JP2001073944A - Driving device for linear compressor - Google Patents

Driving device for linear compressor

Info

Publication number
JP2001073944A
JP2001073944A JP25238299A JP25238299A JP2001073944A JP 2001073944 A JP2001073944 A JP 2001073944A JP 25238299 A JP25238299 A JP 25238299A JP 25238299 A JP25238299 A JP 25238299A JP 2001073944 A JP2001073944 A JP 2001073944A
Authority
JP
Japan
Prior art keywords
linear compressor
phase
inverter
power supply
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25238299A
Other languages
Japanese (ja)
Inventor
Sugimatsu Hasegawa
杉松 長谷川
Takehito Chinomi
岳人 知野見
Yoshiro Tsuchiyama
吉朗 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25238299A priority Critical patent/JP2001073944A/en
Publication of JP2001073944A publication Critical patent/JP2001073944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a driving device for linear compressor to make a frequency thereof correspond to a resonance frequency of a mechanical system even when the spring constant of a gas spring is changed by a change of load condition and the like. SOLUTION: This device is provided with an inverter 102 for driving a motor winding 103 of the linear compressor for compressing refrigerant by reciprocating motion of a piston, an alternating current power source 100 on a primary side of the inverter 102, a phase detecting circuit 104 for detecting a difference in phase between voltage of the alternating current power source 100 and current passing through the motor winding 103 of the linear compressor, and a calculating controlling part 108 and a base drive circuit 106 for controlling driving frequency of the inverter 102 according to the difference of the phase detected by the phase detecting circuit 104. A resonance frequency of a mass system is thereby always maintained even against load change and highly efficient driving can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ピストンを往復運
動させ、冷媒を圧縮するリニアコンプレッサーの駆動装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive device for a linear compressor for compressing a refrigerant by reciprocating a piston.

【0002】[0002]

【従来の技術】従来のリニアコンプレッサーは、たとえ
ば実開平2−145678号公報に示されているものが
ある。図6を参照しながら従来のリニアコンプレッサー
について説明する。圧力指令発生器30は、第一加算増
幅器31に圧力の指令を与え、第1加算増幅器31は、
前記圧力指令と圧力検出器41が検出する圧力値を加算
増幅して誤差信号を発生し、これを第2加算増幅器32
で周波数信号発生器33が発生する周波数信号と加算増
幅してパルス信号発生器34に出力する。パルス信号発
生器34は、第2加算増幅器32が出力する信号を元に
パルス信号を発生して電力制御器35に与える。電力制
御器35は、パルス信号発生器34の発生する信号を元
に交流電源36が供給する電力を用いてリニアモータ3
7を駆動する。コンプレッサー38は、圧力槽39で冷
媒を吸入圧縮、吐出を行う。圧力検出器41は、圧力槽
39から吐出される冷媒の圧力を検出して、第1加算増
幅器31に信号出力する。このように従来の振動型圧縮
機を用いることにより圧力指令発生器30が指示する圧
力と、圧力検出器41が検出する圧力槽39の圧力との
偏差が生じた時、第2の加算増幅器32がパルス信号発
生器34に与える信号出力を制御することによって、リ
ニアコンプレッサー40を動作させるものである。
2. Description of the Related Art A conventional linear compressor is disclosed, for example, in Japanese Utility Model Laid-Open No. 2-145678. A conventional linear compressor will be described with reference to FIG. The pressure command generator 30 gives a pressure command to the first addition amplifier 31, and the first addition amplifier 31
The pressure command and the pressure value detected by the pressure detector 41 are added and amplified to generate an error signal.
And adds and amplifies with the frequency signal generated by the frequency signal generator 33 to output to the pulse signal generator 34. The pulse signal generator 34 generates a pulse signal based on the signal output from the second summing amplifier 32 and supplies the pulse signal to the power controller 35. The power controller 35 uses the power supplied by the AC power source 36 based on the signal generated by the pulse signal
7 is driven. The compressor 38 sucks, compresses, and discharges the refrigerant in the pressure tank 39. The pressure detector 41 detects the pressure of the refrigerant discharged from the pressure tank 39 and outputs a signal to the first summing amplifier 31. As described above, when a difference between the pressure indicated by the pressure command generator 30 and the pressure of the pressure tank 39 detected by the pressure detector 41 occurs by using the conventional vibrating compressor, the second addition amplifier 32 Controls the signal output given to the pulse signal generator 34 to operate the linear compressor 40.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来技術
を用いたリニアコンプレッサーの駆動装置は、電源装置
からリニアコンプレッサーの巻線に一定の周波数の電圧
を印加していたので、負荷条件の変化などにより、ガス
ばねの定数が変化して、実際の運転周波数と共振周波数
との間にズレが生じ、効率が極端に低下するといった問
題点がある。
However, in the linear compressor driving device using the prior art, a voltage of a constant frequency is applied to the winding of the linear compressor from the power supply device. There is a problem in that the constant of the gas spring changes, a deviation occurs between the actual operation frequency and the resonance frequency, and the efficiency is extremely reduced.

