JP2001097734A - Quartz glass container and method for producing the same - Google Patents

Quartz glass container and method for producing the same

Info

Publication number
JP2001097734A
JP2001097734A JP27881299A JP27881299A JP2001097734A JP 2001097734 A JP2001097734 A JP 2001097734A JP 27881299 A JP27881299 A JP 27881299A JP 27881299 A JP27881299 A JP 27881299A JP 2001097734 A JP2001097734 A JP 2001097734A
Authority
JP
Japan
Prior art keywords
quartz glass
container
glass container
synthetic quartz
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27881299A
Other languages
Japanese (ja)
Inventor
Masanobu Ezaki
正信 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP27881299A priority Critical patent/JP2001097734A/en
Publication of JP2001097734A publication Critical patent/JP2001097734A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Weting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quartz glass container not eluting a metal impurity during use or not diffusing the metal impurity in a high-temperature environment and to provide a method for producing the quartz glass container. SOLUTION: This quartz glass container has arbitrary thickness (t) and <0.1 ppb concentration of Na, Mg, Al, K, Ca, Cr, Fe, Ni, Cu and Zn, respectively in the thickness range of 20 μm from the surface and in the thickness range of 1/2t±10 μm. The method for producing the quartz glass container comprises forming a container shape from a synthetic quartz glass block only by mechanical grinding without heat treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は石英ガラス製容器お
よびその製造方法に係わり、特に合成石英ガラスブロッ
クから切り出されて製造される石英ガラス製容器および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass container and a method of manufacturing the same, and more particularly, to a quartz glass container cut out from a synthetic quartz glass block and manufactured, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、半導体の高集積化に伴い、その製
造プロセス、シリコン基板に高清浄度が要求されてい
る。
2. Description of the Related Art In recent years, as semiconductors have become more highly integrated, a high degree of cleanliness has been required for the manufacturing process and silicon substrates.

【0003】特に、Siのバンドギャプ中に準位を形成
し、半導体の特性の大きな影響を与えるFe、Ni、C
r等の重金属や、半導体表面でイオンキャリアとして存
在し、電気的リークを引き起こすNa、K等のアルカリ
金属については、その汚染度の許容量は極めて低く抑え
られている。
[0003] In particular, Fe, Ni, C, which form a level in the band gap of Si and greatly affect the characteristics of the semiconductor.
Regarding heavy metals such as r and alkali metals such as Na and K which exist as ion carriers on the semiconductor surface and cause electrical leakage, the allowable amount of contamination is extremely low.

【0004】このため、製造プロセス、半導体ウェーハ
に対する金属汚染には厳しい管理が行われており、例え
ば特開平10−111226号公報に開示されているよ
うに、環境からの微粒子による汚染や、試料容器からの
汚染を防止しながら、溶液試料の溶媒を除去して濃縮す
る、超微量不純物成分分析のための溶媒試料の溶媒除去
・濃縮方法および不純物定量法が行われている。
For this reason, strict control is performed on the manufacturing process and metal contamination on the semiconductor wafer. For example, as disclosed in Japanese Patent Application Laid-Open No. H10-111226, contamination by fine particles from the environment, A solvent removal / concentration method and an impurity quantification method of a solvent sample for ultra-trace impurity component analysis, which removes and concentrates a solvent of a solution sample while preventing contamination from water, have been performed.

【0005】また、特開平10−209106号公報に
開示されているように、ビーカ内の半導体ウェーハおよ
び薬液の硫酸液をヒータにより加熱することにより、シ
リコン基板内の金属不純物を除去する洗浄方法が行われ
ている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 10-209106, a cleaning method for removing metal impurities in a silicon substrate by heating a semiconductor wafer in a beaker and a sulfuric acid solution of a chemical solution by a heater is disclosed. Is being done.

【0006】従来、上記理化学用容器や半導体製造用容
器に用いられる石英製ガラス容器の製造は、石英ガラス
製パイプおよび板状の材料を使用し、これらを火炎加工
により、所定の形状に成形して製造していた。
Conventionally, in the manufacture of quartz glass containers used for the above-mentioned physical and chemical containers and semiconductor manufacturing containers, quartz glass pipes and plate-like materials are used, and these are formed into a predetermined shape by flame processing. Had been manufactured.

