JP2001096478A - Rope type bending mechanism, manipulator equipped with rope type bending mechanism, bending type in-liquid propelling body, and endscope - Google Patents

Rope type bending mechanism, manipulator equipped with rope type bending mechanism, bending type in-liquid propelling body, and endscope

Info

Publication number
JP2001096478A
JP2001096478A JP31143599A JP31143599A JP2001096478A JP 2001096478 A JP2001096478 A JP 2001096478A JP 31143599 A JP31143599 A JP 31143599A JP 31143599 A JP31143599 A JP 31143599A JP 2001096478 A JP2001096478 A JP 2001096478A
Authority
JP
Japan
Prior art keywords
bending mechanism
cord
bending
electromagnet
shaped bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31143599A
Other languages
Japanese (ja)
Inventor
Shunichi Kobayashi
俊一 小林
Hirohisa Morikawa
裕久 森川
Kozo Furuhata
康造 降旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueda Textile Science Foundation
Original Assignee
Ueda Textile Science Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueda Textile Science Foundation filed Critical Ueda Textile Science Foundation
Priority to JP31143599A priority Critical patent/JP2001096478A/en
Publication of JP2001096478A publication Critical patent/JP2001096478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rope type bending motion mechanism and various practical devices possible to operate at high speed without using heat when a long narrow body such as a manipulator or an in-liquid propelling body and the like is used. SOLUTION: Two elastic bars with electromagnets which are distributed and attached are placed in parallel, a part of the elastic bars is fixed by an electromagnetic suction, and a active slipping is caused by an electromagnetic reaction at a position apart from the fixed point to realize the bending. The parts for fixing and active slipping are shifted along a fixed direction to realize the spreading of the bending wave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マニピュレータ、
屈曲形液体内推進体、内視鏡などの屈曲する機構を有す
る長尺体に用いる索状形屈曲機構、および、かかる索状
形屈曲機構を備えたマニピュレータ、液体内推進体、内
視鏡に関する。
TECHNICAL FIELD The present invention relates to a manipulator,
The present invention relates to a cord-shaped bending mechanism used for a long body having a bending mechanism such as a bent-shaped liquid propelling body and an endoscope, and a manipulator, a liquid propelling body, and an endoscope provided with such a cord-shaped bending mechanism. .

【0002】[0002]

【従来の技術】電動モータなど回転アクチュエータを関
節部に取り付けた多関節系やワイヤ・プーリ系などによ
る大型の多自由度マニピュレータに対して、小型の多自
由度マニピュレータとして、電動モータに較べて小型化
が容易で高い出力/重量比の形状記憶合金をアクチュエ
ータを用いたものが多数用いられている。形状記憶合金
アクチュエータは、主にTi−Ni系合金などの形状記
憶合金がワイヤ状になっており、予め伸ばされて歪みを
もたせてある。この運動は、ワイヤ状の形状記憶合金に
通電して電気抵抗で発熱すると、形状記憶効果によって
ワイヤが伸ばされる前の状態まで収縮し、通電をやめて
冷却すると再びワイヤが伸びるという機能を利用したも
のである。収縮量を増加させるために、ワイヤがコイル
状になっているタイプのものが多く、例えば、特開平4
−227223公報の内視鏡や特開平10−21623
8公報の長尺物屈曲機構などが提案されている。
2. Description of the Related Art A large multi-degree-of-freedom manipulator such as an articulated system or a wire-pulley system in which a rotary actuator such as an electric motor is attached to a joint is smaller than an electric motor as a small multi-degree-of-freedom manipulator. A large number of actuators using a shape memory alloy having a high output / weight ratio, which is easy to use, are used. In the shape memory alloy actuator, a shape memory alloy such as a Ti—Ni alloy is mainly in the form of a wire, and is stretched in advance to give a strain. This movement utilizes the function that when a wire-shaped shape memory alloy is energized and heat is generated by electric resistance, it contracts to the state before the wire is stretched by the shape memory effect, and when the power is stopped and cooled, the wire is stretched again. It is. In order to increase the amount of shrinkage, many wires have a coil shape.
-227223, JP-A-10-21623
For example, a long object bending mechanism and the like are disclosed in Japanese Patent Application Laid-Open No. H8-208.

【0003】一般に、水中推進機構としてはスクリュプ
ロペラが広く用いられているが、高速で回転することに
よって水中にいる生物に危険をもたらし、水圧が水の飽
和水蒸気圧以下になって生じるキャビテーションを引き
おこすという問題がある。また、スクリュプロペラは高
粘性液体中での移動機構には向かない。
Generally, a screw propeller is widely used as an underwater propulsion mechanism. However, rotating at a high speed poses a danger to a creature in the water and causes cavitation when the water pressure becomes lower than the saturated water vapor pressure of water. There is a problem. Also, screw propellers are not suitable for moving mechanisms in highly viscous liquids.

