JP2001136721A - Axially-spaced permanent magnet synchronous machine - Google Patents

Axially-spaced permanent magnet synchronous machine

Info

Publication number
JP2001136721A
JP2001136721A JP2000210006A JP2000210006A JP2001136721A JP 2001136721 A JP2001136721 A JP 2001136721A JP 2000210006 A JP2000210006 A JP 2000210006A JP 2000210006 A JP2000210006 A JP 2000210006A JP 2001136721 A JP2001136721 A JP 2001136721A
Authority
JP
Japan
Prior art keywords
field
permanent magnet
synchronous machine
coils
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000210006A
Other languages
Japanese (ja)
Inventor
Yasumi Kawabata
康己 川端
Tetsuya Miura
徹也 三浦
Ryuji Fuji
隆地 藤
Masaru Hirako
勝 平子
Koji Suwa
浩二 諏訪
Kazuhiro Goto
一裕 後藤
Shigetaka Nagamatsu
茂隆 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000210006A priority Critical patent/JP2001136721A/en
Publication of JP2001136721A publication Critical patent/JP2001136721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an axially-spaced permanent magnet synchronous machine which can achieve both high rotational speed and a high efficiency. SOLUTION: Each of rotors 2, 3 comprises a plurality of sector-form coils 11, arranged into a shape of disc and iron cores 12 for each coil 11. A moving member 4 comprises a plurality of sector-form permanent magnets 22 and a plurality of sector-formed iron cores 23. The permanent magnets 22 and the iron cores 23 are arranged alternately into a disc shape. The permanent magnets 22 facing opposite the stators 2, 3 are magnetized alternately in S poles and N poles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円板状の可動子と
固定子を対向配置した軸方向間隙型永久磁石同期機に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial gap type permanent magnet synchronous machine in which a disk-shaped mover and a stator are arranged to face each other.

【0002】[0002]

【従来の技術】この種の同期機は、円板状の可動子と固
定子を対向配置したものであって、軸方向の長さが短い
という特徴を有しており、例えば特開平10−2717
84号公報に記載のものがある。
2. Description of the Related Art A synchronous machine of this type has a disk-shaped movable element and a stator arranged opposite to each other, and has a feature that its axial length is short. 2717
No. 84 is disclosed.

【0003】上記公報の同期機は、図11に示す様に円
板状の一対の固定子101間に円板状の回転子102を
配置し、回転子102の中心に軸(図示せず)を固定し
て構成される。各固定子101は、鉄心103と、鉄心
103によって支持される扇形の複数のコイル104と
を備えている。回転子102は、非磁性体の回転枠10
5と、回転枠105によって支持される扇形の複数の永
久磁石106s,106nとを備えている。各コイル1
04の磁界中において各永久磁石106s,106nに
作用する力によって、回転子102が回転する。
In the synchronous machine disclosed in the above publication, as shown in FIG. 11, a disk-shaped rotor 102 is disposed between a pair of disk-shaped stators 101, and a shaft (not shown) is provided at the center of the rotor 102. Is fixed. Each stator 101 includes an iron core 103 and a plurality of fan-shaped coils 104 supported by the iron core 103. The rotor 102 is a non-magnetic rotating frame 10.
5 and a plurality of sector-shaped permanent magnets 106 s and 106 n supported by the rotating frame 105. Each coil 1
The rotor 102 is rotated by the force acting on each of the permanent magnets 106s and 106n in the magnetic field 04.

【0004】また、上記公報には、図12に示す様な同
期機も開示されている。この同期機においては、図11
に示す回転子102の各永久磁石106sの代わりに、
扇形の複数の鉄心108を採用している。この場合、各
コイル104の磁界中において各永久磁石106nに作
用する力だけでなく、磁界中において回転子102の各
鉄心108に作用する吸引力(各鉄心108のリラクタ
ンスに起因する吸引力)によっても、回転子102が回
転する。
The above publication also discloses a synchronous machine as shown in FIG. In this synchronous machine, FIG.
Instead of each permanent magnet 106s of the rotor 102 shown in FIG.
A plurality of fan-shaped iron cores 108 are employed. In this case, not only the force acting on each permanent magnet 106n in the magnetic field of each coil 104, but also the attractive force acting on each iron core 108 of the rotor 102 (the attractive force due to the reluctance of each iron core 108) in the magnetic field. Also, the rotor 102 rotates.

【0005】[0005]

【発明が解決しようとする課題】ところで、図11に示
す従来の同期機においては、回転子102に多くの各永
久磁石106s,106nを配列している。この様な構
成においては、回転子102の回転数の上昇に伴って各
コイル104の誘導電流が直ちに増大するので、回転子
102の回転が上昇したときには各コイル104に駆動
電流を流し難くなる。このため、回転子102を高速回
転させることができなかった。
By the way, in the conventional synchronous machine shown in FIG. 11, many permanent magnets 106s and 106n are arranged on the rotor 102. In such a configuration, the induced current of each coil 104 immediately increases with an increase in the rotation speed of the rotor 102, so that it becomes difficult to supply a drive current to each coil 104 when the rotation of the rotor 102 increases. For this reason, the rotor 102 could not be rotated at high speed.

【0006】一方、図12に示す従来の同期機において
は、回転子102の各永久磁石106nと各鉄心108
が交互に配置され、各永久磁石106nの数が少ないた
め、回転トルクが小さくなるものの、回転子102の回
転数の上昇に対して各コイル104の誘導電流が緩やか
に増大する。従って、各コイル104に駆動電流が流れ
易く、回転子102を高速回転させることができる。
On the other hand, in the conventional synchronous machine shown in FIG. 12, each permanent magnet 106n of the rotor 102 and each iron core 108
Are alternately arranged, and the number of the permanent magnets 106n is small, so that the rotational torque is reduced, but the induced current of each coil 104 increases gradually with an increase in the rotational speed of the rotor 102. Therefore, a drive current easily flows through each coil 104, and the rotor 102 can be rotated at a high speed.

【0007】しかしながら、回転子102の一端面にお
いては、各永久磁石106nのN極のみが配列されてお
り、このために磁界中において各永久磁石106nに作
用する力に基く回転トルク、及び磁界中において各鉄心
108に作用する吸引力に基く回転トルクのいずれも高
効率で発生させることができなかった。
However, on the one end face of the rotor 102, only the N pole of each permanent magnet 106n is arranged, so that the rotating torque based on the force acting on each permanent magnet 106n in the magnetic field and the magnetic field In the above, none of the rotation torques based on the suction force acting on each iron core 108 could be generated with high efficiency.

【0008】そこで、本発明は、上記従来の問題に鑑み
なされたものであり、高回転と高効率を共に達成し得る
軸方向間隙型永久磁石同期機を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide an axial gap type permanent magnet synchronous machine which can achieve both high rotation and high efficiency.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明は、コイルを有する円板状の第1界
磁体と磁石を有する円板状の第2界磁体とを備え、該第
1及び第2界磁体を軸の方向に間隙を設けて対向配置し
た軸方向間隙型永久磁石同期機において、前記第1界磁
体は、扇形の複数のコイル及び該各コイルの鉄心を有
し、扇形の該各コイルを円板状に配列してなり、前記第
2界磁体は、扇形の複数の永久磁石及び扇形の複数の鉄
心を有し、扇形の該各永久磁石と該各鉄心を交互にかつ
円板状に配列し、前記第1界磁体に対向する該各永久磁
石の磁極面をS極とN極に交互に着磁してなる。
According to a first aspect of the present invention, there is provided a disk-shaped first field member having a coil and a disk-shaped second field member having a magnet. In the axial gap type permanent magnet synchronous machine in which the first and second field bodies are opposed to each other with a gap provided in the axial direction, the first field body includes a plurality of fan-shaped coils and an iron core of each of the coils. The second field body has a plurality of sector-shaped permanent magnets and a plurality of sector-shaped iron cores, and the sector-shaped respective permanent magnets and the respective sector-shaped coils are arranged in a disk shape. The iron cores are arranged alternately and in a disk shape, and the magnetic pole faces of the respective permanent magnets facing the first field body are alternately magnetized into S poles and N poles.

【0010】請求項2の発明は、コイルを有する円板状
の第1界磁体と磁石を有する円板状の第2界磁体とを備
え、該第1及び第2界磁体を軸の方向に間隙を設けて対
向配置した軸方向間隙型永久磁石同期機において、前記
第1界磁体は、複数のコイル及び該各コイルの鉄心を有
し、該各コイルを円板状に配列してなり、前記第2界磁
体は、複数の永久磁石及び複数の鉄心を有し、該各永久
磁石と該各鉄心を交互にかつ円板状に配列し、前記第1
界磁体に対向する該各永久磁石の磁極面をS極とN極に
交互に着磁してなる。
According to a second aspect of the present invention, there is provided a disk-shaped first field member having a coil and a disk-shaped second field member having a magnet, and the first and second field members are arranged in the axial direction. In the axial gap type permanent magnet synchronous machine provided with a gap and opposed to each other, the first field body has a plurality of coils and an iron core of each of the coils, and the coils are arranged in a disk shape, The second field body has a plurality of permanent magnets and a plurality of iron cores, and the permanent magnets and the iron cores are arranged alternately and in a disk shape,
The magnetic pole surface of each of the permanent magnets facing the field body is alternately magnetized to S poles and N poles.

【0011】この様な構成によれば、第2界磁体は、扇
形の各永久磁石と各鉄心を交互にかつ円板状に配列し、
第1界磁体に対向する該各永久磁石の磁極面をS極とN
極に交互に着磁してなる。従って、第1界磁体の各コイ
ルの磁界中において第2界磁体の各永久磁石に作用する
力と、磁界中において第2界磁体の各鉄心に作用する吸
引力(各鉄心のリラクタンスに起因する吸引力)のいず
れによっても、第2界磁体に回転トルクが発生する。こ
こでは、扇形の各永久磁石と各鉄心を交互に配列してい
るので、各鉄心の数の分だけ、各永久磁石の数が少なく
なる。このため、第2界磁体の回転数の上昇に対する第
1界磁体の各コイルの誘導電流の増大が緩やかになり、
各コイルに駆動電流が流れ易く、第2界磁体を高速回転
させることができる。また、第1界磁体に対向する各永
久磁石の磁極面をS極とN極に交互に着磁しているの
で、磁界中において各永久磁石に作用する力に基く第2
界磁体の回転トルク、及び磁界中において第2界磁体の
各鉄心に作用する吸引力に基く第2界磁体の回転トルク
のいずれも高効率で発生させることができる。
[0011] According to such a configuration, the second field body has the fan-shaped permanent magnets and the iron cores arranged alternately and in a disk shape.
The pole faces of the permanent magnets facing the first field body are S pole and N pole.
The poles are alternately magnetized. Therefore, the force acting on each permanent magnet of the second field body in the magnetic field of each coil of the first field body and the attraction force acting on each iron core of the second field body in the magnetic field (caused by the reluctance of each iron core) (Attraction force), a rotational torque is generated in the second field body. Here, since the fan-shaped permanent magnets and the iron cores are alternately arranged, the number of the permanent magnets is reduced by the number of the iron cores. For this reason, the increase in the induced current of each coil of the first field body with respect to the increase in the rotation speed of the second field body becomes gentle,
A drive current easily flows through each coil, and the second field body can be rotated at high speed. Further, since the magnetic pole faces of the permanent magnets facing the first field body are alternately magnetized to the S pole and the N pole, the second poles based on the forces acting on the respective permanent magnets in the magnetic field.
Both the rotation torque of the field body and the rotation torque of the second field body based on the attractive force acting on each iron core of the second field body in the magnetic field can be generated with high efficiency.