【0007】例えば、最も金属不純物汚染が少ないVA
D法(Vapar−Phase Axial depo
sition:気相軸付け法)により製造された合成石
英ガラスインゴットを材料とする場合でも、合成石英ガ
ラスインゴット→製管→酸水素火炎加工の工程を経るて
石英ガラス製容器を形成するため、石英ガラスへの金属
不純物の二次汚染が避けられない。
[0007] For example, VA with the least contamination of metal impurities
Method D (Vapar-Phase Axial depo)
Even when the synthetic quartz glass ingot manufactured by the method (phase: vapor phase shafting method) is used as a material, a quartz glass container is formed through a process of a synthetic quartz glass ingot → pipe making → oxyhydrogen flame processing. Secondary contamination of glass with metallic impurities is inevitable.

【0008】つまり、製管時、酸水素火炎加工時いずれ
においても、加熱処理を行うために、例えば、製管ノズ
ルや酸水素バーナ中の不純物が石英ガラス製容器の特に
表層に、また多くの場合その中心付近に至るまで金属不
純物が混入することが避けられなかった。
In other words, in both the pipe making and the oxy-hydrogen flame processing, in order to perform the heat treatment, for example, impurities in the pipe making nozzle or the oxy-hydrogen burner are deposited particularly on the surface layer of the quartz glass container, In this case, it is inevitable that metal impurities are mixed in the vicinity of the center.

【0009】上記のような従来の製造方法によって製造
されたVAD法石英ガラス製ビーカの内表面の化学分析
の測定結果では、Ca:4.1ppb、Na:3.9p
pb、Fe:3.6ppb、K:3.4ppbと金属不
純物の二次汚染が認められる。
According to the results of chemical analysis of the inner surface of the VAD quartz glass beaker manufactured by the above-described conventional manufacturing method, Ca: 4.1 ppb, Na: 3.9 p
Secondary contamination of pb, Fe: 3.6 ppb, K: 3.4 ppb and metal impurities was observed.

【0010】つまり、合成石英ガラスインゴットの段階
では、各不純物元素の含有量は<0.1ppbであり、
製管、酸水素火炎加工を経るために完成段階での不純物
濃度が著しく増加する。
That is, at the stage of the synthetic quartz glass ingot, the content of each impurity element is <0.1 ppb,
Due to pipe making and oxyhydrogen flame processing, the impurity concentration in the completed stage is significantly increased.

【0011】高分析精度の要求が比較的緩やかな状況で
は、従来の製造方法により製造された理化学容器を用い
て、分析を行っても問題はなかったが、上述のように高
分析精度が要求されるようになると、理化学容器から薬
液中に溶け出す金属不純物が問題になってくる。
In a situation where the demand for high analysis accuracy is relatively moderate, there is no problem in performing analysis using a physicochemical container manufactured by a conventional manufacturing method, but as described above, high analysis accuracy is required. In such a case, metal impurities dissolved from the physical and chemical containers into the chemical solution become a problem.

【0012】また、半導体製造工程においても、多くの
石英製容器が用いられているが、従来の製造方法により
製造された半導体用容器を用いて、半導体の製造を行う
と半導体用容器から溶け出す、あるいは高温環境下で拡
散する金属不純物により、半導体が汚染され所定特性の
半導体が得られない場合があり、製造歩留を低下させる
おそれがあった。
In the semiconductor manufacturing process, many quartz containers are used. When a semiconductor is manufactured using a semiconductor container manufactured by a conventional manufacturing method, the semiconductor melts out of the semiconductor container. Alternatively, the semiconductor may be contaminated by a metal impurity diffused in a high-temperature environment, and a semiconductor having predetermined characteristics may not be obtained.

【0013】[0013]

【発明が解決しようとする課題】そこで、使用中に金属
不純物が溶け出さないもしくは高温環境下で金属不純物
が拡散しない石英ガラス製容器およびその製造方法が要
望されていた。
Therefore, there is a need for a quartz glass container in which metal impurities do not dissolve during use or in which metal impurities do not diffuse in a high-temperature environment, and a method of manufacturing the same.