【0004】魚類などの屈曲運動を模擬した機構は、ス
クリュプロペラの欠点を補う新たな水中屈曲推進機構と
して有効であり、例えばイルカのヒレの形状のフィンを
屈曲させて推力を得るようにした推進機構(特開平8−
126720号公報など)が提案されている。
A mechanism that simulates the bending motion of a fish or the like is effective as a new underwater bending propulsion mechanism that compensates for the drawbacks of a screw propeller. For example, a propulsion mechanism that obtains thrust by bending fin-shaped fins of a dolphin is used. Mechanism (Japanese Unexamined Patent Publication
No. 126720) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
形状記憶合金アクチュエータの運動速度や応答性は、加
熱−冷却速度に強く依存し、高速度の屈曲操作が困難で
あった。また、必ず温度差を発生しなくてはならないの
で、冷却が困難な環境下では冷却装置の設置が必要とな
り、大形かつ複雑となっていた。さらに、内視鏡などの
医療機器に応用した場合には、高温になった形状記憶合
金アクチュエータを生体組織からシールドしなくてはな
らないという問題があった。
However, the movement speed and response of the conventional shape memory alloy actuator strongly depend on the heating-cooling speed, and it has been difficult to perform a high-speed bending operation. In addition, since a temperature difference must be generated, a cooling device must be installed in an environment where cooling is difficult, which is large and complicated. Further, when applied to medical devices such as endoscopes, there is a problem that the shape memory alloy actuator heated to high temperature must be shielded from living tissue.

【0006】さらに、スクリュプロペラにかわる水中推
進機構としての屈曲形の推進機構については、その駆動
のためには能動的な屈曲機構が必要になる。形状記憶合
金アクチュエータを屈曲型水中推進機構に用いた場合に
は、形状記憶合金アクチュエータの冷却性能は外部環境
にある水により向上するが、生体に触れるような場合で
は同様に発熱のシールドを設けなければならないという
問題がある。
[0006] Further, for a bent-type propulsion mechanism as an underwater propulsion mechanism replacing the screw propeller, an active bending mechanism is required for its driving. When a shape memory alloy actuator is used in a bent-type underwater propulsion mechanism, the cooling performance of the shape memory alloy actuator is improved by water in the external environment. There is a problem that must be.

【0007】本発明は、上述の課題・問題点を考慮し、
高速動作が可能で、熱を利用せず、さらに、応答性、制
御性、経済性に優れた小型屈曲機構、および、それを利
用したマニピュレータ、屈曲形液体内推進体、内視鏡、
その他各種用途に用いられる長尺体を提供することにあ
る。
[0007] The present invention has been made in consideration of the above problems and problems, and
A small bending mechanism that can operate at high speed, does not use heat, and is excellent in responsiveness, controllability, and economic efficiency, and a manipulator, bending type liquid propulsion body, endoscope,
Another object of the present invention is to provide a long body used for various other purposes.

【0008】[0008]

【課題を解決するための手段】本発明は、上述した問題
点を解決するために、精子など真核生物の鞭毛運動やゾ
ウリムシなどの繊毛運動の動作原理に注目し、鞭毛や繊
毛内にある数本の微小管とそれらに分布するダイニンと
呼ばれるモータタンパク質の機能の一部を、2本の弾性
棒とそれら分布して附随する電磁石などで再現すること
により、これまでにない索状形屈曲機構を発明するに至
ったものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention focuses on the operating principle of the flagellar movement of eukaryotes such as sperm and the movement of cilia such as paramecium. By recreating some of the functions of motor proteins called dynein distributed in several microtubules and their distribution with two elastic rods and their associated electromagnets, a cord-like bend like never before This has led to the invention of the mechanism.

【0009】すなわち、2本の弾性棒を平行に配置し、
その弾性棒間のある一部を電磁石の吸引力で固定させ、
そこから離れた一部を電磁石などの反発力による能動的
滑りを発生させることにより、制御性、応答性の良好な
屈曲運動機構を実現させるのに成功した。なお、ここに
いう「能動的滑り」とは、向かい合う2本の弾性棒に付
随する電磁石列が柔軟板を介して接触しており、弾性棒
が対軸方向に能動的に移動することによって、あたかも
弾性棒が能動的に滑っているような状態をいう。
That is, two elastic rods are arranged in parallel,
A part between the elastic rods is fixed by the attractive force of the electromagnet,
By generating active sliding at a part away from it by the repulsive force of an electromagnet or the like, we succeeded in realizing a bending motion mechanism with good controllability and responsiveness. In addition, the "active slip" here means that the electromagnet rows attached to the two opposing elastic rods are in contact via the flexible plate, and the elastic rods actively move in the opposite axial direction. It is as if the elastic rod is actively sliding.

【0010】応答性や制御性の観点から、電磁石の使用
が好適であるが、吸引および反発が可能であれば、電磁
石に限らず、圧電アクチュエータや静電アクチュエータ
などを用いることもできる。
From the viewpoint of responsiveness and controllability, it is preferable to use an electromagnet. However, as long as suction and repulsion are possible, not only electromagnets but also piezoelectric actuators and electrostatic actuators can be used.