【0012】一実施形態では、前記各コイルの数と前記
各永久磁石の数の比が3:2である。この比を設定する
ことによって、第2界磁体の回転数の上昇に対する第1
界磁体の各コイルの誘導電流の増大を十分に緩やかにす
ることができ、各コイルに駆動電流が流れ易く、第2界
磁体を高速回転させることができる。
In one embodiment, the ratio of the number of the coils to the number of the permanent magnets is 3: 2. By setting this ratio, the first field with respect to the increase in the rotation speed of the second field body is set.
The increase in the induced current of each coil of the field body can be made sufficiently slow, the drive current can easily flow through each coil, and the second field body can be rotated at high speed.

【0013】一実施形態では、前記第2界磁体の周方向
における該第2界磁体の各永久磁石の幅は、該周方向に
おける該第2界磁体の各鉄心の幅よりも広くなってい
る。この場合、各鉄心の幅の減少に伴う第2界磁体の回
転トルクの減少分よりも、各永久磁石の幅の増大に伴う
第2界磁体の回転トルクの増大分の方が大きく、この結
果として第2界磁体の回転トルクが増大する。
In one embodiment, the width of each permanent magnet of the second field body in the circumferential direction of the second field body is wider than the width of each iron core of the second field body in the circumferential direction. . In this case, the increase in the rotational torque of the second field body with the increase in the width of each permanent magnet is larger than the decrease in the rotational torque of the second field body with the decrease in the width of each iron core. As a result, the rotational torque of the second field body increases.

【0014】一実施形態では、前記第1界磁体として一
対の第1界磁体を備え、該各第1界磁体を前記第2界磁
体の両側に配置している。第1界磁体を第2界磁体の一
方の側に配置しても良いが、この実施形態の様に一対の
第1界磁体を第2界磁体の両側に配置すると、第2界磁
体の回転トルクを非常に高効率で発生させることができ
る。
In one embodiment, a pair of first field bodies is provided as the first field bodies, and each of the first field bodies is arranged on both sides of the second field body. The first field body may be arranged on one side of the second field body. However, if a pair of first field bodies is arranged on both sides of the second field body as in this embodiment, the rotation of the second field body will be reduced. Torque can be generated with very high efficiency.

【0015】一実施形態では、円板状に配列された扇形
の前記各コイルは、隣合うもの同士で隣接している。こ
の場合、各コイルの磁力線が該各コイルの間を素通りせ
ずに第2界磁体に交錯するので、第2界磁体の回転トル
クを更に高効率で発生させることができる。
In one embodiment, the fan-shaped coils arranged in a disk shape are adjacent to each other. In this case, since the magnetic field lines of each coil cross the second field body without passing through between the coils, the rotational torque of the second field body can be generated with higher efficiency.

【0016】一実施形態では、前記第1界磁体の鉄心又
は第2界磁体の鉄心若しくは永久磁石をコイル端縁まで
広げている。この場合、所要の磁路面積を確保するため
に第1界磁体の鉄心又は第2界磁体の鉄心若しくは永久
磁石はその軸方向の寸法を小さくすることができ、第2
界磁体の回転トルクを更に高効率で発生させることがで
きる。また、第1界磁体の鉄心又は第2界磁体の鉄心若
しくは永久磁石はその軸方向の寸法を変えない場合には
磁路面積を大きくすることができ、第2界磁体の回転ト
ルクを更に高効率で発生させることができる。
In one embodiment, the core of the first field member, the core of the second field member, or the permanent magnet is extended to the coil edge. In this case, in order to secure a required magnetic path area, the core of the first field body, the core of the second field body, or the permanent magnet can be reduced in axial dimension.
The rotation torque of the field body can be generated with higher efficiency. Further, the core of the first field member, the core of the second field member, or the permanent magnet can have a large magnetic path area if the axial dimension is not changed, and the rotational torque of the second field member can be further increased. It can be generated with efficiency.

【0017】一実施形態では、前記第1界磁体の鉄心又
は第2界磁体の鉄心を珪素鋼板で形成した。この場合、
珪素鋼板は高い磁束飽和密度を持っているため、第1界
磁体又は第2界磁体を軸方向に薄型に形成しても磁束が
通り易くなり、トルクアップを図ることができる。
In one embodiment, the iron core of the first field member or the iron core of the second field member is formed of a silicon steel plate. in this case,
Since the silicon steel sheet has a high magnetic flux saturation density, even if the first field member or the second field member is formed thin in the axial direction, the magnetic flux can easily pass therethrough, and the torque can be increased.

【0018】[0018]

【発明の実施の形態】以下、本発明を具体化した一実施
形態を図面を参照して説明する。図1及び図2は、本発
明の軸方向間隙型永久磁石同期機の一実施形態を示して
いる。図1は同期機の概略構成を示す斜視図であり、図
2は同期機を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 show an embodiment of an axial gap type permanent magnet synchronous machine according to the present invention. FIG. 1 is a perspective view showing a schematic configuration of the synchronous machine, and FIG. 2 is a sectional view showing the synchronous machine.

【0019】図1に示す様に本実施形態の軸方向間隙型
永久磁石同期機1においては、円板状の一対の固定子
2,3間に円板状の可動子4を配置している。また、軸
5を回転自在に軸支し、軸5を可動子4の中央に固定
し、軸5を各固定子2,3の中央の孔2a,3aに通し
ている。
As shown in FIG. 1, in the axial gap type permanent magnet synchronous machine 1 of the present embodiment, a disk-shaped movable element 4 is arranged between a pair of disk-shaped stators 2 and 3. . The shaft 5 is rotatably supported, the shaft 5 is fixed to the center of the mover 4, and the shaft 5 is passed through the central holes 2a and 3a of the stators 2 and 3, respectively.

【0020】詳しくは、図2に示す様に各固定子2,3
は同期機1のフレーム8に固定され、各固定子2,3に
対して僅かの間隙を設けて可動子4を配置している。軸
5は2つのベアリング軸受け6,7によって回転自在に
支持されている。軸5は、可動子4の中央の孔4aに通
され、可動子4に固定されている。軸5は、各固定子
2,3の中央の孔2a,3aに回転自在に通されてい
る。
More specifically, as shown in FIG.
Is fixed to the frame 8 of the synchronous machine 1, and the mover 4 is disposed with a slight gap provided between the stators 2 and 3. The shaft 5 is rotatably supported by two bearings 6 and 7. The shaft 5 is passed through a center hole 4 a of the mover 4 and is fixed to the mover 4. The shaft 5 is rotatably passed through central holes 2a and 3a of the stators 2 and 3, respectively.

【0021】各固定子2,3は、同一の構造を有してい
る。図3は各固定子2,3を示す平面図であり、図4は
図2のA−Aに沿って切断して各固定子2,3及び可動
子4を示す断面図である。図3及び図4に示す様に各固
定子2,3は、略扇形の複数のコイル11と、各コイル
11の鉄心12を備えている。
Each of the stators 2 and 3 has the same structure. FIG. 3 is a plan view showing each of the stators 2 and 3, and FIG. 4 is a cross-sectional view showing each of the stators 2 and 3 and the mover 4 taken along the line AA in FIG. As shown in FIGS. 3 and 4, each of the stators 2 and 3 includes a plurality of substantially fan-shaped coils 11 and an iron core 12 of each coil 11.

【0022】鉄心12は、多数の電磁鋼板を積層したも
のである。鉄心12は、その全体が略円板状であり、そ
の中央に孔12aが形成されると共に、その一端面に複
数の溝12bが放射状に形成され、各溝12b間にそれ
ぞれの扇形部12cが形成されている。扇形の各コイル
11は、鉄心12の各扇形部12c並びに各溝12bに
嵌合されて固定されている。各扇形部12cの四隅を丸
く成形しているので、各扇形部12cの外形が各コイル
11の内形に一致し、各コイル11と鉄心12間には隙
間が無い。また、1つの溝12bには隣り合う一対のコ
イル11の巻線部分11aが嵌合され、これらのコイル
11が相互に隣接する。
The iron core 12 is formed by laminating many electromagnetic steel sheets. The iron core 12 has a substantially disc shape as a whole, a hole 12a formed in the center thereof, a plurality of grooves 12b formed radially on one end surface thereof, and a sector-shaped portion 12c formed between the grooves 12b. Is formed. Each fan-shaped coil 11 is fitted and fixed to each fan-shaped portion 12c and each groove 12b of the iron core 12. Since the four corners of each sector 12c are rounded, the outer shape of each sector 12c matches the inner shape of each coil 11, and there is no gap between each coil 11 and the iron core 12. Also, the winding portions 11a of a pair of adjacent coils 11 are fitted into one groove 12b, and these coils 11 are adjacent to each other.

【0023】図5は、可動子4を示す平面図である。図
4及び図5に示す様に可動子4は、非磁性体の枠21、
扇形の各永久磁石22及び扇形の各鉄心23を備えてい
る。枠21は、扇形の各開口部21a及び同じく扇形の
各開口部21bを有しており、各開口部21aと各開口
部21bを交互に配置している。各開口部21aにはそ
れぞれの永久磁石22を嵌合して固定し、各開口部21
bにはそれぞれの鉄心23を嵌合して固定している。従
って、各永久磁石22と各鉄心23は、交互に配置され
る。
FIG. 5 is a plan view showing the mover 4. As shown in FIGS. 4 and 5, the mover 4 includes a nonmagnetic frame 21,
Each fan-shaped permanent magnet 22 and each fan-shaped iron core 23 are provided. The frame 21 has fan-shaped openings 21a and fan-shaped openings 21b, and the openings 21a and the openings 21b are alternately arranged. A permanent magnet 22 is fitted and fixed in each opening 21a.
Each iron core 23 is fitted and fixed to b. Therefore, each permanent magnet 22 and each iron core 23 are arranged alternately.

【0024】各永久磁石22は、各固定子2,3に対向
するそれぞれの磁極面を有しており、これらの磁極面が
S極及びN極となっている。可動子4の一端面におい
て、各永久磁石22の磁極面のS極とN極が交互に並
ぶ。同様に、可動子4の他端面においても、各永久磁石
22の磁極面のS極とN極が交互に並ぶ。各鉄心23
は、多数の電磁鋼板を積層したものである。
Each of the permanent magnets 22 has a magnetic pole surface facing each of the stators 2 and 3, and these magnetic pole surfaces are an S pole and an N pole. On one end face of the mover 4, S poles and N poles of the magnetic pole faces of the respective permanent magnets 22 are alternately arranged. Similarly, also on the other end surface of the mover 4, the S pole and the N pole of the magnetic pole surface of each permanent magnet 22 are alternately arranged. Each iron core 23
Is obtained by laminating a large number of electromagnetic steel sheets.