【0004】そこで本発明は、負荷条件の変化などによ
りガスばねの定数が変化しても、常に機械系の共振周波
数に一致させるリニアコンプレッサーの駆動装置を提供
することを目的とする。
Accordingly, an object of the present invention is to provide a drive device for a linear compressor that always matches the resonance frequency of the mechanical system even when the constant of the gas spring changes due to a change in load conditions or the like.

【0005】[0005]

【課題を解決するための手段】請求項1記載の本発明の
リニアコンプレッサーの駆動装置は、ピストンを往復運
動させ冷媒を圧縮するリニアコンプレッサーと、前記リ
ニアコンプレッサーを駆動するインバータと、前記イン
バータの1次側の交流電源と、前記交流電源の電圧と前
記リニアコンプレッサーのモータ巻線に流れる電流の位
相差を検出する位相検出装置と、前記位相検出装置で検
出した位相差に応じて前記インバータの駆動周波数を制
御する手段とを備えたことを特徴とする。請求項2記載
の本発明のリニアコンプレッサーの駆動装置は、ピスト
ンを往復運動させ冷媒を圧縮するリニアコンプレッサー
と、前記リニアコンプレッサーを駆動するインバータ
と、前記インバータの1次側の交流電源と、前記交流電
源の電圧と前記リニアコンプレッサーのモータ巻線に流
れる電流の位相差および前記リニアコンプレッサーのモ
ータ巻線に流れる電流を検出する位相検出装置と、前記
位相検出装置で検出した位相差に応じ機械系の共振周波
数に一致させる手段と、前記リニアコンプレッサーのモ
ータ巻線に流れる電流が最小になるよう電流の位相角を
調整する手段とを備えたことを特徴とする。請求項3記
載の本発明のリニアコンプレッサーの駆動装置は、リニ
アコンプレッサーのモータ巻線を駆動するインバータ
と、電源電圧と前記モータ巻線に流れる電流の位相差に
応じて前記インバータの駆動周波数を制御する手段とを
備えたことを特徴とする。請求項4記載の本発明は、請
求項1から請求項3のいずれかに記載のリニアコンプレ
ッサーの駆動装置において、前記モータ巻線に誘起され
る電圧により前記リニアコンプレッサーの吸入・圧縮時
の通電タイミングを制御することを特徴とする。
According to a first aspect of the present invention, there is provided a linear compressor driving apparatus according to the present invention, comprising: a linear compressor for reciprocating a piston to compress a refrigerant; an inverter for driving the linear compressor; A secondary-side AC power supply, a phase detection device that detects a phase difference between a voltage of the AC power supply and a current flowing through a motor winding of the linear compressor, and driving the inverter according to the phase difference detected by the phase detection device. Means for controlling the frequency. The drive device for a linear compressor according to the present invention according to claim 2, wherein the linear compressor that reciprocates a piston to compress the refrigerant, an inverter that drives the linear compressor, an AC power supply on a primary side of the inverter, and the AC A phase detection device that detects a phase difference between a voltage of a power supply and a current flowing through the motor winding of the linear compressor and a current flowing through the motor winding of the linear compressor, and a mechanical system according to the phase difference detected by the phase detection device. It is characterized by comprising means for matching the resonance frequency and means for adjusting the phase angle of the current so that the current flowing through the motor winding of the linear compressor is minimized. According to a third aspect of the present invention, there is provided a linear compressor driving device for controlling an inverter for driving a motor winding of a linear compressor and a driving frequency of the inverter according to a phase difference between a power supply voltage and a current flowing through the motor winding. And means for performing the operation. According to a fourth aspect of the present invention, in the driving device for a linear compressor according to any one of the first to third aspects, the energization timing at the time of suction and compression of the linear compressor by a voltage induced in the motor winding. Is controlled.

