JP2001124062A - Tilting pad bearing device - Google Patents

Tilting pad bearing device

Info

Publication number
JP2001124062A
JP2001124062A JP29916499A JP29916499A JP2001124062A JP 2001124062 A JP2001124062 A JP 2001124062A JP 29916499 A JP29916499 A JP 29916499A JP 29916499 A JP29916499 A JP 29916499A JP 2001124062 A JP2001124062 A JP 2001124062A
Authority
JP
Japan
Prior art keywords
bearing
pad
pivot
load
bearing pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29916499A
Other languages
Japanese (ja)
Inventor
Tomoaki Inoue
知昭 井上
Makoto Henmi
真 辺見
Masaaki Nakano
正昭 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29916499A priority Critical patent/JP2001124062A/en
Publication of JP2001124062A publication Critical patent/JP2001124062A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/03Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing which can prevents deformation of a bearing pad without being affected by load fluctuation, in a rotating machine in which bearing load is changed due to an operating condition. SOLUTION: In the bearing, half-divided upper half bearing and lower half bearing constitute a journal bearing. Bearing pads in which lining of bearing alloy such as white metal is applied to its surface are disposed on the upper half bearing and the lower half bearing. Load is applied in a vertical direction, the lower half bearing 2 is provided with split surface oil feeding grooves, the oil feeding grooves respectively have oil feeding holes communicating therewith, and an lubricating oil is uniformly supplied to a bearing pad sliding surface. A bearing pad back surface is provided with a positioning groove, a contact between the positioning groove and a pivot is formed into a ring shape, and a spherical surface is provided at a bearing case side of the pivot.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回転体を支持する軸
受の構造に係り、特に、高荷重の回転体を支持し、かつ
不安定振動の発生を未然に防止するティルティングパッ
ド軸受に関り、軸受パッド変形を防止することを目的と
した軸受パッド背面に配置されるピボット構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing structure for supporting a rotating body, and more particularly to a tilting pad bearing for supporting a rotating body having a high load and preventing occurrence of unstable vibration. The present invention relates to a pivot structure disposed on the back of a bearing pad for the purpose of preventing deformation of the bearing pad.

【0002】[0002]

【従来の技術】従来より、火力プラント等の多スパンで
軸の固有振動数が比較的低い大形回転体を支持する軸受
には、自励振動を防止する目的から楕円軸受が一般的に
用いられている。オイルホイップは軸受荷重が減少し
て、軸の偏心量が低下することにより軸・軸受系の安定
性が損なわれるため発生するものである。自励振動の防
止方法としては、連成項が小さく無視できるティルティ
ングパッド軸受を用いるのが一般的である。しかし、テ
ィルティングパッド軸受は耐荷重性が低い。そのため、
火力プラントのような大形回転機械では、特開昭58−
180814号公報や実開昭58−106616号公報
に記載の軸受のように、軸受パッド背面に球面形状のピ
ボットを配置し、かつ給油あるいは冷却のための湯溝を
設けて軸受パッドを冷却し耐荷重性を高めている。また
実公昭60−9459号公報に記載のように、ピボット
をばね支持構造とし、ピボットと軸受ケースあるいはピ
ボットと軸受パッドのフレッティング防止を図った構造
が提案されている。さらに、実公昭60−32427号
公報に記載の軸受のように、球面ピボットを軸受パッド
背面に嵌合し、ピボットとハウジング間にシムを挿入し
軸受すきまを調整する方法が取られている。
2. Description of the Related Art Conventionally, an elliptical bearing is generally used as a bearing for supporting a large rotating body having a relatively low natural frequency of a shaft in a multi-span, such as a thermal power plant, in order to prevent self-excited vibration. Have been. The oil whip is generated because the bearing load is reduced and the amount of eccentricity of the shaft is reduced, thereby impairing the stability of the shaft / bearing system. As a method for preventing self-excited vibration, it is common to use a tilting pad bearing that has a small coupled term and can be ignored. However, tilting pad bearings have low load bearing capacity. for that reason,
For large rotating machines such as thermal power plants,
As in the bearings disclosed in JP-A-180814 and JP-A-58-106616, a spherical pivot is arranged on the back surface of the bearing pad, and a lubrication groove for lubrication or cooling is provided to cool the bearing pad and to withstand it. Increases loadability. Further, as described in Japanese Utility Model Publication No. 60-9449, a structure is proposed in which the pivot is a spring supporting structure to prevent fretting between the pivot and the bearing case or between the pivot and the bearing pad. Further, as in the bearing described in Japanese Utility Model Publication No. Sho 60-32427, a method is adopted in which a spherical pivot is fitted to the back surface of a bearing pad, a shim is inserted between the pivot and the housing, and the bearing clearance is adjusted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術は、もともとティルティングパッド軸受は通常軽
荷重で使用されるため、ある程度の軸受荷重条件では軸
受特性が安定してはいるものの、軸受パッドの変形に関
しては考慮されておらず、高面圧化により軸受パッドの
熱及び荷重変形し耐荷重性が低下するために軸受荷重に
限界があり、高面圧条件では焼損を招く恐れもある。従
って、火力プラントのような多スパンロータの軸・軸受
系の回転機械では、アライメント調整により軸受荷重が
大幅に変化する場合や部分負荷運転により荷重変動があ
るため、上記発明においては、高荷重条件における耐荷
重性に関しては配慮されていない。
However, in the prior art described above, the tilting pad bearing is originally used under a light load, so that the bearing characteristics are stable under a certain bearing load condition, No consideration is given to deformation, and the bearing load is limited due to heat and load deformation of the bearing pad due to the increase in surface pressure and the load resistance is reduced, and burning may be caused under high surface pressure conditions. Therefore, in a rotating machine of a shaft / bearing system of a multi-span rotor such as a thermal power plant, since the bearing load greatly changes due to the alignment adjustment or the load fluctuates due to the partial load operation, in the above-mentioned invention, in the high load condition No consideration has been given to load bearing capacity.