【0025】可動子4の周方向における各永久磁石22
の幅Wm は、該周方向における各鉄心23の幅Wi より
も広くされている。また、固定子2の各コイル11の数
(又は固定子3の各コイル11の数)と可動子4の各永
久磁石22の数の比は、3:2に設定されている。
Each permanent magnet 22 in the circumferential direction of the mover 4
Is wider than the width Wi of each iron core 23 in the circumferential direction. The ratio between the number of the coils 11 of the stator 2 (or the number of the coils 11 of the stator 3) and the number of the permanent magnets 22 of the mover 4 is set to 3: 2.

【0026】次に、この様な構成の同期機1の動作の概
略を説明する。図6A(a)〜(f)及び図6B(g)
〜(l)は、本実施形態の同期機1における可動子4の
回転行程を概略的に示している。各駆動電流W,U,V
(三相交流電流)は、位相が120°ずつ異なり、各固
定子2,3の各コイル11に流される。各駆動電流W,
U,Vのいずれを流すかに応じて各固定子2,3の各コ
イル11を3種類のコイル11W,11U,11Vに区
別している。固定子2のコイル11Wと固定子3のコイ
ル11Wは対向し、固定子2のコイル11Uと固定子3
のコイル11Uは対向し、固定子2のコイル11Vと固
定子3のコイル11Vは対向している。
Next, an outline of the operation of the synchronous machine 1 having such a configuration will be described. 6A (a) to 6 (f) and FIG. 6B (g)
(L) schematically show the rotation stroke of the mover 4 in the synchronous machine 1 of the present embodiment. Each drive current W, U, V
The (three-phase alternating current) has a phase difference of 120 °, and flows through each coil 11 of each of the stators 2 and 3. Each drive current W,
Each of the coils 11 of each of the stators 2 and 3 is classified into three types of coils 11W, 11U and 11V according to which of U and V flows. The coil 11W of the stator 2 and the coil 11W of the stator 3 face each other, and the coil 11U of the stator 2 and the
11U are opposed, and the coil 11V of the stator 2 and the coil 11V of the stator 3 are opposed.

【0027】また、固定子2の各コイルの巻線方向と固
定子3の各コイルの巻線方向が逆であり、固定子2の各
コイルに駆動電流を流す方向と固定子3の各コイルに駆
動電流を流す方向が同じである。このため、各固定子
2,3のコイル11Wの一方から他方への磁力線が形成
され、各固定子2,3のコイル11Uの一方から他方へ
の磁力線が形成され、各固定子2,3のコイル11Vの
一方から他方への磁力線が形成される。
The winding direction of each coil of the stator 2 and the winding direction of each coil of the stator 3 are opposite to each other. The direction in which the drive current flows is the same. For this reason, the magnetic lines of force from one side of the coils 11W of the stators 2 and 3 to the other are formed, and the magnetic lines of force from one side of the coils 11U of the stators 2 and 3 to the other are formed. Magnetic lines of force from one side of the coil 11V to the other are formed.

【0028】尚、図6A(a)〜(f)及び図6B
(g)〜(l)において磁力線を一点鎖線で示している
が、この磁力線は、多数の磁力線を簡略化して示すもの
である。さて、例えば各固定子2,3のコイル11Uに
着目すると、図6A(a)においては駆動電流Uが0の
状態であり、各固定子2,3のコイル11U間に磁力線
が発生していない。このときには、各固定子2,3のコ
イル11W,11Vにそれぞれの駆動電流W,Vが流れ
て、各固定子2,3のコイル11W間の磁力線及び各固
定子2,3のコイル11V間の磁力線が発生し、これに
より可動子4に回転トルクが発生する。
FIGS. 6A (a) to 6 (f) and FIG. 6B
In (g) to (l), the magnetic lines of force are indicated by alternate long and short dash lines, and the magnetic lines of force are simply a number of lines of magnetic force. Now, for example, focusing on the coil 11U of each of the stators 2 and 3, in FIG. 6A, the drive current U is in a state of 0, and no lines of magnetic force are generated between the coils 11U of each of the stators 2 and 3. . At this time, the respective drive currents W and V flow through the coils 11W and 11V of the stators 2 and 3, respectively, and the lines of magnetic force between the coils 11W of the stators 2 and 3 and the coils 11V of the stators 2 and 3 respectively. Lines of magnetic force are generated, and a rotational torque is generated in the mover 4.

【0029】引き続いて、図6A(b)においては駆動
電流Uが正の方向に増大し、各固定子2,3のコイル1
1U間に磁力線Mu1が発生する。また、駆動電流Vが負
であって、各固定子2,3のコイル11V間に逆方向の
磁力線Mv1が発生し、磁力線Mu1と磁力線Mv1がループ
を描く。また、磁力線Mu1の方向が永久磁石22の磁力
線の方向とは異なるので、各磁力線Mu1,Mv1のループ
は、永久磁石22を通らず、リラクタンスの小さな鉄心
23を通る。このとき、各磁力線Mu1,Mv1のループが
小さくなる様に鉄心23に吸引力が作用し、可動子4が
矢印Bの方向に回転する。
Subsequently, in FIG. 6A (b), the drive current U increases in the positive direction, and the coil 1 of each of the stators 2, 3
Magnetic force lines Mu1 are generated in 1U. Further, when the drive current V is negative, a magnetic field line Mv1 in the opposite direction is generated between the coils 11V of the stators 2 and 3, and the magnetic field lines Mu1 and Mv1 draw a loop. Further, since the direction of the line of magnetic force Mu1 is different from the direction of the line of magnetic force of the permanent magnet 22, the loop of the lines of magnetic force Mu1, Mv1 does not pass through the permanent magnet 22, but passes through the iron core 23 having small reluctance. At this time, an attractive force acts on the iron core 23 so that the loop of the magnetic lines of force Mu1, Mv1 becomes small, and the mover 4 rotates in the direction of arrow B.

【0030】図6A(c)においては磁力線Mu1が鉄心
23を通り、磁力線Mv1が永久磁石22を通り、各磁力
線Mu1,Mv1のループが更に小さくなる様に鉄心23及
び永久磁石22に力が作用し、可動子4が矢印Bの方向
に回転する。また、駆動電流Wが0の状態であり、各固
定子2,3のコイル11W間に磁力線が発生していな
い。
6A (c), the magnetic force lines Mu1 pass through the iron core 23, the magnetic force lines Mv1 pass through the permanent magnet 22, and the force acts on the iron core 23 and the permanent magnet 22 so that the loop of the magnetic force lines Mu1, Mv1 is further reduced. Then, the mover 4 rotates in the direction of arrow B. In addition, the drive current W is in the state of 0, and no lines of magnetic force are generated between the coils 11W of the stators 2 and 3.

【0031】図6A(d)においては各磁力線Mu1,M
v1のループが最小となる。また、駆動電流Wが負の方向
に増大し、各固定子2,3のコイル11W間に磁力線M
w1が発生する。磁力線Mu1と磁力線Mw1の方向が逆であ
って、磁力線Mu1と磁力線Mw1がループを描く。磁力線
Mw1の方向が永久磁石22の磁力線の方向とは異なるの
で、各磁力線Mu1,Mw1のループは、永久磁石22を通
らず、リラクタンスの小さな鉄心23を通る。各磁力線
Mu1,Mw1のループが小さくなる様に鉄心23に吸引力
が作用し、可動子4が矢印Bの方向に回転する。
In FIG. 6D, each magnetic field line Mu1, M
v1 loop is minimized. Further, the drive current W increases in the negative direction, and the lines of magnetic force M between the coils 11W of the stators 2 and 3 are increased.
w1 occurs. The directions of the lines of magnetic force Mu1 and Mw1 are opposite, and the lines of magnetic force Mu1 and Mw1 form a loop. Since the direction of the line of magnetic force Mw1 is different from the direction of the line of magnetic force of the permanent magnet 22, the loop of each line of magnetic force Mu1, Mw1 does not pass through the permanent magnet 22, but passes through the iron core 23 having small reluctance. Attraction force acts on the iron core 23 so that the loop of the lines of magnetic force Mu1 and Mw1 is reduced, and the mover 4 rotates in the direction of arrow B.

【0032】図6A(e)においては磁力線Mu1が磁石
22を通り、磁力線Mw1が鉄心23を通り、各磁力線M
u1,Mw1のループが更に小さくなる様に鉄心23及び永
久磁石22に力が作用し、可動子4が矢印Bの方向に回
転する。また、駆動電流Vが0の状態であり、各固定子
2,3のコイル11Vに磁力線が発生していない。
In FIG. 6A (e), the lines of magnetic force Mu1 pass through the magnet 22, the lines of magnetic force Mw1 pass through the iron core 23, and the lines of magnetic force M
A force acts on the iron core 23 and the permanent magnet 22 so that the loop of u1 and Mw1 is further reduced, and the mover 4 rotates in the direction of arrow B. In addition, the drive current V is 0, and no lines of magnetic force are generated in the coils 11V of the stators 2 and 3.

【0033】図6A(f)においては各磁力線Mu1,M
w1のループが最小となる。図6B(g)においては駆動
電流Uが再び0となり、各固定子2,3のコイル11U
間に磁力線が発生していない。このとき、各固定子2,
3のコイル11W間の磁力線及び各固定子2,3のコイ
ル11V間の磁力線が発生し、これにより可動子4に回
転トルクが発生する。
In FIG. 6A (f), each magnetic field line Mu1, M
The loop of w1 is minimized. In FIG. 6B (g), the drive current U becomes 0 again, and the coils 11U of the stators 2 and 3
No lines of magnetic force are generated between them. At this time, each stator 2,
Magnetic lines of force between the coils 11W of the third stator and the coils 11V of the stators 2 and 3 are generated.

【0034】図6B(h)においては駆動電流Uが負の
方向に増大し、各固定子2,3のコイル11U間に磁力
線Mu2が発生する。また、駆動電流Vが正であって、各
固定子2,3のコイル11V間に逆方向の磁力線Mv2が
発生し、磁力線Mu2と磁力線Mv2がループを描く。磁力
線Mu2と磁力線Mv2の方向が図6A(b)のときとは逆
になっているが、各固定子2,3のコイル11U近傍を
通過する永久磁石22の極性も図6A(b)のときとは
逆になっているので、この結果として図6A(b)のと
きと同様に各磁力線Mu2,Mv2のループは、永久磁石2
2を通らず、鉄心23を通る。そして、各磁力線Mu2,
Mv2のループが小さくなる様に鉄心23に吸引力が作用
し、可動子4が矢印Bの方向に回転する。
In FIG. 6 (h), the drive current U increases in the negative direction, and a magnetic field line Mu2 is generated between the coils 11U of the stators 2 and 3. In addition, when the drive current V is positive, the lines of magnetic force Mv2 in the opposite direction are generated between the coils 11V of the stators 2 and 3, and the lines of magnetic force Mu2 and the lines of magnetic force Mv2 draw a loop. Although the directions of the magnetic force lines Mu2 and Mv2 are opposite to those in FIG. 6A (b), the polarities of the permanent magnets 22 passing near the coils 11U of the stators 2 and 3 are also shown in FIG. 6A (b). As a result, the loop of the magnetic field lines Mu2 and Mv2 forms the permanent magnet 2 as in the case of FIG. 6A (b).
It does not pass through 2 but passes through the iron core 23. And each magnetic field line Mu2,
Attraction force acts on the iron core 23 so that the loop of Mv2 becomes small, and the mover 4 rotates in the direction of arrow B.