【0006】[0006]

【発明の実施の形態】本発明の第1及び第3の実施の形
態によるリニアコンプレッサーの駆動装置は、交流電源
の電圧とリニアコンプレッサーのモータ巻線に流れる電
流の位相差に応じ、インバータの駆動周波数を制御する
ものである。インバータの出力電圧の周波数を共振周波
数に一定に保った状態で負荷が高くなると、ばねマス系
の共振周波数が変化し、インバータの1次側の交流電圧
と、リニアモータに流れる電流の位相差が増大する。し
たがって、本実施の形態によれば、負荷変動に対して常
に共振周波数が保持され、高効率駆動が可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A linear compressor driving apparatus according to first and third embodiments of the present invention drives an inverter according to a phase difference between a voltage of an AC power supply and a current flowing through a motor winding of the linear compressor. It controls the frequency. When the load increases with the frequency of the output voltage of the inverter kept constant at the resonance frequency, the resonance frequency of the spring mass system changes, and the phase difference between the AC voltage on the primary side of the inverter and the current flowing through the linear motor changes. Increase. Therefore, according to the present embodiment, the resonance frequency is always maintained with respect to a load change, and high-efficiency driving is possible.

【0007】本発明の第2の実施の形態によるリニアコ
ンプレッサーの駆動装置は、インバータの周波数をばね
マス系の共振周波数に一致させ、位相検出装置で検出し
たモータ電流が最小になるまで電流位相角を調整する手
段を設けたことにより、位相検出装置で検出した位相差
に応じ、インバータの周波数をばねマス系の共振周波数
に一致させ、モータ電流が最小になるまで電流位相角を
調整することで負荷変動に対して常に共振周波数が保持
され、高効率駆動が可能である。
A driving device for a linear compressor according to a second embodiment of the present invention adjusts the frequency of the inverter to the resonance frequency of the spring mass system, and adjusts the current phase angle until the motor current detected by the phase detecting device becomes minimum. Is provided, the frequency of the inverter is made to match the resonance frequency of the spring mass system according to the phase difference detected by the phase detection device, and the current phase angle is adjusted until the motor current is minimized. The resonance frequency is always maintained against a load change, and high-efficiency driving is possible.

【0008】本発明の第4の実施の形態は、第1から第
3の実施の形態によるリニアコンプレッサーの駆動装置
において、モータ巻線に誘起される電圧によりリニアコ
ンプレッサーの吸入・圧縮時の通電タイミングを制御す
ることで、リニアコンプレッサーのばねマス系の共振周
波数に一致させることができる。
A fourth embodiment of the present invention is directed to a linear compressor driving apparatus according to the first to third embodiments, wherein the energizing timing at the time of suction / compression of the linear compressor by a voltage induced in the motor winding. Is controlled, the resonance frequency can be made to match the resonance frequency of the spring mass system of the linear compressor.

【0009】[0009]

