を通じた放熱作用が加算されてベアチップ
の放熱温度降下が大きくなるので、例えば導電性金属薄
板の断面積をより小さくすることで端子ボックス全体の
コンパクト化を図ることも可能となる。
According to the terminal box of the third aspect, since the heat radiation effect through the potting material is added and the heat radiation temperature drop of the bare chip increases, for example, the cross-sectional area of the conductive metal sheet is made smaller to make the terminal box smaller. It is also possible to reduce the overall size.

【0050】請求項4記載の端子ボックスによれば、前
記ポッティング材として熱伝導性に優れたシリコン樹脂
を用いているので、前記ベアチップの放熱温度降下がよ
り大きくなる。
According to the terminal box of the present invention, since the silicon resin having excellent thermal conductivity is used as the potting material, the heat radiation temperature drop of the bare chip is further increased.

【0051】請求項5記載の端子ボックスによれば、前
記導電性金属薄板として熱伝導率の大きい銅板を用いて
いるので、当該導電性金属薄板を介したベアチップの放
熱温度降下が大きくなり、同じく端子ボックス全体のコ
ンパクト化を図ることが可能となる。
According to the terminal box of the present invention, since a copper plate having a high thermal conductivity is used as the conductive metal sheet, the temperature drop of the heat radiation of the bare chip through the conductive metal sheet becomes large. It is possible to reduce the size of the entire terminal box.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の代表的実施形態に係る端子ボックス及
び出力ケーブルから構成した出力部の全体構成を示す斜
視図。
FIG. 1 is a perspective view showing an entire configuration of an output unit including a terminal box and an output cable according to a typical embodiment of the present invention.

【図2】同じく無蓋状態の端子ボックス及び出力ケーブ
ルを示す説明図。
FIG. 2 is an explanatory view showing a terminal box and an output cable in an uncovered state.

【図3】バイパス回路構成体における各導電性金属薄板
とベアチップとの接合要部を示す分解説明図。
FIG. 3 is an exploded explanatory view showing a main part of connection between each conductive metal thin plate and a bare chip in the bypass circuit structure.

【図4】筐体内に中継端子及び出力ケーブルを組み付け
る様子を示す説明図。
FIG. 4 is an explanatory diagram showing a state in which a relay terminal and an output cable are assembled in a housing.

【図5】端子ボックス内部のバイパス回路構成体を示す
説明図。
FIG. 5 is an explanatory diagram showing a bypass circuit structure inside the terminal box.

【図6】中継端子の上面間にバイパス回路構成体を組み
付ける様子を示す説明図。
FIG. 6 is an explanatory diagram showing a state in which a bypass circuit structure is assembled between upper surfaces of relay terminals.

【図7】中継端子の上面間にバイパス回路構成体を二本
隣接平行に橋架した例を示す説明図。
FIG. 7 is an explanatory view showing an example in which two bypass circuit components are bridged in parallel between the upper surfaces of the relay terminals.

【図8】(a)及び(b)は、それぞれバイパス回路構
成体の変形例を示す説明図。
FIGS. 8A and 8B are explanatory diagrams showing modified examples of the bypass circuit structure.

【図9】端子ボックスを太陽電池に取付けた状態を示す
説明断面図。
FIG. 9 is an explanatory sectional view showing a state where the terminal box is attached to the solar cell.

【図10】ベアチップで発生した熱を放熱する各伝熱部
材を示す説明図。
FIG. 10 is an explanatory view showing each heat transfer member that dissipates heat generated in a bare chip.

【図11】ポッティング材を充填しない端子ボックスの
例において、ベアチップで発生した熱を放熱する各伝熱
部材を示す説明図。
FIG. 11 is an explanatory view showing heat transfer members that dissipate heat generated in a bare chip in an example of a terminal box that is not filled with a potting material.