【0035】図6B(i)においては各磁力線Mu2,M
v2のループが更に小さくなる様に鉄心23及び永久磁石
22に力が作用し、可動子4が矢印Bの方向に回転す
る。また、駆動電流Wが0の状態であり、各固定子2,
3のコイル11W間に磁力線が発生していない。
In FIG. 6B (i), each line of magnetic force Mu2, M
A force acts on the iron core 23 and the permanent magnet 22 so that the loop of v2 is further reduced, and the mover 4 rotates in the direction of arrow B. In addition, the driving current W is in a state of 0, and each stator 2,
No magnetic lines of force are generated between the third coils 11W.

【0036】図6B(j)においては磁力線Mu2,Mv2
のループが最小となる。また、駆動電流Wが正の方向に
増大し、各固定子2,3のコイル11W間に磁力線Mw2
が発生する。磁力線Mu2と磁力線Mw2の方向が図6A
(d)のときとは逆であり、各固定子2,3のコイル1
1W近傍を通過する永久磁石22の極性も図6A(d)
のときとは逆であるため、図6A(d)のときと同様に
各磁力線Mu2,Mv2のループが永久磁石22を通らずに
鉄心23を通り、鉄心23に吸引力が作用し、可動子4
が矢印Bの方向に回転する。
In FIG. 6B (j), the lines of magnetic force Mu2, Mv2
Loop is minimized. Further, the drive current W increases in the positive direction, and the lines of magnetic force Mw2 between the coils 11W of the stators 2 and 3 are increased.
Occurs. FIG. 6A shows the directions of the magnetic force lines Mu2 and Mw2.
The reverse of the case of (d), the coil 1 of each stator 2, 3
The polarity of the permanent magnet 22 passing near 1 W is also shown in FIG.
6A (d), the loop of the lines of magnetic force Mu2 and Mv2 passes through the iron core 23 without passing through the permanent magnet 22, and the attracting force acts on the iron core 23 as in the case of FIG. 4
Rotates in the direction of arrow B.

【0037】図6B(k)においては各磁力線Mu2,M
w2のループが更に小さくなる様に鉄心23及び永久磁石
22に力が作用し、可動子4が矢印Bの方向に回転す
る。また、駆動電流Vが0の状態であり、各固定子2,
3のコイル11Vに磁力線が発生していない。
In FIG. 6B (k), each line of magnetic force Mu2, M
A force acts on the iron core 23 and the permanent magnet 22 so that the loop of w2 is further reduced, and the mover 4 rotates in the direction of arrow B. In addition, the driving current V is in a state of 0, and each stator 2,
No magnetic lines of force are generated in the third coil 11V.

【0038】図6B(l)においては各磁力線Mu2,M
w2のループが最小となる。以降同様に、各固定子2,3
のコイル11Uについては図6A(a)〜(f)及び図
6B(g)〜(l)の行程が繰り返され、かつ各固定子
2,3の他のコイル11W,11Vについても位相がず
れた状態で図6A(a)〜(f)及び図6B(g)〜
(l)と同様の行程が繰り返され、これによって可動子
4が矢印Bの方向に回転し続ける。
In FIG. 6B (l), each line of magnetic force Mu2, M
The loop of w2 is minimized. Thereafter, similarly, each stator 2, 3
6A (a) to (f) and FIGS. 6B (g) to (l) are repeated for the coil 11U, and the phases of the other coils 11W and 11V of the stators 2 and 3 are also shifted. 6A (a) to (f) and FIG. 6B (g) in the state.
The same process as (l) is repeated, whereby the mover 4 keeps rotating in the direction of arrow B.

【0039】この様に本実施形態では、可動子4の各永
久磁石22及び各鉄心23に作用するそれぞれの力によ
って、可動子4が回転する。また、各永久磁石22間に
各鉄心23を介在させる構造であるために、各永久磁石
のみを配列して各鉄心を介在させない構造と比較する
と、可動子4の回転数の上昇に対する各固定子2,3の
各コイル11の誘導電流の増大が緩やかとなる。このた
め、各コイル11に駆動電流が流れ易く、可動子4を高
速回転させることができる。また、各永久磁石22の磁
極面のS極とN極が交互に並ぶので、図6A及び図6B
の動作説明からも明らかな様に各永久磁石22に作用す
る力及び各鉄心23に作用する力を効率的に利用して、
可動子4の回転トルクを高効率で発生させることができ
る。
As described above, in the present embodiment, the mover 4 is rotated by the respective forces acting on each permanent magnet 22 and each iron core 23 of the mover 4. In addition, since the structure is such that the iron cores 23 are interposed between the permanent magnets 22, each of the stators with respect to the increase in the rotational speed of the mover 4 is different from the structure in which only the permanent magnets are arranged and the iron cores are not interposed. The increase in the induced current of each of the coils 11 becomes slow. Therefore, a drive current easily flows through each coil 11, and the mover 4 can be rotated at a high speed. 6A and 6B, since the S pole and the N pole of the magnetic pole surface of each permanent magnet 22 are alternately arranged.
As is clear from the description of the operation, the force acting on each permanent magnet 22 and the force acting on each iron core 23 are efficiently used,
The rotating torque of the mover 4 can be generated with high efficiency.

【0040】また、固定子2の各コイル11の数(又は
固定子3の各コイル11の数)と可動子4の各永久磁石
22の数の比を3:2に設定しているので、可動子4の
回転数の上昇に対する各固定子2,3の各コイル11の
誘導電流の増大が十分に緩やかとなり、各コイル11に
駆動電流がより流れ易く、可動子4を更に高速回転させ
ることができる。
Since the ratio of the number of the coils 11 of the stator 2 (or the number of the coils 11 of the stator 3) to the number of the permanent magnets 22 of the mover 4 is set to 3: 2, The induction current of each coil 11 of each of the stators 2 and 3 with respect to the increase in the rotation speed of the mover 4 becomes sufficiently slow, so that the drive current flows more easily through each coil 11 and the mover 4 is rotated at a higher speed. Can be.

【0041】更に、各永久磁石22の幅Wm を各鉄心2
3の幅Wi よりも広くしている。各永久磁石22は、各
鉄心23と比べると可動子4の回転トルクの増大により
貢献するので、各永久磁石22の幅Wm を広くしたこと
によって可動子4の回転トルクが増大する。
Further, the width Wm of each permanent magnet 22 is
3 is wider than the width Wi. Each of the permanent magnets 22 contributes to an increase in the rotational torque of the mover 4 as compared with each of the iron cores 23. Therefore, by increasing the width Wm of each of the permanent magnets 22, the rotational torque of the mover 4 increases.

【0042】また、各コイル11と鉄心12間には隙間
が無く、隣り合う一対のコイル11が相互に隣接する。
このため、各コイル11の磁力線が該各コイル11の間
を素通りせずに(小さなループを描かずに)可動子4に
到達して交錯し(大きなループを描き)、可動子4の回
転トルクを更に高効率で発生させることができる。
There is no gap between each coil 11 and the iron core 12, and a pair of adjacent coils 11 are adjacent to each other.
For this reason, the lines of magnetic force of the coils 11 reach the mover 4 without passing through between the coils 11 (without drawing a small loop) and intersect (draw a large loop), and the rotational torque of the mover 4 Can be generated with higher efficiency.

【0043】尚、本実施形態では、可動子4の両側に各
固定子2,3を設けているが、いずれか一方の側に1つ
の固定子を設けるだけでも、可動子4を回転させること
ができる。ただし、1つの固定子のみの場合は、効率が
低下する。
In this embodiment, the stators 2 and 3 are provided on both sides of the mover 4. However, it is possible to rotate the mover 4 only by providing one stator on one side. Can be. However, when only one stator is used, the efficiency is reduced.

【0044】図7は、図1に示す同期機1の変形例を示
している。ここでは、可動子4の鉄心33として円板状
のものを適用し、鉄心33の一端面に扇形の複数の凹部
33aを形成して、各凹部33aに扇形の複数の永久磁
石32aを嵌合すると共に、鉄心33の他端面にも扇形
の複数の凹部33bを形成して、各凹部33bに扇形の
複数の永久磁石32bを嵌合している。各永久磁石32
aと各永久磁石32bは、同じ磁極を相互に対向させて
いる。また、鉄心33の両端面において、各永久磁石の
S極とN極が交互に配列されている。
FIG. 7 shows a modification of the synchronous machine 1 shown in FIG. Here, a disk-shaped core is applied as the iron core 33 of the mover 4, a plurality of sector-shaped recesses 33a are formed on one end surface of the iron core 33, and a plurality of sector-shaped permanent magnets 32a are fitted into the respective recesses 33a. At the same time, a plurality of sector-shaped recesses 33b are formed in the other end surface of the iron core 33, and a plurality of sector-shaped permanent magnets 32b are fitted in the respective recesses 33b. Each permanent magnet 32
a and the permanent magnets 32b have the same magnetic poles facing each other. Further, the S pole and the N pole of each permanent magnet are alternately arranged on both end surfaces of the iron core 33.

【0045】固定子2の各コイル11の巻線方向と固定
子3の各コイル11の巻線方向が逆であり、固定子2の
各コイルに駆動電流を流す方向と固定子3の各コイルに
駆動電流を流す方向も逆である。
The winding direction of each coil 11 of the stator 2 and the winding direction of each coil 11 of the stator 3 are opposite. The direction in which the drive current flows is also reversed.

【0046】この様な構成においては、固定子2の各コ
イル11と可動子4の一端面の各永久磁石32a間に磁
力線のループが形成されると共に、固定子3の各コイル
11と可動子4の他端面の各永久磁石32b間に磁力線
のループが形成される。これらのループは、図6A
(a)〜(f)及び図6B(g)〜(l)に示すそれぞ
れの磁力線のループを可動子4の中央で2分したものに
等しい。従って、可動子4が回転する行程は、図6A
(a)〜(f)及び図6B(g)〜(l)と略同様であ
る。
In such a configuration, a loop of lines of magnetic force is formed between each coil 11 of the stator 2 and each permanent magnet 32a on one end face of the mover 4, and each coil 11 of the stator 3 and the mover A loop of lines of magnetic force is formed between the respective permanent magnets 32b on the other end surface of No.4. These loops are shown in FIG.
This is equivalent to the loop of each line of magnetic force shown in (a) to (f) and FIGS. 6B (g) to (l) divided into two at the center of the mover 4. Accordingly, the process of rotating the mover 4 is as shown in FIG.
This is substantially the same as (a) to (f) and FIGS. 6B (g) to (l).

【0047】図8は、図1に示す同期機1の他の変形例
を示している。ここでは、可動子4の鉄心43として円
板状のものを適用している。鉄心43は、2枚の鉄心部
43a,43bを重ね合わせて固定したものである。各
鉄心部43a,43b間には、扇形の複数の永久磁石4
4が埋め込まれている。各鉄心部43a,43bの表面
において、各永久磁石44の両側の部分にそれぞれの溝
45が形成されている。各鉄心部43a,43bを平面
視すると、これらの溝45は同期機1の軸を中心にして
放射状に形成されている。
FIG. 8 shows another modification of the synchronous machine 1 shown in FIG. Here, a disk-shaped one is applied as the iron core 43 of the mover 4. The iron core 43 is obtained by overlapping and fixing two iron core portions 43a and 43b. A plurality of sector-shaped permanent magnets 4 are provided between the iron cores 43a and 43b.
4 is embedded. On the surface of each of the iron core portions 43a and 43b, respective grooves 45 are formed on both sides of each of the permanent magnets 44. When the iron core portions 43a and 43b are viewed in plan, these grooves 45 are formed radially around the axis of the synchronous machine 1.