【0011】本発明の索状形屈曲機構の屈曲の先端方向
への伝播は、2本の弾性棒に附随した電磁石の吸引力に
よる固定と反発力による能動的滑りを、先端方向に移動
させることによって実現される。ただし、先端部で固定
と滑りの機能が消滅するので、連続的な屈曲伝播を行う
には基部側では固定と滑りの機能を随時発生させて先端
方向に移動させる。
[0011] The propagation of the bend of the cord-like bending mechanism of the present invention in the distal direction is performed by moving the electromagnet attached to the two elastic rods toward the distal direction by fixing by the attraction force and actively sliding by the repulsive force. It is realized by. However, since the fixing and sliding functions disappear at the distal end, in order to perform continuous bending propagation, the fixing and sliding functions are generated as needed on the base side and are moved toward the distal end.

【0012】本発明の索状形屈曲機構は、円筒形状を基
本とするが、柔軟棒と電磁石の配置を維持し、屈曲運動
が可能であれば円筒体以外の形状としてもよい。電磁石
を支持して滑り運動を発生するために、軸方向に抵抗な
く伸び、円周方向には伸びない異方性の伸縮性をもつ布
で包み込ませ、確実かつしなやかな屈曲運動を実現させ
ることができる。
Although the cord-shaped bending mechanism of the present invention is basically formed in a cylindrical shape, any other shape than a cylindrical body may be used as long as the arrangement of the flexible rod and the electromagnet is maintained and the bending motion is possible. To support the electromagnet and generate sliding motion, wrap it with an anisotropic stretchable fabric that stretches without resistance in the axial direction and does not stretch in the circumferential direction to achieve reliable and flexible bending motion. Can be.

【0013】[0013]

【発明の実施の形態】図1に、本発明の索状形屈曲機構
の屈曲原理を、電磁石を使用した場合を例として示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the bending principle of the cord-shaped bending mechanism according to the present invention, using an electromagnet as an example.

【0014】図に示すように、電磁石10が分布して附
随した弾性棒12を2本向き合って配置させる。弾性棒
12は、曲げられても直線形状に戻る弾性力が必要であ
るが、弾性力が大きすぎると電磁石による能動的滑りの
発生に大きな負荷をもたらす。また、弾性棒の形状は電
磁石との接合に適する形状がよい。ここでは塩化ビニル
の板棒を用いた。
As shown in the figure, two elastic rods 12 with distributed electromagnets 10 are arranged facing each other. The elastic rod 12 needs an elastic force to return to a linear shape even when bent, but if the elastic force is too large, a large load is applied to the occurrence of active sliding by the electromagnet. Further, the shape of the elastic rod is preferably a shape suitable for joining with an electromagnet. Here, a vinyl chloride plate rod was used.

【0015】弾性棒12は、向かい合う電磁石を異なる
極性にして固定させる固定領域14、通電させずなにも
力が働かない受動領域16、向かい合う電磁石を同極性
にして反発力を生じさせ、能動的な滑りを発生する滑り
領域18により、屈曲が形成される。電磁石は、弾性棒
の弾性力に勝る磁力を持つだけでなく、索状形屈曲機構
に外部負荷がかかっても、屈曲運動が維持できる磁力を
発生させなければならない。
The elastic rod 12 has a fixing region 14 for fixing the facing electromagnets with different polarities, a passive region 16 in which no force acts without energizing, and a facing region where the facing electromagnets have the same polarity to generate a repulsive force. A bend is formed by the slip region 18 that generates a smooth slip. The electromagnet must not only have a magnetic force that exceeds the elastic force of the elastic rod, but also generate a magnetic force that can maintain the bending motion even when an external load is applied to the cord-shaped bending mechanism.

【0016】滑りによって屈曲が生じた直後、異なる極
性で固定させてその形状を維持させる。さらに、電磁石
の極性を先端方向に等速で伝播することによって各領域
を先端方向に等速で移動させることができ、屈曲波とし
て先端方向に伝播される。
Immediately after bending occurs due to slippage, the body is fixed at a different polarity to maintain its shape. Further, by propagating the polarity of the electromagnet at a constant speed in the distal direction, each region can be moved at a constant speed in the distal direction, and propagated as a bending wave in the distal direction.

【0017】固定領域、受動領域、滑り領域の3領域を
4組用意し、基部側から4箇所ある滑り領域について
は、滑りの方向を、左側の弾性棒が右側の弾性棒を先端
側に滑らせる方向、右側の弾性棒が左側の弾性棒を先端
側に滑らせる方向というように交互に変更させる。この
波形の連続的な屈曲運動の生成は、すべての領域を先端
側に等速で移動させるとともに、基部側では随時各領域
を発生させることによって実現される。こうして、1波
数の正弦波形状を実現させることができた。
Four sets of three areas, a fixed area, a passive area, and a sliding area, are prepared. For the four sliding areas from the base side, the direction of the sliding is such that the left elastic rod slides the right elastic rod toward the distal end. The direction in which the left elastic bar slides toward the distal end side of the right elastic bar is alternately changed. The generation of the continuous bending motion of the waveform is realized by moving all the regions toward the distal end at a constant speed and generating the respective regions as needed on the base side. Thus, a sine wave shape having one wave number was realized.