【0014】本発明は上記事情に鑑みて発明されたもの
で、使用中に金属不純物が溶け出さないもしくは高温環
境下で金属不純物が拡散しない石英ガラス製容器および
その製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a quartz glass container in which metal impurities do not dissolve during use or in which metal impurities do not diffuse in a high-temperature environment, and a method of manufacturing the same. And

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
になされた請求項1の発明は、任意の厚さ:tを有する
石英ガラス容器であって、表面から20μmの厚さ領域
および1/2tの±10μmの厚さ領域いずれにおいて
も、Na、Mg、Al、K、Ca、Cr、Fe、Ni、
CuおよびZn濃度がいずれも0.1ppb未満である
ことを特徴とする石英ガラス製容器であることを要旨と
している。
Means for Solving the Problems An object of the present invention is to provide a quartz glass container having an arbitrary thickness: t, a region having a thickness of 20 μm from the surface, and a thickness of 1 / t. Na, Mg, Al, K, Ca, Cr, Fe, Ni,
The gist is that the container is made of quartz glass, characterized in that the Cu and Zn concentrations are both less than 0.1 ppb.

【0016】本願請求項2の発明は、合成石英ガラスブ
ロックから加熱処理することなく、機械研削のみによ
り、容器形状を形成することを特徴とする石英ガラス製
容器の製造方法であることを要旨としている。
The gist of the invention of claim 2 of the present application is to provide a method for manufacturing a quartz glass container characterized by forming a container shape only by mechanical grinding without heat treatment from a synthetic quartz glass block. I have.

【0017】本願請求項3の発明では、上記合成石英ガ
ラスブロックは、VAD法により製造されることを特徴
とする請求項2に記載の石英ガラス製容器の製造方法で
あることを要旨としている。
According to a third aspect of the present invention, there is provided a method for manufacturing a quartz glass container according to the second aspect, wherein the synthetic quartz glass block is manufactured by a VAD method.

【0018】[0018]

【発明の実施の形態】以下、本発明に係わる石英ガラス
製容器およびその製造方法を図面に基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A quartz glass container and a method of manufacturing the same according to the present invention will be described below with reference to the drawings.

【0019】図1は本発明に係わる石英ガラス製容器、
例えば理化学用容器のビーカ1で、このビーカ1はVA
D法により製造された合成石英ガラス製であり、一般に
用いられている形状を有している。
FIG. 1 shows a quartz glass container according to the present invention.
For example, beaker 1 of a physics and chemistry container, and this beaker VA
It is made of synthetic quartz glass manufactured by the method D, and has a generally used shape.

【0020】理化学用容器として、ビーカ1の他に例え
ば、シャーレー、結晶皿、蒸発皿等が考えられる。
As the physical and chemical containers, besides the beaker 1, for example, a petri dish, a crystal dish, an evaporating dish and the like can be considered.

【0021】ビーカ1は、例えば図2に示すような工程
により製造される。
The beaker 1 is manufactured, for example, by a process as shown in FIG.

【0022】例えば、合成石英ガラスインゴットを製造
する工程と、合成石英ガラスインゴットを切断し母材と
なる合成石英ガラスブロックを製造する工程と、合成石
英ガラスブロックから石英ガラス容器を機械研削する工
程を有する。
For example, a process for manufacturing a synthetic quartz glass ingot, a process for cutting a synthetic quartz glass ingot to produce a synthetic quartz glass block serving as a base material, and a process for mechanically grinding a quartz glass container from the synthetic quartz glass block. Have.

【0023】インゴットの製造は、一般に原料としてS
iClを用い、酸水素火炎加水分解による直接堆積ガ
ラス化する直接法、高周波誘導プラズマによりガラス化
するプラズマ法、電気炉によりガラス化するスート法な
どがある。
Ingot production is generally carried out using S
There are a direct method of vitrifying directly by oxyhydrogen flame hydrolysis using iCl 4 , a plasma method of vitrifying by high frequency induction plasma, a soot method of vitrifying by an electric furnace, and the like.

【0024】このスート法にはVAD法があり、特にV
AD法により製造された合成石英ガラスは、最も金属汚
染量が少なく、従って、石英ガラス容器に用いる合成石
英ガラスブロックは、VAD法により製造するのが最も
好ましい。
The soot method includes a VAD method.
Synthetic quartz glass produced by the AD method has the least amount of metal contamination. Therefore, the synthetic quartz glass block used for the quartz glass container is most preferably produced by the VAD method.