【0048】図9は、図7に示す同期機1の変形例をさ
らに変形した例を示している。ここでは、固定子2の鉄
心33の扇形部12c以外のヨーク部分12dの径方向
寸法をコイル11の両端部まで広げている。また、可動
子4の円板状の鉄心33のヨーク部分33dの径方向寸
法をコイル11の両端縁まで広げており、鉄心33の一
端面に扇形の複数の永久磁石32aを固着すると共に、
鉄心33の他端面にも扇形の複数の永久磁石(図示略)
を固着している。その他の構成は図7と同様である。
FIG. 9 shows a modified example of the synchronous machine 1 shown in FIG. Here, the radial dimension of the yoke portion 12 d other than the sector portion 12 c of the iron core 33 of the stator 2 is extended to both ends of the coil 11. Further, the radial dimension of the yoke portion 33d of the disc-shaped iron core 33 of the mover 4 is extended to both end edges of the coil 11, and a plurality of fan-shaped permanent magnets 32a are fixed to one end surface of the iron core 33.
A plurality of sector-shaped permanent magnets (not shown) are also provided on the other end surface of the iron core 33.
Is fixed. Other configurations are the same as those in FIG.

【0049】この様な構成においては、固定子2の鉄心
12のヨーク部分12dの径方向寸法をコイル11の両
端縁まで広げるとともに、可動子4の鉄心33のヨーク
部分33dをコイル11の両端縁まで広げている。その
ため、固定子2及び可動子4に所要の磁路面積を確保す
るために、固定子2の鉄心12及び可動子4の鉄心33
の軸方向の寸法を小さくすることができ、可動子4の回
転トルクを更に高効率で発生させることができる。ま
た、固定子2の鉄心12及び可動子4の鉄心33の軸方
向の寸法を変えない場合には固定子2の鉄心12のヨー
ク部分12dの径方向寸法をコイル11の両端縁まで広
げるとともに、可動子4の鉄心33の可動子4の鉄心3
3のヨーク部分33dの径方向寸法をコイル11の両端
縁まで広げたので、磁路面積を大きくすることができ、
可動子4の回転トルクを更に高効率で発生させることが
できる。
In such a configuration, the radial dimension of the yoke portion 12d of the iron core 12 of the stator 2 is extended to both ends of the coil 11, and the yoke portions 33d of the iron core 33 of the mover 4 are Spread out. Therefore, in order to secure required magnetic path areas for the stator 2 and the mover 4, the iron core 12 of the stator 2 and the iron core 33 of the mover 4 are provided.
Can be reduced in the axial direction, and the rotational torque of the mover 4 can be generated with higher efficiency. When the axial dimensions of the iron core 12 of the stator 2 and the iron core 33 of the mover 4 are not changed, the radial dimension of the yoke portion 12d of the iron core 12 of the stator 2 is increased to both end edges of the coil 11, and Core 3 of mover 4 of iron core 33 of mover 4
Since the radial dimension of the yoke portion 33d of the third is extended to both end edges of the coil 11, the magnetic path area can be increased,
The rotational torque of the mover 4 can be generated with higher efficiency.

【0050】図10は、図9に示す同期機1の変形例を
さらに変形した例を示している。ここでは、ここでは、
固定子2の鉄心50として円板状のものを適用し、コイ
ル11が巻装される扇形部51と、扇形部51を取り囲
むヨーク部分52とからなる。扇形部51は圧粉体を焼
成した軟磁性焼成体により形成されている。ヨーク部分
52は珪素鋼板を固定子2の軸方向に積層することによ
り形成されており、ヨーク部分52の径方向寸法をコイ
ル11の両端縁まで広げている。
FIG. 10 shows a further modification of the synchronous machine 1 shown in FIG. Here, here,
A disk-shaped core 50 of the stator 2 is applied, and includes a sector 51 around which the coil 11 is wound, and a yoke portion 52 surrounding the sector 51. The fan-shaped portion 51 is formed of a soft magnetic fired body obtained by firing a green compact. The yoke portion 52 is formed by stacking silicon steel plates in the axial direction of the stator 2, and extends the radial dimension of the yoke portion 52 to both end edges of the coil 11.

【0051】また、可動子4の鉄心55として円板状の
ものを適用し、永久磁石32aが固着される扇形部56
及び鉄心としての突極部分と、扇形部56及び突極部分
を取り囲むヨーク部分57とからなる。この扇形部56
及び突極部分も軟磁性焼成体により形成されている。ヨ
ーク部分57は珪素鋼板を可動子4の軸方向に積層する
ことにより形成されており、ヨーク部分57の径方向寸
法をコイル11の両端縁まで広げている。その他の構成
は図9と同様である。
A disk-shaped iron core 55 of the mover 4 is applied, and a sector 56 to which the permanent magnet 32a is fixed is applied.
And a yoke portion 57 surrounding the sector portion 56 and the salient pole portion. This sector 56
The salient pole portion is also formed of a soft magnetic sintered body. The yoke portion 57 is formed by stacking silicon steel plates in the axial direction of the mover 4, and extends the radial dimension of the yoke portion 57 to both end edges of the coil 11. Other configurations are the same as those in FIG.

【0052】この様な構成においては、軟磁性焼成体よ
りも高い磁束飽和密度を持つ珪素鋼板により固定子2の
ヨーク部分52及び可動子4のヨーク部分57を形成し
たので、固定子2及び可動子4をそれらの軸方向に薄型
に形成しても磁束が通り易くなり、トルクアップを図る
ことができる。また、固定子2の鉄心50及び可動子4
の鉄心55の一部に鉄損の大きい軟磁性焼成体を使用し
ているが、ヨーク部分52及びヨーク部分57を鉄損の
小さい珪素鋼板を使用しているので、固定子2及び可動
子4の鉄損低減を図ることができる。さらに、軟磁性焼
成体は機械強度に劣るが、機械強度に優れた珪素鋼板に
よりヨーク部分52,57を形成したので、固定子2の
鉄心50及び可動子4の鉄心55の機械強度を向上する
ことができる。
In such a configuration, the yoke portion 52 of the stator 2 and the yoke portion 57 of the mover 4 are formed of a silicon steel plate having a higher magnetic flux saturation density than the soft magnetic sintered body. Even when the sub-elements 4 are formed thin in their axial directions, the magnetic flux can easily pass therethrough, and the torque can be increased. The iron core 50 of the stator 2 and the mover 4
Although a soft magnetic fired body with a large iron loss is used for a part of the iron core 55, the yoke portion 52 and the yoke portion 57 are made of a silicon steel plate with a small iron loss, Iron loss can be reduced. Further, the soft magnetic fired body is inferior in mechanical strength, but since the yoke portions 52 and 57 are formed of a silicon steel plate having excellent mechanical strength, the mechanical strength of the iron core 50 of the stator 2 and the iron core 55 of the mover 4 is improved. be able to.

【0053】尚、上記実施形態は以下のように、多様に
変形することができる。 ・ 例えば、固定子の各コイルの数、可動子の各永久磁
石の数及び各鉄心の数を任意に設定することができる。
また、コイル、永久磁石、鉄心の形状や固定構造を任意
に定めることができる。更に、コイル、永久磁石、鉄心
の材質等を任意に定めることができる。また、固定子に
各永久磁石を設け、可動子に各コイルを設けても良い。
The above embodiment can be variously modified as follows. For example, the number of coils of the stator, the number of permanent magnets of the mover, and the number of iron cores can be set arbitrarily.
Further, the shapes and fixing structures of the coil, the permanent magnet, and the iron core can be arbitrarily determined. Further, the materials of the coil, the permanent magnet, the iron core and the like can be arbitrarily determined. Alternatively, each permanent magnet may be provided on the stator, and each coil may be provided on the mover.

【0054】・ 図9,図10に示す変形例において、
可動子4に設ける永久磁石32aの径方向寸法をコイル
11の両端部まで広げるように構成してもよい。この場
合にも固定子2及び可動子4に所要の磁路面積を確保す
るために、固定子2の鉄心12及び可動子4の鉄心33
の軸方向の寸法を小さくすることができ、可動子4の回
転トルクを更に高効率で発生させることができる。ま
た、固定子2の鉄心12及び可動子4の鉄心33の軸方
向の寸法を変えない場合には固定子2の鉄心12のヨー
ク部分12dの径方向寸法をコイル11の両端縁まで広
げるとともに、可動子4の鉄心33の可動子4の鉄心3
3のヨーク部分33dの径方向寸法をコイル11の両端
縁まで広げたので、磁路面積を大きくすることができ、
可動子4の回転トルクを更に高効率で発生させることが
できる。
In the modified examples shown in FIGS. 9 and 10,
The permanent magnet 32 a provided on the mover 4 may be configured so that the radial dimension of the permanent magnet 32 a extends to both ends of the coil 11. Also in this case, in order to secure required magnetic path areas for the stator 2 and the mover 4, the iron core 12 of the stator 2 and the iron core 33 of the mover 4 are provided.
Can be reduced in the axial direction, and the rotational torque of the mover 4 can be generated with higher efficiency. When the axial dimensions of the iron core 12 of the stator 2 and the iron core 33 of the mover 4 are not changed, the radial dimension of the yoke portion 12d of the iron core 12 of the stator 2 is increased to both end edges of the coil 11, and Core 3 of mover 4 of iron core 33 of mover 4
Since the radial dimension of the yoke portion 33d of the third is extended to both end edges of the coil 11, the magnetic path area can be increased,
The rotational torque of the mover 4 can be generated with higher efficiency.

【0055】[0055]

【発明の効果】以上説明した様に、本発明によれば、第
2界磁体は、扇形の各永久磁石と各鉄心を交互にかつ円
板状に配列し、第1界磁体に対向する該各永久磁石の磁
極面をS極とN極に交互に着磁してなる。従って、第1
界磁体の各コイルの磁界中において第2界磁体の各永久
磁石に作用する力と、磁界中において第2界磁体の各鉄
心に作用する吸引力のいずれによっても、第2界磁体に
回転トルクが発生する。
As described above, according to the present invention, according to the present invention, the second field member is formed by arranging sector-shaped permanent magnets and iron cores alternately and in a disk shape, and opposing the first field member. The magnetic pole surface of each permanent magnet is alternately magnetized to S pole and N pole. Therefore, the first
Both the force acting on each permanent magnet of the second field body in the magnetic field of each coil of the field body and the attraction force acting on each iron core of the second field body in the magnetic field cause rotational torque on the second field body. Occurs.

【0056】また、扇形の各永久磁石と各鉄心を交互に
配列しているので、各鉄心の数の分だけ、各永久磁石の
数が少なくなる。このため、第2界磁体の回転数の上昇
に対する第1界磁体の各コイルの誘導電流の増大が緩や
かになり、各コイルに駆動電流が流れ易く、第2界磁体
を高速回転させることができる。
Since the fan-shaped permanent magnets and the iron cores are alternately arranged, the number of the permanent magnets is reduced by the number of the iron cores. For this reason, the increase in the induced current of each coil of the first field body with respect to the increase in the rotation speed of the second field body becomes gentle, and the drive current easily flows through each coil, so that the second field body can be rotated at high speed. .

