JP2001147095A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2001147095A
JP2001147095A JP32995199A JP32995199A JP2001147095A JP 2001147095 A JP2001147095 A JP 2001147095A JP 32995199 A JP32995199 A JP 32995199A JP 32995199 A JP32995199 A JP 32995199A JP 2001147095 A JP2001147095 A JP 2001147095A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
cores
core
header tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32995199A
Other languages
Japanese (ja)
Inventor
Akihiko Takano
明彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP32995199A priority Critical patent/JP2001147095A/en
Publication of JP2001147095A publication Critical patent/JP2001147095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger, where a core is laid out sot that oil does not gather at the bottom of a header tank, in a heat exchange where a plurality of cores are arranged in parallel. SOLUTION: In a heat exchanger 1, which is equipped with a cores 2 and 3 constituted by alternately stacking heat exchange tubes and fins in plural stages and connecting the heat exchange tubes to a header tank where the sending and supply of a refrigerant is performed and in which the plural cores are arranged in parallel, so that the longitudinal direction of the tube is orthogonal to the direction of ventilation of air and which is equipped with a communication member 4 for circulating a refrigerant between each core and the next, the several cores are equipped with inflow ports 2d and 3d for a refrigerant above header tanks 2a and 3a, and are equipped with outflow ports 2e and 3e for a refrigerant under the header tanks 2a and 3a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チューブ、フィン
及びタンクからなるコアの冷媒流路を流通する冷媒と外
気の熱交換を行う熱交換器に関し、特に、複数のコアが
並列に配置されて一体となっている熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for exchanging heat between a refrigerant flowing through a refrigerant flow path of a core composed of a tube, fins and a tank and outside air, and more particularly to a heat exchanger in which a plurality of cores are arranged in parallel. It relates to an integrated heat exchanger.

【0002】[0002]

【従来の技術】従来において、車両等の冷凍サイクルに
用いられる熱交換器は、冷媒の熱交換を行う扁平状のチ
ューブと、断面波形状のフィンを備え、前記熱交換チュ
ーブ間にフィンを装着して交互に複数段積層し、前記熱
交換チューブの端部を一対のヘッダタンクに連通接続し
てなる積層型のコアを用いたものが知られている。
2. Description of the Related Art Conventionally, a heat exchanger used in a refrigeration cycle of a vehicle or the like has a flat tube for exchanging heat of refrigerant and fins having a corrugated cross section, and fins are mounted between the heat exchange tubes. And a plurality of layers are alternately laminated, and a laminated core formed by connecting the ends of the heat exchange tubes to a pair of header tanks is known.

【0003】すなわち、熱交換サイクルを流通する冷媒
は、一方のヘッダタンクの流入口からコアに流入し、熱
交換チューブ内部の冷媒流路を流通する。冷媒は、熱交
換チューブを通流する間に、冷媒の熱が前記チューブ及
びフィンに伝達されて外気と熱交換され、他方のヘッダ
タンクの流出口から流出して、再び熱交換サイクルを循
環する。
That is, the refrigerant flowing through the heat exchange cycle flows into the core from the inlet of one of the header tanks, and flows through the refrigerant flow path inside the heat exchange tube. While the refrigerant flows through the heat exchange tubes, the heat of the refrigerant is transmitted to the tubes and the fins and exchanges heat with the outside air, flows out of the outlet of the other header tank, and circulates again in the heat exchange cycle. .

【0004】この種の熱交換器に用いられる熱交換チュ
ーブは、アルミニウム合金を押し出し成形する等して作
製されている。熱交換チューブは、フィンと接触面積を
大きくするために、熱交換チューブ断面が扁平形状とな
るように形成される。
A heat exchange tube used in this type of heat exchanger is manufactured by extruding an aluminum alloy or the like. The heat exchange tube is formed such that the heat exchange tube has a flat cross section in order to increase the contact area with the fin.

【0005】コアの伝熱面積を大きくするために、特開
平4−52498号公報は、複数個の熱交換器を空気通
流方向において前後隣接状態に配置するとともに、各熱
交換器の冷媒回路を直列又は並列に接続した複式熱交換
器を開示している。この複式の熱交換器は、積層された
チューブ、フィン及びタンクからなる積層型のコアを並
列に配置し、スペーサ‐やボルト等の連結部材を用いて
連結した構成となっている。
In order to increase the heat transfer area of the core, Japanese Patent Application Laid-Open No. Hei 4-52498 discloses a method in which a plurality of heat exchangers are arranged in front and rear adjacent to each other in the air flow direction, and a refrigerant circuit of each heat exchanger is arranged. Are disclosed in series or in parallel. This double-type heat exchanger has a configuration in which laminated cores composed of laminated tubes, fins, and tanks are arranged in parallel, and connected by using connecting members such as spacers and bolts.

【0006】[0006]

【発明が解決しようとする課題】近年において、オゾン
層破壊等の問題に鑑み、フロン使用の廃止が求められて
いる。現状の社会情勢を考慮すると、オゾン層破壊につ
ながる冷媒の使用を停止し、それに代わるより良い冷媒
を冷凍サイクルに用いる必要が生じている。例えば、冷
媒として、オゾン層を破壊しない二酸化炭素(CO
等の超臨界流体を用いることが考えられる。
In recent years, in view of the problems such as destruction of the ozone layer, the elimination of the use of CFCs has been demanded. In view of the current social situation, it has become necessary to stop using refrigerants that lead to ozone layer depletion and use better alternatives for refrigeration cycles. For example, as a refrigerant, carbon dioxide (CO 2 ) that does not destroy the ozone layer
It is conceivable to use a supercritical fluid such as

【0007】しかし、超臨界流体を用いる場合、熱交換
過程に伴って体積(密度)変化を生じる気液混合状態の
媒体と比較して、三倍以上の耐圧性が要求される。
[0007] However, when a supercritical fluid is used, it is required to have a pressure resistance three times or more as compared with a medium in a gas-liquid mixed state in which a volume (density) changes in accordance with a heat exchange process.