【0018】さらに、弾性棒の本数を2本から3本に増
加させ、弾性棒を正三角形の頂点位置に配置することに
よって、螺旋形状も可能な3次元運動を実現させること
ができる。この場合、一本の弾性棒に付随する電磁石は
両隣の弾性棒に向き合うように2列用意する。
Further, by increasing the number of elastic rods from two to three and disposing the elastic rods at the vertices of an equilateral triangle, it is possible to realize a three-dimensional motion capable of forming a spiral shape. In this case, two rows of electromagnets attached to one elastic rod are prepared so as to face the adjacent elastic rods.

【0019】図2に、本発明の索状形屈曲機構の内部構
成を示す。電磁石20は、図1で示した屈曲原理の弾性
棒に相当する塩化ビニル製の弾性梁22によって支持さ
れており、向かい合う電磁石間には柔軟シート24を設
けて電磁石間の干渉を防ぐ。また、同機構の形状を円筒
形とさせるために、個々の電磁石の外側には半円状のア
ルミニウム製のシェル26をつける。なお、索状形屈曲
機構の全長は30cm、直径は3cmである。電磁石は
一本の弾性梁につき1cm間隔で30個配置してあり、
弾性棒2本分、合計60個の電磁石が用いられる。
FIG. 2 shows the internal structure of the cord-shaped bending mechanism of the present invention. The electromagnet 20 is supported by an elastic beam 22 made of vinyl chloride corresponding to the elastic rod of the bending principle shown in FIG. 1. A flexible sheet 24 is provided between facing electromagnets to prevent interference between the electromagnets. Further, in order to make the mechanism have a cylindrical shape, a semicircular aluminum shell 26 is provided outside each of the electromagnets. The total length of the cord-shaped bending mechanism is 30 cm and the diameter is 3 cm. 30 electromagnets are arranged at 1 cm intervals per elastic beam.
A total of 60 electromagnets for two elastic rods are used.

【0020】本発明で好適に使用される電磁石の鉄心形
状は、図3に示すように「コの字形」であり、コイルを
両端にそれぞれ巻いてある。鉄心は厚さ0.8mmの電
磁軟鉄板(JISC2504)を5枚積層させたもの
で、巻き線はポリウレタン融着銅線0.1mm径を用
い、1000回巻で抵抗が25Ωである。電磁石の鉄心
形状は、円筒状などとすることもできるが、 「コの字
形」とした場合には、反発時における屈曲機構のねじれ
が生じないことから、「コの字形」とすることが、安定
した屈曲のために望ましい。
The shape of the iron core of the electromagnet preferably used in the present invention is "U-shaped" as shown in FIG. 3, and coils are wound around both ends, respectively. The iron core is formed by laminating five electromagnetic soft iron plates (JIS C2504) having a thickness of 0.8 mm, and the winding is a polyurethane-fused copper wire having a diameter of 0.1 mm. The iron core shape of the electromagnet can be cylindrical or the like, but if it is "U-shaped", since the bending mechanism does not torsion at the time of rebound, it should be "U-shaped". Desirable for stable bending.

【0021】向かい合う電磁石列の間隔を一定に保つに
は、電磁力は常に柔軟シートと接触していなくてはなら
ない。そのために柔軟シートは電磁石との摩擦が小さい
ものがよく、PTFEシートが特に好ましい。また、電
磁石に附随するシェルの支持方法として、長軸方向には
抵抗なく伸び、円周方向にはほとんど伸びない材料で包
み込ませればよく、本発明では図4に示すようにゴム入
ガーゼ40で包み込ませる。なお、ゴム入ガーゼとして
は、医療用包帯が好適である。これによって、確実でか
つしなやかな屈曲運動が実現され、振幅1cm、周波数
6.1 Hzの連続的な正弦波状屈曲波形が実現でき
た。
In order to keep the distance between the electromagnet rows facing each other constant, the electromagnetic force must always be in contact with the flexible sheet. Therefore, the flexible sheet preferably has a small friction with the electromagnet, and the PTFE sheet is particularly preferable. Further, as a method of supporting the shell attached to the electromagnet, the shell may be wrapped with a material that extends without resistance in the long axis direction and hardly expands in the circumferential direction. In the present invention, as shown in FIG. Let it wrap. In addition, a medical bandage is suitable as the rubber-filled gauze. As a result, a reliable and flexible bending motion was realized, and a continuous sinusoidal bending waveform having an amplitude of 1 cm and a frequency of 6.1 Hz was realized.

【0022】屈曲運動を実現する電磁石の励磁は、図5
に示すように、パーソナルコンピュータ50の制御によ
る128チャンネルのパルス出力ボード52とリレー回
路で構成されたドライバ54を用いて、電源56からの
直流電流をスイッチングさせて行う。
The excitation of the electromagnet for realizing the bending motion is shown in FIG.
As shown in (1), a DC current from a power supply 56 is switched by using a pulse output board 52 of 128 channels controlled by a personal computer 50 and a driver 54 constituted by a relay circuit.

