JP2001160392A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2001160392A
JP2001160392A JP34183399A JP34183399A JP2001160392A JP 2001160392 A JP2001160392 A JP 2001160392A JP 34183399 A JP34183399 A JP 34183399A JP 34183399 A JP34183399 A JP 34183399A JP 2001160392 A JP2001160392 A JP 2001160392A
Authority
JP
Japan
Prior art keywords
silicon
negative electrode
current collector
carbonaceous material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34183399A
Other languages
Japanese (ja)
Other versions
JP3124272B1 (en
Inventor
Kuniyuki Nakanishi
邦之 中西
Tetsuya Kusakabe
鉄也 日下部
Ryuichi Akagi
赤木  隆一
Atsushi Suzuki
淳 鈴木
Tadashi Hirabayashi
忠 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP11341833A priority Critical patent/JP3124272B1/en
Application granted granted Critical
Publication of JP3124272B1 publication Critical patent/JP3124272B1/en
Publication of JP2001160392A publication Critical patent/JP2001160392A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery of improved preservation stability, where there is no decrease in battery capacity during storage. SOLUTION: This nonaqueous secondary battery utilizes a negative electrode, which is composed of an electric collector and a sintered body of silicon and carbon formed on the collector, for which silicon particles are covered with carbonaceous material, and the reaction of electrolyte and silicon particles has been suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ケイ素を活物質と
する焼結体からなる負極を有する非水系二次電池に関す
る。
The present invention relates to a non-aqueous secondary battery having a negative electrode made of a sintered body containing silicon as an active material.

【0002】[0002]

【従来の技術】携帯用電子機器の小型軽量化に伴い、よ
り高エネルギー密度の二次電池が要望されている。非水
系二次電池の中でも、リチウム二次電池はかかる要望に
応えるものとして期待されている。しかし、従来用いら
れている黒鉛等の炭素材料の負極活物質では要望されて
いるエネルギー密度の達成が困難なことから、炭素材料
に代えて、より高エネルギー密度を期待できるケイ素を
負極活物質に用いることが検討されている。
2. Description of the Related Art As portable electronic devices are reduced in size and weight, secondary batteries with higher energy density are demanded. Among non-aqueous secondary batteries, lithium secondary batteries are expected to meet such demands. However, since it has been difficult to achieve the required energy density with the conventionally used negative electrode active materials of carbon materials such as graphite, silicon, which can be expected to have a higher energy density, is used as the negative electrode active material instead of carbon materials. It is being considered for use.

【0003】例えば、特開平7−29602号公報に
は、ケイ素をリチウムイオン二次電池の負極活物質とし
て用いることが開示されている。
For example, Japanese Patent Application Laid-Open No. Hei 7-29602 discloses that silicon is used as a negative electrode active material of a lithium ion secondary battery.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ケイ素
を負極活物質として電池を構成し、その電池を放電終了
後放置すると、過放電状態になり、負極中のケイ素の溶
出や、集電体、例えば、銅の溶出が始まり電池容量が低
下するとともに、電池の寿命が短くなるという問題があ
った。
However, when a battery is constituted by using silicon as a negative electrode active material and the battery is left after the discharge is completed, the battery is over-discharged, and the elution of silicon in the negative electrode and the current collector, for example, In addition, there is a problem that the elution of copper starts, the battery capacity is reduced, and the life of the battery is shortened.

【0005】そこで、本発明は、過放電時の負極のケイ
素や集電体の溶出を抑制することにより、保存時の電池
容量の低下のない保存安定性に優れた非水系二次電池を
提供することを課題とした。
Therefore, the present invention provides a non-aqueous secondary battery excellent in storage stability without lowering the battery capacity during storage by suppressing the elution of silicon and the current collector of the negative electrode during overdischarge. The task was to do.

【0006】[0006]

【課題を解決するための手段】本発明者らは、自己放電
を抑制する研究の過程において、ケイ素を負極活物質と
する負極を、アルキルカーボネートからなる溶媒とLi
PF6を電解質とする代表的な電解液に浸漬し、その電
解液及び負極を分析したところ、ケイ素粒子と電解液の
接触面積が増大すると、ケイ素とフッ素を含む化合物及
びLiPF6と溶媒との反応生成物が増加し、さらに、
ケイ素粒子と電解液との接触面積の大きい負極を用いた
電池は保存安定性が良くないこと、及び負極活物質のケ
イ素又は集電体を炭素質材料で被覆した場合には、これ
らの反応が抑制され、保存安定性が良くなることを見出
した。
Means for Solving the Problems In the course of research for suppressing self-discharge, the present inventors have developed a method in which a negative electrode using silicon as a negative electrode active material is mixed with a solvent composed of an alkyl carbonate and Li
When immersed in a typical electrolytic solution using PF 6 as an electrolyte and analyzing the electrolytic solution and the negative electrode, when the contact area between the silicon particles and the electrolytic solution increases, the compound containing silicon and fluorine and the LiPF 6 and the solvent Reaction products increase,
A battery using a negative electrode having a large contact area between a silicon particle and an electrolytic solution has poor storage stability, and when silicon or a current collector of a negative electrode active material is coated with a carbonaceous material, these reactions may occur. It has been found that it is suppressed and the storage stability is improved.

【0007】すなわち、本発明の非水系二次電池は、リ
チウムイオンを吸蔵・放出可能な活物質を含む、正極と
負極と、リチウムイオン導電性の電解液とを有する非水
系二次電池であって、負極が、導電性金属から成る集電
体と、集電体上に形成された、負極活物質のケイ素と炭
素質材料との焼結体とから成り、焼結体中のケイ素粒子
が炭素質材料で被覆され、上記電解液とケイ素粒子との
反応を抑制するようにしたことを特徴とする。
That is, the non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a positive electrode, a negative electrode, and a lithium ion conductive electrolyte containing an active material capable of inserting and extracting lithium ions. The negative electrode comprises a current collector made of a conductive metal, and a sintered body of silicon and carbonaceous material of the negative electrode active material formed on the current collector, and silicon particles in the sintered body are It is characterized by being coated with a carbonaceous material so as to suppress the reaction between the electrolytic solution and silicon particles.