【0025】VAD法は、図3に示すような一般的なV
AD法合成石英ガラス製造装置11を用いて製造され、
このVAD法合成石英ガラス製造装置11は、反応容器
12と、この反応容器12で製造され合成石英ガラス製
で棒状の出発材13aに堆積する多孔質ガラス体13を
引上げる引上装置14と、反応容器12内に原料ガス等
を供給し、反応させ原料供給装置15を有するトーチ1
6と、引上装置14と原料供給装置15を制御する成長
速度制御装置17と、この成長速度制御装置17に入力
する成長速度設定器18とを有している。
The VAD method uses a general VAD as shown in FIG.
Manufactured using the AD method synthetic quartz glass manufacturing apparatus 11,
The VAD synthetic quartz glass manufacturing apparatus 11 includes a reaction vessel 12, a pulling-up apparatus 14 for pulling up a porous glass body 13 produced in the reaction vessel 12, and deposited on a rod-shaped starting material 13a made of synthetic quartz glass. A torch 1 having a raw material supply device 15 by supplying a raw material gas or the like into the reaction vessel 12 to cause a reaction.
6, a growth rate control device 17 for controlling the pulling-up device 14 and the raw material supply device 15, and a growth speed setting device 18 input to the growth speed control device 17.

【0026】このVAD法合成石英ガラス製造装置11
を用いて、合成石英ガラスインゴットを製造するには、
出発材13aを反応容器12内に挿入し、トーチ16か
らSiCl4、H2、O2を供給し、トーチ16の吹出
口の前方に形成される酸水素火炎によって火炎加水分解
反応せしめSiO2のガラス微粒子を生成し、出発材1
3aの回転軸方向の片端面に吹き付けて多孔質ガラス体
を形成した後、連続的にまたは非連続的に高温炉に挿入
させて脱泡透明ガラス化して合成石英ガラスインゴット
を得る。
This VAD synthetic quartz glass manufacturing apparatus 11
To produce a synthetic quartz glass ingot using
The starting material 13a is inserted into the reaction vessel 12, and SiCl4, H2, and O2 are supplied from the torch 16, and a flame hydrolysis reaction is caused by an oxyhydrogen flame formed in front of an outlet of the torch 16 to generate SiO2 glass particles. And starting material 1
A porous glass body is formed by spraying on one end face in the rotation axis direction of 3a, and then continuously or discontinuously inserted into a high-temperature furnace to be defoamed and transparently vitrified to obtain a synthetic quartz glass ingot.

【0027】上記のようにして製造された合成石英ガラ
スインゴットを、切断装置によって、例えば複数個の合
成石英ガラスブロックに切断する。合成石英ガラスイン
ゴットが製造される石英ガラス容器の大きさに比べて大
きい場合には、この石英ガラス容器の大きさに近い大き
さに切断されるが、合成石英ガラスインゴットが製造さ
れる石英ガラス容器の大きさにほぼ等しい場合には、合
成石英ガラスインゴットの切断は必要とせず、この合成
石英ガラスインゴットから所定の厚さtmmの石英ガラ
ス用容器を直接切り出す。
The synthetic quartz glass ingot manufactured as described above is cut into, for example, a plurality of synthetic quartz glass blocks by a cutting device. If the synthetic quartz glass ingot is larger than the size of the quartz glass container to be manufactured, it is cut into a size close to the size of this quartz glass container, but the quartz glass container from which the synthetic quartz glass ingot is manufactured. When the size of the synthetic quartz glass ingot is almost equal to the size of the synthetic quartz glass ingot, a quartz glass container having a predetermined thickness tmm is directly cut out from the synthetic quartz glass ingot.

【0028】合成石英ガラスブロックの機械研削工程で
は、前工程で切断された合成石英ガラスブロックから、
研削装置により容器形状のビーカ1を切り出す。切り出
したビーカ1を必要に応じて、研磨装置によって鏡面研
磨し、洗浄装置によって洗浄する。
In the mechanical grinding step of the synthetic quartz glass block, the synthetic quartz glass block cut in the previous step is
The container-shaped beaker 1 is cut out by a grinding device. The beaker 1 thus cut out is mirror-polished as required by a polishing device and washed by a cleaning device.

【0029】上記洗浄として、フッ化水素酸によって、
ビーカ1の表面を5〜15μmエッチング処理すること
がより好ましく、これにより、より確実な洗浄が可能と
なるからである。
In the above-mentioned washing, hydrofluoric acid is used.
This is because the surface of the beaker 1 is more preferably subjected to an etching treatment of 5 to 15 μm, whereby more reliable cleaning can be performed.