【図12】薄板重合部の下面を筐体底壁に密着させた端
子ボックスの例において、ベアチップで発生した熱を放
熱する各伝熱部材を示す説明図。
FIG. 12 is an explanatory view showing heat transfer members that dissipate heat generated in a bare chip in an example of a terminal box in which a lower surface of a thin plate overlapping portion is closely attached to a housing bottom wall.

【図13】端子ボックスの変形例を示す斜視図。FIG. 13 is a perspective view showing a modification of the terminal box.

【図14】同じく無蓋状態の端子ボックス及び出力ケー
ブルを示す説明図。
FIG. 14 is an explanatory view showing a terminal box and an output cable in an uncovered state.

【図15】ベアチップに通電される電流量と、そのとき
にベアチップの表面で実測される上昇温度との関係を示
すグラフ。
FIG. 15 is a graph showing the relationship between the amount of current supplied to the bare chip and the temperature rise measured on the surface of the bare chip at that time.

【図16】周囲温度と該周囲温度で通電可能な電流量と
の関係を示すグラフ。
FIG. 16 is a graph showing the relationship between the ambient temperature and the amount of current that can flow at the ambient temperature.

【図17】屋根上に配列設置される太陽電池モジュール
を示す説明図。
FIG. 17 is an explanatory diagram showing solar cell modules arranged and installed on a roof.

【図18】太陽電池モジュールの出力部を示す説明図。FIG. 18 is an explanatory diagram showing an output unit of the solar cell module.

【図19】従来の端子ボックスの内部構造を示す説明
図。
FIG. 19 is an explanatory view showing the internal structure of a conventional terminal box.

【符号の説明】[Explanation of symbols]

1、1’ 端子ボックス 10 出力部 11 ボックス本体 12 電極材 13 ポッティング材 14 圧着リング 2 ベアチップ 3a、3b 薄板 31 重合部 32 湾曲した部位 33 屈曲した部位 34 位置決め孔 35 幅狭部 4 中継端子 41 接続部 42 上面 43 先端側 44 基端側 45 取付け孔 46 取付け孔 5 筐体 5a 挿通口 51 蓋体 52 底壁 53 上端開口部 54、54’ 隔壁 55 空間 56 固定基台 57 固定部材 6 出力ケーブル 61 防水コネクタ 62 防水コネクタ 7 バイパス回路構成体 71a、71b 端側 8 ろう接合金 9 リブ 91a、91b 規制リブ 92 保護リブ 93 取付け突起 94 位置決め突起 S1 断面積 S2 接合面積 100 太陽電池モジュール 101 端子ボックス 102 バイパスダイオード 104 中継端子 105 筐体 105a 挿通口 120 太陽電池 121 リード線 130 支持台 130a 挿通溝 140 引込みケーブル 145 部位 152 底壁DESCRIPTION OF SYMBOLS 1, 1 'Terminal box 10 Output part 11 Box body 12 Electrode material 13 Potting material 14 Crimp ring 2 Bare chip 3a, 3b Thin plate 31 Overlapping part 32 Curved part 33 Curved part 34 Positioning hole 35 Narrow part 4 Relay terminal 41 Connection Part 42 upper surface 43 distal end 44 proximal end 45 mounting hole 46 mounting hole 5 housing 5a insertion opening 51 lid 52 bottom wall 53 upper opening 54, 54 'partition wall 55 space 56 fixing base 57 fixing member 6 output cable 61 waterproof connector 62 waterproof connector 7 bypass circuit assembly 71a, 71b end 8 braze alloy 9 ribs 91a, 91b regulating ribs 92 protect rib 93 mounting projection 94 positioning projection S 1 the cross-sectional area S 2 junction area 100 solar cell module 101 terminal box 102 Bypass diode 104 Relay Child 105 housing 105a through opening 120 solar cell 121 leads 130 support table 130a insertion groove 140 drop cables 145 sites 152 bottom wall