【0008】上述のように、ケイ素粒子の露出した表面
で、ケイ素と電解液が直接反応し、ケイ素とフッ素を含
む化合物が生成し、さらに溶媒と電解質であるLiPF
6との反応が進行すると考えられる。そのため、電解液
と直接接触するケイ素粒子の面積が大きいほど反応が進
行する。したがって、炭素質材料でケイ素粒子の表面を
被覆することにより、ケイ素粒子表面における電解液と
の反応を抑制することができる。そのため、不可逆な反
応を抑制することができ、電池容量の低下を防止でき
る。
As described above, on the exposed surface of the silicon particles, the silicon and the electrolytic solution react directly to form a compound containing silicon and fluorine, and further, the solvent and the electrolyte LiPF
It is thought that the reaction with 6 proceeds. For this reason, the reaction proceeds as the area of the silicon particles in direct contact with the electrolytic solution increases. Therefore, by coating the surface of the silicon particles with the carbonaceous material, it is possible to suppress the reaction of the silicon particles with the electrolyte on the surface of the silicon particles. Therefore, an irreversible reaction can be suppressed, and a decrease in battery capacity can be prevented.

【0009】また、本発明の非水系二次電池は、ケイ素
粒子と、炭素質材料若しくは熱処理により炭素質材料に
なる有機材料とを含む塗膜を集電体上に形成し、非酸化
性雰囲気で焼結して成る焼結体を負極として用いること
ができる。
Further, the non-aqueous secondary battery of the present invention forms a coating film containing silicon particles and a carbonaceous material or an organic material which becomes a carbonaceous material by heat treatment on a current collector, and forms a non-oxidizing atmosphere. Can be used as a negative electrode.

【0010】また、本発明の非水系二次電池は、集電体
の表面を、さらに、炭素質材料で被覆して、集電体と電
解液との直接接触を抑制することにより、集電体の過放
電時における溶出を抑制した負極を用いることができ
る。
Further, the non-aqueous secondary battery of the present invention is characterized in that the surface of the current collector is further coated with a carbonaceous material to suppress the direct contact between the current collector and the electrolyte, thereby improving the current collection. It is possible to use a negative electrode that suppresses elution during overdischarge of the body.

【0011】[0011]

【発明の実施の形態】本発明の非水系二次電池は、リチ
ウム二次電池に好適に用いることができる。以下、リチ
ウム二次電池について、本発明の実施の形態を詳細に説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous secondary battery of the present invention can be suitably used for a lithium secondary battery. Hereinafter, embodiments of the present invention will be described in detail for a lithium secondary battery.

【0012】本発明に用いる負極には、原料粉末を成型
して焼結した焼結体も用いることができるが、原料粉末
を含む塗膜を焼結した焼結体を用いることが好ましい。
例えば、負極には、以下の方法により作製したものを用
いることができる。すなわち、負極活物質であるケイ素
粉末と炭素質材料又は熱処理により炭素質材料となる有
機材料を溶剤に加えて塗液を調製し、その塗液を導電性
金属からなる集電体上に塗布後、乾燥して溶剤を除去し
て塗膜を調製する。次いで、この塗膜を非酸化雰囲気で
焼結し、集電体と焼結体とが一体化した負極を得る。
As the negative electrode used in the present invention, a sintered body obtained by molding and sintering a raw material powder can be used, but it is preferable to use a sintered body obtained by sintering a coating film containing the raw material powder.
For example, a negative electrode manufactured by the following method can be used. That is, a coating liquid is prepared by adding a silicon powder as a negative electrode active material and a carbonaceous material or an organic material to be a carbonaceous material by heat treatment to a solvent, and applying the coating liquid on a current collector made of a conductive metal. After drying, the solvent is removed to prepare a coating film. Next, this coating film is sintered in a non-oxidizing atmosphere to obtain a negative electrode in which the current collector and the sintered body are integrated.

【0013】本発明に用いるケイ素粉末は、ケイ素単体
の結晶質、非晶質のいずれも用いることができ、非酸化
雰囲気での熱処理により分解又は還元されてケイ素に変
化し得るケイ素化合物であっても良い。ケイ素化合物と
しては、酸化ケイ素などの無機ケイ素化合物や、シリコ
ーン樹脂、含ケイ素高分子化合物などの有機ケイ素化合
物が挙げられる。これらの中でも、特にケイ素単体が好
ましい。ケイ素粉末の粒子径は特に限定されないが、電
解液との接触面積を減らす観点から、さらには、操作性
や原料価格、負極材料の均一性から、平均粒子径0.5
μm以上100μm以下のものを好ましく用いることが
できる。焼結体中のケイ素粒子は、炭素質材料で被覆さ
れており、炭素質材料の連続相中にケイ素の分散相があ
る構造を有する。また、焼結体は、リチウムイオンを吸
蔵・放出せず容量を持たないSiCやケイ素と集電体と
の反応物等のケイ素化合物を実質的に含まないことが好
ましい。
The silicon powder used in the present invention may be either crystalline silicon or amorphous silicon, and is a silicon compound which can be decomposed or reduced to silicon by heat treatment in a non-oxidizing atmosphere. Is also good. Examples of the silicon compound include an inorganic silicon compound such as silicon oxide, and an organic silicon compound such as a silicone resin and a silicon-containing polymer compound. Of these, silicon alone is particularly preferred. The particle size of the silicon powder is not particularly limited, but from the viewpoint of reducing the contact area with the electrolytic solution, and further, from the viewpoint of operability, raw material price, and uniformity of the negative electrode material, the average particle size is 0.5.
Those having a size of at least 100 μm can be preferably used. The silicon particles in the sintered body are coated with a carbonaceous material, and have a structure in which a dispersed phase of silicon is present in a continuous phase of the carbonaceous material. Further, it is preferable that the sintered body does not substantially contain silicon compounds such as SiC which does not occlude or release lithium ions and has no capacity or a reaction product of silicon and a current collector.