【0008】地球環境を考慮して、前記CO等の超臨
界流体冷媒を用いる場合は、要求される耐圧性を確保す
るために、冷媒が通流するヘッダタンク及びチューブ等
の部材の肉厚を内圧に耐え得る程度に厚くすることが考
えられる。
When a supercritical fluid refrigerant such as the above-mentioned CO 2 is used in consideration of the global environment, the thickness of members such as a header tank and tubes through which the refrigerant flows must be ensured in order to ensure the required pressure resistance. May be made thick enough to withstand the internal pressure.

【0009】ヘッダタンク及びチューブ等の部材を肉厚
としすると、従来と同一体積を有する熱交換器と比較し
て、ヘッダタンク及びチューブ等の冷媒流路が狭小化
し、通流する冷媒流量が減少して熱交換性能が低下する
という問題を生じる。
When the thickness of the members such as the header tank and the tube is made thicker, the refrigerant flow path of the header tank and the tube is narrowed and the flow rate of the flowing refrigerant is reduced as compared with the heat exchanger having the same volume as the conventional one. As a result, there arises a problem that heat exchange performance is reduced.

【0010】一方、自動車用の熱交換サイクルを構成す
る熱交換器の場合は、搭載スペースが車体等によって一
定範囲の制限されるため、特に、外気の通風方向を考慮
して車体に搭載されるコンデンサにおいては、チューブ
及びフィンの長手方向の長さ等を変化させて、熱交換性
能を確保することは困難である。
On the other hand, in the case of a heat exchanger constituting a heat exchange cycle for an automobile, the mounting space is limited to a certain range by the vehicle body or the like. Therefore, the heat exchanger is mounted on the vehicle body particularly in consideration of the ventilation direction of the outside air. In a condenser, it is difficult to secure the heat exchange performance by changing the length of the tube and the fin in the longitudinal direction.

【0011】このため、前述したように複数のコアを並
列に配置して、熱交換性能を確保した熱交換器の構成が
考えられる。冷凍サイクルを構成する圧縮機内には、圧
縮機メカ部の潤滑や、圧縮機内のモーターの冷却のため
の潤滑用オイルが封入されているが、冷媒が圧縮機を通
過する際に冷媒にオイルが溶け込み、冷媒と共に圧縮機
から出て行ってしまう。
Therefore, as described above, a configuration of a heat exchanger in which a plurality of cores are arranged in parallel to ensure heat exchange performance can be considered. Lubricating oil for lubricating the mechanical parts of the compressor and cooling the motor in the compressor is sealed in the compressor that composes the refrigeration cycle.However, when the refrigerant passes through the compressor, oil is added to the refrigerant. It melts and goes out of the compressor together with the refrigerant.

【0012】この対策としてオイルセパレータをサイク
ル内に置いて、冷媒に溶けこんだオイルを分離して圧縮
機に戻したりするが、オイルセパレータもやはり100
%のオイル分離はできない。
As a countermeasure, an oil separator is placed in the cycle to separate the oil dissolved in the refrigerant and return it to the compressor.
% Oil separation is not possible.

【0013】冷媒として用いるCOの比重とオイルの
比重を比較すると、オイルの方が重いため、コアのレイ
アウトによっては少しずつオイルセパレータから漏れて
きたオイルがヘッダタンクの下部に溜まっていき、つい
には潤滑油不測による圧縮機の焼き付けが発生するとい
う問題を生じる。
When the specific gravity of CO 2 used as a refrigerant and the specific gravity of oil are compared, the oil leaking from the oil separator gradually accumulates in the lower portion of the header tank depending on the layout of the core because the oil is heavier. The problem arises that the compressor is burned due to unexpected lubricating oil.

【0014】そこで、本発明は、複数のコアを並列に配
置してなる熱交換器において、オイルがヘッダタンクの
下部に溜まらないようにコアをレイアウトし、熱交換性
能、安全性及び耐久性の向上が可能となる熱交換器を提
供することを目的とする。
Accordingly, the present invention provides a heat exchanger in which a plurality of cores are arranged in parallel so that the cores are laid out so that oil does not accumulate in the lower portion of the header tank, and heat exchange performance, safety and durability are improved. An object is to provide a heat exchanger that can be improved.

【0015】[0015]

【課題を解決するための手段】本願第1請求項に記載し
た発明は、熱交換チューブとフィンを交互に複数段積層
し、前記熱交換チューブを冷媒の送受給が行われるヘッ
ダタンクに連通接続してなるコアを備え、前記コアはチ
ューブの長手方向を空気の通気方向に対して直交するよ
うに、複数のコアを並列に配置し、各コア間に媒体を流
通する連通部材を備えた熱交換器において、前記各コア
は、冷媒の流入口をヘッダタンクの上部に備え、冷媒の
流出口をヘッダタンクの下部に備えた熱交換器である。
According to the first aspect of the present invention, the heat exchange tubes and the fins are alternately stacked in a plurality of stages, and the heat exchange tubes are connected to a header tank for sending and receiving the refrigerant. A plurality of cores are arranged in parallel so that the longitudinal direction of the tube is perpendicular to the direction of air flow, and a communication member that circulates a medium between the cores is provided. In the exchanger, each of the cores is a heat exchanger including a refrigerant inlet at an upper portion of a header tank and a refrigerant outlet at a lower portion of the header tank.