【0030】このようにして製造された石英ガラス製容
器であるビーカ1は、表面から20μmの厚さ領域およ
び1/2tの±10μmの厚さ領域いずれにおいても、
Na、Mg、Al、K、Ca、Cr、Fe、Ni、Cu
およびZn濃度がいずれも0.1ppb未満に形成され
る。
The beaker 1, which is a quartz glass container manufactured as described above, has a thickness of 20 μm from the surface and a thickness of ± 10 μm of tt.
Na, Mg, Al, K, Ca, Cr, Fe, Ni, Cu
And the Zn concentration are both less than 0.1 ppb.

【0031】これによって、例えば容器内に薬液を入れ
た使用中に有害となる程度に金属不純物が溶け出すこと
がなく、また、高温環境下で金属不純物が拡散ないし理
化学用容器あるいは半導体製造用容器を提供することが
できる。
By this means, for example, metal impurities do not dissolve to the extent that they become harmful during use in which a chemical solution is placed in a container, and metal impurities do not diffuse or physicochemical containers or semiconductor manufacturing containers under a high temperature environment. Can be provided.

【0032】つまり、上記2つの領域における上記特定
を行った石英ガラス製容器によれば、極めて高感度な分
析評価が可能となり、また、極めて高純度な半導体を製
造することができる。
That is, according to the quartz glass container specified above in the two regions, extremely sensitive analysis and evaluation can be performed, and a semiconductor with extremely high purity can be manufactured.

【0033】また、上述の通り合成石英ガラスブロック
から加熱処理することなく、機械研削のみにより容器形
状を形成する製造方法によれば、より確実に金属不純物
が溶け出すことがなく、また、高温環境下で金属不純物
が拡散ない石英ガラス製容器を製造することができる。
According to the manufacturing method of forming a container shape only by mechanical grinding without heat treatment from a synthetic quartz glass block as described above, metal impurities are not more reliably melted out, It is possible to manufacture a quartz glass container in which metal impurities do not diffuse below.

【0034】図4は本発明に係わる石英ガラス製容器、
例えば半導体製造工程の洗浄に用いられる半導体用容器
2で、この半導体用容器2はVAD法により製造された
合成石英ガラス製であり、一般に用いられている形状を
有している。
FIG. 4 shows a quartz glass container according to the present invention.
For example, a semiconductor container 2 used for cleaning in a semiconductor manufacturing process. The semiconductor container 2 is made of synthetic quartz glass manufactured by a VAD method, and has a generally used shape.

【0035】この半導体用容器2も、図2に示すような
製造工程により、合成石英ガラスブロックから切り出し
て製造される。この半導体用容器2も、任意の厚さ:t
を有する石英ガラス容器であって、表面から20μmの
厚さ領域および1/2tの±10μmの厚さ領域いずれ
においても、Na、Mg、Al、K、Ca、Cr、F
e、Ni、CuおよびZn濃度がいずれも0.1ppb
未満であるので、金属汚染がなく、合成石英ガラスブロ
ックとほぼ同等の純度に保つことができる。
This semiconductor container 2 is also manufactured by cutting out from a synthetic quartz glass block by the manufacturing process shown in FIG. This semiconductor container 2 also has an arbitrary thickness: t
A quartz glass container having Na, Mg, Al, K, Ca, Cr, F in both a thickness region of 20 μm from the surface and a thickness region of ± 10 μm of tt.
e, Ni, Cu and Zn concentrations are all 0.1 ppb
Since it is less than the above, there is no metal contamination, and the purity can be kept substantially equal to that of the synthetic quartz glass block.

【0036】[0036]

【実施例】図5に示すような寸法のビーカをVAD法に
より製造した石英ガラスインゴットから機械研削加工に
より製作した(実施例)。
EXAMPLE A beaker having the dimensions shown in FIG. 5 was manufactured by mechanical grinding from a quartz glass ingot manufactured by the VAD method (Example).

【0037】また、実施例と同様の寸法を有し、下記の
ように作製された従来例についても、同様の試験を行っ
た。従来例の製造方法は、VAD法合成石英ガラスイン
ゴット→製管(シリンダフォーミング、パイプチュービ
ング)→酸水素火炎加工(火炎旋盤→研削→火炎加工ア
ニール)の工程で行われる。
A similar test was also performed on a conventional example having the same dimensions as the example and manufactured as described below. The production method of the conventional example is performed in the steps of VAD synthetic quartz glass ingot → pipe making (cylinder forming, pipe tubing) → oxyhydrogen flame processing (flame lathe → grinding → flame processing annealing).