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池の出力取出用電極材が挿通され
る挿通口を有した筐体の内部に、前記電極材が電気的に
接続される接続部を備えた複数の中継端子、及びこれら
中継端子間に接続される単又は複数のバイパスダイオー
ドを配設した太陽電池モジュールの出力部を構成する端
子ボックスであって、前記バイパスダイオードとして薄
型ベアチップを用い、それぞれ中継端子に固着され且つ
互いに対向して前記中継端子間に延出する二枚一組の導
電性金属薄板の重合部に前記ベアチップを挾装してなる
バイパス回路構成体を備え、当該バイパス回路に所定の
必要電流量が通電する際、少なくとも下記(A)〜
(C): (A)日光、瓦温度等の影響に基づくベアチップ周囲温
度の変化 (B)通電による発熱に基づくベアチップの自己温度上
昇 (C)上下電極層に接合している各導電性金属薄板を介
した熱伝導に基づくベアチップの放熱温度降下 の各温度変化要素を総合したベアチップの表面温度が熱
破壊温度以下となるように、各導電性金属薄板における
断面積及び前記電極層に対する接合面積をそれぞれ設定
してなる端子ボックス。
1. A plurality of relay terminals each having a connection portion to which the electrode material is electrically connected inside a housing having an insertion hole through which an output electrode material of the solar cell is inserted, and A terminal box constituting an output unit of a solar cell module provided with one or more bypass diodes connected between relay terminals, wherein a thin bare chip is used as the bypass diode, each of which is fixed to a relay terminal and faces each other. And a bypass circuit comprising a pair of conductive thin metal plates extending between the relay terminals and sandwiching the bare chip between the overlapping portions, and a predetermined required current flows through the bypass circuit. At least, the following (A) ~
(C): (A) Change in ambient temperature of bare chip due to the influence of sunlight, roof temperature, etc. (B) Self-temperature rise of bare chip due to heat generated by energization (C) Each conductive metal sheet bonded to upper and lower electrode layers The cross-sectional area of each conductive metal sheet and the bonding area to the electrode layer are set such that the surface temperature of the bare chip obtained by integrating the respective temperature change elements of the heat radiation temperature drop of the bare chip based on the heat conduction through is not more than the thermal breakdown temperature. A terminal box that can be set individually.
【請求項2】 温度変化要素(B)と温度変化要素
(C)を総合したバイパス回路通電時のベアチップの表
面温度変化が、電流量1A当たり17℃以下の温度上昇
である請求項1記載の端子ボックス。
2. The method according to claim 1, wherein the change in the surface temperature of the bare chip when the bypass circuit energizes the temperature change element (B) and the temperature change element (C) is a temperature rise of 17 ° C. or less per 1 A of current. Terminal box.
【請求項3】 バイパスダイオードを配設した後、筐体
内部にポッティング材が注入される端子ボックスであっ
て、温度変化要素(C)に前記ポッティング材による熱
伝導を考慮してなる請求項1又は2記載の端子ボック
ス。
3. A terminal box into which a potting material is injected after disposing a bypass diode, wherein heat conduction by the potting material is taken into consideration in a temperature changing element (C). Or the terminal box according to 2.
【請求項4】 前記ポッティング材としてシリコン樹脂
を用いた請求項3記載の端子ボックス。
4. The terminal box according to claim 3, wherein a silicone resin is used as said potting material.
【請求項5】 前記導電性金属薄板が銅板である請求項
1〜4の何れか1項に記載の端子ボックス。
5. The terminal box according to claim 1, wherein the conductive metal sheet is a copper sheet.
JP34977499A 1999-12-09 1999-12-09 Terminal box Pending JP2001168368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34977499A JP2001168368A (en) 1999-12-09 1999-12-09 Terminal box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34977499A JP2001168368A (en) 1999-12-09 1999-12-09 Terminal box

Publications (1)

Publication Number Publication Date
JP2001168368A true JP2001168368A (en) 2001-06-22