【0004】本発明は以上の点に鑑み為されたもので、
高荷重条件でも軸受パッド変形を防止し、あらゆる荷重
条件でも安定性を確保すると共に焼損を防止できる軸受
を提供することを目的としている。
[0004] The present invention has been made in view of the above points,
An object of the present invention is to provide a bearing that can prevent bearing pad deformation even under high load conditions, secure stability under all load conditions, and prevent burnout.

【0005】[0005]

【課題を解決するための手段】オイルホィップ等の不安
定振動は、軽荷重条件で軸が浮上することにより発生し
する。ティルティングパッド軸受は通常耐荷重性はあま
り考慮されておらず、軸受パッドが軸の動きに追従でき
るようにピボットと軸受パッドの接触抵抗を減らす工夫
がなされている。従って、上記目的を達成するために本
発明においては、軽荷重条件においても高荷重条件にお
いても軸受パッドが変形しない構造とする。具体的に
は、軸受パッドを支持するピボット構造をピボットの球
面部を軸受ケース側に構成し、ピボットはリング形状又
は方形状に軸受パッドと接触するように構成する。
The unstable vibration of an oil whip or the like is caused by the shaft floating under a light load condition. Tilt pad bearings usually do not take into account much load-bearing capacity, and are designed to reduce the contact resistance between the pivot and the bearing pad so that the bearing pad can follow the movement of the shaft. Therefore, in order to achieve the above object, the present invention adopts a structure in which the bearing pad is not deformed even under a light load condition or a high load condition. Specifically, the pivot structure for supporting the bearing pad is configured such that the spherical portion of the pivot is provided on the bearing case side, and the pivot is configured to contact the bearing pad in a ring shape or a square shape.

【0006】上記のように構成された本発明の軸受では
軸受パッドの熱及び荷重による変形が相殺されるため、
荷重条件によらず軸受パッドの変形が防止できる。すな
わち軸受パッドの傾きにより発生する動圧はピボット位
置付近で最大となり、軸受パッド周方向並びに軸方向に
放物線状の圧力分布が構成される。この油膜圧力により
従来の軸受パッド支持構造ではピボットによる支点位置
が軸受パッドのほぼ中央であるため軸受パッドは凸変形
する。また、潤滑油のせん断トルクにより発生した熱に
より軸受パッドは、軸受パッド表面が温度が高く軸受パ
ッド背面14が低くなるため熱膨張によりやはり周方向
及び軸方向に凸変形する。これに対し本発明ではピボッ
トによる軸受パッドの拘束位置は軸受パッド中央から離
れた位置であるため、油膜圧力による荷重変形に対して
は凹変形となる。一方、潤滑油のせん断トルクによる熱
変形に対しては、従来と同じで凸変形する。従って荷重
変形と熱変形が逆となるため、変形が相殺されほぼ生支
持の形状を保つことが可能となる。
In the bearing of the present invention configured as described above, the deformation of the bearing pad due to heat and load is offset.
Deformation of the bearing pad can be prevented regardless of the load condition. That is, the dynamic pressure generated by the inclination of the bearing pad becomes maximum near the pivot position, and a parabolic pressure distribution is formed in the circumferential direction and the axial direction of the bearing pad. Due to this oil film pressure, in the conventional bearing pad supporting structure, the fulcrum position by the pivot is almost at the center of the bearing pad, so that the bearing pad is deformed convexly. Also, the bearing pad is deformed in the circumferential direction and the axial direction by thermal expansion because the surface of the bearing pad is high in temperature and the back surface 14 of the bearing pad is low due to the heat generated by the shearing torque of the lubricating oil. On the other hand, in the present invention, since the restraining position of the bearing pad by the pivot is away from the center of the bearing pad, the bearing pad is concavely deformed by the load deformation due to the oil film pressure. On the other hand, with respect to the thermal deformation due to the shear torque of the lubricating oil, the convex deformation occurs as in the conventional case. Accordingly, since the load deformation and the thermal deformation are reversed, the deformation is canceled and the shape of the raw support can be maintained substantially.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施例を、図面を
用いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0008】図1は本発明の1実施例を示す縦断面図、
図2は図1のAA断面図である。
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention,
FIG. 2 is an AA sectional view of FIG.

【0009】本実施例では、4パッドで荷重が軸受パッ
ド間に作用するLoad Between Padのティルティングパッ
ド軸受の例を示すが、他のティルティングパッド軸受で
も効果はほぼ同様である。軸1の荷重を支持するティル
ティングパッド軸受2は、半割形状で上半軸受ケース2
aと下半軸受ケース2b及び軸受パッド3で構成されて
いる。上半軸受ケース2aと下半軸受ケース2bは、ボ
ルト(図示せず)で締結され、ジャーナル軸受を構成して
いる。上半軸受ケース2aと下半軸受ケース2bに配置
された軸受パッド3は、表面をホワイトメタル等の軸受
材4がライニングされている。荷重は垂直方向に加わっ
ており、下半軸受ケース2bには割面5に給油溝6a、
6bが設けられており、給油溝6a、6bにそれぞれ連
通する給油孔7a、7bが設けられている。給油溝6
a、6bにより供給される潤滑油(図示せず)は軸受パッ
ド側面及び軸受パッド背面14を通過し、軸受パッド3
を冷却すると共に軸受パッド3間に均一に供給される。
また、潤滑油は図2に示すように、軸受ケース2a、2
bの軸方向端部に設けられたシール8により、軸受ケー
ス2a、2b内に保持されると共に余分な潤滑油はシー
ル隙間より該軸受2外に排出される。
In the present embodiment, an example of a tilting pad bearing of Load Between Pad in which a load acts between bearing pads with four pads is shown, but the effect is substantially the same with other tilting pad bearings. The tilting pad bearing 2 for supporting the load of the shaft 1 has a half-shape upper half bearing case 2.
a, the lower half bearing case 2 b and the bearing pad 3. The upper half bearing case 2a and the lower half bearing case 2b are fastened by bolts (not shown) to form a journal bearing. The bearing pads 3 arranged on the upper half bearing case 2a and the lower half bearing case 2b are lined with a bearing material 4 such as white metal on the surface. The load is applied in the vertical direction, and the lower half bearing case 2b has an oil supply groove 6a
6b, and oil supply holes 7a, 7b communicating with the oil supply grooves 6a, 6b, respectively. Oil supply groove 6
The lubricating oil (not shown) supplied by the a and 6b passes through the bearing pad side surface and the bearing pad back surface 14, and
Is cooled and supplied uniformly between the bearing pads 3.
Also, as shown in FIG.
By the seal 8 provided at the axial end of the bearing b, the lubricant is held in the bearing cases 2a and 2b and excess lubricating oil is discharged out of the bearing 2 through the seal gap.