【実施例】以下本発明の実施例について図面に基づいて
説明する。図1は本発明の実施例によるリニアコンプレ
ッサーの駆動装置の構成を示すブロック図である。同図
に示すように、交流電源100からの交流電圧はコンバ
ータ回路101で直流に変換され、インバータ102に
供給される。インバータ102ではパワートランジスタ
のベースがベースドライブ回路106からの駆動信号を
受け、コンバータ回路101から供給された直流を交流
に変換し、リニアモータの巻線103に交流電流を流
し、リニアコンプレッサーを駆動する。リニアコンプレ
ッサーはピストンを往復運動させ冷媒を圧縮する。位相
検出回路104は交流電源100の電圧とリニアコンプ
レッサーの巻線103に流れる電流の位相差とモータ電
流を検出し、その検出結果は演算制御部108に供給さ
れる。リニアコンプレッサーの巻線103には電圧が誘
起されるので、誘起電圧検出回路105でこの誘起電圧
を検出して、吸入・圧縮時の巻線103への通電タイミ
ングを検出し、演算制御部108に検出結果を供給す
る。制御演算部108では位相検出回路104および誘
起電圧検出回路105からの信号を演算して、その演算
結果に応じてベースドライブ回路106の駆動を制御
し、インバータ102に所定の周波数および電圧の駆動
信号を供給する。インバータ102は演算制御部108
からの周波数および出力指示信号に基づきリニアコンプ
レッサーの巻線103に指示された周波数と電圧を出力
する。位相検出回路104は、1次側にある交流電源1
00の電源電圧とリニアモータの巻線103に流れる電
流の位相差を検出し、その位相差に応じて演算制御部1
08による駆動周波数と通電タイミングをリニアコンプ
レッサーのばねマス系の共振周波数に一致するように制
御する。なお、107はインバータ102の入力側に結
合された電解コンデンサである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a driving device of a linear compressor according to an embodiment of the present invention. As shown in the figure, an AC voltage from an AC power supply 100 is converted to DC by a converter circuit 101 and supplied to an inverter 102. In the inverter 102, the base of the power transistor receives the drive signal from the base drive circuit 106, converts the direct current supplied from the converter circuit 101 into alternating current, passes an alternating current to the winding 103 of the linear motor, and drives the linear compressor. . The linear compressor compresses the refrigerant by reciprocating the piston. The phase detection circuit 104 detects the phase difference between the voltage of the AC power supply 100 and the current flowing through the winding 103 of the linear compressor and the motor current, and the detection result is supplied to the arithmetic and control unit 108. Since a voltage is induced in the winding 103 of the linear compressor, the induced voltage is detected by the induced voltage detection circuit 105, and the timing of energization of the winding 103 during suction and compression is detected. Supply the detection result. The control calculation unit 108 calculates signals from the phase detection circuit 104 and the induced voltage detection circuit 105, controls the driving of the base drive circuit 106 according to the calculation result, and supplies the drive signal of a predetermined frequency and voltage to the inverter 102. Supply. The inverter 102 includes an arithmetic control unit 108
And outputs the specified frequency and voltage to the winding 103 of the linear compressor based on the frequency and the output instruction signal from the controller. The phase detection circuit 104 includes an AC power source 1 on the primary side.
00 and a phase difference between the current flowing through the winding 103 of the linear motor and the current flowing through the winding 103 of the linear motor.
08 and the energization timing are controlled to match the resonance frequency of the spring mass system of the linear compressor. Reference numeral 107 denotes an electrolytic capacitor coupled to the input side of the inverter 102.

【0010】図2は、本実施の形態1によるリニアコン
プレッサーの駆動制御フローを示した図である。ステッ
プ200では交流電源100の電圧を検出し、ステップ
201でリニアコンプレッサーの巻線103に流れる電
流の位相差を検出する。ステップ202では位相検出回
路104で上記の検出した電源電圧とモータ電流の位相
差を演算する。なお、この位相差検出は演算制御部10
8の演算部で演算することもできる。ステップ203で
は、位相検出回路104で検出した電源電圧とモータ電
流の位相差を判定し、3つのステップに分かれる。電源
電圧に対してモータ電流の位相が電源電圧の位相より進
角している場合には、ステップ204で駆動周波数を△
fだけ下げる。電源電圧とモータ電流の位相が同相の場
合にはステップ205に進み、現行の駆動周波数を維持
する。モータ電流の位相が電源電圧の位相に比べて遅延
している場合には、駆動周波数を△fだけ増加させる。
これらのステップ終了後、系は再びステップ200に戻
り、同様の操作を繰り返す。
FIG. 2 is a diagram showing a drive control flow of the linear compressor according to the first embodiment. In step 200, the voltage of the AC power supply 100 is detected, and in step 201, the phase difference of the current flowing through the winding 103 of the linear compressor is detected. In step 202, the phase difference between the power supply voltage and the motor current detected by the phase detection circuit 104 is calculated. Note that this phase difference detection is performed by the arithmetic control unit 10.
8 can also be calculated. In step 203, the phase difference between the power supply voltage and the motor current detected by the phase detection circuit 104 is determined, and the process is divided into three steps. When the phase of the motor current is advanced from the phase of the power supply voltage with respect to the power supply voltage, the driving frequency is reduced by 204 in step 204.
Lower by f. If the phases of the power supply voltage and the motor current are the same, the process proceeds to step 205, and the current drive frequency is maintained. If the phase of the motor current is delayed compared to the phase of the power supply voltage, the drive frequency is increased by Δf.
After these steps, the system returns to step 200 again and repeats the same operation.