【0016】各コアの冷媒の流出口は、ヘッダタンクの
下部に備えられているため、オイルがヘッダタンクの下
部に沈殿した場合であっても、オイルはすぐに流出口か
ら流出して、ヘッダタンクの下部に溜まることはない。
Since the coolant outlet of each core is provided at the lower part of the header tank, even if the oil settles at the lower part of the header tank, the oil immediately flows out of the outlet and flows out of the header. It does not collect at the bottom of the tank.

【0017】本願第2請求項に記載した発明は、前記請
求項1記載の発明において、前記熱交換器は、コア間を
通流する冷媒の流れが空気の通風方向に対して対向流と
なるように前記各コアを配置した構成の熱交換器であ
る。
According to a second aspect of the present invention, in the first aspect of the invention, in the heat exchanger, the flow of the refrigerant flowing between the cores is a counterflow with respect to the direction of air flow. Thus, the heat exchanger has a configuration in which the cores are arranged as described above.

【0018】冷凍サイクルから冷媒が流入するコアを空
気の通風方向に対して後列に設置し、冷媒が再び冷凍サ
イクルに流出する他のコアを空気の通風方向に対して最
前列に設置すると、前記各コアを備えた熱交換器間を流
通する冷媒の流れは、空気の通風方向に対して対向流と
なる。
When the core into which the refrigerant flows from the refrigeration cycle is installed in the rear row with respect to the direction of air flow, and the other core from which the refrigerant flows out again into the refrigeration cycle is installed in the front row with respect to the air flow direction, The flow of the refrigerant flowing between the heat exchangers provided with the respective cores is a counterflow with respect to the air flow direction.

【0019】このように、空気の通風方向に対して、熱
交換器内を流れる冷媒の流れが対向流となるようにコア
を配置すると、冷凍サイクルから流入した高圧冷媒は、
前記後列に配置したコアを通流して、ある程度熱交換器
されて温度が低下する。この温度がある程度低下した冷
媒が、空気の通風方向に対して最前列となるコアに通流
されることとなる。したがって、この温度の低下した冷
媒は、空気が吹き付けられる最前列のコアに通流され
て、効率よく熱交換される。したがって、コア間を通流
する冷媒の流れが空気の通風方向に対して対向流となる
ように複数のコアを配置した熱交換器は、熱交換性能の
向上が可能となる。
As described above, when the core is arranged so that the flow of the refrigerant flowing in the heat exchanger is opposite to the flow direction of the air, the high-pressure refrigerant flowing from the refrigeration cycle becomes
After passing through the cores arranged in the rear row, the heat is exchanged to a certain extent to lower the temperature. The refrigerant whose temperature has decreased to some extent is passed through the core in the front row in the air flow direction. Therefore, the cooled refrigerant is passed through the core in the front row to which air is blown, and heat is efficiently exchanged. Therefore, a heat exchanger in which a plurality of cores are arranged so that the flow of the refrigerant flowing between the cores is opposed to the flow direction of the air can improve the heat exchange performance.

【0020】本願第3請求項に記載した発明は、前記請
求項1又は2いずれか記載の発明において、前記ヘッダ
タンクは、ヘッダタンク内部に冷媒流路を複数に区画す
る仕切り板を設け、前記仕切り板に区画された冷媒流路
の断面積は、各区画とも略同一である熱交換器である。
According to a third aspect of the present invention, in the invention of the first or second aspect, the header tank is provided with a partition plate for partitioning a refrigerant flow path into a plurality of sections inside the header tank. The cross-sectional area of the refrigerant flow path partitioned into the partition plate is a heat exchanger in which each partition is substantially the same.

【0021】このように、仕切り板によって、冷媒流路
が複数に区画され、区画された各冷媒流路の断面積が同
一であると、熱交換されやすい温度の高い冷媒は、チュ
ーブ間を速い流速で通流し、熱交換されるにしたがって
温度が低下し、外部空気と熱交換されにくくなった冷媒
は、ゆっくりチューブ間を通流し、熱交換される時間が
比較的長くなる。したがって、熱交換性能の向上を図る
ことができる。
As described above, when the refrigerant flow path is divided into a plurality by the partition plate, and the cross-sectional area of each of the divided refrigerant flow paths is the same, the high-temperature refrigerant which is likely to exchange heat quickly moves between the tubes. The refrigerant that flows at a flow rate and decreases in temperature as the heat is exchanged, and is less likely to be exchanged with the external air flows slowly between the tubes, and the heat exchange time is relatively long. Therefore, the heat exchange performance can be improved.

【0022】本願第4請求項に記載した発明は、前記請
求項1乃至3いずれか記載の発明において、前記熱交換
器に流通する冷媒は、二酸化炭素(CO)である熱交
換器である。
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the refrigerant flowing through the heat exchanger is carbon dioxide (CO 2 ). .

【0023】冷媒としてCOを用いると、COは、
フロンのようにオゾン層を破壊する原因とならないた
め、オゾン層の破壊防止につながる。
When CO 2 is used as a refrigerant, CO 2 becomes
It does not cause the destruction of the ozone layer as CFCs do, so it leads to prevention of destruction of the ozone layer.

【0024】[0024]

【発明の実施の形態】以下、本発明の具体例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は、熱交換器1の概略構成を示す模式
図である。 図1に示すように、本例の熱交換器1は、
2つの同型の積層型のコア2,3が並列に配置され、各
コア2,3間を冷媒が通流可能となるように連結部材4
で連結して一体の熱交換器1を構成している。
FIG. 1 is a schematic diagram showing a schematic configuration of the heat exchanger 1. As shown in FIG. 1, the heat exchanger 1 of the present embodiment
Two identical cores 2 and 3 of the same type are arranged in parallel, and the connecting member 4 is connected so that the refrigerant can flow between the cores 2 and 3.
To form an integrated heat exchanger 1.

【0026】本例にあっては、各コア2,3の一方の2
a,3aが仕切り板2c,3cによってそれぞれ2つの
流路室に区画され、他方のヘッダタンク2b,3bに仕
切り板がない。
In this example, one of the cores 2 and 3
a, 3a are divided into two flow passage chambers by the partition plates 2c, 3c, respectively, and the other header tanks 2b, 3b have no partition plate.

【0027】ヘッダタンク2a,3aの上部には冷媒入
口2d,3d、下部には冷媒出口2e,3eが設けられ
ている。
[0027] Refrigerant inlets 2d and 3d are provided in the upper part of the header tanks 2a and 3a, and refrigerant outlets 2e and 3e are provided in the lower part.

【0028】コア2の冷媒入口2dには入口部材5が、
コア3の冷媒出口3eには出口部材6が設けられ、コア
2の冷媒出口2eとコア3の冷媒入口3dとは連結部材
4で連結されている。
At the refrigerant inlet 2d of the core 2, an inlet member 5 is provided.
The refrigerant outlet 3e of the core 3 is provided with an outlet member 6, and the refrigerant outlet 2e of the core 2 and the refrigerant inlet 3d of the core 3 are connected by a connecting member 4.

【0029】入口部材5を通ってコア2の冷媒入口2d
から入った冷媒は、ヘッダタンク2a,2b間を1回往
復して出口部2eから出て、連結部材4を通ってコア3
の冷媒入口3dから入り、ヘッダタンク3a,3b間を
1回往復して冷媒出口3eから出口部材6を通って出る
構成となっている。
The coolant inlet 2d of the core 2 through the inlet member 5
The refrigerant that has entered from the outlet 3e reciprocates once between the header tanks 2a and 2b, exits the outlet 2e, passes through the connecting member 4, and passes through the core 3
, The refrigerant enters and exits through the inlet member 3d, goes back and forth once between the header tanks 3a and 3b, and exits through the outlet member 6 from the refrigerant outlet 3e.

【0030】図中の細い方の矢印は、熱交換器1内部を
通流する冷媒の通流方向を示す。本例によれば、各コア
の冷媒の流出口2e,3eはヘッダタンクの下部に備え
れられているので、冷媒に溶け込んだオイルがヘッダタ
ンクの下部に沈殿しても、すぐに流出口から流出し、ヘ
ッダタンクの下部に溜まることはない。
The thinner arrows in the figure indicate the flow direction of the refrigerant flowing inside the heat exchanger 1. According to this example, the outlets 2e and 3e of the refrigerant of each core are provided at the lower part of the header tank. Therefore, even if the oil dissolved in the refrigerant precipitates at the lower part of the header tank, the outlet immediately from the outlet. It does not escape and collect at the bottom of the header tank.

【0031】図中の太い方の矢印は、空気の通流方向を
示し、本例の場合、空気の通流方向に対して、熱交換器
1の冷媒入口側のコア2が後列、冷媒出口側のコア3が
前列となるように配置されている。
The thick arrow in the drawing indicates the direction of air flow. In the case of this example, the core 2 on the refrigerant inlet side of the heat exchanger 1 is located in the rear row with respect to the air flow direction. The cores 3 on the side are arranged in the front row.

【0032】すなわち、熱交換器1を流れる冷媒の流れ
は、空気通風方向に対して対向流となっている。
That is, the flow of the refrigerant flowing through the heat exchanger 1 is a counterflow with respect to the air flow direction.

【0033】したがって、高圧冷媒は、まず後列のコア
2を通流して熱交換されてある程度温度が低下し、その
後、空気が吹き付けられる前列のコア3に通流されて効
率良く熱交換される。また、後列のコア2を通流する冷
媒は、冷媒温度が高いため、前列のコア3間を通風して
暖まった空気によっても十分冷却されて効率よく熱交換
される。したがって、冷媒の流れが空気の通風方向に対
して対向流となるように複数のコアを並列に配置する
と、熱交換器の熱交換性能が向上する。
Therefore, the high-pressure refrigerant first passes through the cores 2 in the rear row and exchanges heat to lower the temperature to some extent. Then, the high-pressure refrigerant passes through the cores 3 in the front row to which air is blown, and exchanges heat efficiently. Further, since the refrigerant flowing through the cores 2 in the rear row has a high refrigerant temperature, it is sufficiently cooled even by the air that has passed through the cores 3 in the front row and warmed up, so that heat is efficiently exchanged. Therefore, when a plurality of cores are arranged in parallel so that the flow of the refrigerant is opposite to the direction of air flow, the heat exchange performance of the heat exchanger is improved.

【0034】また、仕切り板2c,3cによって上下に
区画されたコア2,3の冷媒流路の断面積は、上下の区
画とも略同一となるように構成されている。
The cross-sectional area of the coolant passages of the cores 2 and 3 vertically divided by the partition plates 2c and 3c is configured to be substantially the same as the upper and lower partitions.

【0035】すなわち、仕切り板2c,3cは、上下の
区画がほぼ同じ数のチューブを含むようなヘッダタンク
2a,3aのほぼ中央部に設けられる。
That is, the partition plates 2c, 3c are provided substantially at the center of the header tanks 2a, 3a such that the upper and lower sections contain substantially the same number of tubes.

【0036】CO等の超臨界流体を冷媒として用いる
と、コア2に流入する冷媒は,温度が高く、コア2から
流出する段階の冷媒と比較して、その体積は大きくな
る。したがって、低温かつ体積の小さい冷媒が略同一の
冷媒流路を通流した場合と比較して、高温かつ体積の大
きい冷媒の流速は、速くなる。一方、コア3を流通する
冷媒は、コア2を流通して熱交換されているため、コア
2を通流する冷媒と比較して低温かつ体積が小さくな
り、流速は、コア2を通流する冷媒の流速と比較して遅
くなる。
When a supercritical fluid such as CO 2 is used as the refrigerant, the refrigerant flowing into the core 2 has a higher temperature and has a larger volume than the refrigerant flowing out of the core 2. Therefore, the flow rate of the high-temperature and large-volume refrigerant is higher than that in the case where the low-temperature and small-volume refrigerant flows through the substantially same refrigerant flow path. On the other hand, since the refrigerant flowing through the core 3 flows through the core 2 and undergoes heat exchange, the refrigerant has a lower temperature and a smaller volume than the refrigerant flowing through the core 2, and the flow velocity of the refrigerant flows through the core 2. It is slower than the flow rate of the refrigerant.

【0037】したがって、仕切り板2c,3cによっ
て,断面積が略同一となるように冷媒流路が区画されて
いると、熱交換されやすい温度の高い冷媒は、チューブ
間を速い速度で通流し、熱交換されるに従って温度が低
下し、外部空気と熱交換されにくくなった冷媒は、ゆっ
くりチューブ間を通流し、熱交換される時間が比較的長
くなる。このように、区画された冷媒流路の断面積が略
同一であると、コアを通流する冷媒の体積変化、通流速
度等を考量して、熱交換性能の向上を図ることが可能と
なる。
Therefore, if the refrigerant passages are partitioned by the partition plates 2c, 3c so that the cross-sectional areas are substantially the same, the high-temperature refrigerant that is easily exchanged heat flows between the tubes at a high speed. The refrigerant whose temperature decreases as the heat is exchanged and which is not easily exchanged with the external air flows slowly between the tubes, and the heat exchange time becomes relatively long. As described above, when the sectional areas of the divided refrigerant flow paths are substantially the same, it is possible to improve the heat exchange performance by considering the volume change of the refrigerant flowing through the core, the flow velocity, and the like. Become.

【0038】本例においては、各コアの冷媒流路が仕切
り板によって上下2つに区画される構成を示したが、仕
切り板の数と配置を変え、3つ以上に区画することも可
能である。
In the present embodiment, the structure in which the refrigerant flow path of each core is divided into two upper and lower parts by the partition plate is shown. However, the number and arrangement of the partition plates may be changed to three or more. is there.

【0039】本例では、冷媒としてCOを用いている
ため、オゾン層の破壊防止につながる。また、本例で
は、熱交換器は、2つのコアから構成されているが、3
つ以上のコアを同様に連結して構成してもよい。
In this embodiment, since CO 2 is used as the refrigerant, the ozone layer is prevented from being destroyed. In this example, the heat exchanger is composed of two cores,
One or more cores may be similarly connected and configured.

【0040】次に本発明の熱交換器1の他の具体例につ
いて説明する。
Next, another specific example of the heat exchanger 1 of the present invention will be described.

【0041】図2は、前記熱交換器1の他の具体例を示
す模式図であり、前記図1と同一部材には、同一符号を
用いて記載している。
FIG. 2 is a schematic diagram showing another specific example of the heat exchanger 1, and the same members as those in FIG. 1 are denoted by the same reference numerals.

【0042】本例においては、ヘッダタンクに仕切り板
を配置せず、各コアで冷媒流路は区画されていない。
In this embodiment, no partition plate is arranged in the header tank, and the refrigerant flow path is not defined by each core.

【0043】前記具体例においては、冷媒入口とで冷媒
出口が同一のヘッダタンクに設けられていたが、本例に
おいては、冷媒入口2d,3dを一方のヘッダタンク2
b,3aに設け、冷媒出口2e,3eを他方のヘッダタ
ンク2a,3bの下部に設けている。
In the specific example, the refrigerant outlet and the refrigerant outlet are provided in the same header tank. In this embodiment, however, the refrigerant inlets 2d and 3d are connected to one header tank 2d.
b, 3a, and refrigerant outlets 2e, 3e are provided below the other header tanks 2a, 3b.

【0044】コア2の冷媒入口2dには、入口部材5を
設け、コア3の冷媒出口3eには、出口部材6を設けて
いる。コア2の冷媒出口2eとコア3の冷媒入口3d
は、連結部材4で連結されている。
An inlet member 5 is provided at a refrigerant inlet 2d of the core 2, and an outlet member 6 is provided at a refrigerant outlet 3e of the core 3. Refrigerant outlet 2e of core 2 and refrigerant inlet 3d of core 3
Are connected by a connecting member 4.

【0045】入口部材5を通って冷媒入口2dからコア
2に流入した冷媒は、ヘッダタンク2bから各チューブ
に分配されて他方のヘッダタンク2aへと移動する。そ
して、冷媒2aから流出した冷媒は、連結部材4を通っ
て、冷媒入口3dからコア3に流入し、ヘッダタンク3
aから各チューブに分配されてヘッダタンク3bへと移
動し、冷媒出口3eから出口部材6を通って流出し、冷
凍サイクルを循環する構成となっている。本例の熱交換
器1は、仕切り板を設けていないため、部品点数を減ら
すことができる。
The refrigerant flowing into the core 2 from the refrigerant inlet 2d through the inlet member 5 is distributed from the header tank 2b to each tube and moves to the other header tank 2a. The refrigerant flowing out of the refrigerant 2a passes through the connecting member 4, flows into the core 3 from the refrigerant inlet 3d, and flows into the header tank 3d.
From a, it is distributed to each tube, moves to the header tank 3b, flows out from the refrigerant outlet 3e through the outlet member 6, and circulates in the refrigeration cycle. Since the heat exchanger 1 of the present example does not include a partition plate, the number of parts can be reduced.

【0046】なお、図3は、熱交換器1を構成するコア
2又は3の正面図である。
FIG. 3 is a front view of the core 2 or 3 constituting the heat exchanger 1.

【0047】図3に示すように,本例のコアは2は、チ
ューブ7及びフィン8を交互に多数積層し、これらの積
層されたチューブ7の各両端を一対のヘッダタンク2
a,2bに連通接続し、積層したチューブ7及びフィン
8の上下にサイドプレート10,10を装着した構成の
積層型のコア2である。
As shown in FIG. 3, the core 2 of this embodiment has a large number of tubes 7 and fins 8 alternately stacked, and each end of the stacked tubes 7 is connected to a pair of header tanks 2.
This is a laminated core 2 having a configuration in which side plates 10 and 10 are mounted above and below a laminated tube 7 and fins 8, which are connected to a and 2 b, respectively.

【0048】ヘッダタンク2a,2bは、円筒状の筒状
部材の両端開口を図示を省略した閉塞部材で閉塞し、筒
状部材の周壁にチューブ7を挿入する複数のチューブ挿
入孔が形成されている。
The header tanks 2a and 2b have both ends of a cylindrical tubular member closed by closing members (not shown), and a plurality of tube insertion holes for inserting tubes 7 are formed in the peripheral wall of the cylindrical member. I have.

【0049】[0049]

【発明の効果】以上説明したように、本発明は、熱交換
チューブとフィンを交互に複数段積層し、前記熱交換チ
ューブを冷媒の送受給が行われるヘッダタンクに連通接
続してなるコアを備え、前記コアはチューブの長手方向
を空気の通気方向に対して直交するように、複数のコア
を並列に配置し、各コア間に媒体を流通する連通部材を
備えた熱交換器において、前記各コアは、冷媒の流入口
をヘッダタンクの上部に備え、冷媒の流出口をヘッダタ
ンクの下部に備えた熱交換器である。
As described above, according to the present invention, a core formed by alternately stacking a plurality of heat exchange tubes and fins and connecting the heat exchange tubes to a header tank through which a refrigerant is sent and received is provided. In the heat exchanger, a plurality of cores are arranged in parallel so that the longitudinal direction of the tube is perpendicular to the direction of air flow, and a communication member that circulates a medium between the cores is provided. Each core is a heat exchanger having an inlet for the refrigerant at an upper portion of the header tank and an outlet for the refrigerant at a lower portion of the header tank.

【0050】各コアの冷媒の流出口は、ヘッダタンクの
下部に備えられているため、オイルがヘッダタンクの下
部に沈殿した場合であっても、オイルはすぐに流出口か
ら流出して、ヘッダタンクの下部に溜まることはない。
したがって、圧縮器には十分量のオイルが供給され、潤
滑油不足による焼き付け等生じることなく、熱交換サイ
クルの安全性・耐久性が確保される。
Since the outlet of the refrigerant of each core is provided at the lower part of the header tank, even if the oil settles at the lower part of the header tank, the oil immediately flows out of the outlet and flows out of the header. It does not collect at the bottom of the tank.
Therefore, a sufficient amount of oil is supplied to the compressor, and the safety and durability of the heat exchange cycle are ensured without burning due to lack of lubricating oil.

【0051】このように、空気の通風方向に対して、熱
交換器内を流れる冷媒の流れが対向流となるようにコア
を配置すると、冷凍サイクルから流入した高圧冷媒は、
前記後列に配置したコアを通流して、ある程度熱交換器
されて温度が低下し、この温度がある程度低下した冷媒
が空気の通風方向に対して最前列となるコアに通流され
て、効率よく熱交換される。したがって、コア間を通流
する冷媒の流れが空気の通風方向に対して対向流となる
ように複数のコアを配置した熱交換器は、熱交換性能の
向上を図ることが可能となる。
As described above, when the core is arranged so that the flow of the refrigerant flowing in the heat exchanger is opposite to the flow direction of the air, the high-pressure refrigerant flowing from the refrigeration cycle becomes
Through the cores arranged in the rear row, the temperature is reduced to a certain extent by the heat exchanger, and the refrigerant whose temperature has decreased to a certain extent is passed through the core in the front row with respect to the ventilation direction of the air, so that the efficiency is improved. Heat exchanged. Therefore, the heat exchanger in which the plurality of cores are arranged so that the flow of the refrigerant flowing between the cores is opposite to the flow direction of the air can improve the heat exchange performance.

【0052】また、本発明の熱交換器は、ヘッダタンク
内部に冷媒流路を複数に区画する仕切り板を設け、前記
仕切り板に区画された冷媒流路の断面積は、各区画とも
略同一となるように構成している。
In the heat exchanger of the present invention, a partition plate for partitioning the refrigerant flow path into a plurality of sections is provided inside the header tank, and the cross-sectional area of the refrigerant flow path partitioned by the partition plate is substantially the same for each section. It is configured so that

【0053】このように、仕切り板によって、冷媒流路
が複数に区画され、区画された各冷媒流路の断面積が同
一であると、熱交換されやすい温度の高い冷媒は、チュ
ーブ間を速い流速で通流し、熱交換されるにしたがって
温度が低下し、外部空気と熱交換されにくくなった冷媒
は、ゆっくりチューブ間を通流し、熱交換される時間が
比較的長くなる。したがって、熱交換性能の向上を図る
ことができる。
As described above, when the refrigerant flow path is divided into a plurality by the partition plate, and the cross-sectional area of each of the divided refrigerant flow paths is the same, the high-temperature refrigerant which is likely to exchange heat quickly moves between the tubes. The refrigerant that flows at a flow rate and decreases in temperature as the heat is exchanged, and is less likely to be exchanged with the external air flows slowly between the tubes, and the heat exchange time is relatively long. Therefore, the heat exchange performance can be improved.

【0054】また、熱交換器を流通する冷媒として、二
酸化炭素(CO)を用いると、COは、フロンのよ
うにオゾン層を破壊する原因とならないため、オゾン層
の破壊防止につながる。
When carbon dioxide (CO 2 ) is used as the refrigerant flowing through the heat exchanger, CO 2 does not cause the destruction of the ozone layer unlike Freon, and therefore, prevents the ozone layer from being destroyed.

【0055】[0055]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体例に係り、熱交換器の概略構成を
示す模式図である。
FIG. 1 is a schematic diagram showing a schematic configuration of a heat exchanger according to a specific example of the present invention.

【図2】本発明の具体例に係り、熱交換器の概略構成を
示す模式図である。
FIG. 2 is a schematic diagram showing a schematic configuration of a heat exchanger according to a specific example of the present invention.

【図3】熱交換器のコアを示す正面図である。FIG. 3 is a front view showing a core of the heat exchanger.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 コア 2a ヘッダタンク 2b ヘッダタンク 2c 仕切り板 2d 冷媒入口 2e 冷媒入口 3 コア 3a ヘッダタンク 3b ヘッダタンク 3c 仕切り板 3d 冷媒入口 3e 冷媒出口 4 連結部材 5 入口部材 6 出口部材 7 チューブ 8 フィン 10 サイドプレート DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Core 2a Header tank 2b Header tank 2c Partition plate 2d Refrigerant inlet 2e Refrigerant inlet 3 Core 3a Header tank 3b Header tank 3c Partition plate 3d Refrigerant inlet 3e Refrigerant outlet 4 Connecting member 5 Inlet member 6 Outlet member 7 Tube 8 Fin 10 side plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱交換チューブとフィンを交互に複数段
積層し、前記熱交換チューブを冷媒の送受給が行われる
ヘッダタンクに連通接続してなるコアを備え、チューブ
の長手方向を空気の通気方向に対して直交するように複
数の前記コアを並列に配置し、各コア間に媒体を流通す
る連通部材を備えた熱交換器において、 前記各コアは、冷媒の流入口をヘッダタンクの上部に備
え、冷媒の流出口をヘッダタンクの下部に備えたことを
特徴とする熱交換器。
1. A core comprising a plurality of heat exchange tubes and fins alternately stacked in a plurality of layers, and the heat exchange tubes being connected to a header tank through which a refrigerant is sent and received. In a heat exchanger having a plurality of cores arranged in parallel so as to be orthogonal to a direction and a communication member for circulating a medium between the cores, each core has an inlet for a refrigerant at an upper part of a header tank. Wherein the refrigerant outlet is provided at a lower portion of the header tank.
【請求項2】 前記熱交換器は、コア間を流通する冷媒
の流れが空気の通風方向に対して対向流となるように前
記各コアを配置したことを特徴とする前記請求項1記載
の熱交換器。
2. The heat exchanger according to claim 1, wherein each of the cores is arranged such that a flow of the refrigerant flowing between the cores is a counterflow with respect to a direction of air flow. Heat exchanger.
【請求項3】 前記ヘッダタンクは、ヘッダタンク内部
に冷媒流路を複数に区画する仕切り板を設け、前記仕切
り板に区画された冷媒流路の断面積は、各区画とも略同
一であることを特徴とする請求項1又は2いずれか記載
の熱交換器。
3. The header tank is provided with a partition plate for partitioning a plurality of refrigerant flow paths inside the header tank, and a sectional area of the refrigerant flow path partitioned by the partition plate is substantially the same for each partition. The heat exchanger according to claim 1, wherein:
【請求項4】 前記熱交換器に流通する冷媒は、二酸化
炭素(CO)であることを特徴とした前記請求項1乃
至3いずれか記載の熱交換器。
4. The heat exchanger according to claim 1, wherein the refrigerant flowing through the heat exchanger is carbon dioxide (CO 2 ).
JP32995199A 1999-11-19 1999-11-19 Heat exchanger Pending JP2001147095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32995199A JP2001147095A (en) 1999-11-19 1999-11-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32995199A JP2001147095A (en) 1999-11-19 1999-11-19 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2001147095A true JP2001147095A (en) 2001-05-29

Family

ID=18227097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32995199A Pending JP2001147095A (en) 1999-11-19 1999-11-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2001147095A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071291A (en) * 2000-08-28 2002-03-08 Japan Climate Systems Corp Heat exchanger
JP2005030741A (en) * 2003-07-11 2005-02-03 Denso Corp Heat exchanger
JP2005207716A (en) * 2003-04-21 2005-08-04 Denso Corp Refrigerant evaporator
JP2006017339A (en) * 2004-06-30 2006-01-19 Denso Corp Refrigeration cycle
JP2016008807A (en) * 2014-06-26 2016-01-18 株式会社ケーヒン・サーマル・テクノロジー Heat exchanging device
JP2017505194A (en) * 2014-02-07 2017-02-16 ゾール サーキュレイション インコーポレイテッド Heat exchange system for patient temperature control with multiple coolant chambers for multiple heat exchange modes
JP2018136105A (en) * 2017-02-23 2018-08-30 三菱電機株式会社 Heat exchange unit and dehumidifier
CN110260564A (en) * 2018-03-12 2019-09-20 郑州宇通客车股份有限公司 A kind of vehicle and air conditioning condenser for vehicle assembly
US10500088B2 (en) 2014-02-14 2019-12-10 Zoll Circulation, Inc. Patient heat exchange system with two and only two fluid loops
US10537465B2 (en) 2015-03-31 2020-01-21 Zoll Circulation, Inc. Cold plate design in heat exchanger for intravascular temperature management catheter and/or heat exchange pad
WO2020138666A1 (en) * 2018-12-28 2020-07-02 삼성전자주식회사 Heat exchanger
US10792185B2 (en) 2014-02-14 2020-10-06 Zoll Circulation, Inc. Fluid cassette with polymeric membranes and integral inlet and outlet tubes for patient heat exchange system
US11033424B2 (en) 2014-02-14 2021-06-15 Zoll Circulation, Inc. Fluid cassette with tensioned polymeric membranes for patient heat exchange system
US11185440B2 (en) 2017-02-02 2021-11-30 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11571332B2 (en) 2012-09-28 2023-02-07 Zoll Circulation, Inc. Intravascular heat exchange catheter and system with RFID coupling
US11951035B2 (en) 2017-02-02 2024-04-09 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US12000657B2 (en) 2018-12-28 2024-06-04 Samsung Electronics Co., Ltd. Heat exchanger

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071291A (en) * 2000-08-28 2002-03-08 Japan Climate Systems Corp Heat exchanger
JP4540815B2 (en) * 2000-08-28 2010-09-08 株式会社日本クライメイトシステムズ Heat exchanger
JP2005207716A (en) * 2003-04-21 2005-08-04 Denso Corp Refrigerant evaporator
US7448436B2 (en) 2003-04-21 2008-11-11 Denso Corporation Heat exchanger
JP2005030741A (en) * 2003-07-11 2005-02-03 Denso Corp Heat exchanger
JP2006017339A (en) * 2004-06-30 2006-01-19 Denso Corp Refrigeration cycle
US11571332B2 (en) 2012-09-28 2023-02-07 Zoll Circulation, Inc. Intravascular heat exchange catheter and system with RFID coupling
JP2017505194A (en) * 2014-02-07 2017-02-16 ゾール サーキュレイション インコーポレイテッド Heat exchange system for patient temperature control with multiple coolant chambers for multiple heat exchange modes
US10828189B2 (en) 2014-02-07 2020-11-10 Zoll Circulation Inc. Heat exchange system for patient temperature control with multiple coolant chambers for multiple heat exchange modalities
US10500088B2 (en) 2014-02-14 2019-12-10 Zoll Circulation, Inc. Patient heat exchange system with two and only two fluid loops
US10792185B2 (en) 2014-02-14 2020-10-06 Zoll Circulation, Inc. Fluid cassette with polymeric membranes and integral inlet and outlet tubes for patient heat exchange system
US11033424B2 (en) 2014-02-14 2021-06-15 Zoll Circulation, Inc. Fluid cassette with tensioned polymeric membranes for patient heat exchange system
JP2016008807A (en) * 2014-06-26 2016-01-18 株式会社ケーヒン・サーマル・テクノロジー Heat exchanging device
US10537465B2 (en) 2015-03-31 2020-01-21 Zoll Circulation, Inc. Cold plate design in heat exchanger for intravascular temperature management catheter and/or heat exchange pad
US11992434B2 (en) 2015-03-31 2024-05-28 Zoll Circulation, Inc. Cold plate design in heat exchanger for intravascular temperature management catheter and/or heat exchange pad
US11185440B2 (en) 2017-02-02 2021-11-30 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11883323B2 (en) 2017-02-02 2024-01-30 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11951035B2 (en) 2017-02-02 2024-04-09 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
JP2018136105A (en) * 2017-02-23 2018-08-30 三菱電機株式会社 Heat exchange unit and dehumidifier
CN110260564A (en) * 2018-03-12 2019-09-20 郑州宇通客车股份有限公司 A kind of vehicle and air conditioning condenser for vehicle assembly
WO2020138666A1 (en) * 2018-12-28 2020-07-02 삼성전자주식회사 Heat exchanger
US12000657B2 (en) 2018-12-28 2024-06-04 Samsung Electronics Co., Ltd. Heat exchanger

Similar Documents

Publication Publication Date Title
JP4078766B2 (en) Heat exchanger
JP2001147095A (en) Heat exchanger
JP2008180486A (en) Heat exchanger
US7367388B2 (en) Evaporator for carbon dioxide air-conditioner
JP2007506928A (en) Multi-stage heat exchange device and method for manufacturing such a device
JP2004003810A (en) Heat exchanger
JP2000346568A (en) Heat exchanger
JP2010175241A (en) Heat exchanger for two fluids, in particular, storage evaporator for air conditioning device
JP4166591B2 (en) Heat exchanger
JP2007271197A (en) Absorption type refrigerating device
JP2007232287A (en) Heat exchanger and integral type heat exchanger
WO2016170751A1 (en) Cold storage heat exchanger
US20140374072A1 (en) Kit for a heat exchanger, a heat exchanger core, and heat exchanger
JP2014055736A (en) Heat exchanger
JP5552309B2 (en) Evaporator with cool storage function
JP2004347160A (en) Heat exchanger
KR20130065173A (en) Heat exchanger for vehicle
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2010175167A (en) Cold storage heat exchanger
KR101170610B1 (en) A Cold storage heat exchanger
KR20070102172A (en) Heat exchanger having condenser and oil cooler installed therein
JP2001215096A (en) Heat exchanger
KR101437055B1 (en) A heat exchanger equipped with cold reserving part
KR102173343B1 (en) Cold reserving heat exchanger
JP2009074739A (en) Heat exchanging device for vehicle