【0057】更に、第1界磁体に対向する各永久磁石の
磁極面をS極とN極に交互に着磁しているので、磁界中
において各永久磁石に作用する力に基く第2界磁体の回
転トルク、及び磁界中において第2界磁体の各鉄心に作
用する吸引力に基く第2界磁体の回転トルクのいずれも
高効率で発生させることができる。
Further, since the magnetic pole faces of the permanent magnets facing the first field body are alternately magnetized to S poles and N poles, the second field body based on the force acting on each permanent magnet in the magnetic field. And the rotating torque of the second field body based on the attractive force acting on each core of the second field body in the magnetic field can be generated with high efficiency.

【0058】一実施形態によれば、各コイルの数と各永
久磁石の数の比を3:2に設定しており、これによって
第2界磁体の回転数の上昇に対する第1界磁体の各コイ
ルの誘導電流の増大を十分に緩やかにすることができ、
各コイルに駆動電流が流れ易く、第2界磁体を高速回転
させることができる。
According to one embodiment, the ratio of the number of coils to the number of permanent magnets is set to 3: 2, whereby each of the first field members with respect to an increase in the rotation speed of the second field member. It is possible to sufficiently increase the induced current of the coil,
A drive current easily flows through each coil, and the second field body can be rotated at high speed.

【0059】一実施形態によれば、第2界磁体の各永久
磁石の幅は、第2界磁体の各鉄心の幅よりも広くされて
いる。この場合、各鉄心の幅の減少に伴う第2界磁体の
回転トルクの減少分よりも、各永久磁石の幅の増大に伴
う第2界磁体の回転トルクの増大分の方が大きく、この
結果として第2界磁体の回転トルクが増大する。
According to one embodiment, the width of each permanent magnet of the second field body is wider than the width of each iron core of the second field body. In this case, the increase in the rotational torque of the second field body with the increase in the width of each permanent magnet is larger than the decrease in the rotational torque of the second field body with the decrease in the width of each iron core. As a result, the rotational torque of the second field body increases.

【0060】一実施形態によれば、一対の第1界磁体を
第2界磁体の両側に配置しており、これによって第2界
磁体の回転トルクを非常に高効率で発生させている。一
実施形態によれば、各コイルは、隣合うもの同士で隣接
している。この場合、各コイルの磁力線が該各コイルの
間を素通りせずに第2界磁体に交錯するので、第2界磁
体の回転トルクを更に高効率で発生させることができ
る。
According to one embodiment, a pair of first field bodies are arranged on both sides of the second field body, thereby generating a rotational torque of the second field body with very high efficiency. According to one embodiment, each coil is adjacent to each other. In this case, since the magnetic field lines of each coil cross the second field body without passing through between the coils, the rotational torque of the second field body can be generated with higher efficiency.

【0061】一実施形態によれば、第1界磁体の鉄心又
は第2界磁体の鉄心若しくは永久磁石をコイル端縁まで
広げている。この場合、所要の磁路面積を確保するため
に第1界磁体の鉄心又は第2界磁体の鉄心若しくは永久
磁石はその軸方向の寸法を小さくすることができ、第2
界磁体の回転トルクを更に高効率で発生させることがで
きる。また、第1界磁体の鉄心又は第2界磁体の鉄心若
しくは永久磁石はその軸方向の寸法を変えない場合には
磁路面積を大きくすることができ、第2界磁体の回転ト
ルクを更に高効率で発生させることができる。
According to one embodiment, the core of the first field member, the core of the second field member, or the permanent magnet is extended to the coil edge. In this case, in order to secure a required magnetic path area, the core of the first field body, the core of the second field body, or the permanent magnet can be reduced in axial dimension.
The rotation torque of the field body can be generated with higher efficiency. Further, the core of the first field member, the core of the second field member, or the permanent magnet can have a large magnetic path area if the axial dimension is not changed, and the rotational torque of the second field member can be further increased. It can be generated with efficiency.

【0062】一実施形態によれば、第1界磁体の鉄心又
は第2界磁体の鉄心を珪素鋼板で形成した。この場合、
珪素鋼板は高い磁束飽和密度を持っているため、第1界
磁体又は第2界磁体を軸方向に薄型に形成しても磁束が
通り易くなり、トルクアップを図ることができる。
According to one embodiment, the iron core of the first field member or the iron core of the second field member is formed of a silicon steel plate. in this case,
Since the silicon steel sheet has a high magnetic flux saturation density, even if the first field member or the second field member is formed thin in the axial direction, the magnetic flux can easily pass therethrough, and the torque can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の軸方向間隙型永久磁石同期機の第1の
実施形態を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing a first embodiment of an axial gap type permanent magnet synchronous machine of the present invention.

【図2】図1の同期機を示す断面図である。FIG. 2 is a sectional view showing the synchronous machine of FIG. 1;

【図3】図1の同期機における固定子を示す平面図であ
る。
FIG. 3 is a plan view showing a stator in the synchronous machine of FIG.

【図4】図2のA−Aに沿って切断して各固定子及び可
動子を示す断面図である。
FIG. 4 is a cross-sectional view taken along line AA of FIG. 2 and showing each stator and mover.

【図5】図1の同期機における可動子を示す平面図であ
る。
FIG. 5 is a plan view showing a mover in the synchronous machine shown in FIG. 1;

【図6A】(a)〜(f)は、本実施形態の同期機にお
ける可動子の回転行程を概略的に示す図である。
FIGS. 6A to 6F are diagrams schematically showing a rotation process of a mover in the synchronous machine of the present embodiment.

【図6B】(g)〜(l)は、図6Aに引き続く可動子
の回転行程を概略的に示す図である。
FIGS. 6G to 6L are diagrams schematically showing a rotation process of the mover subsequent to FIG. 6A.

【図7】図1の同期機の変形例を示す部分断面図であ
る。
FIG. 7 is a partial sectional view showing a modification of the synchronous machine of FIG. 1;

【図8】図1の同期機の他の変形例を示す部分断面図で
ある。
FIG. 8 is a partial sectional view showing another modification of the synchronous machine of FIG.

【図9】図1の同期機の他の変形例を示す部分断面図で
ある。
FIG. 9 is a partial sectional view showing another modification of the synchronous machine of FIG. 1;

【図10】図1の同期機の他の変形例を示す部分断面図
である。
FIG. 10 is a partial sectional view showing another modification of the synchronous machine of FIG.

【図11】従来の同期機を示す斜視図である。FIG. 11 is a perspective view showing a conventional synchronous machine.

【図12】従来の他の同期機を示す斜視図である。FIG. 12 is a perspective view showing another conventional synchronous machine.

【符号の説明】[Explanation of symbols]

1…軸方向間隙型永久磁石同期機、2,3…固定子、4
…可動子、5…軸、6,7…ベアリング軸受け、8…フ
レーム、11…コイル、12…鉄心、12d,33d,
52,57…ヨーク部分、21…枠、22…永久磁石、
23…鉄心、32a…永久磁石、33,50,55…鉄
心。
Reference numeral 1: axial gap type permanent magnet synchronous machine, 2, 3: stator, 4
… Movable element, 5… axis, 6,7… bearing bearing, 8… frame, 11… coil, 12… iron core, 12d, 33d,
52, 57: yoke portion, 21: frame, 22: permanent magnet,
23: iron core, 32a: permanent magnet, 33, 50, 55: iron core.

フロントページの続き (72)発明者 藤 隆地 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 平子 勝 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 諏訪 浩二 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 後藤 一裕 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 永松 茂隆 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 Fターム(参考) 5H621 BB01 GA01 GA04 HH01 5H622 CA02 CA06 CB01 CB04 Continuing on the front page (72) Inventor Takachi Fuji Fuji Toyota 1 Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Masaru Hirako 1 Toyota Town Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Koji Suwa 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Kazuhiro Goto 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Shigetaka Nagamatsu Toyota, Aichi Prefecture 1 Toyota Town, Toyota Motor Corporation F-term (reference) 5H621 BB01 GA01 GA04 HH01 5H622 CA02 CA06 CB01 CB04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 コイルを有する円板状の第1界磁体と磁
石を有する円板状の第2界磁体とを備え、該第1及び第
2界磁体を軸の方向に間隙を設けて対向配置した軸方向
間隙型永久磁石同期機において、 前記第1界磁体は、扇形の複数のコイル及び該各コイル
の鉄心を有し、扇形の該各コイルを円板状に配列してな
り、 前記第2界磁体は、扇形の複数の永久磁石及び扇形の複
数の鉄心を有し、扇形の該各永久磁石と該各鉄心を交互
にかつ円板状に配列し、前記第1界磁体に対向する該各
永久磁石の磁極面をS極とN極に交互に着磁してなる軸
方向間隙型永久磁石同期機。
1. A disc-shaped first field body having a coil and a disc-shaped second field body having a magnet, and the first and second field bodies are opposed to each other with a gap provided in the axial direction. In the arranged axial gap type permanent magnet synchronous machine, the first field body has a plurality of fan-shaped coils and an iron core of each of the coils, and the fan-shaped coils are arranged in a disk shape. The second field body has a plurality of sector-shaped permanent magnets and a plurality of sector-shaped iron cores, and the sector-shaped permanent magnets and the iron cores are alternately arranged in a disk shape, and are opposed to the first field body. An axial gap type permanent magnet synchronous machine in which the magnetic pole surfaces of the permanent magnets are alternately magnetized to S poles and N poles.
【請求項2】 コイルを有する円板状の第1界磁体と磁
石を有する円板状の第2界磁体とを備え、該第1及び第
2界磁体を軸の方向に間隙を設けて対向配置した軸方向
間隙型永久磁石同期機において、 前記第1界磁体は、複数のコイル及び該各コイルの鉄心
を有し、該各コイルを円板状に配列してなり、 前記第2界磁体は、複数の永久磁石及び複数の鉄心を有
し、該各永久磁石と該各鉄心を交互にかつ円板状に配列
し、前記第1界磁体に対向する該各永久磁石の磁極面を
S極とN極に交互に着磁してなる軸方向間隙型永久磁石
同期機。
2. A disk-shaped first field body having a coil and a disk-shaped second field body having a magnet, and the first and second field bodies are opposed to each other with a gap provided in the axial direction. In the arranged axial gap type permanent magnet synchronous machine, the first field body has a plurality of coils and an iron core of each of the coils, and the coils are arranged in a disk shape, and the second field body is provided. Has a plurality of permanent magnets and a plurality of iron cores, the permanent magnets and the iron cores are alternately arranged in a disk shape, and the pole face of each of the permanent magnets facing the first field member is defined as S. An axial gap type permanent magnet synchronous machine that is magnetized alternately to poles and N poles.
【請求項3】 前記各コイルの数と前記各永久磁石の数
の比が3:2である請求項1又は請求項2に記載の軸方
向間隙型永久磁石同期機。
3. The permanent magnet synchronous machine according to claim 1, wherein the ratio of the number of the coils to the number of the permanent magnets is 3: 2.
【請求項4】 前記第2界磁体の周方向における該第2
界磁体の各永久磁石の幅は、該周方向における該第2界
磁体の各鉄心の幅よりも広い請求項1又は請求項2に記
載の軸方向間隙型永久磁石同期機。
4. The second field member in a circumferential direction of the second field member.
The permanent magnet synchronous machine according to claim 1 or 2, wherein a width of each permanent magnet of the field body is wider than a width of each iron core of the second field body in the circumferential direction.
【請求項5】 前記第1界磁体として一対の第1界磁体
を備え、該各第1界磁体を前記第2界磁体の両側に配置
した請求項1又は請求項2に記載の軸方向間隙型永久磁
石同期機。
5. The axial gap according to claim 1, wherein a pair of first field bodies is provided as the first field body, and each of the first field bodies is arranged on both sides of the second field body. Type permanent magnet synchronous machine.
【請求項6】 円板状に配列された扇形の前記各コイル
は、隣合うもの同士で隣接する請求項1に記載の軸方向
間隙型永久磁石同期機。
6. The axial gap type permanent magnet synchronous machine according to claim 1, wherein the fan-shaped coils arranged in a disk shape are adjacent to each other.
【請求項7】 前記第1界磁体の鉄心のヨーク部分又は
第2界磁体の鉄心のヨーク部分若しくは永久磁石をコイ
ル端縁まで広げた請求項1又は請求項2に記載の軸方向
間隙型永久磁石同期機。
7. The axial gap type permanent magnet according to claim 1, wherein the yoke portion of the core of the first field member, the yoke portion of the core of the second field member, or the permanent magnet is extended to the coil edge. Magnet synchronous machine.
【請求項8】 前記第1界磁体の鉄心又は第2界磁体の
鉄心を珪素鋼板で形成した請求項7に記載の軸方向間隙
型永久磁石同期機。
8. The permanent magnet synchronous machine according to claim 7, wherein the core of the first field member or the core of the second field member is formed of a silicon steel plate.
JP2000210006A 1999-08-26 2000-07-11 Axially-spaced permanent magnet synchronous machine Pending JP2001136721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210006A JP2001136721A (en) 1999-08-26 2000-07-11 Axially-spaced permanent magnet synchronous machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24060499 1999-08-26
JP11-240604 1999-08-26
JP2000210006A JP2001136721A (en) 1999-08-26 2000-07-11 Axially-spaced permanent magnet synchronous machine