【0014】本発明の負極に用いる炭素質材料として
は、コ−クス、ガラス状炭素、黒鉛及びピッチの炭化物
及びこれらの混合物等が挙げられる。また、熱処理で炭
素質材料になる有機材料としては、フェノ−ル樹脂、フ
ェノールホルムアルデヒド樹脂、エポキシ樹脂、不飽和
ポリエステル樹脂、フラン樹脂、尿素樹脂、メラミン樹
脂、アルキッド樹脂、キシレン樹脂等の熱硬化性樹脂、
ナフタレン、アセナフチレン、フェナントレン、アント
ラセン、トリフェニレン、ピレン、クリセン、ナフタセ
ン、ピセン、ペリレン、ペンタフェン、ペンタセン等の
縮合系多環炭化水素化合物又はその誘導体、あるいはそ
の混合物を主成分とするピッチ等が挙げられるが、フェ
ノールホルムアルデヒド樹脂又はキシレン樹脂が好まし
い。
Examples of the carbonaceous material used for the negative electrode of the present invention include coke, glassy carbon, graphite, pitch carbides, and mixtures thereof. Organic materials that become carbonaceous materials by heat treatment include thermosetting resins such as phenol resins, phenol formaldehyde resins, epoxy resins, unsaturated polyester resins, furan resins, urea resins, melamine resins, alkyd resins, and xylene resins. resin,
Naphthalene, acenaphthylene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, picene, perylene, pentaphen, pentacene, and the like, or a condensed polycyclic hydrocarbon compound or a derivative thereof, or a pitch containing a mixture thereof as a main component. And a phenol formaldehyde resin or a xylene resin.

【0015】また、原料粉末を含む塗膜を集電体上に形
成し、非酸化性雰囲気で焼結させて負極を調製する場
合、焼成温度は、SiCやケイ素と集電体との反応物等
のケイ素化合物の生成を抑制するため1400℃以下
で、かつ、ケイ素と集電体との反応を抑制するため用い
る集電体の融点以下が望ましく、例えば、集電体に銅を
用いる場合には、銅の融点1083℃以下、より好まし
くは700〜850℃である。
When a negative electrode is prepared by forming a coating film containing the raw material powder on a current collector and sintering the same in a non-oxidizing atmosphere, the firing temperature is set to a reaction temperature between SiC or silicon and the current collector. In order to suppress the production of silicon compounds such as 1400 ℃ or less, and the melting point of the current collector used to suppress the reaction between silicon and the current collector is desirably not more than, for example, when copper is used for the current collector Has a melting point of 1083 ° C. or less, more preferably 700 to 850 ° C., for copper.

【0016】さらに、負極を調製する際に、以下の方法
を用いることができる。すなわち、塗膜を集電体上に形
成した後、塗膜と集電体とを一緒に、炭素質材料又は熱
処理により炭素質材料となる有機材料を含む塗液に浸漬
し、あるいは集電体にその塗液を塗布し、乾燥して溶剤
を除去して塗膜を調製する。次いで、この塗膜と集電体
とを非酸化雰囲気で焼結することにより、集電体を炭素
質材料で被覆することができる。これにより、集電体と
電解液との接触が抑制されるため、集電体金属の溶出反
応の進行を抑制することができる。
In preparing the negative electrode, the following method can be used. That is, after the coating film is formed on the current collector, the coating film and the current collector are immersed together in a coating liquid containing a carbonaceous material or an organic material that becomes a carbonaceous material by heat treatment, or the current collector The coating solution is applied to the resultant, and dried to remove the solvent to prepare a coating film. Next, the current collector can be covered with a carbonaceous material by sintering the coating film and the current collector in a non-oxidizing atmosphere. This suppresses the contact between the current collector and the electrolytic solution, so that the progress of the elution reaction of the current collector metal can be suppressed.

【0017】また、本発明に用いる正極には正極活物質
として、従来公知の何れの材料も使用でき、例えば、L
xCoO2,LixNiO2,MnO2,LiMnO2,L
xMn24,LixMn2-y4,α−V25,TiS2
等を用いることができる。
Further, as the positive electrode used in the present invention, any conventionally known materials can be used as the positive electrode active material.
i x CoO 2, Li x NiO 2, MnO 2, LiMnO 2, L
i x Mn 2 O 4, Li x Mn 2-y O 4, α-V 2 O 5, TiS 2
Etc. can be used.

【0018】また、本発明に用いる非水電解質として
は、エチレンカーボネート、ジメチルカーボネート等の
有機溶媒に電解質としてLiPF6等のリチウム化合物
を溶解させた非水電解液、又は高分子にリチウム化合物
を固溶或いはリチウム化合物を溶解させた有機溶媒を保
持させた高分子固体電解質を用いることができる。
The non-aqueous electrolyte used in the present invention may be a non-aqueous electrolyte in which a lithium compound such as LiPF 6 is dissolved as an electrolyte in an organic solvent such as ethylene carbonate or dimethyl carbonate, or a lithium compound solid in a polymer. A solid polymer electrolyte in which an organic solvent in which a dissolved or lithium compound is dissolved is held can be used.

【0019】[0019]