【0023】制御方法としては、目的の屈曲運動を発生
させるために個々の電磁石の挙動を予め計算し、時間に
対する励磁のシーケンスをバイナリデータとしてあらか
じめ用意する。それをもとにパルス出力ボードから信号
を連続出力させる。このバイナリデータは図6に示す一
例のように屈曲運動1周期を適当な時間間隔で分割し、
各分割時間ごとにすべての電磁石の励磁情報を記載して
ある。1電磁石について2ビットを割り当て、01をN
極、10をS極、00を無励磁として表す。
As a control method, the behavior of each electromagnet is calculated in advance to generate a desired bending motion, and an excitation sequence with respect to time is prepared in advance as binary data. Based on this, the signal is continuously output from the pulse output board. This binary data divides one cycle of the bending motion at appropriate time intervals as shown in the example of FIG.
The excitation information of all electromagnets is described for each division time. Allocate 2 bits for one electromagnet and set 01 to N
The poles, 10 are S poles, and 00 is no excitation.

【0024】この索状形屈曲機構を、マニピュレータの
アーム部に設けることにより、制御性、応答性の良好な
マニピュレータが得られた。また、この索状形屈曲機構
を、屈曲型液体内推進体の推進駆動部に設けることによ
り、制御性、応答性の良好な液体内推進体が得られた。
さらに、この索状形屈曲機構を、内視鏡の能動屈曲する
挿入部として用いることにより、制御性、応答性の良好
な内視鏡とすることができる。その他、2次元の屈曲が
必要な各種機器に応用することができ、さらに、3列の
電磁石列を用意することによって、医療機器などの各種
機器に応用することができる。
By providing the cord-shaped bending mechanism on the arm portion of the manipulator, a manipulator having good controllability and responsiveness was obtained. In addition, by providing the cord-shaped bending mechanism in the propulsion drive unit of the bent-type in-liquid propelling body, an in-liquid propelling body with good controllability and responsiveness was obtained.
Furthermore, by using this cord-shaped bending mechanism as an insertion portion for actively bending an endoscope, an endoscope with good controllability and responsiveness can be obtained. In addition, the present invention can be applied to various devices that require two-dimensional bending, and can be applied to various devices such as medical devices by preparing three rows of electromagnets.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
電磁石の吸引と反発によるシンプルな機構で制御性、応
答性のきわめて良好な屈曲運動機構を実現することがで
き、この屈曲運動機構をマニピュレータ、屈曲形液中推
進機構、内視鏡などに採用することにより、従来のマニ
ピュレータなどと比較して、複雑な形状である正弦波形
状、螺旋形状などの索条屈曲運動が可能となり、従来の
ものに比して高性能であって、しかも経済的にも優れた
屈曲機構を創出でき、この屈曲機構利用した可能各種実
用機器が達成された。
As described above, according to the present invention,
Extremely good controllability and responsiveness can be realized with a simple mechanism by the attraction and repulsion of the electromagnet, and this bending motion mechanism is used in manipulators, bent submerged propulsion mechanisms, endoscopes, etc. As a result, compared to conventional manipulators and the like, it is possible to perform a rope bending movement such as a complex shape such as a sine wave shape and a helical shape, which is higher in performance than the conventional one, and more economically. Also, an excellent bending mechanism can be created, and various practical devices using the bending mechanism have been achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の索状形屈曲機構の屈曲原理である。FIG. 1 shows the bending principle of the cord-shaped bending mechanism of the present invention.

【図2】本発明の索状形屈曲機構の内部構成である。FIG. 2 is an internal configuration of the cord-shaped bending mechanism of the present invention.

【図3】本発明の索状形屈曲機構で用いる電磁石の構成
である。
FIG. 3 shows a configuration of an electromagnet used in the cord-shaped bending mechanism of the present invention.

【図4】本発明の索状形屈曲機構を包み込むゴム入ガー
ゼである。
FIG. 4 is a rubber-filled gauze enclosing the cord-shaped bending mechanism of the present invention.

【図5】本発明の索状形屈曲機構の制御・駆動ブロック
図である。
FIG. 5 is a control and drive block diagram of the cord-shaped bending mechanism of the present invention.

【図6】本発明の索状形屈曲機構の電磁石励磁のシーケ
ンスバイナリデータの一例である。
FIG. 6 is an example of sequence binary data of electromagnet excitation of the cord-shaped bending mechanism of the present invention.

【図7】本発明の索状形屈曲機構を備えたマニピュレー
タの例。
FIG. 7 is an example of a manipulator provided with the cord-shaped bending mechanism of the present invention.

【図8】本発明の索状形屈曲機構を備えた屈曲形液中推
進機構の例。
FIG. 8 is an example of a bent submerged propulsion mechanism provided with the cord-shaped bending mechanism of the present invention.