Family

ID=18406032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34977499A Pending JP2001168368A (en) 1999-12-09 1999-12-09 Terminal box

Country Status (1)

Country Link
JP (1) JP2001168368A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303988A (en) * 2002-04-10 2003-10-24 Sumitomo Wiring Syst Ltd Terminal box device for solar battery module
JP2005332869A (en) * 2004-05-18 2005-12-02 Sansha Electric Mfg Co Ltd Solar cell module connector
WO2007013262A1 (en) * 2005-07-28 2007-02-01 Sumitomo Wiring Systems, Ltd. Terminal box for solar cell module
EP1758176A1 (en) * 2004-05-25 2007-02-28 Kitani Electric Co., Ltd. Terminal box for solar cell module
US7282635B2 (en) 2003-06-27 2007-10-16 Mitsubishi Denki Kabushiki Kaisha Terminal box
JP2008034873A (en) * 2004-05-25 2008-02-14 Kitani Denki Kk Terminal box for solar cell module
JP2008153069A (en) * 2006-12-18 2008-07-03 Toyota Motor Corp Connecting device
US7432439B2 (en) 2004-03-12 2008-10-07 Mitsubishi Denki Kabushiki Kaisha Terminal box
WO2009062326A3 (en) * 2007-11-12 2009-07-09 Applied Materials Inc Junction box for a photovoltaic solar panel
JP2009296023A (en) * 2009-09-25 2009-12-17 Sansha Electric Mfg Co Ltd Solar cell module connector
US7671270B2 (en) * 2007-07-30 2010-03-02 Emcore Solar Power, Inc. Solar cell receiver having an insulated bypass diode
CN101924297A (en) * 2009-05-28 2010-12-22 泰科电子公司 Electric connector with sealant of hermetically sealed connector
CN102110726A (en) * 2010-11-05 2011-06-29 苏州快可光伏电子股份有限公司 Sealed type photovoltaic junction box with rapid heat dissipation
JP2012028407A (en) * 2010-07-20 2012-02-09 Nippon Tanshi Kk Potting liquid leakage prevention structure of terminal box
US8148628B2 (en) 2007-07-30 2012-04-03 Emcore Solar Power, Inc. Solar cell receiver for concentrator modules
JP2013183626A (en) * 2012-07-13 2013-09-12 Jtekt Corp Waterproof structure of electronic unit
JP2013183529A (en) * 2012-03-01 2013-09-12 Jtekt Corp Waterproof structure of electronic unit
KR20130111573A (en) * 2010-10-25 2013-10-10 쌩-고벵 글래스 프랑스 Solar module having a connecting element
CN103378194A (en) * 2012-04-23 2013-10-30 苏州快可光伏电子股份有限公司 Intelligent connecting box
DE112006002980B4 (en) * 2005-11-09 2013-11-14 Sumitomo Wiring Systems, Ltd. Connection box for solar cell module
US8759138B2 (en) 2008-02-11 2014-06-24 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9012771B1 (en) 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
CN105071765A (en) * 2015-09-11 2015-11-18 上海艾力克新能源有限公司 Photovoltaic junction box
DE102004036697B4 (en) * 2003-08-01 2016-01-28 Onamba Co., Ltd. Connection box for solar cell panel
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9806215B2 (en) 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells
JP2018518934A (en) * 2015-06-27 2018-07-12 サンパワー コーポレイション General purpose photovoltaic laminate
WO2018220765A1 (en) * 2017-05-31 2018-12-06 旭化成株式会社 Electronic apparatus equipped with stretchable transmission line and method for manufacturing same
CN109546609A (en) * 2018-10-29 2019-03-29 嘉兴市盛央电气有限公司 The push-in electromagnetic compatibility connector of locking
EP3595170A4 (en) * 2017-03-10 2021-01-20 Jiangsu Tonglin Electric Co., Ltd Low-pressure chip packaging type junction box and processing method thereof for solar power generation assembly