【実施例】実施例1. (1)負極の調製 市販のケイ素粉〔高純度化学製99.9%品、平均粒子
径約1μm〕70gを3%のピッチ含有トルエン溶液1
00gに含浸して乾燥後、窒素雰囲気で、1100℃で
3時間焼成することにより、ケイ素粉の表面を炭素皮膜
で覆った。この炭素被覆ケイ素粉と天然黒鉛(関西熱化
学製NG2、平均粒子径約2μm)20gをフェノール
ホルムアルデヒド樹脂のn-メチル-2-ピロリドン(N
MP)溶液(20%溶液)200gと混合して、振動ミ
ルで30分間均一分散して塗液を調製した。この塗液を
厚さ40μmの銅箔上にギャップ450μmのアプリケ
ータを用いて塗布し、90℃で30分間乾燥してから、
19φに打ち抜いて1.5×108Paでプレスした。
次いで、窒素雰囲気、850℃で3時間焼成を行った。
このようにして厚さ150μm、密度1.3g/cm3
の負極を調製した。
[Embodiment 1] (1) Preparation of Negative Electrode 70% of a commercially available silicon powder [99.9% product from Kojundo Chemical, average particle size about 1 μm] 3% pitch-containing toluene solution 1
After impregnating the powder with 00 g and drying, it was baked at 1100 ° C. for 3 hours in a nitrogen atmosphere to cover the surface of the silicon powder with a carbon film. 20 g of the carbon-coated silicon powder and natural graphite (NG2 manufactured by Kansai Thermochemical Co., Ltd., average particle size of about 2 μm) were mixed with phenol formaldehyde resin n-methyl-2-pyrrolidone (N
MP) solution (20% solution), and uniformly dispersed in a vibration mill for 30 minutes to prepare a coating solution. This coating solution was applied on a copper foil having a thickness of 40 μm using an applicator having a gap of 450 μm, and dried at 90 ° C. for 30 minutes.
It was punched out at 19φ and pressed at 1.5 × 10 8 Pa.
Next, baking was performed at 850 ° C. for 3 hours in a nitrogen atmosphere.
Thus, the thickness is 150 μm and the density is 1.3 g / cm 3.
Was prepared.

【0020】(2)正極の調製 炭酸リチウムと炭酸コバルトをモル比1:1で秤量し
て、イソプロピルアルコールを溶媒としてボールミルで
均一に湿式混合したものを乾燥し、800℃で5時間仮
焼したものを振動ミルにて粉砕した。次いで、この粉末
を1.3×108Paでプレスし、900℃で10時間
焼成することにより厚さ300μm、密度3.0g/c
3、19φのLiCoO2ペレットを調製し、このペレ
ットを正極とした。
(2) Preparation of Positive Electrode Lithium carbonate and cobalt carbonate were weighed at a molar ratio of 1: 1 and uniformly wet-mixed with a ball mill using isopropyl alcohol as a solvent, and dried and calcined at 800 ° C. for 5 hours. The product was pulverized with a vibration mill. Next, this powder was pressed at 1.3 × 10 8 Pa and baked at 900 ° C. for 10 hours to obtain a thickness of 300 μm and a density of 3.0 g / c.
LiCoO 2 pellets of m 3 and 19φ were prepared, and these pellets were used as a positive electrode.

【0021】(3)電池の作製 両極間にセパレータを挟んで、電解液はエチレンカーボ
ネート/ジメチルカーボネート=1:1(体積比)、電
解質は1M LiPF6のものを用いて電池を作製し
た。
(3) Production of Battery A battery was produced by using a separator having an electrolyte of ethylene carbonate / dimethyl carbonate = 1: 1 (volume ratio) and an electrolyte of 1 M LiPF 6 with a separator interposed between both electrodes.

【0022】(4)サイクル試験 電池を作製し、1日放置して、3mAの定電流で充電終
止電圧4.1Vと放電終止電圧2.0Vの間で充放電を
1回繰り返した後、充電終止電圧4.1Vまで10mA
の定電流定電圧充電を行い、放電終止電圧2.0Vまで
8mAで定電流放電を行うサイクル試験を10回繰り返
した後、放電状態で電池を30日間、室温で保存した。
サイクル試験の1回目の電池容量値を初期容量値とし、
その初期容量値に対する30日間保存後の電池容量値の
割合を容量保持率(%)とした。ここで、過放電状態で
の保存安定性を調べるため、充放電の電圧範囲を通常の
4.1V〜2.5Vから、放電終止電位をより低くし、
4.1V〜2.0Vとした。
(4) Cycle test A battery was prepared, left for 1 day, and charged and discharged once at a constant current of 3 mA between a charge end voltage of 4.1 V and a discharge end voltage of 2.0 V, and then charged. 10mA to 4.1V cutoff voltage
The battery was stored at room temperature for 30 days in a discharged state after repeating a cycle test in which the battery was discharged at a constant current and a constant voltage of 8 mA and a constant current was discharged at 8 mA to a discharge end voltage of 2.0 V.
The first battery capacity value of the cycle test is used as the initial capacity value,
The ratio of the battery capacity value after storage for 30 days to the initial capacity value was defined as a capacity retention rate (%). Here, in order to investigate the storage stability in the overdischarge state, the charging / discharging voltage range was set to 4.1 V to 2.5 V, and the discharge end potential was lowered.
It was set to 4.1V to 2.0V.

【0023】(5)分析 負極のケイ素粒子が炭素質材料で被覆されているか否か
は、X線光電子分光分析装置(ESCA)により、負極
の表面元素を分析することにより判定した。また、電解
液の分解の有無については、負極を電解液に所定時間浸
漬した後、電解液をガスクロマトグラフ質量分析計(G
C−MS)により分析して判定した。
(5) Analysis Whether or not the silicon particles of the negative electrode were covered with the carbonaceous material was determined by analyzing the surface elements of the negative electrode with an X-ray photoelectron spectrometer (ESCA). Further, regarding the presence or absence of decomposition of the electrolytic solution, after immersing the negative electrode in the electrolytic solution for a predetermined time, the electrolytic solution was subjected to gas chromatography mass spectrometry (G
(C-MS).

【0024】また、電池内における短絡の有無は、充電
時における電圧あるいは電流プロファイルの乱れにより
調べた。以上の測定結果及び判定結果を表1に示す。
The presence or absence of a short circuit in the battery was examined based on the disturbance of the voltage or current profile during charging. Table 1 shows the above measurement results and judgment results.