【図9】本発明の索状形屈曲機構を備えた内視鏡の例。FIG. 9 is an example of an endoscope provided with the cord-shaped bending mechanism of the present invention.

【符号の説明】[Explanation of symbols]

10…電磁石 12…柔軟棒 14…固定領域 16…受動領域 18…滑り領域 20…電磁石 22…弾性梁 24…テフロンシート 26…シェル 30…鉄芯(電磁軟鉄板) 32…巻き線 40…柔軟シート(ゴム入ガーゼ) 50…パーソナルコンピュータ 52…パルス出力ボード 54…ドライバ 56…電源 70…マニピュレータ 80…屈曲形液中推進機構 90…内視鏡 DESCRIPTION OF SYMBOLS 10 ... Electromagnet 12 ... Flexible rod 14 ... Fixed area 16 ... Passive area 18 ... Sliding area 20 ... Electromagnet 22 ... Elastic beam 24 ... Teflon sheet 26 ... Shell 30 ... Iron core (electromagnetic soft iron plate) 32 ... Winding wire 40 ... Flexible sheet (Rubber-filled gauze) 50 personal computer 52 pulse output board 54 driver 56 power supply 70 manipulator 80 bending-type submerged propulsion mechanism 90 endoscope

───────────────────────────────────────────────────── フロントページの続き (71)出願人 599153301 降旗 康造 長野県上田市常田3丁目15番1号 信州大 学大学院工学研究科内 (72)発明者 小林 俊一 長野県上田市常田3丁目15番1号 信州大 学繊維学部機能機械学科内 (72)発明者 森川 裕久 長野県上田市常田3丁目15番1号 信州大 学繊維学部機能機械学科内 (72)発明者 降旗 康造 長野県上田市常田3丁目15番1号 信州大 学大学院工学研究科内 Fターム(参考) 3F060 BA03 BA04 GA11 4C061 AA00 BB00 CC00 DD03 FF25 FF29 FF32 HH42  ──────────────────────────────────────────────────続 き Continuing from the front page (71) Applicant 599153301 Kozo Furihata 3-15-1, Tsuneda, Ueda-shi, Nagano Shinshu University Graduate School of Engineering (72) Inventor Shunichi Kobayashi 3--15, Tsuneda, Ueda-shi, Nagano No. 1 Shinshu University Faculty of Textile Science and Technology Department of Functional Machinery (72) Inventor Hirohisa Morikawa 3- 15-1 Tsuneda, Ueda City, Nagano Prefecture Shinshu University Textile Department of Functional Machinery Department of Functional Machinery 3-15-1 Shinshu University Graduate School of Engineering F-term (Reference) 3F060 BA03 BA04 GA11 4C061 AA00 BB00 CC00 DD03 FF25 FF29 FF32 HH42

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 2本の弾性棒間のある一部を固定させ、
そこから離れた一部に能動的滑りを発生させて屈曲を実
現させる索状形屈曲機構。
1. A method for fixing a part between two elastic rods,
A cord-shaped bending mechanism that generates active sliding in a part away from it and realizes bending.
【請求項2】 電磁石の吸引力による固定と反発力によ
る能動的滑りを用いて弾性棒間の屈曲を実現させる請求
項1記載の索状形屈曲機構。
2. The cord-shaped bending mechanism according to claim 1, wherein the bending between the elastic rods is realized by using an active force caused by a fixing force and a repulsive force of the electromagnet.
【請求項3】 電磁石の吸引力による固定と反発力によ
る能動的滑りを一定方向に移動させることによって屈曲
波の伝播を実現する請求項2記載の索状形屈曲機構。
3. The cable-like bending mechanism according to claim 2, wherein the bending wave is propagated by moving the electromagnet in a fixed direction by fixing the electromagnet by the attractive force and by moving the active slip by the repulsive force in a predetermined direction.
【請求項4】 軸方向に伸び、円周方向には伸びない異
方性布で包み込んだ円筒断面形状の請求項2記載または
請求項3記載の索状形屈曲機構。
4. The cord-shaped bending mechanism according to claim 2 or 3, having a cylindrical cross-sectional shape wrapped in an anisotropic cloth extending in an axial direction but not in a circumferential direction.
【請求項5】 電磁軟鉄板を積層したコの字形鉄心を用
いた電磁石を、2本の弾性梁にそれぞれ分布配置させ、
軟質シートを2本の弾性梁間に配置したした索状形屈曲
機構。
5. An electromagnet using a U-shaped iron core in which electromagnetic soft iron plates are laminated is distributed and arranged on two elastic beams, respectively.
A cord-shaped bending mechanism in which a soft sheet is arranged between two elastic beams.
【請求項6】 請求項1〜5項の索状形屈曲機構を備え
たマニピュレータ。
6. A manipulator provided with the cord-shaped bending mechanism according to claim 1.
【請求項7】 請求項1〜5項の索状形屈曲機構を備え
た屈曲形液体内推進体。
7. A bent in-liquid propelling body provided with the cord-shaped bending mechanism according to claim 1.
【請求項8】 請求項1〜5項の索状形屈曲機構を備え
た内視鏡。
8. An endoscope provided with the cord-shaped bending mechanism according to claim 1.
JP31143599A 1999-09-27 1999-09-27 Rope type bending mechanism, manipulator equipped with rope type bending mechanism, bending type in-liquid propelling body, and endscope Pending JP2001096478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31143599A JP2001096478A (en) 1999-09-27 1999-09-27 Rope type bending mechanism, manipulator equipped with rope type bending mechanism, bending type in-liquid propelling body, and endscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31143599A JP2001096478A (en) 1999-09-27 1999-09-27 Rope type bending mechanism, manipulator equipped with rope type bending mechanism, bending type in-liquid propelling body, and endscope