【0038】試験1:上記のようにして製作したビーカ
(実施例)をフッ化水素酸によりエッチングを行い、ビ
ーカの各層に含まれる金属不純物をIPCーMS(誘導
結合プラズマ質量分析装置)を用いて分析し、実施例に
ついて表1の結果を得、従来例については、表2のよう
な結果を得た。
Test 1: The beaker (Example) manufactured as described above was etched with hydrofluoric acid, and the metal impurities contained in each layer of the beaker were analyzed using an IPC-MS (inductively coupled plasma mass spectrometer). The results of Table 1 were obtained for the examples, and the results of Table 2 were obtained for the conventional example.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明に係わる石英ガラス製容器および
その製造方法によれば、使用中に金属不純物が溶け出さ
ないもしくは高温環境下で金属不純物が拡散しない石英
ガラス製容器およびその製造方法を提供することができ
る。
According to the quartz glass container and the method of manufacturing the same according to the present invention, there is provided a quartz glass container which does not dissolve metal impurities during use or does not diffuse metal impurities in a high temperature environment, and a method of manufacturing the same. can do.

【0042】即ち、石英ガラス製容器は任意の厚さ:t
を有する石英ガラス容器であって、表面から20μmの
厚さ領域および1/2tの±10μmの厚さ領域いずれ
においても、Na、Mg、Al、K、Ca、Cr、F
e、Ni、CuおよびZn濃度がいずれも0.1ppb
未満であるので、容器内に薬液を入れて使用しても、使
用中に有害となる程度に金属不純物が溶け出すことがな
く、また、高温環境下で金属不純物が拡散せず、極めて
高感度な分析評価が可能となり、また、極めて高純度な
半導体を製造することができる。
That is, the quartz glass container has an arbitrary thickness: t
A quartz glass container having Na, Mg, Al, K, Ca, Cr, F in both a thickness region of 20 μm from the surface and a thickness region of ± 10 μm of tt.
e, Ni, Cu and Zn concentrations are all 0.1 ppb
Less than that, even if a chemical solution is used in a container, the metal impurities do not dissolve to the extent that they are harmful during use, and the metal impurities do not diffuse in high-temperature environments. Analysis and evaluation can be performed, and an extremely high-purity semiconductor can be manufactured.

【0043】また、合成石英ガラスブロックから加熱処
理することなく、機械研削のみにより、容器形状を形成
するので、より確実に金属不純物が溶け出すことがな
く、また、高温環境下で金属不純物が拡散ない石英ガラ
ス製容器を製造することができる。
Further, since the container shape is formed only by mechanical grinding without heat treatment from the synthetic quartz glass block, the metal impurities do not melt out more reliably, and the metal impurities diffuse under a high temperature environment. No quartz glass containers can be manufactured.

【0044】また、合成石英ガラスブロックは、VAD
法により製造されるので、VAD法により製造された合
成石英ガラスとほぼ同等の純度を有する石英ガラス製容
器を製造することができる。
The synthetic quartz glass block is made of VAD
Since it is manufactured by the method, it is possible to manufacture a quartz glass container having substantially the same purity as the synthetic quartz glass manufactured by the VAD method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる石英ガラス容器の断面図。FIG. 1 is a sectional view of a quartz glass container according to the present invention.

【図2】本発明に係わる石英ガラス容器の製造方法の一
実施形態を示す製造工程図。
FIG. 2 is a manufacturing process diagram showing one embodiment of a method for manufacturing a quartz glass container according to the present invention.

【図3】一般に用いられているVAD法の概念図。FIG. 3 is a conceptual diagram of a generally used VAD method.

【図4】本発明に係わる石英ガラス容器の他の実施形態
を示す斜視図。
FIG. 4 is a perspective view showing another embodiment of the quartz glass container according to the present invention.

【図5】実施例の試験に用いられる石英ガラス容器の説
明図。
FIG. 5 is an explanatory view of a quartz glass container used for a test of an example.