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303988A (en) * 2002-04-10 2003-10-24 Sumitomo Wiring Syst Ltd Terminal box device for solar battery module
CN100407529C (en) * 2003-06-27 2008-07-30 三菱电机株式会社 Terminal box
DE102004010658B4 (en) * 2003-06-27 2009-06-10 Mitsubishi Denki K.K. junction box
US7282635B2 (en) 2003-06-27 2007-10-16 Mitsubishi Denki Kabushiki Kaisha Terminal box
DE102004036697B4 (en) * 2003-08-01 2016-01-28 Onamba Co., Ltd. Connection box for solar cell panel
US7432439B2 (en) 2004-03-12 2008-10-07 Mitsubishi Denki Kabushiki Kaisha Terminal box
JP4515817B2 (en) * 2004-05-18 2010-08-04 株式会社三社電機製作所 Solar cell module connector
JP2005332869A (en) * 2004-05-18 2005-12-02 Sansha Electric Mfg Co Ltd Solar cell module connector
JP2008034873A (en) * 2004-05-25 2008-02-14 Kitani Denki Kk Terminal box for solar cell module
EP1758176A1 (en) * 2004-05-25 2007-02-28 Kitani Electric Co., Ltd. Terminal box for solar cell module
EP1758176A4 (en) * 2004-05-25 2007-08-01 Kitani Electric Co Ltd Terminal box for solar cell module
US8330035B2 (en) 2004-05-25 2012-12-11 Kitani Electric Co., Ltd. Terminal box for solar cell modules
WO2007013262A1 (en) * 2005-07-28 2007-02-01 Sumitomo Wiring Systems, Ltd. Terminal box for solar cell module
DE112006002980B4 (en) * 2005-11-09 2013-11-14 Sumitomo Wiring Systems, Ltd. Connection box for solar cell module
JP2008153069A (en) * 2006-12-18 2008-07-03 Toyota Motor Corp Connecting device
US8088992B2 (en) 2007-07-30 2012-01-03 Encore Solar Power, Inc. Solar cell receiver having an insulated bypass diode
US7671270B2 (en) * 2007-07-30 2010-03-02 Emcore Solar Power, Inc. Solar cell receiver having an insulated bypass diode
US8148628B2 (en) 2007-07-30 2012-04-03 Emcore Solar Power, Inc. Solar cell receiver for concentrator modules
US9059350B2 (en) 2007-11-12 2015-06-16 Applied Materials, Inc. Junction box for a photovoltaic solar panel
EP2637219A3 (en) * 2007-11-12 2014-01-15 Applied Materials, Inc. Junction box for a photovoltaic solar panel
WO2009062326A3 (en) * 2007-11-12 2009-07-09 Applied Materials Inc Junction box for a photovoltaic solar panel
JP2011503884A (en) * 2007-11-12 2011-01-27 アプライド マテリアルズ インコーポレイテッド Connection box for photovoltaic solar panels
CN101855732B (en) * 2007-11-12 2012-06-20 应用材料有限公司 Junction box for a photovoltaic solar panel
EP2058867A3 (en) * 2007-11-12 2009-07-22 Multi-Holding AG Junction box for a photovoltaic solar panel
EP2637218A1 (en) * 2007-11-12 2013-09-11 Applied Materials, Inc. Solder element for a junction box and method for producing a solder element
US8500462B2 (en) 2007-11-12 2013-08-06 Applied Materials, Inc. Junction box for a photovoltaic solar panel
US8759138B2 (en) 2008-02-11 2014-06-24 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
CN101924297A (en) * 2009-05-28 2010-12-22 泰科电子公司 Electric connector with sealant of hermetically sealed connector
US9012771B1 (en) 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US9806215B2 (en) 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells
JP2009296023A (en) * 2009-09-25 2009-12-17 Sansha Electric Mfg Co Ltd Solar cell module connector
JP2012028407A (en) * 2010-07-20 2012-02-09 Nippon Tanshi Kk Potting liquid leakage prevention structure of terminal box
JP2013540366A (en) * 2010-10-25 2013-10-31 サン−ゴバン グラス フランス Solar cell module with connecting element
KR20130111573A (en) * 2010-10-25 2013-10-10 쌩-고벵 글래스 프랑스 Solar module having a connecting element
KR101590685B1 (en) * 2010-10-25 2016-02-01 쌩-고벵 글래스 프랑스 Solar module having a connecting element
CN102110726A (en) * 2010-11-05 2011-06-29 苏州快可光伏电子股份有限公司 Sealed type photovoltaic junction box with rapid heat dissipation
CN102110726B (en) * 2010-11-05 2013-03-27 苏州快可光伏电子股份有限公司 Sealed type photovoltaic junction box with rapid heat dissipation
US9237667B2 (en) 2012-03-01 2016-01-12 Jtekt Corporation Waterproof structure for electronic unit
JP2013183529A (en) * 2012-03-01 2013-09-12 Jtekt Corp Waterproof structure of electronic unit
US9392710B2 (en) 2012-03-01 2016-07-12 Jtekt Corporation Waterproof structure for electronic unit
CN103378194A (en) * 2012-04-23 2013-10-30 苏州快可光伏电子股份有限公司 Intelligent connecting box
JP2013183626A (en) * 2012-07-13 2013-09-12 Jtekt Corp Waterproof structure of electronic unit
JP2018518934A (en) * 2015-06-27 2018-07-12 サンパワー コーポレイション General purpose photovoltaic laminate
CN105071765A (en) * 2015-09-11 2015-11-18 上海艾力克新能源有限公司 Photovoltaic junction box
EP3595170A4 (en) * 2017-03-10 2021-01-20 Jiangsu Tonglin Electric Co., Ltd Low-pressure chip packaging type junction box and processing method thereof for solar power generation assembly
WO2018220765A1 (en) * 2017-05-31 2018-12-06 旭化成株式会社 Electronic apparatus equipped with stretchable transmission line and method for manufacturing same
CN109546609A (en) * 2018-10-29 2019-03-29 嘉兴市盛央电气有限公司 The push-in electromagnetic compatibility connector of locking