【0025】実施例2.以下に示す方法により負極を調
製した。市販のケイ素粉(高純度化学製99.9%品、
平均粒子径約1μm)70gと天然黒鉛(関西熱化学製
NG2、平均粒子径約2μm)20gをフェノールホル
ムアルデヒド樹脂のNMP溶液200gと混合し、振動
ミルで30分間分散して塗液を調製した。この塗液を厚
さ40μmの銅箔に塗布し、90℃で30分乾燥してか
ら、19φに打ち抜いて1.5×108Paでプレスし
た。これを3%のピッチ含有トルエン溶液に含浸して乾
燥後、窒素雰囲気下で850℃で3時間焼成を行った。
このようにして活物質を担持する銅箔を炭素質材料で覆
った厚さ150μm、密度1.4g/cm3の負極を調
製した。その他は実施例1と同様に行った。結果を表1
に示す。
Embodiment 2 FIG. A negative electrode was prepared by the following method. Commercially available silicon powder (99.9% high purity chemical product,
70 g of an average particle diameter (about 1 μm) and 20 g of natural graphite (NG2 manufactured by Kansai Thermal Chemical Co., Ltd., an average particle diameter of about 2 μm) were mixed with 200 g of an NMP solution of phenol formaldehyde resin, and dispersed by a vibration mill for 30 minutes to prepare a coating liquid. This coating solution was applied to a copper foil having a thickness of 40 μm, dried at 90 ° C. for 30 minutes, punched out to 19φ, and pressed at 1.5 × 10 8 Pa. This was impregnated with a 3% pitch-containing toluene solution and dried, and then fired at 850 ° C. for 3 hours in a nitrogen atmosphere.
Thus, a negative electrode having a thickness of 150 μm and a density of 1.4 g / cm 3 in which the copper foil carrying the active material was covered with the carbonaceous material was prepared. Others were performed similarly to Example 1. Table 1 shows the results
Shown in

【0026】実施例3.平均粒子径が0.5μmのケイ
素粉を用いて負極を調製した以外は、実施例1と同様に
行なった。結果を表1に示す。
Embodiment 3 FIG. The procedure was performed in the same manner as in Example 1 except that a negative electrode was prepared using silicon powder having an average particle diameter of 0.5 μm. Table 1 shows the results.

【0027】比較例1.以下に示す方法により負極を調
製した。市販のケイ素粉〔高純度化学製99.9%品、
平均粒子径約1μm〕70gと天然黒鉛(関西熱化学製
NG2、平均粒子径約2μm)20gをフェノールホル
ムアルデヒド樹脂のNMP溶液(20%溶液)200g
と混合して、振動ミルで30分間均一分散して塗液を調
製した。この塗液を厚さ40μmの銅箔上にギャップ4
50μmのアプリケータを用いて塗布し、90℃で30
分間乾燥してから、19φに打ち抜いて1.5×108
Paでプレスした。これを、焼成せずに、そのまま負極
とした。その他は、実施例1と同様に行った。結果を表
1に示す。
Comparative Example 1 A negative electrode was prepared by the following method. Commercially available silicon powder [99.9% high purity chemical product,
70 g of an average particle diameter of about 1 μm] and 20 g of natural graphite (NG2 manufactured by Kansai Thermochemical Co., Ltd., average particle diameter of about 2 μm) 200 g of an NMP solution (20% solution) of phenol formaldehyde resin
, And uniformly dispersed in a vibration mill for 30 minutes to prepare a coating liquid. This coating solution was coated on a copper foil having a thickness of 40 μm with a gap of 4 μm.
Apply using a 50 μm applicator,
After drying for 1 minute, punch out to 19φ and 1.5 × 10 8
Pressed at Pa. This was used as a negative electrode without firing. Other than that, it carried out similarly to Example 1. Table 1 shows the results.

【0028】比較例2.平均粒子径が0.3μmのケイ
素粉を用いた以外は、実施例1と同様に行った。結果を
表1に示す。
Comparative Example 2 The procedure was performed in the same manner as in Example 1 except that silicon powder having an average particle diameter of 0.3 μm was used. Table 1 shows the results.

【0029】比較例3.平均粒子径が0.3μmのケイ
素粉を用いた以外は、比較例1と同様に行った。結果を
表1に示す。
Comparative Example 3 The procedure was performed in the same manner as in Comparative Example 1, except that silicon powder having an average particle diameter of 0.3 μm was used. Table 1 shows the results.

【0030】比較例4.負極の塗膜の焼成温度を150
0℃とした以外は、実施例1と同様の方法で電池を組み
立て、サイクル試験を行なった。負極の色が焼成により
灰色に変化したことから、ケイ素化合物の生成を確認し
た。一方、実施例1,2,3、そして比較例1〜3の場
合、焼成後の負極は黒色であり、ケイ素化合物が生成し
ていないことを確認した。また、負極の裏面(銅箔面)
の灰色に変色した部分をX線回折により分析したとこ
ろ、CuとSiからなる化合物に帰属されるピークが認
められたことから、ケイ素と集電体の銅箔も反応したと
考えられる。この負極を用いた電池の充放電容量は非常
に小さい値であった。結果を表1に示す。
Comparative Example 4 The firing temperature of the coating film of the negative electrode was 150
A battery was assembled in the same manner as in Example 1 except that the temperature was set to 0 ° C., and a cycle test was performed. The formation of the silicon compound was confirmed from the fact that the color of the negative electrode changed to gray by firing. On the other hand, in Examples 1, 2, and 3 and Comparative Examples 1 to 3, the negative electrode after firing was black, and it was confirmed that no silicon compound was generated. Also, the back side of the negative electrode (copper foil side)
When the part discolored to gray was analyzed by X-ray diffraction, a peak attributed to a compound consisting of Cu and Si was recognized. It is considered that silicon and the copper foil of the current collector also reacted. The charge / discharge capacity of the battery using this negative electrode was a very small value. Table 1 shows the results.

【0031】ESCAによる分析より、実施例1,2,
3、そして比較例2はケイ素粒子が負極の表面に露出し
ておらず、炭素質材料で被覆されていることが確認でき
た。そして、実施例1は比較例1に比べ、初期容量及び
容量保存率が大きく向上した。さらに、集電体を炭素質
材料で被覆することにより(実施例2)、より容量保持
率が向上した。
According to the analysis by ESCA, Examples 1, 2 and
3 and Comparative Example 2 confirmed that the silicon particles were not exposed on the surface of the negative electrode and were covered with the carbonaceous material. In Example 1, the initial capacity and the capacity storage rate were greatly improved as compared with Comparative Example 1. Further, by coating the current collector with a carbonaceous material (Example 2), the capacity retention rate was further improved.