【0010】次に、本発明のピボットの構造について説
明する。軸受パッド3を支持するピボット9は、軸受ケ
ース2a、2bの内周面9に設けられたピボット受10
にすきまを有して勘合されている。ピボット9は球面形
状で、軸受パッド3が容易に傾ける構造となっている。
また、軸受パッド3のピボット9との接触部の構造は、
図3に示すように、ピボット9との接触面14側(軸受
面13の反対側の面)を円形の接触部11(接触溝構
造)としている。ピボット9には、軸受パッド3と接触
する位置に位置ぎめ溝12(位置決め用のリング状の突
起部)が設けられている。
Next, the structure of the pivot of the present invention will be described. A pivot 9 for supporting the bearing pad 3 is provided on a pivot receiver 10 provided on the inner peripheral surface 9 of the bearing case 2a, 2b.
It is fitted with a clearance. The pivot 9 has a spherical shape, and has a structure in which the bearing pad 3 can be easily inclined.
The structure of the contact portion between the bearing pad 3 and the pivot 9 is as follows.
As shown in FIG. 3, the contact surface 14 side (the surface opposite to the bearing surface 13) with the pivot 9 is a circular contact portion 11 (contact groove structure). The pivot 9 is provided with a positioning groove 12 (positioning ring-shaped projection) at a position where it contacts the bearing pad 3.

【0011】以下本発明の実施例の作用効果について詳
細に説明する。図4は軸受パッド3に発生する動圧に関
する説明図である。
Hereinafter, the operation and effect of the embodiment of the present invention will be described in detail. FIG. 4 is an explanatory diagram relating to the dynamic pressure generated in the bearing pad 3.

【0012】軸受面13の動圧は軸受パッド3が傾斜
し、油膜が回転方向に狭くなるくさび形状位置で発生
し、荷重が小さくなると低い値で広範囲に発生するのに
対し、荷重が大きくなると発生範囲が狭くなる。圧力の
発生範囲は軸受パット3の全域で、軸受パッド3はピボ
ット9の支点で油膜圧力によるモーメントがバランスす
るような圧力分布となるためピボット9付近で最大とな
る。この油膜圧力による荷重はピボット9位置である軸
受パッド3中央部が最も大きく、端部にいくにしたがい
小さくなる。
The dynamic pressure on the bearing surface 13 is generated at a wedge-shaped position where the bearing pad 3 is inclined and the oil film becomes narrow in the rotation direction. When the load is reduced, the dynamic pressure is generated over a wide range at a low value, while when the load is increased. The range of occurrence is reduced. The range of pressure generation is the entire area of the bearing pad 3, and the bearing pad 3 has a pressure distribution such that the moment due to the oil film pressure is balanced at the fulcrum of the pivot 9, so that the pressure becomes maximum near the pivot 9. The load due to the oil film pressure is greatest at the center of the bearing pad 3 at the position of the pivot 9, and becomes smaller toward the end.

【0013】図5は軸受パッド周方向の変形を、図6は
軸方向の変形を示したものである。図中の破線は変形
前、実線は変形後を示している。
FIG. 5 shows the deformation in the bearing pad circumferential direction, and FIG. 6 shows the deformation in the axial direction. The broken line in the figure shows the state before deformation, and the solid line shows the state after deformation.

【0014】本発明による軸受パッド3は、軸受パッド
背面14の支持する位置は、ピボット9のリング状の接
触部12であるため、空間部11では荷重を受けない。
そのため、軸受パッド3は図5及び図6に示すように、
油膜圧力による荷重で凹変形する。
In the bearing pad 3 according to the present invention, since the bearing pad back surface 14 is supported by the ring-shaped contact portion 12 of the pivot 9, no load is applied to the space portion 11.
Therefore, as shown in FIG. 5 and FIG.
Deforms concavely due to load due to oil film pressure.

【0015】図7は油膜のせん断による発熱と該軸受パ
ッド3の温度分布を示したものである。また、図8に軸
受パッドの周方向変形を、図9に軸方向変形を示す。
FIG. 7 shows the heat generated by the shearing of the oil film and the temperature distribution of the bearing pad 3. FIG. 8 shows the deformation in the circumferential direction of the bearing pad, and FIG. 9 shows the deformation in the axial direction.