【符号の説明】[Explanation of symbols]

1 ビーカ 2 半導体用容器 11 VAD法合成石英ガラス製造装置 12 反応容器 13a 出発材 13 多孔質ガラス体 14 引上装置 15 原料供給装置 16 トーチ 17 成長速度制御装置 18 成長速度設定器 DESCRIPTION OF SYMBOLS 1 Beaker 2 Semiconductor container 11 VAD synthetic quartz glass manufacturing apparatus 12 Reaction vessel 13a Starting material 13 Porous glass body 14 Pulling device 15 Raw material supply device 16 Torch 17 Growth rate control device 18 Growth rate setting device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/68 H01L 21/306 J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/68 H01L 21/306 J

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 任意の厚さ:tを有する石英ガラス容器
であって、表面から20μmの厚さ領域および1/2t
の±10μmの厚さ領域いずれにおいても、Na、M
g、Al、K、Ca、Cr、Fe、Ni、CuおよびZ
n濃度がいずれも0.1ppb未満であることを特徴と
する石英ガラス製容器。
1. A quartz glass container having an arbitrary thickness: t, a region having a thickness of 20 μm from the surface and 1 / t.
Na, M in any thickness region of ± 10 μm
g, Al, K, Ca, Cr, Fe, Ni, Cu and Z
A container made of quartz glass, wherein each of the n concentrations is less than 0.1 ppb.
【請求項2】合成石英ガラスブロックから加熱処理する
ことなく、機械研削のみにより、容器形状を形成するこ
とを特徴とする石英ガラス製容器の製造方法。
2. A method for manufacturing a quartz glass container, comprising forming a container shape only by mechanical grinding without heat treatment from a synthetic quartz glass block.
【請求項3】上記合成石英ガラスブロックは、VAD法
により製造されることを特徴とする請求項2に記載の石
英ガラス製容器の製造方法。
3. The method for manufacturing a quartz glass container according to claim 2, wherein said synthetic quartz glass block is manufactured by a VAD method.
JP27881299A 1999-09-30 1999-09-30 Quartz glass container and method for producing the same Pending JP2001097734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27881299A JP2001097734A (en) 1999-09-30 1999-09-30 Quartz glass container and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27881299A JP2001097734A (en) 1999-09-30 1999-09-30 Quartz glass container and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001097734A true JP2001097734A (en) 2001-04-10

Family

ID=17602517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27881299A Pending JP2001097734A (en) 1999-09-30 1999-09-30 Quartz glass container and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001097734A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059412A (en) * 2002-07-31 2004-02-26 Shinetsu Quartz Prod Co Ltd Quartz glass jig and its manufacture method
JP2007243107A (en) * 2006-03-13 2007-09-20 Sumco Corp Metallic pollution analyzing method for semiconductor wafer housing container
EP1854769A1 (en) * 2005-03-01 2007-11-14 Nikon Corporation Synthetic quartz glass molded product, molding method therefor and method for inspecting synthetic quartz glass molded product
CN102314082A (en) * 2010-06-28 2012-01-11 信越化学工业株式会社 Method for manufacturing electronic grade synthetic quartz glass substrate
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2019004008A1 (en) * 2017-06-27 2019-01-03 ネクサス株式会社 Method for manufacturing quartz vial bottle
WO2020129415A1 (en) * 2018-12-19 2020-06-25 ネクサス株式会社 Method for manufacturing quartz vial
JP2020180047A (en) * 2020-07-20 2020-11-05 ネクサス株式会社 Manufacturing method of quartz vial