【0032】また、比較例1の電極を浸漬した電解液を
GC−MSで分析したところ、溶媒のジメチルカーボネ
ートと電解質のLiPF6とがケイ素表面で反応して生
成したジフルオロリン酸メチルが検出された。さらに、
浸漬した電極をESCAで分析したところ、構造は明ら
かではないが、ケイ素とフッ素を含む化合物が検出さ
れ、ケイ素粒子が電解液と直接反応することを確認でき
た。
When the electrolyte in which the electrode of Comparative Example 1 was immersed was analyzed by GC-MS, methyl difluorophosphate generated by the reaction of dimethyl carbonate as a solvent and LiPF 6 as an electrolyte on the silicon surface was detected. Was. further,
When the immersed electrode was analyzed by ESCA, the structure was not clear, but a compound containing silicon and fluorine was detected, and it was confirmed that the silicon particles reacted directly with the electrolytic solution.

【0033】また、原料に粒子径が0.3μmのケイ素
粉を用いた比較例2は、1μmのケイ素粉を用いた実施
例1に比べ、正極及び負極が短絡する割合が増加した。
さらに、ケイ素が炭素質材料で被覆されていない比較例
3では、溶媒と電解質のLiPF6との反応生成物が検
出され、初期容量も容量保持率も低下した。原料のケイ
素粉末の粒子径が小さいと電解液との接触面積が増加
し、電解液との反応が進行し易くなるだけでなく、セパ
レータを貫通し易いためと考えられる。
In Comparative Example 2 in which silicon powder having a particle diameter of 0.3 μm was used as a raw material, the ratio of short-circuiting between the positive electrode and the negative electrode was increased as compared with Example 1 in which silicon powder having a particle diameter of 1 μm was used.
Furthermore, in Comparative Example 3 in which silicon was not coated with the carbonaceous material, a reaction product of the solvent and the electrolyte LiPF 6 was detected, and both the initial capacity and the capacity retention were reduced. It is considered that when the particle diameter of the silicon powder as the raw material is small, the contact area with the electrolytic solution increases, so that not only the reaction with the electrolytic solution easily progresses but also the separator easily penetrates.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上、述べたように、本発明の非水系二
次電池は、負極が負極活物質のケイ素と炭素との焼結体
であって、ケイ素粒子が炭素質材料で被覆されているの
で、ケイ素と電解液との反応を抑制でき、電池の保存安
定性を向上させることができる。
As described above, in the non-aqueous secondary battery of the present invention, the negative electrode is a sintered body of silicon and carbon as the negative electrode active material, and the silicon particles are coated with the carbonaceous material. Therefore, the reaction between silicon and the electrolyte can be suppressed, and the storage stability of the battery can be improved.

【0036】また、本発明の非水系二次電池は、ケイ素
粒子と炭素質材料又は熱処理により炭素質材料になる有
機材料を含む塗膜を集電体上に形成し、非酸化性雰囲気
で焼結して調製された負極を用いるので、ケイ素粒子を
炭素質材料で容易に被覆することができる。
Further, the non-aqueous secondary battery of the present invention forms a coating film containing silicon particles and a carbonaceous material or an organic material which becomes a carbonaceous material by heat treatment on a current collector and fires the coating in a non-oxidizing atmosphere. Since the thus prepared negative electrode is used, the silicon particles can be easily coated with the carbonaceous material.

【0037】また、本発明の非水系二次電池は、集電体
を炭素質材料で被覆したので、過放電時における集電体
の溶出を抑制できるため、電池の保存安定性をさらに向
上させることができる。
Further, in the non-aqueous secondary battery of the present invention, since the current collector is coated with the carbonaceous material, elution of the current collector during overdischarge can be suppressed, and the storage stability of the battery is further improved. be able to.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年8月4日(2000.8.4)[Submission date] August 4, 2000 (200.8.4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】すなわち、本発明の非水系二次電池は、
チウムイオンを吸蔵・放出可能な活物質を含む、正極と
負極と、リチウムイオン導電性の電解液とを有する非水
系二次電池であって、負極が、導電性金属から成り炭素
質材料で被覆された集電体と、集電体上に形成された、
負極活物質のケイ素と炭素質材料との焼結体と、から成
り、焼結体中のケイ素粒子が炭素質材料で被覆されて成
ことを特徴とする。
Namely, the nonaqueous secondary battery of the present invention, Li
A positive electrode containing an active material capable of occluding and releasing titanium ions;
Non-aqueous containing negative electrode and lithium ion conductive electrolyte
A secondary battery, wherein the negative electrode is made of a conductive metal
Current collector coated with a porous material, and formed on the current collector,
A sintered body of silicon as a negative electrode active material and a carbonaceous material.
And the silicon particles in the sintered body are covered with a carbonaceous material.
Characterized in that that.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】上述のように、ケイ素粒子の露出した表面
で、ケイ素と電解液が直接反応し、ケイ素とフッ素を含
む化合物が生成し、さらに溶媒と電解質であるLiPF
6との反応が進行すると考えられる。そのため、電解液
と直接接触するケイ素粒子の面積が大きいほど反応が進
行する。したがって、炭素質材料でケイ素粒子の表面を
被覆することにより、ケイ素粒子表面における電解液と
の反応を抑制することができる。そのため、不可逆な反
応を抑制することができ、電池容量の低下を防止でき
る。また、集電体の表面を、炭素質材料で被覆して、集
電体と電解液との直接接触を抑制することにより、集電
体の過放電時における溶出を抑制することができる。
As described above, on the exposed surface of the silicon particles, the silicon and the electrolytic solution react directly to form a compound containing silicon and fluorine, and further, the solvent and the electrolyte LiPF
It is thought that the reaction with 6 proceeds. For this reason, the reaction proceeds as the area of the silicon particles in direct contact with the electrolytic solution increases. Therefore, by coating the surface of the silicon particles with the carbonaceous material, it is possible to suppress the reaction of the silicon particles with the electrolyte on the surface of the silicon particles. Therefore, an irreversible reaction can be suppressed, and a decrease in battery capacity can be prevented. In addition, the surface of the current collector is coated with a carbonaceous material to collect the current.
Current collection by suppressing direct contact between the conductor and electrolyte
Elution during overdischarge of the body can be suppressed.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】また、本発明の非水系二次電池は、上記負
極が、ケイ素粒子と、炭素質材料又は熱処理により炭素
質材料になる有機材料とを含む塗膜を集電体上に形成
し、塗膜と集電体とを、炭素質材料又は熱処理により炭
素質材料になる有機材料とを含む塗液に浸漬又は集電体
に該塗液を塗布し、乾燥し、非酸化雰囲気で焼結して成
る焼結体を負極として用いることができる。
[0009] The non-aqueous secondary battery of the present invention, the negative
The pole is made of silicon particles and carbonaceous material or carbon
Film on the current collector containing organic material to be a porous material
Then, the coating film and the current collector are
Immersion or current collector in a coating liquid containing an organic material to be a base material
The coating liquid is applied to the coating solution, dried, and sintered in a non-oxidizing atmosphere, and a sintered body can be used as the negative electrode.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】削除[Correction method] Deleted