Similar Documents

Publication Publication Date Title
JP2001168368A (en) Terminal box
US6655987B2 (en) Terminal box apparatus for solar cell module
US6828503B2 (en) Terminal box device for a solar cell module and a connecting method for a terminal box device
JP3852710B1 (en) Terminal box for solar cell module
JP4004534B2 (en) Diode with lead terminal for solar cell
JP5393783B2 (en) Terminal box for solar cell module
KR101063717B1 (en) Solar cell module and photovoltaic device including same
JP2006073978A (en) Terminal box for solar cell module and rectifier cell unit
JP2001135847A (en) Semiconductor device and terminal box provided therewith
JP2014534798A (en) Diode cell module
JP5131562B2 (en) Terminal box for solar cell module
JP2001119058A (en) Terminal box and method of assembling the same
JP3580313B2 (en) Terminal box device for solar cell module and method of manufacturing the same
JP4245724B2 (en) Solar cell module
CN101681889A (en) Integrated circuit with flexible planer leads
JP2005150277A (en) Terminal box for solar cell module
JP4357972B2 (en) Solar cell bypass diode module with input / output terminals and manufacturing method thereof
US9590126B2 (en) Solar cell assembly II
WO2016181525A1 (en) Solar cell module and solar cell module manufacturing method
JP2009246053A (en) Diode having frame board
JP4412225B2 (en) Terminal box for solar cell module
JP2006019532A (en) Solar cell connector
JP2006351597A (en) Terminal box for solar cell module
ES2661770T3 (en) Solar cell set
JP4889377B2 (en) Terminal box for solar cell module using a plurality of semi-coated diodes connected in parallel and solar cell system using the same