【0011】つぎに、駆動周波数の増減の度合いを図3
により詳細に説明する。図3は、機械系と駆動周波数の
共振状態に対する電源電圧とモータ電流の位相差特性を
示した図である。図2で説明した電源電圧とモータ電流
の位相差検出の時間毎に、モータ電流の位相が電源電圧
の位相に比べて遅延している場合には駆動周波数を図3
の位相差特性により設定される設定値分、すなわち、電
源電圧に対してモータ電流の位相差が0になるまで増加
させ、逆にモータ電流の位相が電源電圧の位相より進ん
でいる場合は、駆動周波数を所定時間ごとに設定値分、
すなわち、電源電圧と電流の位相差が0になるまで減少
させる。したがって駆動周波数と機械系のばねマス系の
共振周波数が共振している時、電源電圧とモータ電流の
位相差が同相となる。このように、駆動周波数を調整す
ることで電源電圧とモータ電流の位相を制御することが
できるので、リニアモータの駆動周波数がピストンの共
振周波数に保持され、負荷が変動しても共振周波数が保
持されるため効率が低下しない。
Next, the degree of increase and decrease of the driving frequency is shown in FIG.
This will be described in more detail. FIG. 3 is a diagram illustrating a phase difference characteristic between a power supply voltage and a motor current with respect to a resonance state between a mechanical system and a driving frequency. When the phase of the motor current is delayed as compared with the phase of the power supply voltage at each time of detecting the phase difference between the power supply voltage and the motor current described in FIG.
In the case where the phase difference of the motor current with respect to the power supply voltage is increased until the phase difference of the motor current becomes 0, and conversely, the phase of the motor current is ahead of the phase of the power supply voltage, The drive frequency is set at a set value every predetermined time,
That is, the phase difference is reduced until the phase difference between the power supply voltage and the current becomes zero. Therefore, when the drive frequency and the resonance frequency of the spring mass system of the mechanical system are resonating, the phase difference between the power supply voltage and the motor current is in phase. In this way, by adjusting the drive frequency, the phase of the power supply voltage and the motor current can be controlled, so that the drive frequency of the linear motor is maintained at the resonance frequency of the piston, and the resonance frequency is maintained even if the load fluctuates. The efficiency does not decrease.

【0012】つぎに、図4を用いて他の実施例を説明す
る。図4は本実施例のリニアコンプレッサーの駆動制御
フローを示した図である。ステップ250では演算制御
部108のマイコンで交流電源100の電源電圧とリニ
アコンプレッサーの巻線103に流れるモータ電流の位
相差を演算する。なお、演算制御部108の代わりに位
相検出回路104により演算することもできる。ステッ
プ251では、ステップ250で演算された電源電圧と
モータ電流の位相差の比較を行い、電源電圧とモータ電
流の位相が同相の場合にはステップ252で駆動周波数
を維持する。次いでステップ255に進み、リニアモー
タの巻線103に通電する電圧と、巻線103に流れる
電流の位相角を演算する。ステップ256では、位相検
出回路104でリニアモータの巻き線103に流れる電
流値を検出し、ステップ257では、モータ電流を所定
の設定値と比較してモータ電流が最小の場合にはステッ
プ258で電流位相角を維持し、またモータ電流が設定
値より大きい場合にはステップ259で電流位相角を△
rだけ所定時間ごとに増減させてモータ電流が最小にな
るように制御する。その後ステップ250に戻る。
Next, another embodiment will be described with reference to FIG. FIG. 4 is a diagram showing a drive control flow of the linear compressor of the present embodiment. In step 250, the microcomputer of the arithmetic control unit 108 calculates the phase difference between the power supply voltage of the AC power supply 100 and the motor current flowing through the winding 103 of the linear compressor. Note that the calculation can be performed by the phase detection circuit 104 instead of the calculation control unit 108. In step 251, the phase difference between the power supply voltage and the motor current calculated in step 250 is compared. If the power supply voltage and the motor current are in phase, the drive frequency is maintained in step 252. Next, the routine proceeds to step 255, where the phase angle between the voltage applied to the winding 103 of the linear motor and the current flowing through the winding 103 is calculated. In step 256, the value of the current flowing through the winding 103 of the linear motor is detected by the phase detection circuit 104, and in step 257, the motor current is compared with a predetermined set value. If the phase angle is maintained and the motor current is larger than the set value, the current phase angle is set to △ in step 259.
Control is performed such that the motor current is minimized by increasing or decreasing by r every predetermined time. Thereafter, the process returns to step 250.