【0016】給油溝6a、6bより供給される潤滑油
は、複数設けられた各軸受パッド3間から軸受パッド3
の軸受面(軸受パッド摺動面13)に流入する。軸受パ
ッド3と軸1とで構成される軸受すきま内では図に示す
ように軸1側から軸受パッド3側に線形な速度分布とな
る。従って、この速度差により油膜は狭いすきま内でせ
ん断され発熱する。一方、軸受パッド3の側面及び軸受
パッド背面14は、給油溝6a、6bより供給される低
温の潤滑油により冷却されるため、軸受パッド3の温度
分布は周方向には入口側が低く、出口側が高い。また、
軸受パッド3の厚さ方向は軸受パッド摺動面13が高
く、軸受パッド背面14が低くなる。
The lubricating oil supplied from the oil supply grooves 6a and 6b is supplied from between the plurality of bearing pads 3 to the bearing pads 3.
Flows into the bearing surface (bearing pad sliding surface 13). In the bearing clearance formed by the bearing pad 3 and the shaft 1, a linear velocity distribution is formed from the shaft 1 side to the bearing pad 3 side as shown in the drawing. Accordingly, the oil film is sheared in the narrow gap and generates heat due to the speed difference. On the other hand, since the side surface of the bearing pad 3 and the back surface 14 of the bearing pad are cooled by the low-temperature lubricating oil supplied from the oil supply grooves 6a and 6b, the temperature distribution of the bearing pad 3 is low at the inlet side in the circumferential direction and low at the outlet side. high. Also,
In the thickness direction of the bearing pad 3, the bearing pad sliding surface 13 is high, and the bearing pad back surface 14 is low.

【0017】従って、軸受パッド3は、ピボット9と軸
受パッドの接触状態とは無関係に、温度差により軸受パ
ッド摺動面13と軸受パッド背面14の熱膨張差を生じ
凸変形する。ところで、通常軸受材料としては錫ベース
のホワイトメタルが使用されることが多い。ホワイトメ
タルを用いた場合は、錫の熱膨張率は該軸受パッド3の
裏金に使用される鉄に比べ大きいため、熱変形はより大
きくなる。軸受パッド3の摺動面温度は、高荷重になる
と油膜が薄くなるため高温となり、低荷重では油膜が厚
くなるため低くなる。この様に本発明では、油膜圧力に
よる荷重変形と軸受パッドの温度差による熱変形とが相
反する方向となるため変形が相殺され、変形を最小化す
ることができる。さらに、軸受の荷重が増加すると荷重
変形及び熱変形のいずれも大きくなり、荷重が低下する
とそれぞれの変形が小さくなるため、いずれの荷重条件
においても変形を最小化することができ、設計時の軸受
特性が維持される。
Therefore, the bearing pad 3 is convexly deformed due to a difference in thermal expansion between the bearing pad sliding surface 13 and the bearing pad back surface 14 due to a temperature difference irrespective of the contact state between the pivot 9 and the bearing pad. By the way, a tin-based white metal is often used as a bearing material. When a white metal is used, the thermal expansion of tin is larger than that of iron used for the back metal of the bearing pad 3, so that the thermal deformation becomes larger. The sliding surface temperature of the bearing pad 3 becomes high when the load becomes high because the oil film becomes thin, and becomes low when the load becomes low because the oil film becomes thick. As described above, in the present invention, since the load deformation due to the oil film pressure and the thermal deformation due to the temperature difference of the bearing pad are in opposite directions, the deformation is canceled out, and the deformation can be minimized. Further, when the load on the bearing increases, both the load deformation and the thermal deformation increase, and when the load decreases, the respective deformations decrease.Thus, the deformation can be minimized under any load condition, and the bearing at the time of design can be minimized. Characteristics are maintained.

【0018】これに対し、図10は従来構造の軸受パッ
ドの変形を示したものである。
FIG. 10 shows a deformation of a bearing pad having a conventional structure.

【0019】従来構造ではピボット9が軸受パッド背面
14に直接設けられているか、軸受ケース2aに設けら
れているかのいずれかであり、本図は後者の場合を示し
ている。本図の構造の場合、ピボット9と軸受パッド3
の接触位置は、軸受パッド3のほぼ中央一点である。こ
のため、油膜圧力による荷重変形は本発明と異なり、図
11に示すように凸変形となる。一方、熱変形は先に述
べたように、ピボット9の支点位置は無関係で図12に
示すように凸変形となるため、変形量がが増加する。さ
らに、軸受荷重が高面圧化されると、この傾向は更に増
加する。
In the conventional structure, the pivot 9 is provided either directly on the back surface 14 of the bearing pad or on the bearing case 2a. This figure shows the latter case. In the case of the structure of this figure, the pivot 9 and the bearing pad 3
Is located at one point substantially at the center of the bearing pad 3. Therefore, unlike the present invention, the load deformation due to the oil film pressure is a convex deformation as shown in FIG. On the other hand, the thermal deformation is convex deformation as shown in FIG. 12 irrespective of the fulcrum position of the pivot 9 as described above, so that the deformation amount increases. Further, when the bearing load is increased, the tendency is further increased.

【0020】図13はティルティングパッド軸受の変形
量と耐荷重性を示したもので、横軸は変形量、縦軸は変
形を0とした場合の負荷能力に対する変形後の負荷能力
の比をとって示したものである。
FIG. 13 shows the deformation amount and load resistance of the tilting pad bearing. The horizontal axis indicates the deformation amount, and the vertical axis indicates the ratio of the load capacity after deformation to the load capacity when the deformation is zero. It is shown.

【0021】ティルティングパッド軸受では、パッドの
変形が増加すると耐荷重性は著しく低下するため、従来
構造では高面圧の使用条件には適していない。
In the tilting pad bearing, the load resistance is remarkably reduced when the deformation of the pad is increased. Therefore, the conventional structure is not suitable for the use condition of high surface pressure.

【0022】また、本発明のピボット構造の他の実施例
を、図14及び図15に示す。
Another embodiment of the pivot structure of the present invention is shown in FIGS.

【0023】先に述べた、実施例では、ピボット9の接
触部の構造がリング状であったのに対し、本発明の実施
例ではその形状を方形としている。軸受パッド背面14
とピボット9との接触部は、方形の突起部12であり、
軸受パッド3の中央部がピボット9と接触していなけれ
ばよく、図15に示すように少なくとも4点の接触部が
確保されていれは荷重変形は凹変形となり、本発明の目
的が達成される。また、軸受パッド3とピボット9の接
触位置は運転条件(荷重、周速、潤滑油種)により設定
すればよく、接触部距離は周方向は該軸受パッド長さの
30〜70%、幅方向は30〜80%の範囲にとればあ
らゆる運転条件に対し、変形を最少にすることができ
る。
In the above-described embodiment, the structure of the contact portion of the pivot 9 is ring-shaped, whereas in the embodiment of the present invention, the shape is rectangular. Bearing pad back 14
The contact portion between the shaft 9 and the pivot 9 is a square protrusion 12,
The center portion of the bearing pad 3 need not be in contact with the pivot 9. If at least four contact portions are secured as shown in FIG. 15, the load deformation is concave, and the object of the present invention is achieved. . The contact position between the bearing pad 3 and the pivot 9 may be set according to the operating conditions (load, peripheral speed, type of lubricating oil), and the contact portion distance is 30 to 70% of the length of the bearing pad in the circumferential direction and the width direction. If it is in the range of 30-80%, deformation can be minimized for all operating conditions.

【0024】図16は本発明の他実施例を示す縦断面図
である。
FIG. 16 is a longitudinal sectional view showing another embodiment of the present invention.

【0025】軸1の荷重を支持するティルティングパッ
ド軸受2は半割形状で上半軸受ケース2aと下半軸受ケ
ース2b及び軸受パッド3で構成されており、ボルト
(図示せず)で上半軸受ケース2aと下半軸受ケース2b
が締結されジャーナル軸受を構成している。上半軸受ケ
ース2aと下半軸受ケース2bに配置された該軸受パッ
ド3は表面を熱膨張係数が小さいPEEK等の樹脂材料
の軸受材4がライニングされている。荷重は垂直方向に
加わっている。下半軸受ケース2bには割面5に給油溝
6a、6bが設けられており、給油溝6a、6bにそれ
ぞれ連通する給油孔7a、7bが設けられている。給油
溝6a、6bにより供給される潤滑油(図示せず)は軸受
パッド側面及び軸受パッド背面14を通過し、軸受パッ
ド3を冷却すると共に軸受パッド3間に均一に供給され
る。また、潤滑油は図2に示すように軸受ケース2a、
2bの軸方向端部に設けられたシール8により、軸受ケ
ース2a、2b内に保持されると共に余分な潤滑油はシ
ール隙間より軸受2外に排出される。
The tilting pad bearing 2 for supporting the load of the shaft 1 has a half-shape and is composed of an upper half bearing case 2a, a lower half bearing case 2b and a bearing pad 3, and a bolt
(Not shown) upper half bearing case 2a and lower half bearing case 2b
Are fastened to form a journal bearing. The bearing pads 3 arranged in the upper half bearing case 2a and the lower half bearing case 2b are lined with a bearing material 4 made of a resin material such as PEEK having a small thermal expansion coefficient on the surface. The load is applied vertically. The lower half bearing case 2b is provided with lubrication grooves 6a and 6b on the split surface 5, and is provided with lubrication holes 7a and 7b communicating with the lubrication grooves 6a and 6b, respectively. The lubricating oil (not shown) supplied by the oil supply grooves 6a and 6b passes through the bearing pad side surface and the bearing pad back surface 14, cools the bearing pad 3, and is uniformly supplied between the bearing pads 3. As shown in FIG. 2, the lubricating oil is applied to the bearing case 2a,
The seal 8 provided at the axial end of the bearing 2b holds the bearing inside the bearing cases 2a and 2b and discharges excess lubricating oil out of the bearing 2 through the seal gap.

【0026】次に本発明のピボット9の構造について説
明する。軸受パッド3を支持するピボット9は軸受ケー
ス2a、2bの内周面9に設けられたピボット受10に
嵌合されている。ピボット9は、軸受パッド背面14側
が球面形状となっている。また、軸受パッド3とピボッ
ト9は、直接接触しておらずスペーサ15を介して支持
されている。また、スペーサは、軸受パッド背面14に
設けられた位置ぎめ溝(突起)12に嵌合されており、
形状は前記実施例のピボット9の接触部と同じである本
発明によれば、先の実施例に比べ部品点数は増加するも
のの、各々の形状は賃純化されるため製作が容易になる
ほか、軸受材料に樹脂を用いているため、熱変形が緩和
され、より変形を防止できる。。
Next, the structure of the pivot 9 of the present invention will be described. The pivot 9 for supporting the bearing pad 3 is fitted to a pivot receiver 10 provided on the inner peripheral surface 9 of the bearing cases 2a, 2b. The pivot 9 has a spherical shape on the bearing pad back surface 14 side. Further, the bearing pad 3 and the pivot 9 are not in direct contact with each other, but are supported via the spacer 15. The spacer is fitted in a positioning groove (projection) 12 provided on the bearing pad back surface 14.
According to the present invention, the shape of which is the same as that of the contact portion of the pivot 9 in the above embodiment, although the number of parts is increased as compared with the previous embodiment, each shape is simplified so that the production becomes easy. Since resin is used for the bearing material, thermal deformation is reduced, and deformation can be further prevented. .

【0027】[0027]

【発明の効果】以上、詳細に説明したように本発明によ
れば、軸受パッドとピボットの接触部を、いかなる荷重
の変動に対しても熱と荷重による変形が相殺されるため
軸受パッド変形を最小化でき、軸受を高面圧化に適した
小型で安定性が高いティルティングパッド軸受が得られ
る。
As described in detail above, according to the present invention, the contact portion between the bearing pad and the pivot is subjected to the deformation of the bearing pad because the deformation due to the heat and the load is offset by any load fluctuation. A small and highly stable tilting pad bearing suitable for high bearing pressure can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の1実施例を示す縦断面図。FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention.

【図2】 図1のAA断面図。FIG. 2 is an AA sectional view of FIG.

【図3】 本発明の軸受パッドとピボットの分解図。FIG. 3 is an exploded view of the bearing pad and the pivot of the present invention.

【図4】 本発明の軸受パッドに加わる荷重の説明図。FIG. 4 is an explanatory view of a load applied to a bearing pad of the present invention.

【図5】 荷重による軸受パッド周方向の変形を示す
図。
FIG. 5 is a view showing deformation of a bearing pad in a circumferential direction due to a load.

【図6】 荷重による軸受パッド軸方向の変形を示す
図。
FIG. 6 is a diagram showing deformation of a bearing pad in the axial direction due to a load.

【図7】 本発明の軸受パッドに加わる熱の説明図。FIG. 7 is an explanatory diagram of heat applied to a bearing pad of the present invention.

【図8】 熱による軸受パッド周方向の変形を示す図。FIG. 8 is a diagram showing deformation of a bearing pad in a circumferential direction due to heat.

【図9】 熱による軸受パッド軸方向の変形を示す図。FIG. 9 is a diagram showing deformation of a bearing pad in the axial direction due to heat.

【図10】従来の軸受における圧力分布を示す図。FIG. 10 is a view showing a pressure distribution in a conventional bearing.

【図11】従来構造の軸受パッドの荷重による周方向変
形を示す図。
FIG. 11 is a diagram showing a circumferential deformation due to a load of a bearing pad having a conventional structure.

【図12】従来構造の軸受パッドの熱による周方向変形
を示す図。
FIG. 12 is a diagram showing circumferential deformation of a bearing pad of a conventional structure due to heat.

【図13】軸受パッドの変形と耐荷重性を示す図。FIG. 13 is a view showing deformation and load resistance of a bearing pad.

【図14】本発明の他のピボット形状実施例を示す図。FIG. 14 is a view showing another pivot shape embodiment of the present invention.

【図15】本発明の他のピボット形状実施例を示す図。FIG. 15 is a diagram showing another pivot shape embodiment of the present invention.

【図16】本発明の他の実施例を示す縦断面図。FIG. 16 is a longitudinal sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…軸、2…軸受、2a…上半軸受、ケース、2b…下
半軸受ケース、3…軸受パッド、4…軸受合金、5…割
面、6a、6b…給油溝、7a、7b…給油項、8…シ
ール、9…ピボット、10…ピボット受、11…位置ぎ
め溝、12…接触部、13…軸受パッド摺動面、14…
軸受パッド背面。
DESCRIPTION OF SYMBOLS 1 ... Shaft, 2 ... Bearing, 2a ... Upper half bearing, case, 2b ... Lower half bearing case, 3 ... Bearing pad, 4 ... Bearing alloy, 5 ... Split face, 6a, 6b ... Oil groove, 7a, 7b ... Oil supply Item, 8: seal, 9: pivot, 10: pivot receiver, 11: positioning groove, 12: contact portion, 13: bearing pad sliding surface, 14:
Bearing pad back.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲野 正昭 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 3J011 AA08 BA15 BA17 SC01  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masaaki Nakano 502, Kandachicho, Tsuchiura-shi, Ibaraki F-term in the Machine Research Laboratory, Hitachi, Ltd. FJ-term (reference) 3J011 AA08 BA15 BA17 SC01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】横軸回転機のロータを支持するジャーナル
ティルティングパッド軸受において、 軸受パッドを支持するピボットが軸受ケースとピボット
間で傾斜でき、前記軸受パッドと前記ピボットはリング
状に接触する構成としたことを特徴とするティルティン
グパッド軸受装置。
A journal tilting pad bearing for supporting a rotor of a horizontal shaft rotating machine, wherein a pivot for supporting a bearing pad can be inclined between a bearing case and a pivot, and the bearing pad and the pivot contact in a ring shape. A tilting pad bearing device, characterized in that:
【請求項2】請求項1記載のティルティングパッド軸受
装置において、 前記軸受パッドと前記ピボットの接触形状が方形である
ことを特徴とするティルティングパッド軸受装置。
2. The tilting pad bearing device according to claim 1, wherein a contact shape between the bearing pad and the pivot is rectangular.
【請求項3】請求項1記載のティルティングパッド軸受
装置において、 前記軸受パッドと前記ピボットが少なくとも4点で接触
することを特徴とするティルティングパッド軸受装置。
3. The tilting pad bearing device according to claim 1, wherein the bearing pad and the pivot contact at at least four points.
【請求項4】請求項2記載のティルティングパッド軸受
装置において、 前記軸受パッドと前記ピボットの接触距離を前記軸受パ
ッド周方向長さの30〜70%、軸方向を30〜80%
としたこと特徴とする軸受装置。
4. The tilting pad bearing device according to claim 2, wherein a contact distance between the bearing pad and the pivot is 30 to 70% of a circumferential length of the bearing pad and an axial direction is 30 to 80%.
A bearing device characterized in that:
【請求項5】請求項1記載のティルティングパッド軸受
装置において、 前記軸受の材質を熱望調律の小さい樹脂としたことを特
徴とする軸受装置。
5. The tilting pad bearing device according to claim 1, wherein the material of the bearing is a resin having a small heat regulation.
JP29916499A 1999-10-21 1999-10-21 Tilting pad bearing device Pending JP2001124062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29916499A JP2001124062A (en) 1999-10-21 1999-10-21 Tilting pad bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29916499A JP2001124062A (en) 1999-10-21 1999-10-21 Tilting pad bearing device

Publications (1)

Publication Number Publication Date
JP2001124062A true JP2001124062A (en) 2001-05-08

Family

ID=17868966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29916499A Pending JP2001124062A (en) 1999-10-21 1999-10-21 Tilting pad bearing device

Country Status (1)

Country Link
JP (1) JP2001124062A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764635B1 (en) 2006-03-31 2007-10-12 (주)터보링크 Tilting 5-pad journal bearing of turbine and generators for the reduction of shaft vibration and bearing metal temperature
WO2011044428A3 (en) * 2009-10-09 2011-08-18 Dresser-Rand Company Auxiliary bearing system for magnetically supported rotor system
JP2011256773A (en) * 2010-06-09 2011-12-22 Hitachi Ltd Tilting pad journal bearing device, and steam turbine using the same
US8283825B2 (en) 2009-10-09 2012-10-09 Dresser-Rand Company Auxiliary bearing system with plurality of inertia rings for magnetically supported rotor system
US8353633B2 (en) 2010-01-15 2013-01-15 Dresser-Rand Company Bearing assembly support and adjustment system
WO2013043495A1 (en) * 2011-09-21 2013-03-28 Dresser-Rand Company Tilt pad bearing with through-pivot lubrication
US8408806B2 (en) 2009-10-09 2013-04-02 Dresser-Rand Company Auxiliary bearing system with oil ring for magnetically supported rotor system
US8465207B2 (en) 2009-10-09 2013-06-18 Dresser-Rand Company Auxiliary bearing system with oil reservoir for magnetically supported rotor system
JP2013234746A (en) * 2012-05-11 2013-11-21 Toshiba Corp Tilting pad journal bearing and rotary machine
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
US8876389B2 (en) 2011-05-27 2014-11-04 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
US9024493B2 (en) 2010-12-30 2015-05-05 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
JP5922809B1 (en) * 2015-01-30 2016-05-24 三菱日立パワーシステムズ株式会社 Tilting pad bearing and rotating machine
US9366287B2 (en) 2013-01-31 2016-06-14 Mitsubishi Hitachi Power Systems, Ltd. Tilting pad bearing device
CN106151273A (en) * 2016-07-08 2016-11-23 山东大学 One actively controls flexible hinge tilting-pad bearing
CN106334905A (en) * 2016-08-31 2017-01-18 沈阳鼓风机集团安装检修配件有限公司 Machining method for tilting-pad bearing body
US9551349B2 (en) 2011-04-08 2017-01-24 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
WO2017134963A1 (en) * 2016-02-04 2017-08-10 三菱重工業株式会社 Tilting pad gas bearing
WO2018109965A1 (en) * 2016-12-14 2018-06-21 三菱重工コンプレッサ株式会社 Tilting pad journal bearing manufacturing method, tilting pad journal bearing, and compressor
WO2019087890A1 (en) * 2017-10-31 2019-05-09 三菱日立パワーシステムズ株式会社 Tilting pad bearing
US20200011372A1 (en) * 2017-03-16 2020-01-09 Siemens Gamesa Renewable Energy A/S Sliding bearing pad support
CN111946733A (en) * 2019-05-16 2020-11-17 西门子歌美飒可再生能源公司 Bearing arrangement for a wind turbine and wind turbine
CN113217544A (en) * 2020-02-06 2021-08-06 大同金属工业株式会社 Sliding member
EP3862586A1 (en) 2020-02-06 2021-08-11 Daido Metal Company Ltd. Sliding member
US11193528B2 (en) 2017-03-24 2021-12-07 Mitsubishi Power, Ltd. Bearing pad for tilting-pad bearing, tilting-pad bearing, and rotary machine
CN113803366A (en) * 2021-09-16 2021-12-17 上海涟屹轴承科技有限公司 Self-adaptive sliding bearing
CN115289135A (en) * 2022-06-13 2022-11-04 中国船舶重工集团公司第七一九研究所 Support bearing and ship propulsion system
WO2023046947A1 (en) 2021-09-27 2023-03-30 Voith Patent Gmbh Tilting-pad radial bearing and shaft assembly

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764635B1 (en) 2006-03-31 2007-10-12 (주)터보링크 Tilting 5-pad journal bearing of turbine and generators for the reduction of shaft vibration and bearing metal temperature
US8283825B2 (en) 2009-10-09 2012-10-09 Dresser-Rand Company Auxiliary bearing system with plurality of inertia rings for magnetically supported rotor system
US8308364B2 (en) 2009-10-09 2012-11-13 Dresser-Rand Company Auxiliary bearing system for magnetically supported rotor system
WO2011044428A3 (en) * 2009-10-09 2011-08-18 Dresser-Rand Company Auxiliary bearing system for magnetically supported rotor system
US8408806B2 (en) 2009-10-09 2013-04-02 Dresser-Rand Company Auxiliary bearing system with oil ring for magnetically supported rotor system
US8465207B2 (en) 2009-10-09 2013-06-18 Dresser-Rand Company Auxiliary bearing system with oil reservoir for magnetically supported rotor system
US8353633B2 (en) 2010-01-15 2013-01-15 Dresser-Rand Company Bearing assembly support and adjustment system
JP2011256773A (en) * 2010-06-09 2011-12-22 Hitachi Ltd Tilting pad journal bearing device, and steam turbine using the same
US9024493B2 (en) 2010-12-30 2015-05-05 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
US9551349B2 (en) 2011-04-08 2017-01-24 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
US8876389B2 (en) 2011-05-27 2014-11-04 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
WO2013043495A1 (en) * 2011-09-21 2013-03-28 Dresser-Rand Company Tilt pad bearing with through-pivot lubrication
US20150159692A1 (en) * 2011-09-21 2015-06-11 Dresser-Rand Company Tilt pad bearing with through-pivot lubrication
US9739310B2 (en) * 2011-09-21 2017-08-22 Dresser-Rand Company Tilt pad bearing with through-pivot lubrication
JP2013234746A (en) * 2012-05-11 2013-11-21 Toshiba Corp Tilting pad journal bearing and rotary machine
US9512879B2 (en) 2013-01-31 2016-12-06 Mitsubishi Hitachi Power Systems, Ltd. Tilting pad bearing device
US9371857B2 (en) 2013-01-31 2016-06-21 Mitsubishi Hitachi Power Systems, Ltd. Tilting pad bearing device
US9366287B2 (en) 2013-01-31 2016-06-14 Mitsubishi Hitachi Power Systems, Ltd. Tilting pad bearing device
JP2016142313A (en) * 2015-01-30 2016-08-08 三菱日立パワーシステムズ株式会社 Tilting pad bearing and rotary machine
JP5922809B1 (en) * 2015-01-30 2016-05-24 三菱日立パワーシステムズ株式会社 Tilting pad bearing and rotating machine
US10605302B2 (en) 2016-02-04 2020-03-31 Mitsubishi Heavy Industries Compressor Corporation Tilting pad gas bearing
WO2017134963A1 (en) * 2016-02-04 2017-08-10 三菱重工業株式会社 Tilting pad gas bearing
JP2017137960A (en) * 2016-02-04 2017-08-10 三菱重工業株式会社 Tilting pad gas bearing
US20190010977A1 (en) * 2016-02-04 2019-01-10 Mitsubishi Heavy Industries Compressor Corporation Tilting pad gas bearing
CN106151273A (en) * 2016-07-08 2016-11-23 山东大学 One actively controls flexible hinge tilting-pad bearing
CN106334905B (en) * 2016-08-31 2018-12-21 沈阳鼓风机集团安装检修配件有限公司 A kind of processing method of tilting-pad bearing body
CN106334905A (en) * 2016-08-31 2017-01-18 沈阳鼓风机集团安装检修配件有限公司 Machining method for tilting-pad bearing body
US10801544B2 (en) 2016-12-14 2020-10-13 Mitsubishi Heavy Industries Compressor Corporation Tilting pad journal bearing manufacturing method, tilting pad journal bearing, and compressor
WO2018109965A1 (en) * 2016-12-14 2018-06-21 三菱重工コンプレッサ株式会社 Tilting pad journal bearing manufacturing method, tilting pad journal bearing, and compressor
US20200011372A1 (en) * 2017-03-16 2020-01-09 Siemens Gamesa Renewable Energy A/S Sliding bearing pad support
US10927886B2 (en) * 2017-03-16 2021-02-23 Siemens Gamesa Renewable Energy A/S Sliding bearing pad support
US11193528B2 (en) 2017-03-24 2021-12-07 Mitsubishi Power, Ltd. Bearing pad for tilting-pad bearing, tilting-pad bearing, and rotary machine
US11261908B2 (en) 2017-10-31 2022-03-01 Mitsubishi Power, Ltd. Tilting pad bearing
KR20200047713A (en) * 2017-10-31 2020-05-07 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Tilting pad bearing
CN111201381A (en) * 2017-10-31 2020-05-26 三菱日立电力系统株式会社 Tilting pad bearing
WO2019087890A1 (en) * 2017-10-31 2019-05-09 三菱日立パワーシステムズ株式会社 Tilting pad bearing
CN111201381B (en) * 2017-10-31 2022-03-11 三菱动力株式会社 Tilting pad bearing
KR102340555B1 (en) * 2017-10-31 2021-12-20 미츠비시 파워 가부시키가이샤 tilting pad bearing
CN111946733A (en) * 2019-05-16 2020-11-17 西门子歌美飒可再生能源公司 Bearing arrangement for a wind turbine and wind turbine
US11441547B2 (en) 2019-05-16 2022-09-13 Siemens Gamesa Renewable Energy A/S Bearing arrangement for a wind turbine and wind turbine
CN111946733B (en) * 2019-05-16 2022-04-12 西门子歌美飒可再生能源公司 Bearing arrangement for a wind turbine and wind turbine
EP3862586A1 (en) 2020-02-06 2021-08-11 Daido Metal Company Ltd. Sliding member
EP3862587A1 (en) 2020-02-06 2021-08-11 Daido Metal Company Ltd. Sliding member
US11441607B2 (en) 2020-02-06 2022-09-13 Daido Metal Company Ltd. Sliding member
US11441600B2 (en) 2020-02-06 2022-09-13 Daido Metal Company Ltd. Sliding member
CN113217544B (en) * 2020-02-06 2022-09-13 大同金属工业株式会社 Sliding member
CN113217544A (en) * 2020-02-06 2021-08-06 大同金属工业株式会社 Sliding member
CN113803366A (en) * 2021-09-16 2021-12-17 上海涟屹轴承科技有限公司 Self-adaptive sliding bearing
WO2023046947A1 (en) 2021-09-27 2023-03-30 Voith Patent Gmbh Tilting-pad radial bearing and shaft assembly
DE102021124856A1 (en) 2021-09-27 2023-03-30 Voith Patent Gmbh Tilting Pad Radial Bearing and Shaft Assembly
CN115289135A (en) * 2022-06-13 2022-11-04 中国船舶重工集团公司第七一九研究所 Support bearing and ship propulsion system

Similar Documents

Publication Publication Date Title
JP2001124062A (en) Tilting pad bearing device
US5215384A (en) Self-centering squeeze film damper bearing
US5911511A (en) Tilting pad foil thrust and journal bearings
KR101682847B1 (en) Rotary shaft supporting structure
JP4727708B2 (en) Journal bearing
WO2010055849A1 (en) Rotation structure with journal bearing and method of assembling same
US9217464B2 (en) Radial bearing
EP2850327B1 (en) Journal oil bearing
JPH0585768B2 (en)
US6190048B1 (en) Compliant foil fluid film radial bearing
US5286117A (en) Bearing with asymmetrical flexible section
CN108302121B (en) Tilting pad sliding bearing
US5599108A (en) Static pressure table device with a tapered surface
US5205652A (en) Nonlinear spring supported hydrodynamic bearing
JP2000145781A (en) Bearing device
CN217055967U (en) Anti-rotation shaft locking bearing component for wind driven generator
KR20070098126A (en) Tilting 5-pad journal bearing of turbine and generators for the reduction of shaft vibration and bearing metal temperature
KR830002539B1 (en) Self-aligning bearing
US4859153A (en) Pressure wave charger
CN114321157A (en) Bearing assembly for wind driven generator
US6158898A (en) Preloading regulating mechanism for rolling bearings
US3291543A (en) Bearing assembly
JPS62118114A (en) Pad type journal bearing
JP4709888B2 (en) Rotating structure and assembling method thereof
WO1997034088A1 (en) An axial bearing for hermetic compressors