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059412A (en) * 2002-07-31 2004-02-26 Shinetsu Quartz Prod Co Ltd Quartz glass jig and its manufacture method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP1854769A4 (en) * 2005-03-01 2010-07-28 Synthetic quartz glass molded product, molding method therefor and method for inspecting synthetic quartz glass molded product
US8679994B2 (en) 2005-03-01 2014-03-25 Nikon Corporation Method of inspecting synthetic silicia glass molded body
US8539793B2 (en) 2005-03-01 2013-09-24 Nikon Corporation Method of molding synthetic silica glass molded body
EP1854769A1 (en) * 2005-03-01 2007-11-14 Nikon Corporation Synthetic quartz glass molded product, molding method therefor and method for inspecting synthetic quartz glass molded product
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007243107A (en) * 2006-03-13 2007-09-20 Sumco Corp Metallic pollution analyzing method for semiconductor wafer housing container
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
KR102047598B1 (en) * 2010-06-28 2019-11-21 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing electronic grade synthetic quartz glass substrate
KR20120005948A (en) * 2010-06-28 2012-01-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing electronic grade synthetic quartz glass substrate
KR20180027482A (en) * 2010-06-28 2018-03-14 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing electronic grade synthetic quartz glass substrate
US9017143B2 (en) 2010-06-28 2015-04-28 Shin-Etsu Chemical Co., Ltd. Method for manufacturing electronic grade synthetic quartz glass substrate
JP2012032786A (en) * 2010-06-28 2012-02-16 Shin Etsu Chem Co Ltd Method for manufacturing synthetic quartz glass substrate for semiconductor
KR101620649B1 (en) * 2010-06-28 2016-05-12 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing electronic grade synthetic quartz glass substrate
KR102047549B1 (en) * 2010-06-28 2019-11-21 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing electronic grade synthetic quartz glass substrate
US9017144B2 (en) 2010-06-28 2015-04-28 Shin-Etsu Chemical Co., Ltd. Method for manufacturing electronic grade synthetic quartz glass substrate
JP2012032785A (en) * 2010-06-28 2012-02-16 Shin Etsu Chem Co Ltd Method for manufacturing synthetic quartz glass substrate for semiconductor
CN102314082A (en) * 2010-06-28 2012-01-11 信越化学工业株式会社 Method for manufacturing electronic grade synthetic quartz glass substrate
WO2019004008A1 (en) * 2017-06-27 2019-01-03 ネクサス株式会社 Method for manufacturing quartz vial bottle
CN109429486A (en) * 2017-06-27 2019-03-05 诺希斯股份有限公司 The manufacturing method of quartzy phial
US11279515B2 (en) 2017-06-27 2022-03-22 Nexus Company Inc. Fabricating method for quartz vial
US11745914B2 (en) 2017-06-27 2023-09-05 Nexus Company Inc. Fabricating method for quartz vial
WO2020129415A1 (en) * 2018-12-19 2020-06-25 ネクサス株式会社 Method for manufacturing quartz vial
JP2020100510A (en) * 2018-12-19 2020-07-02 ネクサス株式会社 Method for manufacturing quarts vial bottle
JP2020180047A (en) * 2020-07-20 2020-11-05 ネクサス株式会社 Manufacturing method of quartz vial

Similar Documents

Publication Publication Date Title
JP2001097734A (en) Quartz glass container and method for producing the same
US5653045A (en) Method and apparatus for drying parts and microelectronic components using sonic created mist
JP5922649B2 (en) High purity synthetic silica and products such as jigs made from the high purity synthetic silica
US5505785A (en) Method and apparatus for cleaning integrated circuit wafers
JP2810941B2 (en) Method for producing polygonal columnar silica glass rod
EP1471039B1 (en) Method for producing a quartz glass jig
JP2003171128A (en) Silica glass member for semiconductor, and production method therefor
JPS63236723A (en) Quartz glass products for semiconductor industry
EP0713245A2 (en) A heat treatment jig for semiconductor wafers and a method for treating a surface of the same
JPH11310423A (en) Synthetic quartz glass and its production
JPH10114532A (en) Production of jig for heat-treating quartz-glass semiconductor
JP3116723B2 (en) Quartz glass material for microwave plasma equipment
JPH01239082A (en) Production of quartz crucible
JP4345585B2 (en) Silicon single crystal manufacturing method, viewing window glass used therefor, crystal observation window glass, silicon single crystal manufacturing apparatus
JP3665677B2 (en) Manufacturing method of quartz glass tube
JP2005197534A (en) Surface protection film formation method for repairing tool for heat treatment and repairing tool for heat treatment
JP2006077302A (en) Method for producing silicon carbide member
JP2003012333A (en) Quarts glass member and method for producing the same
JPH05279049A (en) Production of synthetic quartz glass
JP2777858B2 (en) Silica glass tube for heat treatment of semiconductor and method for producing the same
EP1160593A2 (en) Manufacture of optical waveguide substrate
JPS59227128A (en) Oxidation method for semiconductor substrate
JP2840164B2 (en) Quartz glass boat and its manufacturing method
JPH07267661A (en) Quartz glass pipe and its production
JPH0710571A (en) Production of synthetic quartz glass member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071106