【0013】図5は電流位相角に対するモータ電流の特
性図である。同図からわかるように、電流位相角を調整
してモータ電流が最小になるように制御すると、駆動周
波数と機械系共振周波数が一致するので、高効率な運転
が可能になる。一方、ステップ251で電源電圧の位相
がモータ電流の位相より進んでいる場合にはステップ2
53で駆動周波数を△fだけ増加させ、電源電圧の位相
がモータ電流の位相より遅延している場合にはステップ
254で駆動周波数を△fだけ減少させる。駆動周波数
の増減後ステップ250に戻る。
FIG. 5 is a characteristic diagram of the motor current with respect to the current phase angle. As can be seen from the figure, if the motor phase is controlled so that the motor current is minimized by adjusting the current phase angle, the drive frequency and the mechanical system resonance frequency match, so that highly efficient operation is possible. On the other hand, if the phase of the power supply voltage leads the phase of the motor current in step 251, step 2
At 53, the drive frequency is increased by Δf. If the phase of the power supply voltage is behind the phase of the motor current, the drive frequency is decreased by Δf at step 254. After the drive frequency is increased or decreased, the process returns to step 250.

【0014】[0014]

【発明の効果】上記のように本発明によれば、電源電圧
とリニアコンプレッサーの巻線に流れる電流の位相差を
演算し、この位相差に応じて駆動周波数を増加、現状維
持、または減少させることにより、リニアモータの駆動
周波数がピストンの共振周波数に保持され、負荷が変動
しても共振周波数を保持させることができる。したがっ
て、高効率な運転が可能になる。また本発明は、モータ
電流が最小になるように適切に通電位相角を維持するた
め、さらに高効率な運転が可能になる。
As described above, according to the present invention, the phase difference between the power supply voltage and the current flowing through the winding of the linear compressor is calculated, and the drive frequency is increased, the current status is maintained, or reduced according to the phase difference. Thus, the drive frequency of the linear motor is maintained at the resonance frequency of the piston, and the resonance frequency can be maintained even when the load varies. Therefore, highly efficient operation is possible. Further, in the present invention, the energization phase angle is appropriately maintained so that the motor current is minimized, so that a more efficient operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるリニアコンプレッサー
の駆動装置の構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a linear compressor driving device according to an embodiment of the present invention.

【図2】同実施例によるリニアコンプレッサーの駆動装
置の動作を説明するフローチャート
FIG. 2 is a flowchart for explaining the operation of the linear compressor driving device according to the embodiment;

【図3】同実施例による駆動周波数に対する電源電圧と
モータ電流の位相差特性図
FIG. 3 is a diagram showing a phase difference between a power supply voltage and a motor current with respect to a drive frequency according to the embodiment.

【図4】本発明の他の実施例によるリニアコンプレッサ
ーの駆動装置の動作を説明するフローチャート
FIG. 4 is a flowchart illustrating an operation of a driving device for a linear compressor according to another embodiment of the present invention.

【図5】同実施例による電流位相角に対するモータ電流
の特性図
FIG. 5 is a characteristic diagram of a motor current with respect to a current phase angle according to the embodiment.

【図6】従来のリニアコンプレッサーの圧力制御装置の
一例を示すブロック図
FIG. 6 is a block diagram showing an example of a conventional linear compressor pressure control device.