Publications (1)

Publication Number Publication Date
JP2001096478A true JP2001096478A (en) 2001-04-10

Family

ID=18017189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31143599A Pending JP2001096478A (en) 1999-09-27 1999-09-27 Rope type bending mechanism, manipulator equipped with rope type bending mechanism, bending type in-liquid propelling body, and endscope

Country Status (1)

Country Link
JP (1) JP2001096478A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030727A2 (en) * 2001-10-05 2003-04-17 Scimed Life Systems, Inc. Robotic endoscope
US6770027B2 (en) 2001-10-05 2004-08-03 Scimed Life Systems, Inc. Robotic endoscope with wireless interface
JP2005503882A (en) * 2001-10-02 2005-02-10 ネオガイド システムズ, インコーポレイテッド Steerable segmented endoscope and insertion method
KR20150114255A (en) * 2014-04-01 2015-10-12 (주) 태웅메디칼 Endoscopic joint structure
CN106618471A (en) * 2017-02-22 2017-05-10 梁敏仪 Fiber peripheral nerve cathetering endoscope
CN106737629A (en) * 2017-02-28 2017-05-31 深圳源创智能机器人有限公司 A kind of flexible arm linkage robot driven based on rope
US10105036B2 (en) 2000-04-03 2018-10-23 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
CN109176489A (en) * 2018-10-11 2019-01-11 燕山大学 A kind of continuous variable-stiffness flexible robot
CN109760103A (en) * 2019-01-30 2019-05-17 天津理工大学 A kind of bionical octopus arm two-stage driving gear and bionical octopus arm mechanism
CN109795691A (en) * 2019-01-22 2019-05-24 浙江理工大学 A kind of unmanned plane during flying grasping system
US10327625B2 (en) 2000-04-03 2019-06-25 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US10512392B2 (en) 2008-02-06 2019-12-24 Intuitive Surgical Operations, Inc. Segmented instrument having braking capabilities
WO2020082723A1 (en) * 2018-10-24 2020-04-30 哈尔滨工业大学(深圳) Rope-driven flexible claw and robot
CN111496764A (en) * 2020-05-29 2020-08-07 三峡大学 Miniature magnetic drive capture robot and preparation method thereof
CN111493798A (en) * 2020-05-25 2020-08-07 华中科技大学 Electromagnetic driving type rigid-flexible coupling endoscope
US10893794B2 (en) 2000-04-03 2021-01-19 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
CN113576379A (en) * 2021-08-30 2021-11-02 湖南省华芯医疗器械有限公司 Snake bone unit, snake bone, endoscope and bending control method
CN113693732A (en) * 2021-09-26 2021-11-26 山东大学 Magnetic control continuum robot for minimally invasive surgery and working method thereof
CN113876285A (en) * 2021-12-08 2022-01-04 德宝恒生科技服务有限公司 Endoscope