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤木 隆一 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 (72)発明者 鈴木 淳 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 (72)発明者 平林 忠 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 Fターム(参考) 5H003 AA03 AA10 BB01 BB04 BC01 BC05 5H014 AA04 BB01 CC01 EE08 EE10 5H029 AJ04 AJ12 AK02 AK03 AL01 AL06 AM03 AM05 AM07 CJ02 CJ28 DJ07 EJ04 HJ12  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Ryuichi Akagi 1334 Minato, Wakayama, Wakayama Pref. Inventor Tada Hirabayashi 1334 Minato, Wakayama-shi, Wakayama Pref.F-term in Kao Corporation Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出可能な活物
質を含む、正極と負極と、リチウムイオン導電性の電解
液とを有する非水系二次電池であって、 負極が、導電性金属から成る集電体と、集電体上に形成
された、負極活物質のケイ素と炭素質材料との焼結体と
から成り、焼結体中のケイ素粒子が炭素質材料で被覆さ
れている非水系二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a lithium ion conductive electrolyte containing an active material capable of inserting and extracting lithium ions, wherein the negative electrode is made of a conductive metal. A non-aqueous system comprising a current collector and a sintered body of silicon and a carbonaceous material as a negative electrode active material formed on the current collector, wherein silicon particles in the sintered body are coated with a carbonaceous material. Rechargeable battery.
【請求項2】 ケイ素粒子と、炭素質材料若しくは熱処
理により炭素質材料になる有機材料とを含む塗膜を集電
体上に形成し、非酸化性雰囲気で焼結して成る負極を用
いた請求項1記載の非水系二次電池。
2. A negative electrode obtained by forming a coating film containing silicon particles and a carbonaceous material or an organic material which becomes a carbonaceous material by heat treatment on a current collector and sintering in a non-oxidizing atmosphere. The non-aqueous secondary battery according to claim 1.
【請求項3】 焼結体形成後の集電体が、炭素質材料で
さらに被覆された請求項1又は2に記載の非水系二次電
池。
3. The non-aqueous secondary battery according to claim 1, wherein the current collector after the formation of the sintered body is further coated with a carbonaceous material.
JP11341833A 1999-12-01 1999-12-01 Non-aqueous secondary battery Expired - Fee Related JP3124272B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11341833A JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11341833A JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP3124272B1 JP3124272B1 (en) 2001-01-15
JP2001160392A true JP2001160392A (en) 2001-06-12