Publications (1)

Publication Number Publication Date
JP2001136721A true JP2001136721A (en) 2001-05-18

Family

ID=26534813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210006A Pending JP2001136721A (en) 1999-08-26 2000-07-11 Axially-spaced permanent magnet synchronous machine

Country Status (1)

Country Link
JP (1) JP2001136721A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012956A1 (en) * 2001-07-31 2003-02-13 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine
JP2005506820A (en) * 2001-10-18 2005-03-03 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Axial flux permanent magnet generator / motor
JP2005094955A (en) * 2003-09-18 2005-04-07 Toyota Central Res & Dev Lab Inc Axial permanent magnet motor
JP2006014563A (en) * 2004-06-29 2006-01-12 Nissan Motor Co Ltd Structure of rotor for disc-shaped rotating electric machine, and manufacturing method therefor
JP2006174554A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Rotor structure for axial gap type dynamo-electric machine
WO2006077812A1 (en) * 2005-01-19 2006-07-27 Daikin Industries, Ltd. Rotor, axial gap type motor, motor driving method, and compressor
JP2006304474A (en) * 2005-04-20 2006-11-02 Fujitsu General Ltd Axial air-gap type electric motor
CN1312832C (en) * 2001-12-17 2007-04-25 乐金电子(天津)电器有限公司 Disk type motor
JP2007267599A (en) * 2005-01-19 2007-10-11 Daikin Ind Ltd Rotor, axial gap type motor, driving method of motor, compressor
JP2007267598A (en) * 2005-01-19 2007-10-11 Daikin Ind Ltd Rotor, axial gap type motor, driving method of motor, compressor
JP2007330092A (en) * 2006-05-12 2007-12-20 Daikin Ind Ltd Axial gap type motor and compressor
WO2008007501A1 (en) 2006-07-14 2008-01-17 Daikin Industries, Ltd. Field element
JPWO2005112231A1 (en) * 2004-05-18 2008-03-27 セイコーエプソン株式会社 Electric motor
WO2008068977A1 (en) 2006-12-06 2008-06-12 Honda Motor Co., Ltd. Axial gap motor
JP2008172884A (en) * 2007-01-10 2008-07-24 Honda Motor Co Ltd Axial gap type motor and motor-driven power steering device
JP2008172918A (en) * 2007-01-11 2008-07-24 Daikin Ind Ltd Axial gap type motor and compressor
JP2008172859A (en) * 2007-01-09 2008-07-24 Daikin Ind Ltd Axial gap type motor and compressor
JP2008187863A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Axial gap rotary electric machine and compressor
JP2008219993A (en) * 2007-03-01 2008-09-18 Daikin Ind Ltd Axial gap type rotary electric machine and compressor
EP1978632A1 (en) 2007-04-04 2008-10-08 Honda Motor Co., Ltd Controller for Motor
EP1981162A2 (en) 2007-04-04 2008-10-15 Honda Motor Co., Ltd Controller of electric motor
EP1981163A2 (en) 2007-04-04 2008-10-15 Honda Motor Co., Ltd Controller of electric motor
WO2008129902A1 (en) 2007-04-17 2008-10-30 Honda Motor Co., Ltd. Axial gap motor
WO2008129904A1 (en) 2007-04-13 2008-10-30 Honda Motor Co., Ltd. Controller for motor
EP2019473A1 (en) 2007-07-24 2009-01-28 Honda Motor Co., Ltd Motor controller
EP2020334A3 (en) * 2007-08-03 2009-02-25 Honda Motor Co., Ltd Motor controller
WO2009028266A1 (en) 2007-08-29 2009-03-05 Honda Motor Co., Ltd. Axial gap type motor
WO2009044799A1 (en) 2007-10-04 2009-04-09 Honda Motor Co., Ltd. Axial gap motor
JP2009118550A (en) * 2007-11-01 2009-05-28 Honda Motor Co Ltd Axial gap type motor
JP2009118551A (en) * 2007-11-01 2009-05-28 Honda Motor Co Ltd Axial gap motor
JP2009296702A (en) * 2008-06-02 2009-12-17 Honda Motor Co Ltd Axial gap type motor
JP2010115017A (en) * 2008-11-06 2010-05-20 Daikin Ind Ltd Axial-gap rotary electric machine
US7737594B2 (en) 2006-12-01 2010-06-15 Honda Motor Co., Ltd. Axial gap type motor
JP2010158168A (en) * 2010-04-15 2010-07-15 Daikin Ind Ltd Axial gap rotary motor and method of manufacturing the same
WO2010087066A1 (en) * 2009-01-28 2010-08-05 本田技研工業株式会社 Axial gap motor
US7906883B2 (en) 2008-06-02 2011-03-15 Honda Motor Co., Ltd. Axial gap motor
US7919897B2 (en) 2008-10-09 2011-04-05 Honda Motor Co., Ltd. Axial gap type motor
WO2011046108A1 (en) * 2009-10-16 2011-04-21 国立大学法人北海道大学 Axial gap motor
US7977843B2 (en) 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
US8049389B2 (en) 2008-06-02 2011-11-01 Honda Motor Co., Ltd. Axial gap motor
US8058762B2 (en) 2005-01-19 2011-11-15 Daikin Industries, Ltd. Rotor, axial gap type motor, method of driving motor, and compressor
US8131413B2 (en) * 2007-09-25 2012-03-06 Max Power Motors, Llc Electric motor and conversion system for manually powered vehicles
DE112009004303T5 (en) 2009-01-30 2012-05-24 Honda Motor Co., Ltd. Axial string motor and method of manufacturing a rotor for same
US8283829B2 (en) 2007-06-26 2012-10-09 Honda Motor Co., Ltd. Axial gap motor
JP2012241763A (en) * 2011-05-17 2012-12-10 Katsuhiro Hirata Magnetic transmission device
WO2013073416A1 (en) * 2011-11-15 2013-05-23 Kobayashi Kazuaki Dynamo-electric machine
US20140054998A1 (en) * 2012-08-21 2014-02-27 Samsung Electronics Co., Ltd. Rotor and electric motor including the same
JP2014155373A (en) * 2013-02-12 2014-08-25 Denso Corp Multi-gap rotary electric machine
US8981615B2 (en) 2012-10-19 2015-03-17 Industrial Technology Research Institute Wound stator core
JP2017028790A (en) * 2015-07-17 2017-02-02 小林 和明 Rotary electric machine
CN108539944A (en) * 2018-05-03 2018-09-14 包头天工电机有限公司 Desk permanent-magnet synchronizes exhaust blower motor
CN109462318A (en) * 2018-11-06 2019-03-12 东南大学 A kind of magnet structure axial stator iron-core less motor
JP2019080453A (en) * 2017-10-26 2019-05-23 株式会社神戸製鋼所 Axial flux type dynamo-electric machine
CN111458402A (en) * 2020-03-31 2020-07-28 中国航发动力股份有限公司 Induction current device

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145277B2 (en) 2001-07-31 2006-12-05 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine for a permanent magnet synchronous motor
EP1895638A2 (en) * 2001-07-31 2008-03-05 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine
WO2003012956A1 (en) * 2001-07-31 2003-02-13 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine
US7259488B2 (en) 2001-07-31 2007-08-21 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine
CN100449908C (en) * 2001-07-31 2009-01-07 雅马哈发动机株式会社 Rotary electric machine
EP1895638A3 (en) * 2001-07-31 2008-05-21 Yamaha Hatsudoki Kabushiki Kaisha Rotary electric machine
JP2005506820A (en) * 2001-10-18 2005-03-03 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Axial flux permanent magnet generator / motor
CN1312832C (en) * 2001-12-17 2007-04-25 乐金电子(天津)电器有限公司 Disk type motor
JP2005094955A (en) * 2003-09-18 2005-04-07 Toyota Central Res & Dev Lab Inc Axial permanent magnet motor
US7501733B2 (en) 2004-05-18 2009-03-10 Seiko Epson Corporation Electric machine
US7884517B2 (en) 2004-05-18 2011-02-08 Seiko Epson Corporation Electric machine
JPWO2005112231A1 (en) * 2004-05-18 2008-03-27 セイコーエプソン株式会社 Electric motor
JP2006014563A (en) * 2004-06-29 2006-01-12 Nissan Motor Co Ltd Structure of rotor for disc-shaped rotating electric machine, and manufacturing method therefor
JP4608967B2 (en) * 2004-06-29 2011-01-12 日産自動車株式会社 Rotor structure and rotor manufacturing method for disk-type rotating electrical machine
JP2006174554A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Rotor structure for axial gap type dynamo-electric machine
JP4613599B2 (en) * 2004-12-14 2011-01-19 日産自動車株式会社 Rotor structure of axial gap type rotating electrical machine
WO2006077812A1 (en) * 2005-01-19 2006-07-27 Daikin Industries, Ltd. Rotor, axial gap type motor, motor driving method, and compressor
KR100904353B1 (en) * 2005-01-19 2009-06-23 다이킨 고교 가부시키가이샤 Rotor, axial gap type motor, motor driving method, and compressor
JPWO2006077812A1 (en) * 2005-01-19 2008-06-19 ダイキン工業株式会社 Rotor, motor driving method, compressor
JP2007267598A (en) * 2005-01-19 2007-10-11 Daikin Ind Ltd Rotor, axial gap type motor, driving method of motor, compressor
JP2007267599A (en) * 2005-01-19 2007-10-11 Daikin Ind Ltd Rotor, axial gap type motor, driving method of motor, compressor
US8058762B2 (en) 2005-01-19 2011-11-15 Daikin Industries, Ltd. Rotor, axial gap type motor, method of driving motor, and compressor
JP4702286B2 (en) * 2005-01-19 2011-06-15 ダイキン工業株式会社 Rotor, motor driving method, compressor
JP2006304474A (en) * 2005-04-20 2006-11-02 Fujitsu General Ltd Axial air-gap type electric motor
JP4720982B2 (en) * 2005-04-20 2011-07-13 株式会社富士通ゼネラル Axial air gap type electric motor
JP2007330092A (en) * 2006-05-12 2007-12-20 Daikin Ind Ltd Axial gap type motor and compressor
AU2007273704B8 (en) * 2006-07-14 2011-06-23 Daikin Industries, Ltd. Magnetic field element
US7973443B2 (en) 2006-07-14 2011-07-05 Daikin Industries, Ltd. Magnetic field element
AU2007273704A8 (en) * 2006-07-14 2011-06-23 Daikin Industries, Ltd. Magnetic field element
WO2008007501A1 (en) 2006-07-14 2008-01-17 Daikin Industries, Ltd. Field element
CN101454961B (en) * 2006-07-14 2012-05-23 大金工业株式会社 Field element
AU2007273704B2 (en) * 2006-07-14 2011-06-09 Daikin Industries, Ltd. Magnetic field element
US7737594B2 (en) 2006-12-01 2010-06-15 Honda Motor Co., Ltd. Axial gap type motor
WO2008068977A1 (en) 2006-12-06 2008-06-12 Honda Motor Co., Ltd. Axial gap motor
US20100141075A1 (en) * 2006-12-06 2010-06-10 Honda Motor Co., Ltd Axial gap motor
JP2008172859A (en) * 2007-01-09 2008-07-24 Daikin Ind Ltd Axial gap type motor and compressor
JP2008172884A (en) * 2007-01-10 2008-07-24 Honda Motor Co Ltd Axial gap type motor and motor-driven power steering device
JP2008172918A (en) * 2007-01-11 2008-07-24 Daikin Ind Ltd Axial gap type motor and compressor
JP2008187863A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Axial gap rotary electric machine and compressor
JP2008219993A (en) * 2007-03-01 2008-09-18 Daikin Ind Ltd Axial gap type rotary electric machine and compressor
EP1978632A1 (en) 2007-04-04 2008-10-08 Honda Motor Co., Ltd Controller for Motor
US7898200B2 (en) 2007-04-04 2011-03-01 Honda Motor Co., Ltd. Controller of electric motor
EP1981163A2 (en) 2007-04-04 2008-10-15 Honda Motor Co., Ltd Controller of electric motor
EP1981163A3 (en) * 2007-04-04 2009-07-08 Honda Motor Co., Ltd Controller of electric motor
US7898199B2 (en) 2007-04-04 2011-03-01 Honda Motor Co., Ltd. Controller for motor
EP1981162A3 (en) * 2007-04-04 2009-05-06 Honda Motor Co., Ltd Controller of electric motor
EP1981162A2 (en) 2007-04-04 2008-10-15 Honda Motor Co., Ltd Controller of electric motor
US7872440B2 (en) 2007-04-04 2011-01-18 Honda Motor Co., Ltd. Controller of electric motor
US8604739B2 (en) 2007-04-13 2013-12-10 Honda Motor Co., Ltd. Vector control for an axial gap motor
WO2008129904A1 (en) 2007-04-13 2008-10-30 Honda Motor Co., Ltd. Controller for motor
US8035266B2 (en) 2007-04-17 2011-10-11 Honda Motor Co., Ltd. Axial gap motor
WO2008129902A1 (en) 2007-04-17 2008-10-30 Honda Motor Co., Ltd. Axial gap motor
US8283829B2 (en) 2007-06-26 2012-10-09 Honda Motor Co., Ltd. Axial gap motor
US7999501B2 (en) 2007-07-24 2011-08-16 Honda Motor Co., Ltd. Motor controller
EP2019473A1 (en) 2007-07-24 2009-01-28 Honda Motor Co., Ltd Motor controller
EP2020334A3 (en) * 2007-08-03 2009-02-25 Honda Motor Co., Ltd Motor controller
US8040093B2 (en) 2007-08-03 2011-10-18 Honda Motor Co., Ltd. Motor controller
WO2009028266A1 (en) 2007-08-29 2009-03-05 Honda Motor Co., Ltd. Axial gap type motor
US8053942B2 (en) 2007-08-29 2011-11-08 Honda Motor Co., Ltd. Axial gap motor
US8131413B2 (en) * 2007-09-25 2012-03-06 Max Power Motors, Llc Electric motor and conversion system for manually powered vehicles
WO2009044799A1 (en) 2007-10-04 2009-04-09 Honda Motor Co., Ltd. Axial gap motor
US8040008B2 (en) 2007-10-04 2011-10-18 Honda Motor Co., Ltd. Axial gap motor
US7977843B2 (en) 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
JP2009118551A (en) * 2007-11-01 2009-05-28 Honda Motor Co Ltd Axial gap motor
JP2009118550A (en) * 2007-11-01 2009-05-28 Honda Motor Co Ltd Axial gap type motor
US7906883B2 (en) 2008-06-02 2011-03-15 Honda Motor Co., Ltd. Axial gap motor
JP2009296702A (en) * 2008-06-02 2009-12-17 Honda Motor Co Ltd Axial gap type motor
US8049389B2 (en) 2008-06-02 2011-11-01 Honda Motor Co., Ltd. Axial gap motor
US7919897B2 (en) 2008-10-09 2011-04-05 Honda Motor Co., Ltd. Axial gap type motor
JP2010115017A (en) * 2008-11-06 2010-05-20 Daikin Ind Ltd Axial-gap rotary electric machine
WO2010087066A1 (en) * 2009-01-28 2010-08-05 本田技研工業株式会社 Axial gap motor
CN102301565A (en) * 2009-01-28 2011-12-28 本田技研工业株式会社 Axial gap motor
JP2010178472A (en) * 2009-01-28 2010-08-12 Honda Motor Co Ltd Axial gap motor
US8304949B2 (en) 2009-01-28 2012-11-06 Honda Motor Co., Ltd. Axial gap motor
DE112009004303T5 (en) 2009-01-30 2012-05-24 Honda Motor Co., Ltd. Axial string motor and method of manufacturing a rotor for same
US8395292B2 (en) 2009-01-30 2013-03-12 Honda Motor Co., Ltd. Axial gap motor and method of manufacturing rotor for same
EP2490319A1 (en) * 2009-10-16 2012-08-22 National University Corporation Hokkaido University Axial gap motor
US20120262022A1 (en) * 2009-10-16 2012-10-18 National University Corporation Hokkaido University Axial gap motor
US9490685B2 (en) 2009-10-16 2016-11-08 National University Corporation Hokkaido University Axial gap motor using non-rare-earth magnets
WO2011046108A1 (en) * 2009-10-16 2011-04-21 国立大学法人北海道大学 Axial gap motor
EP2490319A4 (en) * 2009-10-16 2017-05-10 National University Corporation Hokkaido University Axial gap motor
JP5673959B2 (en) * 2009-10-16 2015-02-18 国立大学法人北海道大学 Axial gap motor
JP2010158168A (en) * 2010-04-15 2010-07-15 Daikin Ind Ltd Axial gap rotary motor and method of manufacturing the same
JP2012241763A (en) * 2011-05-17 2012-12-10 Katsuhiro Hirata Magnetic transmission device
WO2013073416A1 (en) * 2011-11-15 2013-05-23 Kobayashi Kazuaki Dynamo-electric machine
JP2013106462A (en) * 2011-11-15 2013-05-30 Kazuaki Kobayashi Rotary electric machine
US20140054998A1 (en) * 2012-08-21 2014-02-27 Samsung Electronics Co., Ltd. Rotor and electric motor including the same
US10008890B2 (en) * 2012-08-21 2018-06-26 Samsung Electronics Co., Ltd. Rotor and electric motor including the same
US8981615B2 (en) 2012-10-19 2015-03-17 Industrial Technology Research Institute Wound stator core
JP2014155373A (en) * 2013-02-12 2014-08-25 Denso Corp Multi-gap rotary electric machine
JP2017028790A (en) * 2015-07-17 2017-02-02 小林 和明 Rotary electric machine
JP2019080453A (en) * 2017-10-26 2019-05-23 株式会社神戸製鋼所 Axial flux type dynamo-electric machine
CN108539944A (en) * 2018-05-03 2018-09-14 包头天工电机有限公司 Desk permanent-magnet synchronizes exhaust blower motor
CN108539944B (en) * 2018-05-03 2024-02-27 包头天工电机有限公司 Disk type permanent magnet synchronous exhaust fan motor
CN109462318A (en) * 2018-11-06 2019-03-12 东南大学 A kind of magnet structure axial stator iron-core less motor
CN111458402A (en) * 2020-03-31 2020-07-28 中国航发动力股份有限公司 Induction current device
CN111458402B (en) * 2020-03-31 2023-08-29 中国航发动力股份有限公司 Induced current device

Similar Documents

Publication Publication Date Title
JP2001136721A (en) Axially-spaced permanent magnet synchronous machine
US6172438B1 (en) Two-phase permanent-magnet electric rotating machine
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
JP2005143276A (en) Axial gap rotating electric machine
JP5610989B2 (en) Rotating motor
JP2005527176A (en) Rotary electric motor having a plurality of diagonal stator poles and / or rotor poles
JP5726386B1 (en) Permanent magnet motor rotor
JP2000308287A (en) Permanent magnet embedded reluctance motor
WO2021131071A1 (en) Hybrid-field double-gap synchronous machine and drive system
JPH11206085A (en) Permanent magnet motor
JPH0479741A (en) Permanent magnet rotor
JP2010136462A (en) Hybrid type two-phase permanent magnet rotating electrical machine
JPH0775302A (en) Ring-shaped coil type three-phase claw pole type permanent magnet type electric rotary machine
JP2006166634A (en) Rotor structure for axial gap type dynamo-electric machine
JP2021010211A (en) Rotary electric machine and rotary electric machine manufacturing method
JP2004350492A (en) Electrical machine of axial-flow structure type
JP2005348572A (en) Rotor structure of axial gap rotating electric machine
JP2000125533A (en) Motor
JPH06327206A (en) Pm type synchronous motor
JP3229593U (en) Motor using permanent magnet
JP3229592U (en) Motor using permanent magnet
JP3228782U (en) Motor using permanent magnet
JP7284503B2 (en) Variable magnetic force motor
JP2009219194A (en) Rotary electric machine
JPH0928066A (en) Rotating machine