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10893794B2 (en) 2000-04-03 2021-01-19 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US10736490B2 (en) 2000-04-03 2020-08-11 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US11026564B2 (en) 2000-04-03 2021-06-08 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US10327625B2 (en) 2000-04-03 2019-06-25 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US10105036B2 (en) 2000-04-03 2018-10-23 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
JP2005503882A (en) * 2001-10-02 2005-02-10 ネオガイド システムズ, インコーポレイテッド Steerable segmented endoscope and insertion method
US7097615B2 (en) 2001-10-05 2006-08-29 Boston Scientific Scimed, Inc. Robotic endoscope with wireless interface
WO2003030727A2 (en) * 2001-10-05 2003-04-17 Scimed Life Systems, Inc. Robotic endoscope
US8328714B2 (en) 2001-10-05 2012-12-11 Boston Scientific Scimed, Inc. Robotic endoscope
US8517924B2 (en) 2001-10-05 2013-08-27 Boston Scientific Scimed, Inc. Robotic endoscope with wireless interface
US7666135B2 (en) 2001-10-05 2010-02-23 Boston Scientific Scimed, Inc. Robotic endoscope
US6835173B2 (en) 2001-10-05 2004-12-28 Scimed Life Systems, Inc. Robotic endoscope
US6770027B2 (en) 2001-10-05 2004-08-03 Scimed Life Systems, Inc. Robotic endoscope with wireless interface
WO2003030727A3 (en) * 2001-10-05 2004-01-08 Scimed Life Systems Inc Robotic endoscope
JP2005527253A (en) * 2001-10-05 2005-09-15 ボストン サイエンティフィック リミテッド Autopilot endoscope
US10952594B2 (en) 2008-02-06 2021-03-23 Intuitive Surgical Operations, Inc. Segmented instrument having braking capabilities
US10512392B2 (en) 2008-02-06 2019-12-24 Intuitive Surgical Operations, Inc. Segmented instrument having braking capabilities
KR101631883B1 (en) 2014-04-01 2016-06-20 (주) 태웅메디칼 Endoscopic joint structure
KR20150114255A (en) * 2014-04-01 2015-10-12 (주) 태웅메디칼 Endoscopic joint structure
CN106618471A (en) * 2017-02-22 2017-05-10 梁敏仪 Fiber peripheral nerve cathetering endoscope
CN106737629B (en) * 2017-02-28 2019-11-01 深圳源创智能机器人有限公司 A kind of flexible arm linkage robot based on rope driving
CN106737629A (en) * 2017-02-28 2017-05-31 深圳源创智能机器人有限公司 A kind of flexible arm linkage robot driven based on rope
CN109176489B (en) * 2018-10-11 2020-06-19 燕山大学 Continuous variable-rigidity flexible robot
CN109176489A (en) * 2018-10-11 2019-01-11 燕山大学 A kind of continuous variable-stiffness flexible robot
WO2020082723A1 (en) * 2018-10-24 2020-04-30 哈尔滨工业大学(深圳) Rope-driven flexible claw and robot
CN109795691A (en) * 2019-01-22 2019-05-24 浙江理工大学 A kind of unmanned plane during flying grasping system
CN109760103A (en) * 2019-01-30 2019-05-17 天津理工大学 A kind of bionical octopus arm two-stage driving gear and bionical octopus arm mechanism
CN109760103B (en) * 2019-01-30 2022-03-11 天津理工大学 Bionic octopus arm two-stage driving mechanism and bionic octopus arm mechanism
CN111493798A (en) * 2020-05-25 2020-08-07 华中科技大学 Electromagnetic driving type rigid-flexible coupling endoscope
CN111493798B (en) * 2020-05-25 2021-11-02 华中科技大学 Electromagnetic driving type rigid-flexible coupling endoscope
CN111496764A (en) * 2020-05-29 2020-08-07 三峡大学 Miniature magnetic drive capture robot and preparation method thereof
CN113576379A (en) * 2021-08-30 2021-11-02 湖南省华芯医疗器械有限公司 Snake bone unit, snake bone, endoscope and bending control method
CN113693732A (en) * 2021-09-26 2021-11-26 山东大学 Magnetic control continuum robot for minimally invasive surgery and working method thereof
CN113876285A (en) * 2021-12-08 2022-01-04 德宝恒生科技服务有限公司 Endoscope

Similar Documents

Publication Publication Date Title
JP2001096478A (en) Rope type bending mechanism, manipulator equipped with rope type bending mechanism, bending type in-liquid propelling body, and endscope
Guo et al. Fish-like underwater microrobot with 3 DOF
JP2004283584A (en) Magnetic navigation catheter
US20120174571A1 (en) Shape memory alloy (sma) actuators and devices including bio-inspired shape memory alloy composite (bismac) actuators
US7888846B2 (en) Actuator
JP2009165219A (en) Actuator driven by magnetic force, drive unit using the actuator, and sensor
JP4273902B2 (en) Shape memory alloy actuator
US11464397B2 (en) Soft robot to navigate the natural lumens of a living organism using undulatory locomotion generated by a rotating magnetic dipole field
Kim et al. Methodology of dynamic actuation for flexible magnetic actuator and biomimetic robotics application
Guo et al. A novel type of microrobot for biomedical application
KR20210146360A (en) A microrobot configured to move within a viscous material.
Ghanbari Bioinspired reorientation strategies for application in micro/nanorobotic control
JP4385091B2 (en) Linear motion artificial muscle actuator and method for manufacturing linear motion artificial muscle actuator
JP2010075264A (en) Massage machine
EP2321891A1 (en) Permanent magnet actuator for adaptive actuation
JP2007296612A (en) Electromagnetic actuator and electromagnetic actuator device
KR20230075262A (en) Artficial muscle using electromagnet
Guo et al. Hybrid type of underwater micro biped robot with walking and swimming motions
CN107486853B (en) A kind of electromagnetic type bionic muscle
JP2022549203A (en) Apparatus for propulsion and steering of microstructures
JP5903100B2 (en) Biological idea continuous robot arm
JP2005058351A (en) Artificial muscle
KR100249419B1 (en) The motion module of the multi-freedom degree using the human muscle characteristic
Muhammad Razif et al. Non-linear finite element analysis of biologically inspired robotic fin actuated by soft actuators
WO2018148850A1 (en) Methods and apparatus for linear electric machine