Family

ID=18349113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11341833A Expired - Fee Related JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3124272B1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095306A (en) * 2002-08-30 2004-03-25 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2004127535A (en) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2005149786A (en) * 2003-11-12 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP2005166530A (en) * 2003-12-04 2005-06-23 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP2005174653A (en) * 2003-12-09 2005-06-30 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method thereof
JP2005340132A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
JP2007305569A (en) * 2006-05-09 2007-11-22 Samsung Sdi Co Ltd Negative electrode material containing metal nanocrystal composite, method of manufacturing the same, and anode and lithium battery containing the negative electrode active material
JP2008235247A (en) * 2007-02-21 2008-10-02 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JPWO2007004553A1 (en) * 2005-06-30 2009-01-29 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
WO2010074243A1 (en) 2008-12-26 2010-07-01 積水化学工業株式会社 Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
KR100973633B1 (en) 2002-11-26 2010-08-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative Electrode Material for Nonaqueous Electrolytic Secondary Battery and Process for Preparing the Same, and Lithium Ion Secondary Battery
US7803290B2 (en) 2001-11-20 2010-09-28 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body, and process for the production of said rechargeable lithium battery
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
JP2012533498A (en) * 2009-07-17 2012-12-27 エボニック デグサ ゲーエムベーハー Nanostructured silicon-carbon composites for battery electrodes
JP2013016347A (en) * 2011-07-04 2013-01-24 Nec Corp Secondary battery
WO2014007161A1 (en) * 2012-07-06 2014-01-09 東レ株式会社 Negative electrode material for lithium ion secondary batteries, composite negative electrode material for lithium ion secondary batteries, resin composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2016515993A (en) * 2013-03-13 2016-06-02 エネヴェート・コーポレーション Silicon particles for battery electrodes
US10103378B2 (en) 2010-01-18 2018-10-16 Enevate Corporation Methods of forming composite material films
JP2018166101A (en) * 2017-03-28 2018-10-25 エネヴェート・コーポレーション Method of forming carbon-silicon composite material on current collector
JP2019054010A (en) * 2010-01-18 2019-04-04 エネヴェート・コーポレーション Composite material for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
JP2020123465A (en) * 2019-01-30 2020-08-13 株式会社Gsユアサ Anode and manufacturing method of anode
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057162B1 (en) 2008-12-01 2011-08-16 삼성에스디아이 주식회사 Anode active material, anode and lithium secondary battery having same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803290B2 (en) 2001-11-20 2010-09-28 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body, and process for the production of said rechargeable lithium battery
US10038186B2 (en) 2002-05-08 2018-07-31 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
JP2004095306A (en) * 2002-08-30 2004-03-25 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2004127535A (en) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
KR100973633B1 (en) 2002-11-26 2010-08-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative Electrode Material for Nonaqueous Electrolytic Secondary Battery and Process for Preparing the Same, and Lithium Ion Secondary Battery
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2005149786A (en) * 2003-11-12 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP2005166530A (en) * 2003-12-04 2005-06-23 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP4497904B2 (en) * 2003-12-04 2010-07-07 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP2005174653A (en) * 2003-12-09 2005-06-30 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method thereof
JP2005340132A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
US8198126B2 (en) 2005-06-30 2012-06-12 Showa Denko K.K. Method for producing solid electrolytic capacitor
JPWO2007004553A1 (en) * 2005-06-30 2009-01-29 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
JP5099831B2 (en) * 2005-06-30 2012-12-19 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
JP2007305569A (en) * 2006-05-09 2007-11-22 Samsung Sdi Co Ltd Negative electrode material containing metal nanocrystal composite, method of manufacturing the same, and anode and lithium battery containing the negative electrode active material
JP2008235247A (en) * 2007-02-21 2008-10-02 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
WO2010074243A1 (en) 2008-12-26 2010-07-01 積水化学工業株式会社 Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
JP2012533498A (en) * 2009-07-17 2012-12-27 エボニック デグサ ゲーエムベーハー Nanostructured silicon-carbon composites for battery electrodes
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11728476B2 (en) 2010-01-18 2023-08-15 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11955623B2 (en) 2010-01-18 2024-04-09 Enevate Corporation Silicon particles for battery electrodes
JP7042759B2 (en) 2010-01-18 2022-03-28 エネヴェート・コーポレーション Composite material for electrochemical storage
US11183712B2 (en) 2010-01-18 2021-11-23 Enevate Corporation Electrolyte compositions for batteries
US10103378B2 (en) 2010-01-18 2018-10-16 Enevate Corporation Methods of forming composite material films
JP2022031371A (en) * 2010-01-18 2022-02-18 エネヴェート・コーポレーション Composite material for electrochemical storage
JP2019054010A (en) * 2010-01-18 2019-04-04 エネヴェート・コーポレーション Composite material for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US11196037B2 (en) 2010-01-18 2021-12-07 Enevate Corporation Silicon particles for battery electrodes
US10622620B2 (en) 2010-01-18 2020-04-14 Enevate Corporation Methods of forming composite material films
JP2013016347A (en) * 2011-07-04 2013-01-24 Nec Corp Secondary battery
JP2014123571A (en) * 2012-07-06 2014-07-03 Toray Ind Inc Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9991510B2 (en) 2012-07-06 2018-06-05 Toray Industries, Inc. Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014007161A1 (en) * 2012-07-06 2014-01-09 東レ株式会社 Negative electrode material for lithium ion secondary batteries, composite negative electrode material for lithium ion secondary batteries, resin composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5475934B1 (en) * 2012-07-06 2014-04-16 東レ株式会社 Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016515993A (en) * 2013-03-13 2016-06-02 エネヴェート・コーポレーション Silicon particles for battery electrodes
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
JP2018166101A (en) * 2017-03-28 2018-10-25 エネヴェート・コーポレーション Method of forming carbon-silicon composite material on current collector
US11309536B2 (en) 2017-12-07 2022-04-19 Enevate Corporation Silicon particles for battery electrodes
US11539041B2 (en) 2017-12-07 2022-12-27 Enevate Corporation Silicon particles for battery electrodes
US11777077B2 (en) 2017-12-07 2023-10-03 Enevate Corporation Silicon particles for battery electrodes
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
JP2020123465A (en) * 2019-01-30 2020-08-13 株式会社Gsユアサ Anode and manufacturing method of anode
JP7476478B2 (en) 2019-01-30 2024-05-01 株式会社Gsユアサ Anode, method for manufacturing anode, non-aqueous electrolyte storage element, and method for manufacturing non-aqueous electrolyte storage element
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Also Published As

Publication number Publication date
JP3124272B1 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
JP3124272B1 (en) Non-aqueous secondary battery
JP2948205B1 (en) Method for producing negative electrode for secondary battery
KR101513819B1 (en) Powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and negative electrode for capacitor using same, and lithium ion secondary battery and capacitor
US10074854B2 (en) Anode active material and all solid secondary battery
JPWO2006011290A1 (en) SiO powder for secondary battery and method for producing the same
KR101495451B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
CN108321438B (en) Full-graphite lithium-sulfur battery and preparation method thereof
KR101440207B1 (en) Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
CN110838575A (en) Cathode for improving rate capability of lithium ion energy storage device and application thereof
KR101509358B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, capacitor negative electrode, lithium ion secondary battery, and capacitor
KR101567181B1 (en) Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor
CN108808005B (en) Method for preparing lithium battery cathode additive and preparing cathode by calcining mixture
JP2000173596A (en) Nonaqueous secondary battery
JPH11339796A (en) Negative electrode material for nonaqueous secondary battery
JPH11135153A (en) Nonaqueous electrolyte secondary battery
JPH11339778A (en) Manufacture of secondary battery negative electrode
JP3510175B2 (en) Method for producing negative electrode for secondary battery
JP3218285B2 (en) Organic electrolyte battery
JP3268770B2 (en) Non-aqueous secondary battery
KR101693711B1 (en) Preparation method of lithium titanium oxide particles coated with carbon and nitrogen, electrode active material and lithium secondary batteries
JP2000251879A (en) Nonaqueous secondary battery
CN115036492B (en) Preparation method, product and application of lithium ion battery surface modified silicon anode material
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
US20230013240A1 (en) Rechargeable high energy density magnesium / magnesium sulfide battery
US20210020939A1 (en) Anode particles suitable for batteries

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees