JP2001106534A - Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material - Google Patents

Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material

Info

Publication number
JP2001106534A
JP2001106534A JP28504299A JP28504299A JP2001106534A JP 2001106534 A JP2001106534 A JP 2001106534A JP 28504299 A JP28504299 A JP 28504299A JP 28504299 A JP28504299 A JP 28504299A JP 2001106534 A JP2001106534 A JP 2001106534A
Authority
JP
Japan
Prior art keywords
hydroxide
active material
composite metal
raw material
multiple metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28504299A
Other languages
Japanese (ja)
Inventor
Toru Kobayashi
徹 小林
Hiroyuki Ito
博之 伊藤
Takeshi Usui
臼井  猛
Mamoru Shimakawa
嶋川  守
Tokuyoshi Iida
得代志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP28504299A priority Critical patent/JP2001106534A/en
Publication of JP2001106534A publication Critical patent/JP2001106534A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To synthesize a multiple metallic hydroxide as a raw material of an active material for a nonaqueous electrolyte liquid battery and a lithium multiple metallic oxide for the active material which have high tap density and scarcely have remaining anionic impurities. SOLUTION: Instead of solid-soluted and coprecipitating all metals to nickel hydroxide, the metals which extremely lessen the tap density and the metals having the valence of trivalence or more are applied over the surface of the nickel hydroxide without being solid-soluted and coprecipitated thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液電池の正
極活物質リチウム複合金属酸化物及びこの合成用原料と
して用いる複合金属水酸化物に関するものである。
The present invention relates to a lithium composite metal oxide for a positive electrode active material of a non-aqueous electrolyte battery and a composite metal hydroxide used as a raw material for the synthesis.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化、小型化が急激に進んでいる。それに伴
い、これら電子機器に使用される電池においても小型軽
量化、高エネルギー密度化、長寿命化が強く求められて
いる。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless and miniaturization are rapidly advancing. Accordingly, there is a strong demand for batteries used in these electronic devices to be smaller and lighter, have a higher energy density, and have a longer life.

【0003】このような状況から、高い充放電電圧を示
すリチウム複合金属酸化物、例えばLiCoO2(特開
昭63−59507号)や、さらに高容量を目指したL
iNiO2(米国特許第4302518号明細書)が報
告されている。特にLiNiO2はLiCoO2に比
べ、高エネルギー密度が期待されるが、結晶中に欠陥を
生じやすく、活物質として安定性が悪い。また充電時の
分極が大きく、Liを十分引き抜く前に電解液の酸化分
解電圧に達するため、期待されるほど大きい容量は得ら
れなかった。さらに、充電時の熱安定性が悪いという問
題もある。特に、正極活物質と非水電解液との反応に起
因する発熱挙動が安全性上大きな問題である。
Under such circumstances, a lithium composite metal oxide exhibiting a high charge / discharge voltage, for example, LiCoO2 (Japanese Patent Laid-Open No. 63-59507), and a lithium metal oxide having a higher capacity have been developed.
iNiO2 (US Pat. No. 4,302,518) has been reported. In particular, LiNiO2 is expected to have a higher energy density than LiCoO2, but tends to cause defects in the crystal and has poor stability as an active material. In addition, the polarization at the time of charging is large, and reaches the oxidative decomposition voltage of the electrolytic solution before Li is sufficiently extracted, so that a capacity as large as expected could not be obtained. Another problem is that the thermal stability during charging is poor. In particular, the exothermic behavior resulting from the reaction between the positive electrode active material and the non-aqueous electrolyte is a major safety issue.

【0004】このような問題を解決するためにNiの一
部をAl、Mn、Coなど他の元素に置換したものを正
極活物質に用い、リチウムイオンの挿入・脱離を利用し
た非水電解液二次電池が提案されている。
[0004] In order to solve such a problem, non-aqueous electrolysis using insertion and desorption of lithium ions is used by using a material in which part of Ni is replaced by another element such as Al, Mn, or Co as a positive electrode active material. Liquid secondary batteries have been proposed.

【0005】これらNiの一部をAl、Mn、Coなど
他の元素で置換したリチウム複合金属酸化物の製造方法
としては、Al、Mn、Co、Niなどの酸化物または
水酸化物粉末と水酸化リチウムを混合して焼成する方法
が知られている。しかしこの方法では各元素の分散状態
が均一でなくムラが生じやすいうえ、結晶中に欠陥を生
じやすく、このため良好な放電特性を有する非水電解液
電池用活物質は得られていない。
A method for producing a lithium composite metal oxide in which a part of Ni is replaced by another element such as Al, Mn, or Co is described as follows. A method of mixing and firing lithium oxide is known. However, according to this method, the dispersion state of each element is not uniform and unevenness is easily generated, and defects are easily generated in a crystal. Therefore, an active material for a non-aqueous electrolyte battery having good discharge characteristics has not been obtained.

【0006】これを解決するためにAl、Mn、Coな
ど他の元素を固溶/共沈させることによって各元素の混
合・分散状態を均一にした固溶/共沈水酸化ニッケルま
たは酸化物を原料とし、これを水酸化リチウムと混合・
焼成することによって製造する方法が提案されている。
To solve this, other elements such as Al, Mn and Co are dissolved / coprecipitated to obtain a solid solution / coprecipitated nickel hydroxide or oxide in which the mixed / dispersed state of each element is made uniform. Mixed with lithium hydroxide
A method of manufacturing by firing is proposed.

【0007】[0007]

【発明が解決しようとする課題】Al、Mn、Coなど
他の元素を固溶/共沈させた水酸化ニッケル原料におい
ては、原料のタップ密度が著しく低下し、これが焼成後
のリチウム複合金属酸化物のタップ密度に影響を及ぼ
す。また、3価以上の価数を持つ元素を固溶/共沈させ
た水酸化ニッケルにおいては、過剰の正電荷を補償する
ために、SO42−、NO3−などの不純物となる陰イ
オンが結晶層間に取り込まれやすい。SO42−はリチ
ウム複合酸化物に焼成後も不純物として残存しやすく、
放電特性に影響を及ぼし、NO3−は焼成中にNOxが
発生するので好ましくない。
In the case of a nickel hydroxide raw material in which other elements such as Al, Mn, and Co are dissolved / coprecipitated, the tap density of the raw material is remarkably reduced, which is caused by the lithium composite metal oxide after firing. Affects tap density of objects. In addition, in nickel hydroxide in which an element having a valence of 3 or more is dissolved / coprecipitated, anions serving as impurities such as SO 4 2− and NO 3− are added to the crystal layer to compensate for excess positive charge. Easy to be taken into. SO42- is likely to remain as an impurity even after firing on the lithium composite oxide,
The discharge characteristics are affected, and NO3- is not preferable because NOx is generated during firing.

【0008】[0008]

【課題を解決するための手段】本発明者らはMg、A
l、Mn、Fe、Coなど他の元素を固溶/共沈させた
水酸化ニッケルについて鋭意検討した結果、他の固溶/
共沈元素がタップ密度低下に及ぼす寄与の大きさが、A
l>Mn≧Fe≧Co>Mgの順であることを見いだし
た。
Means for Solving the Problems The present inventors have proposed Mg, A
As a result of intensive studies on nickel hydroxide in which other elements such as l, Mn, Fe, and Co were solid-dissolved / coprecipitated,
The magnitude of the contribution of the coprecipitation element to the decrease in tap density is A
It was found that l> Mn ≧ Fe ≧ Co> Mg.

【0009】また、Mg、Al、Mn、Fe、Coなど
他の元素を固溶/共沈させた水酸化ニッケルにおいて、
固溶/共沈元素が陰イオン残存量増加に及ぼす寄与の大
きさは、Al>Mn≧Fe≧Co≧Mgの順であること
も見いだした。これはMg、Al、Mn、Fe、Coの
うちMg、Mn、Fe、Coは2価の状態で固溶/共沈
させることができるが、Alを2価で固溶/共沈させる
ことは不可能であるためと考えられる。
Further, in nickel hydroxide in which other elements such as Mg, Al, Mn, Fe, and Co are dissolved / coprecipitated,
It has also been found that the magnitude of the contribution of the solid solution / coprecipitation element to the increase in the residual amount of anions is in the order of Al> Mn ≧ Fe ≧ Co ≧ Mg. This means that among Mg, Al, Mn, Fe, and Co, Mg, Mn, Fe, and Co can be dissolved / coprecipitated in a divalent state. It is considered impossible.

【0010】そこでこれらの課題を解決するために、水
酸化ニッケルに固溶/共沈させるとタップ密度を著しく
低下させる元素や3価以上の原子価をとりやすく陰イオ
ン残存量を増加させる元素は固溶/共沈させずに、水酸
化ニッケル粒子表面に被覆することを特徴とする、本発
明の完成に至った。粉末で混合するよりも表面に被覆す
る方が各元素の混合状態が良好であると考えられる。ま
た、配合する元素の種類及び割合によってタップ密度低
下及び陰イオン残存量増加への寄与は変わってくるの
で、その目的とする組成に応じて、固溶/共沈させる元
素及び粒子表面に被覆する元素を適切に選択し、タップ
密度の著しい低下及び陰イオン残存量の増加を抑制す
る。
Therefore, in order to solve these problems, an element which significantly lowers the tap density when solid-dissolved / coprecipitated in nickel hydroxide or an element which easily takes a valence of three or more and increases the residual amount of anions is required. The present invention has been completed in which the surface of the nickel hydroxide particles is coated without performing solid solution / coprecipitation. It is considered that the state of mixing each element is better when the surface is coated than when mixed with powder. In addition, the contribution to the decrease in tap density and the increase in the residual amount of anions varies depending on the type and proportion of the elements to be blended. Appropriate selection of elements suppresses a significant decrease in tap density and an increase in the residual amount of anions.

【0011】即ち、本発明は、水酸化ニッケル粒子表
面、またはMg、Mn、Fe、Coから選ばれる少なく
とも1種の元素を固溶/共沈させた水酸化ニッケル粒子
表面にAl、Ti、V、Cr、Mn、Fe、Co、Y、
Zr、Moから選ばれる少なくとも1種の元素の水酸化
物または酸化物を被覆した、非水電解液電池用リチウム
複合金属酸化物の合成用原料である複合金属水酸化物、
及びこれを原料に用いて合成される非水電解液電池用活
物質リチウム複合金属酸化物を提供するものである。
That is, according to the present invention, Al, Ti, V are added to the surface of nickel hydroxide particles or the surface of nickel hydroxide particles in which at least one element selected from Mg, Mn, Fe, and Co is dissolved / coprecipitated. , Cr, Mn, Fe, Co, Y,
A composite metal hydroxide coated with a hydroxide or oxide of at least one element selected from Zr and Mo, which is a raw material for synthesizing a lithium composite metal oxide for a non-aqueous electrolyte battery;
And an active material lithium composite metal oxide for a non-aqueous electrolyte battery synthesized using the same as a raw material.

【0012】[0012]

【発明の実施の形態】以下、本発明にかかる非水電解液
電池活物質用複合金属水酸化物の実施形態について説明
する。本発明の複合金属水酸化物は、水酸化ニッケル粒
子表面、またはMg、Mn、Fe、Coから選ばれる少
なくとも1種の元素を固溶/共沈させた水酸化ニッケル
の粒子表面にAl、Ti、V、Cr、Mn、Fe、C
o、Y、Zr、Moから選ばれる少なくとも1種の元素
の水酸化物または酸化物を被覆したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a composite metal hydroxide for a non-aqueous electrolyte battery active material according to the present invention will be described. The composite metal hydroxide according to the present invention has Al, Ti on the surface of nickel hydroxide particles or on the surface of nickel hydroxide particles in which at least one element selected from Mg, Mn, Fe, and Co is dissolved / coprecipitated. , V, Cr, Mn, Fe, C
It is coated with a hydroxide or oxide of at least one element selected from o, Y, Zr, and Mo.

【0013】本実施形態において、複合金属水酸化物の
製造法は2段階から成り、第一段階では、反応温度、p
Hを制御し、反応槽に金属塩水溶液、アルカリ金属水酸
化物水溶液、錯形成剤水溶液、還元剤水溶液を連続的に
供給、採取することでその物性が制御された球状または
楕円球状の異種元素固溶/共沈水酸化ニッケル母粒子を
得る。その後第二段階では、第一段階で得た母粒子を水
中に分散させスラリーとし、温度、pHを制御しなが
ら、被覆したい金属塩水溶液、錯形成剤水溶液、アルカ
リ金属水酸化物水溶液を供給し、母粒子に金属水酸化物
または酸化物が被覆された複合金属水酸化物を得る。
In the present embodiment, the method for producing a composite metal hydroxide is composed of two steps.
Spherical or oval spherical heterogeneous elements whose physical properties are controlled by controlling H and continuously supplying and collecting an aqueous solution of a metal salt, an aqueous solution of an alkali metal hydroxide, an aqueous solution of a complexing agent, and an aqueous solution of a reducing agent to the reaction tank. Solid solution / coprecipitated nickel hydroxide mother particles are obtained. Then, in the second stage, the mother particles obtained in the first stage are dispersed in water to form a slurry, and while controlling the temperature and pH, an aqueous solution of a metal salt, an aqueous solution of a complexing agent, and an aqueous solution of an alkali metal hydroxide to be coated are supplied. Then, a composite metal hydroxide in which the base particles are coated with a metal hydroxide or an oxide is obtained.

【0014】上記第一段階の異種元素固溶/共沈水酸化
ニッケルにおける異種元素の配合割合は特に制限されな
いが。Ni系、Ni−Co系、Ni−Mn系、Ni−C
o−Mn系を基本組成とし、Mg、Feは複合金属水酸
化物中の金属分に対して0.1〜5モル%が好ましい。
There is no particular limitation on the mixing ratio of the different elements in the different element solid solution / coprecipitated nickel hydroxide of the first stage. Ni-based, Ni-Co-based, Ni-Mn-based, Ni-C
The basic composition is an o-Mn system, and the content of Mg and Fe is preferably 0.1 to 5 mol% based on the metal content in the composite metal hydroxide.

【0015】上記第二段階で得る複合金属水酸化物にお
ける被覆層の金属分の割合は、複合金属水酸化物中の金
属分に対して0.1〜30モル%が好ましく、特に1〜
10モル%が好ましい。
The proportion of metal in the coating layer in the composite metal hydroxide obtained in the second step is preferably 0.1 to 30 mol%, more preferably 1 to 30 mol%, based on the metal in the composite metal hydroxide.
10 mol% is preferred.

【0016】本発明の複合金属水酸化物は、レーザー法
による測定法で求めた平均粒子径が、特に制限されない
が、0.1〜50μm、好ましくは5〜20μmの範囲
である。
The average particle size of the composite metal hydroxide of the present invention determined by a laser method is not particularly limited, but is in the range of 0.1 to 50 μm, preferably 5 to 20 μm.

【0017】本発明に使用される金属塩としては水溶性
のものであれば特に制限されないが、無機塩としては硫
酸塩、硝酸塩、塩化物塩などが、また、有機塩としては
酢酸塩、蓚酸塩、クエン酸塩などが挙げられる。金属塩
水溶液としては金属分0.5〜3.5モル/L程度で用
いるのが好ましい。
The metal salt used in the present invention is not particularly limited as long as it is water-soluble. The inorganic salt includes sulfate, nitrate, chloride and the like, and the organic salt includes acetate, oxalic acid and the like. Salts, citrates and the like. It is preferable to use the metal salt aqueous solution at a metal content of about 0.5 to 3.5 mol / L.

【0018】また錯形成剤としては、硫酸アンモニウム
・硝酸アンモニウム・アンモニア水・アンモニアガスな
どのアンモニウムイオン供給体、グリシン・グルタミン
酸・エチレンジアミン四酢酸などのアミノカルボン酸ま
たはそれらの塩、シュウ酸・リンゴ酸・クエン酸・サリ
チル酸などのオキシカルボン酸またはそれらの塩が挙げ
られるが、好ましくはアンモニウムイオン供給体であ
る。錯形成剤の供給方法は特に制限されず、錯形成剤単
独で供給しても、金属塩水溶液に予め混合しておいて
も、両方併用してもよい。
Examples of the complexing agent include ammonium ion donors such as ammonium sulfate, ammonium nitrate, ammonia water, and ammonia gas; aminocarboxylic acids such as glycine, glutamic acid, and ethylenediaminetetraacetic acid, and salts thereof; oxalic acid, malic acid, and citric acid. Examples thereof include oxycarboxylic acids such as acid and salicylic acid and salts thereof, and are preferably ammonium ion donors. The method of supplying the complexing agent is not particularly limited, and the complexing agent may be supplied alone, may be mixed in advance with the aqueous metal salt solution, or may be used in combination.

【0019】還元剤は水酸化ニッケルにCo、Mnなど
の2価以外にも複数の価数をとる元素を固溶/共沈させ
る場合において、2価の状態で固溶/共沈させるために
用いるものであり、亜硫酸ナトリウムなどの亜硫酸塩、
亜硝酸ナトリウムなどの亜硝酸塩、次亜リン酸ナトリウ
ムなどの次亜リン酸塩、ヒドラジンなどが挙げられる。
還元剤の供給方法も特に制限されず、単独で供給して
も、予め金属塩水溶液に混合しておいても、両方併用し
てもよい。
When a reducing agent is used for solid solution / coprecipitation of an element having a plurality of valences other than divalent such as Co and Mn in nickel hydroxide, the reducing agent is used for solid solution / coprecipitation in a divalent state. Sulfites such as sodium sulfite,
Nitrite such as sodium nitrite; hypophosphite such as sodium hypophosphite; hydrazine;
The method of supplying the reducing agent is not particularly limited either, and the reducing agent may be supplied alone, preliminarily mixed with the aqueous metal salt solution, or may be used in combination.

【0020】アルカリ金属水酸化物としては、水酸化リ
チウム、水酸化ナトリウム、水酸化カリウムが挙げられ
る。
Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide and potassium hydroxide.

【0021】[0021]

【実施例】以下、本発明の実施例について具体的に説明
するが、これは単に例示であって、本発明を制限するも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, which are merely illustrative and do not limit the present invention.

【0022】実施例1 金属塩水溶液として、硫酸ニッケルと硫酸コバルトの混
合水溶液を、錯形成剤として硫酸アンモニウム水溶液
を、還元剤としてヒドラジン水溶液を、アルカリ金属水
溶液として水酸化ナトリウム水溶液を、被覆金属塩水溶
液として硝酸アルミニウム水溶液を用い、次のように行
なった。
Example 1 As a metal salt aqueous solution, a mixed aqueous solution of nickel sulfate and cobalt sulfate, an ammonium sulfate aqueous solution as a complexing agent, a hydrazine aqueous solution as a reducing agent, a sodium hydroxide aqueous solution as an alkali metal aqueous solution, a coated metal salt aqueous solution Was performed as follows using an aqueous solution of aluminum nitrate.

【0023】即ち、反応槽内に原料液としてモル比N
i:Co=80:15の1.9モル/L硫酸ニッケル硫
酸コバルト混合水溶液を300mL/min、6モル/
Lの硫酸アンモニウム水溶液を150mL/min、1
wt%ヒドラジン水溶液を20mL/minで同時に連
続供給した。また、10モル/Lの水酸化ナトリウム水
溶液を、反応槽内のpHが12.5に維持されるよう自
動供給を行なった。反応槽内の温度は45℃に維持し、
撹拌機により常に撹拌した。生成したコバルト固溶/共
沈水酸化ニッケルは、オーバーフロー管からオーバーフ
ローさせて取り出し、水洗、脱水、乾燥した。次に、別
の反応槽で上記のコバルト固溶/共沈水酸化ニッケル母
粒子を水に分散させてスラリーとした。反応槽温度を3
0℃、pHを8〜9に維持し、撹拌しながら、1モル/
L硝酸アルミニウム水溶液を100mL/minで供給
し、コバルト固溶/共沈水酸化ニッケルの粒子表面に水
酸化アルミニウムを被覆し、水洗、脱水、乾燥して、N
i:Co:Al=80:15:5のAl被覆複合金属水
酸化物を得た。
That is, a molar ratio N
i: Co = 80: 15 1.9 mol / L nickel cobalt sulfate mixed aqueous solution of 300 mol / min, 6 mol / L
L of ammonium sulfate aqueous solution at 150 mL / min, 1
A wt% hydrazine aqueous solution was simultaneously and continuously supplied at a rate of 20 mL / min. Further, a 10 mol / L aqueous sodium hydroxide solution was automatically supplied so that the pH in the reaction tank was maintained at 12.5. The temperature in the reactor was maintained at 45 ° C,
The mixture was constantly stirred by a stirrer. The produced cobalt solid solution / coprecipitated nickel hydroxide was taken out of the overflow tube by overflowing, washed with water, dehydrated and dried. Next, the cobalt solid solution / coprecipitated nickel hydroxide base particles were dispersed in water in another reaction vessel to form a slurry. Reactor temperature 3
At 0 ° C, the pH was maintained at 8 to 9 and 1 mol /
L aluminum nitrate aqueous solution was supplied at 100 mL / min, and aluminum hydroxide was coated on the surface of the cobalt solid solution / coprecipitated nickel hydroxide particles, washed with water, dehydrated, and dried.
An Al-coated composite metal hydroxide of i: Co: Al = 80: 15: 5 was obtained.

【0024】実施例2 水酸化ニッケル母粒子を得るための原料金属塩水溶液を
Ni:Co:Mn=65:20:10とした以外は実施
例1と同様に行なって、Ni:Co:Mn:Al=6
5:20:10:5のAl被覆複合金属水酸化物を得
た。
Example 2 The procedure of Example 1 was repeated, except that the aqueous solution of the raw material metal salt for obtaining the nickel hydroxide mother particles was changed to Ni: Co: Mn = 65: 20: 10. Al = 6
An Al-coated composite metal hydroxide of 5: 20: 10: 5 was obtained.

【0025】実施例3 原料金属塩水溶液をNi:Co:Mg=78:15:2
とし、被覆金属塩水溶液を1モル/L硫酸鉄水溶液とし
た以外は、実施例1と同様に行なって、Ni:Co:M
g:Fe=78:15:2:5のFe被覆複合金属水酸
化物を得た。
Example 3 Ni: Co: Mg = 78: 15: 2
In the same manner as in Example 1 except that the coated metal salt aqueous solution was changed to a 1 mol / L aqueous solution of iron sulfate, Ni: Co: M
g: Fe = 78: 15: 2: 5 Fe-coated composite metal hydroxide was obtained.

【0026】実施例4 原料金属塩水溶液を1.9モル/L硫酸ニッケル単独と
し、還元剤水溶液は供給せずに、あとは実施例1と同様
に行なって、Ni:Al=75:25のAl被覆複合金
属水酸化物を得た。
Example 4 The raw material metal salt aqueous solution was 1.9 mol / L nickel sulfate alone, and the same procedure as in Example 1 was carried out without supplying the reducing agent aqueous solution. An Al-coated composite metal hydroxide was obtained.

【0027】比較例1 原料金属塩水溶液をNi:Co:Al=80:15:5
の割合で硫酸ニッケル、硫酸コバルト、硝酸アルミニウ
ムを混合し、金属分2モル/Lの原料液とし、これを3
00mL/min、1%ヒドラジン水溶液20mL/m
inで同時に連続供給した。10モル/L水酸化ナトリ
ウム水溶液を反応槽内のpHが10.3に維持されるよ
う自動供給した。反応槽内の温度は45℃に維持し、撹
拌機で常に撹拌した。得られたCo、Al固溶/共沈水
酸化ニッケルはオーバーフローさせて取り出し、水洗、
脱水、乾燥して、Ni:Co:Al=80:15:5の
全固溶/共沈水酸化物を得た。
COMPARATIVE EXAMPLE 1 A raw material metal salt aqueous solution was prepared by using Ni: Co: Al = 80: 15: 5.
, Nickel sulfate, cobalt sulfate, and aluminum nitrate were mixed at a ratio of 2 to make a raw material liquid having a metal content of 2 mol / L.
00mL / min, 1% hydrazine aqueous solution 20mL / m
in and supplied continuously at the same time. A 10 mol / L aqueous sodium hydroxide solution was automatically supplied so that the pH in the reaction vessel was maintained at 10.3. The temperature in the reaction vessel was maintained at 45 ° C., and was constantly stirred with a stirrer. The obtained Co, Al solid solution / coprecipitated nickel hydroxide is taken out by overflowing, washed with water,
After dehydration and drying, a total solid solution / coprecipitated hydroxide of Ni: Co: Al = 80: 15: 5 was obtained.

【0028】比較例2 原料金属塩水溶液をNi:Co:Mn:Al=65:2
0:10:5とし、あとは比較例1と同様に行なって全
固溶/共沈水酸化物を得た。
Comparative Example 2 Ni: Co: Mn: Al = 65: 2
The ratio was set to 0: 10: 5, and the rest was carried out in the same manner as in Comparative Example 1 to obtain an all solid solution / coprecipitated hydroxide.

【0029】比較例3 原料金属塩水溶液をNi:Co:Mg:Fe=78:1
5:2:5とし、これを300mL/min、6モル/
L硫酸アンモニウム水溶液150mL/min、1%ヒ
ドラジン水溶液20mL/minで同時に連続供給し
た.10モル/L水酸化ナトリウム水溶液を反応槽内の
pHが12.5に維持されるよう自動供給した。あとは
比較例1と同様に行なって全固溶/共沈水酸化物を得
た。
COMPARATIVE EXAMPLE 3 Ni: Co: Mg: Fe = 78: 1
5: 2: 5, 300 mL / min, 6 mol / min
L-ammonium sulfate aqueous solution at 150 mL / min and 1% hydrazine aqueous solution at 20 mL / min were simultaneously and continuously supplied. A 10 mol / L aqueous sodium hydroxide solution was automatically supplied so that the pH in the reaction vessel was maintained at 12.5. The rest was carried out in the same manner as in Comparative Example 1 to obtain a total solid solution / coprecipitated hydroxide.

【0030】比較例4 原料金属塩水溶液をNi:Al=75:25とし、還元
剤水溶液は供給せずに、あとは比較例1と同様に行なっ
て、全固溶/共沈水酸化物を得た。
Comparative Example 4 The raw metal salt aqueous solution was set to Ni: Al = 75: 25, the reducing agent aqueous solution was not supplied, and the rest was carried out in the same manner as in Comparative Example 1 to obtain a total solid solution / coprecipitated hydroxide. Was.

【0031】実施例1〜4及び比較例1〜4によって得
られた一部の金属を表面に被覆した複合金属水酸化物及
び全金属固溶/共沈水酸化物の平均粒径、タップ密度及
び陰イオン残存量は表1の通りである。なお平均粒径は
レーザー法より求めた体積基準の平均粒径である。タッ
プ密度は、容積20cm3の容器に粉末を満たし、40
mmストロークで200回タッピングした後の粉体部容
積で満たした粉末の重量を割ることにより求めた。ま
た、SO42+はバリウム塩重量法により、NO3−は
イオンクロマト法により求めた。
The average particle diameter, tap density, and total metal solid solution / coprecipitated hydroxide of the composite metal hydroxide and a part of the metal obtained on Examples 1 to 4 and Comparative Examples 1 to 4 were coated on the surface. Table 1 shows the remaining amount of anions. The average particle size is a volume-based average particle size obtained by a laser method. The tap density was set to 40 cm3 in a container filled with powder,
It was determined by dividing the weight of the filled powder by the volume of the powder after tapping 200 times with a mm stroke. In addition, SO42 + was determined by barium salt weight method, and NO3- was determined by ion chromatography method.

【0032】[0032]

【表1】 [Table 1]

【0033】実施例1〜4及び比較例1〜4で得られた
一部の金属を表面に被覆した複合金属水酸化物及び全金
属固溶/共沈水酸化物を水酸化リチウム一水塩と混合
(Li:金属分=1:1.03)、酸素気流中で焼成
(650℃ 5hr仮焼成後750℃ 10hr本焼
成)を行ない、リチウム複合金属酸化物を得た。一部元
素被覆複合金属水酸化物から合成したリチウム複合金属
酸化物の粒子断面における特性X線元素分布分析を行な
い、元素分布状態が全金属固溶/共沈水酸化物原料から
合成したものと変わりないことを確認できた.これらリ
チウム複合酸化物の平均粒径、タップ密度及び陰イオン
残存量は表2の通りである。
The composite metal hydroxide and the all-metal solid solution / coprecipitated hydroxide obtained in Examples 1 to 4 and Comparative Examples 1 to 4 having a part of the metal coated on the surface thereof were mixed with lithium hydroxide monohydrate. Mixing (Li: metal content = 1: 1.03) and firing in an oxygen stream (preheating at 650 ° C. for 5 hours and then firing at 750 ° C. for 10 hours) were performed to obtain a lithium composite metal oxide. Characteristic X-ray element distribution analysis on the particle cross section of lithium composite metal oxide synthesized from partially element-coated composite metal hydroxide changed the element distribution state to that synthesized from all metal solid solution / coprecipitated hydroxide raw material I was able to confirm that there was no such thing. Table 2 shows the average particle size, tap density, and remaining amount of anions of these lithium composite oxides.

【表2】 [Table 2]

【0034】表2に示したリチウム複合金属酸化物をコ
インセルを用いて充放電評価した。負極は金属Liと
し、電解液は同体積のPCとDMEを混合し、これに1
モル/LとなるようLiClO4を溶解したものを用い
た。得られた放電容量を表3に示す。
The lithium composite metal oxides shown in Table 2 were evaluated for charge and discharge using a coin cell. The negative electrode was made of metal Li, and the electrolyte was a mixture of PC and DME of the same volume,
What dissolved LiClO4 so that it might become mol / L was used. Table 3 shows the obtained discharge capacities.

【0035】[0035]

【表3】 [Table 3]

【0036】以上の結果から本発明による、構成元素の
一部を固溶/共沈させずに表面被覆する複合金属水酸化
物は、構成元素すべてを固溶/共沈させる固溶/共沈水
酸化物に比べて、タップ密度が大きく、陰イオン残存量
が少ないという特徴を持つ非水電解液電池用活物質リチ
ウム複合金属酸化物の合成用原料である。また、これを
原料に用いて合成されるリチウム複合金属酸化物は、構
成元素すべてを固溶/共沈させる固溶/共沈水酸化物を
原料に用いて合成されるリチウム複合金属酸化物に比べ
て、タップ密度が大きく、陰イオン残存量が少なく、放
電容量に優れているという特徴を持つ非水電解液電池用
活物質である。
From the above results, the composite metal hydroxide according to the present invention, whose surface is coated without partially dissolving / coprecipitating some of the constituent elements, is a solid solution / coprecipitated water which dissolves / coprecipitates all the constituent elements. It is a raw material for synthesizing an active material lithium composite metal oxide for a non-aqueous electrolyte battery, which is characterized by having a higher tap density and a smaller amount of residual anions than oxides. In addition, the lithium composite metal oxide synthesized using this as a raw material is compared with a lithium composite metal oxide synthesized using a solid solution / coprecipitated hydroxide, which dissolves / coprecipitates all the constituent elements, as a raw material. Thus, the active material for a non-aqueous electrolyte battery has a feature that the tap density is large, the amount of remaining anions is small, and the discharge capacity is excellent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嶋川 守 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 (72)発明者 飯田 得代志 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 Fターム(参考) 4G048 AA02 AA03 AA04 AA05 AB02 AB04 AC06 AD04 AE05 AE08 5H003 AA01 BB05 BC01 BC05  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Mamoru Shimakawa 5-50, Sunahawa-cho, 45, Shirakata-cho, Fukui City, Fukui Prefecture Inside Tanaka Chemical Research Institute Co., Ltd. Town No. 45, Sunahari 5-10 Co., Ltd. Tanaka Chemical Laboratory F-term (reference) 4G048 AA02 AA03 AA04 AA05 AB02 AB04 AC06 AD04 AE05 AE08 5H003 AA01 BB05 BC01 BC05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウム複合金属酸化物の合成用原料とし
て用いる金属水酸化物であって、水酸化ニッケル粒子表
面、またはMg、Mn、Fe、Coから選ばれる少なく
とも1種の元素を固溶/共沈させた水酸化ニッケルの粒
子表面にAl、Ti、V、Cr、Mn、Fe、Co、
Y、Zr、Moから選ばれる少なくとも1種の元素の水
酸化物または酸化物が被覆されていることを特徴とする
非水電解液電池活物質用原料複合金属水酸化物。
1. A metal hydroxide used as a raw material for synthesizing a lithium composite metal oxide, wherein at least one element selected from the group consisting of nickel hydroxide particles, and Mg, Mn, Fe, and Co is dissolved. Al, Ti, V, Cr, Mn, Fe, Co,
A raw material composite metal hydroxide for a non-aqueous electrolyte battery active material, which is coated with a hydroxide or oxide of at least one element selected from Y, Zr, and Mo.
【請求項2】複合金属水酸化物は、球状または楕円球状
である、請求項1記載の非水電解液電池活物質用複合金
属水酸化物。
2. The composite metal hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the composite metal hydroxide is spherical or elliptical spherical.
【請求項3】請求項1及び2記載の非水電解液電池活物
質用原料複合金属水酸化物を原料に用いて合成される非
水電解液電池用活物質リチウム複合金属酸化物。
3. An active material lithium composite metal oxide for a non-aqueous electrolyte battery synthesized using the raw material composite metal hydroxide for a non-aqueous electrolyte battery according to claim 1 or 2 as a raw material.
JP28504299A 1999-10-06 1999-10-06 Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material Pending JP2001106534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28504299A JP2001106534A (en) 1999-10-06 1999-10-06 Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28504299A JP2001106534A (en) 1999-10-06 1999-10-06 Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material

Publications (1)

Publication Number Publication Date
JP2001106534A true JP2001106534A (en) 2001-04-17

Family

ID=17686422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28504299A Pending JP2001106534A (en) 1999-10-06 1999-10-06 Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material

Country Status (1)

Country Link
JP (1) JP2001106534A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086993A1 (en) * 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2003095659A (en) * 2001-09-25 2003-04-03 Mitsubishi Chemicals Corp Lithium transition metal complex oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method of manufacturing lithium transition metal complex oxide
EP1637503A1 (en) 2004-09-15 2006-03-22 H.C. Starck GmbH Mixed metal hydroxides, production and use thereof
JP2007512668A (en) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド Method for producing positive electrode active material for lithium secondary battery, reactive group used in the method, and positive electrode active material for lithium secondary battery produced by the method
KR100734225B1 (en) 2005-12-09 2007-07-02 제일모직주식회사 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
WO2008068905A1 (en) 2006-12-06 2008-06-12 Toda Kogyo Corporation Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP2009084104A (en) * 2007-09-28 2009-04-23 Vale Inco Japan Ltd Method for coating nickel oxide particles
JP2009215143A (en) * 2008-03-13 2009-09-24 Sumitomo Metal Mining Co Ltd Manufacturing method of planar lithium nickel composite oxide and planar lithium nickel composite oxide using the same
JP2009536437A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド Method for preparing high performance lithium secondary battery material
JP2010024083A (en) * 2008-07-18 2010-02-04 Sumitomo Metal Mining Co Ltd Method for producing aluminum hydroxide coated nickel cobalt composite hydroxide
WO2010143641A1 (en) * 2009-06-08 2010-12-16 住友化学株式会社 Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
WO2012022624A1 (en) * 2010-08-17 2012-02-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
WO2012022618A1 (en) 2010-08-17 2012-02-23 Umicore Alumina dry -coated cathode material precursors
JP2016500048A (en) * 2013-02-13 2016-01-07 エルジー・ケム・リミテッド Transition metal precursors with low tap density and lithium transition metal oxides with high particle strength
WO2016089176A1 (en) * 2014-12-05 2016-06-09 주식회사 엘지화학 Cathode active material, method for preparing same, and lithium secondary battery comprising same
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
KR101748963B1 (en) 2014-12-05 2017-06-19 주식회사 엘지화학 Positive electrode active material, method for preparing the same and lithium secondary battery comprising the same
JP2020196643A (en) * 2019-05-31 2020-12-10 住友金属鉱山株式会社 Method for producing nickel composite hydroxide
JP2021506076A (en) * 2017-12-08 2021-02-18 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー Low temperature preparation of positive electrode active material
US11532814B2 (en) 2016-12-26 2022-12-20 Sumitomo Chemical Company, Limited Lithium nickel cobalt composite oxide positive active material, positive electrode, and lithium secondary battery using the same
US11670766B2 (en) 2016-12-12 2023-06-06 Posco Holdings Inc. Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002086993A1 (en) * 2001-04-20 2004-08-12 株式会社ユアサコーポレーション Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4556377B2 (en) * 2001-04-20 2010-10-06 株式会社Gsユアサ Positive electrode active material and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2002086993A1 (en) * 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2003095659A (en) * 2001-09-25 2003-04-03 Mitsubishi Chemicals Corp Lithium transition metal complex oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method of manufacturing lithium transition metal complex oxide
JP2007512668A (en) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド Method for producing positive electrode active material for lithium secondary battery, reactive group used in the method, and positive electrode active material for lithium secondary battery produced by the method
US8765305B2 (en) 2003-11-26 2014-07-01 Industry-University Cooperation Foundation, Hanyang University Cathode active material for lithium secondary battery, process for preparing the same and reactor for use in the same process
EP1637503A1 (en) 2004-09-15 2006-03-22 H.C. Starck GmbH Mixed metal hydroxides, production and use thereof
DE102004044557B3 (en) * 2004-09-15 2006-06-14 Bayer Inc., Sarnia Mixed metal hydroxides, their preparation and use
US7622190B2 (en) 2004-09-15 2009-11-24 Toda Kogyo Europe Gmbh Composition comprising lithium compound and mixed metal hydroxides and their preparation and use
JP2006083058A (en) * 2004-09-15 2006-03-30 Hc Starck Gmbh Mixed metal hydroxide and preparation and use thereof
US7998582B2 (en) 2004-09-15 2011-08-16 Toda Kogyo Europe Gmbh Mixed metal hydroxides comprising amorphous aluminum hydroxide, and their preparation and use
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
KR100734225B1 (en) 2005-12-09 2007-07-02 제일모직주식회사 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP2009536437A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド Method for preparing high performance lithium secondary battery material
WO2008068905A1 (en) 2006-12-06 2008-06-12 Toda Kogyo Corporation Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP2009084104A (en) * 2007-09-28 2009-04-23 Vale Inco Japan Ltd Method for coating nickel oxide particles
JP2009215143A (en) * 2008-03-13 2009-09-24 Sumitomo Metal Mining Co Ltd Manufacturing method of planar lithium nickel composite oxide and planar lithium nickel composite oxide using the same
JP2010024083A (en) * 2008-07-18 2010-02-04 Sumitomo Metal Mining Co Ltd Method for producing aluminum hydroxide coated nickel cobalt composite hydroxide
WO2010143641A1 (en) * 2009-06-08 2010-12-16 住友化学株式会社 Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
US9577256B2 (en) 2009-06-08 2017-02-21 Sumitomo Chemical Company, Limited Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
JP2011146360A (en) * 2009-06-08 2011-07-28 Sumitomo Chemical Co Ltd Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
US9543581B2 (en) 2010-08-17 2017-01-10 Umicore Alumina dry-coated cathode material precursors
US9876226B2 (en) 2010-08-17 2018-01-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
KR101511878B1 (en) * 2010-08-17 2015-04-14 유미코르 Aluminum dry-coated and heat treated cathode material precursor compound and process of preparing the same
JP2013541129A (en) * 2010-08-17 2013-11-07 ユミコア Cathode material precursor with aluminum dry coating and heat treatment
JP2013539169A (en) * 2010-08-17 2013-10-17 ユミコア Cathode material precursor with dry coating of alumina
CN103081189A (en) * 2010-08-17 2013-05-01 尤米科尔公司 Aluminum dry-coated and heat treated cathode material precursors
CN103068770A (en) * 2010-08-17 2013-04-24 尤米科尔公司 Alumina dry -coated cathode material precursors
WO2012022618A1 (en) 2010-08-17 2012-02-23 Umicore Alumina dry -coated cathode material precursors
WO2012022624A1 (en) * 2010-08-17 2012-02-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
TWI464949B (en) * 2010-08-17 2014-12-11 Umicore Nv Aluminum dry-coated and heat treated cathode material precursors
JP2016500048A (en) * 2013-02-13 2016-01-07 エルジー・ケム・リミテッド Transition metal precursors with low tap density and lithium transition metal oxides with high particle strength
US11577969B2 (en) 2013-02-13 2023-02-14 Lg Energy Solution, Ltd. Transition metal precursor having low tap density and lithium transition metal oxide having high particle strength
KR101748963B1 (en) 2014-12-05 2017-06-19 주식회사 엘지화학 Positive electrode active material, method for preparing the same and lithium secondary battery comprising the same
CN107004846A (en) * 2014-12-05 2017-08-01 株式会社Lg 化学 Positive electrode active materials, prepare its method and the lithium secondary battery comprising it
US10340517B2 (en) 2014-12-05 2019-07-02 Lg Chem, Ltd. Positive electrode active material, method for preparing the same and lithium secondary battery including the same
CN107004846B (en) * 2014-12-05 2020-04-24 株式会社Lg 化学 Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same
WO2016089176A1 (en) * 2014-12-05 2016-06-09 주식회사 엘지화학 Cathode active material, method for preparing same, and lithium secondary battery comprising same
US11670766B2 (en) 2016-12-12 2023-06-06 Posco Holdings Inc. Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
US11532814B2 (en) 2016-12-26 2022-12-20 Sumitomo Chemical Company, Limited Lithium nickel cobalt composite oxide positive active material, positive electrode, and lithium secondary battery using the same
JP2021506076A (en) * 2017-12-08 2021-02-18 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー Low temperature preparation of positive electrode active material
JP7282089B2 (en) 2017-12-08 2023-05-26 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト-ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー Low-temperature preparation of cathode active materials
JP2020196643A (en) * 2019-05-31 2020-12-10 住友金属鉱山株式会社 Method for producing nickel composite hydroxide
JP7371354B2 (en) 2019-05-31 2023-10-31 住友金属鉱山株式会社 Method for producing nickel composite hydroxide

Similar Documents

Publication Publication Date Title
JP2001106534A (en) Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material
JP3290355B2 (en) Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same
US9221693B2 (en) Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
JP5377981B2 (en) Lithium-metal composite oxide and electrochemical device using the same
EP2696406B1 (en) Method for producing positive-electrode active material for lithium-ion battery
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
JP2003059490A (en) Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP4051771B2 (en) Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
KR20120123430A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2015039490A1 (en) Lithium-rich anode material and preparation method thereof
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
WO1999064355A1 (en) Nickel hydroxide particles and production and use thereof
JP2000182618A (en) Positive electrode active material for lithium secondary battery
CN109962234B (en) Concentration gradient single crystal anode material and preparation method thereof
JP6343951B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
JP2006269308A (en) Positive electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP4234418B2 (en) Manganese nickel composite hydroxide particles
JP6619832B2 (en) Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
JPH09306487A (en) Manufacture of positive electrode active material for alkaline storage battery
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP2021134100A (en) Spinel-type lithium manganate and method for producing the same, and use thereof
JP3609228B2 (en) Method for producing lithium-containing aluminum-nickel oxide