【符号の説明】[Explanation of symbols]

100 交流電源 101 コンバータ回路 102 インバータ 103 リニアコンプレッサーの巻線 104 位相検出回路 105 誘起電圧検出回路 106 インバータのベースドライブ回路 107 電解コンデンサ 108 演算制御部 REFERENCE SIGNS LIST 100 AC power supply 101 Converter circuit 102 Inverter 103 Linear compressor winding 104 Phase detection circuit 105 Induced voltage detection circuit 106 Inverter base drive circuit 107 Electrolytic capacitor 108 Operation control unit

フロントページの続き (72)発明者 土山 吉朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3H045 AA03 AA09 AA12 AA27 AA39 BA12 BA28 BA32 BA33 CA21 DA03 DA04 DA07 DA45 EA34 3H076 AA02 AA40 BB21 BB32 BB43 CC02 CC98 CC99 5H540 AA10 BB09 EE02 EE07 EE08 FC02 FC03 Continuing from the front page (72) Inventor Yoshiro Tsuchiyama 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. BB32 BB43 CC02 CC98 CC99 5H540 AA10 BB09 EE02 EE07 EE08 FC02 FC03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ピストンを往復運動させ冷媒を圧縮する
リニアコンプレッサーと、前記リニアコンプレッサーを
駆動するインバータと、前記インバータの1次側の交流
電源と、前記交流電源の電圧と前記リニアコンプレッサ
ーのモータ巻線に流れる電流の位相差を検出する位相検
出装置と、前記位相検出装置で検出した位相差に応じて
前記インバータの駆動周波数を制御する手段とを備えた
ことを特徴とするリニアコンプレッサーの駆動装置。
1. A linear compressor for reciprocating a piston to compress a refrigerant, an inverter for driving the linear compressor, an AC power supply on a primary side of the inverter, a voltage of the AC power supply and a motor winding of the linear compressor. A linear compressor drive device comprising: a phase detection device that detects a phase difference of a current flowing through a line; and a unit that controls a drive frequency of the inverter according to the phase difference detected by the phase detection device. .
【請求項2】 ピストンを往復運動させ冷媒を圧縮する
リニアコンプレッサーと、前記リニアコンプレッサーを
駆動するインバータと、前記インバータの1次側の交流
電源と、前記交流電源の電圧と前記リニアコンプレッサ
ーのモータ巻線に流れる電流の位相差および前記リニア
コンプレッサーのモータ巻線に流れる電流を検出する位
相検出装置と、前記位相検出装置で検出した位相差に応
じ機械系の共振周波数に一致させる手段と、前記リニア
コンプレッサーのモータ巻線に流れる電流が最小になる
よう電流の位相角を調整する手段とを備えたことを特徴
とするリニアコンプレッサーの駆動装置。
2. A linear compressor for compressing a refrigerant by reciprocating a piston, an inverter for driving the linear compressor, an AC power supply on a primary side of the inverter, a voltage of the AC power supply and a motor winding of the linear compressor. A phase detection device that detects a phase difference of a current flowing through a line and a current flowing through a motor winding of the linear compressor; a unit that matches a resonance frequency of a mechanical system according to the phase difference detected by the phase detection device; Means for adjusting the phase angle of the current so that the current flowing through the motor winding of the compressor is minimized.
【請求項3】 リニアコンプレッサーのモータ巻線を駆
動するインバータと、電源電圧と前記モータ巻線に流れ
る電流の位相差に応じて前記インバータの駆動周波数を
制御する手段とを備えたことを特徴とするリニアコンプ
レッサーの駆動装置。
3. An inverter for driving a motor winding of a linear compressor, and means for controlling a driving frequency of the inverter according to a phase difference between a power supply voltage and a current flowing through the motor winding. Linear compressor drive.
【請求項4】 前記モータ巻線に誘起される電圧により
前記リニアコンプレッサーの吸入・圧縮時の通電タイミ
ングを制御することを特徴とする請求項1から請求項3
のいずれかに記載のリニアコンプレッサーの駆動装置。
4. The power supply timing at the time of suction / compression of the linear compressor is controlled by a voltage induced in the motor winding.
A driving device for a linear compressor according to any one of the above.
JP25238299A 1999-09-07 1999-09-07 Driving device for linear compressor Pending JP2001073944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25238299A JP2001073944A (en) 1999-09-07 1999-09-07 Driving device for linear compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25238299A JP2001073944A (en) 1999-09-07 1999-09-07 Driving device for linear compressor

Publications (1)

Publication Number Publication Date
JP2001073944A true JP2001073944A (en) 2001-03-21

Family

ID=17236550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25238299A Pending JP2001073944A (en) 1999-09-07 1999-09-07 Driving device for linear compressor

Country Status (1)

Country Link
JP (1) JP2001073944A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206485A (en) * 2000-11-29 2002-07-26 Lg Electronics Inc Operation control device for linear compressor using pattern recognition, and method therefor
WO2002079651A1 (en) * 2001-03-28 2002-10-10 Matsushita Refrigeration Company Control device of linear compressor drive system
JP2003013864A (en) * 2001-06-26 2003-01-15 Matsushita Electric Ind Co Ltd Drive control method for linear compressor and drive control method for vehicular linear compressor
JP2005233181A (en) * 2004-02-20 2005-09-02 Lg Electronics Inc Operation control method for reciprocating compressor
WO2006025619A2 (en) * 2004-08-30 2006-03-09 Lg Electronics, Inc. Linear compressor
CN106330051A (en) * 2015-06-19 2017-01-11 珠海格力电器股份有限公司 Linear motor control circuit and linear motor
WO2018070270A1 (en) * 2016-10-12 2018-04-19 日立オートモティブシステムズ株式会社 Power conversion device and system using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206485A (en) * 2000-11-29 2002-07-26 Lg Electronics Inc Operation control device for linear compressor using pattern recognition, and method therefor
WO2002079651A1 (en) * 2001-03-28 2002-10-10 Matsushita Refrigeration Company Control device of linear compressor drive system
JP2003013864A (en) * 2001-06-26 2003-01-15 Matsushita Electric Ind Co Ltd Drive control method for linear compressor and drive control method for vehicular linear compressor
JP2005233181A (en) * 2004-02-20 2005-09-02 Lg Electronics Inc Operation control method for reciprocating compressor
WO2006025619A2 (en) * 2004-08-30 2006-03-09 Lg Electronics, Inc. Linear compressor
WO2006025619A3 (en) * 2004-08-30 2007-04-05 Lg Electronics Inc Linear compressor
JP2008511791A (en) * 2004-08-30 2008-04-17 エルジー エレクトロニクス インコーポレイティド Linear compressor
JP4662991B2 (en) * 2004-08-30 2011-03-30 エルジー エレクトロニクス インコーポレイティド Linear compressor
US9243620B2 (en) 2004-08-30 2016-01-26 Lg Electronics Inc. Apparatus for controlling a linear compressor
CN106330051A (en) * 2015-06-19 2017-01-11 珠海格力电器股份有限公司 Linear motor control circuit and linear motor
WO2018070270A1 (en) * 2016-10-12 2018-04-19 日立オートモティブシステムズ株式会社 Power conversion device and system using same
US11171576B2 (en) 2016-10-12 2021-11-09 Hitachi Astemo, Ltd. Power conversion device and system using the same

Similar Documents

Publication Publication Date Title
US6501240B2 (en) Linear compressor driving device, medium and information assembly
KR20030047784A (en) Driving apparatus of a linear compressor
US7439692B2 (en) Linear compressor and apparatus to control the same
JP2003339188A (en) Linear motor drive apparatus
JP3554269B2 (en) Linear motor drive, medium, and information aggregate
JP2003056470A (en) Stroke control device and method for reciprocating compressor
EP1607631A3 (en) Compressor System
EP1669602A1 (en) Apparatus and method for controlling operation of reciprocating motor compressor
JP2003254249A (en) Device and method for controlling linear compressor
JPH11351143A (en) Driving device for linear compressor
JP2001073944A (en) Driving device for linear compressor
KR970069851A (en) Control device to control elevator AC motor with high driving efficiency
JP2002204597A (en) Inverter-control type generator
JPH09126145A (en) Drive device for linear compressor
JPH09250449A (en) Vibration type compressor
JP2001286185A (en) Drive device of linear compressor
JPH10201248A (en) Power supply device
JP3345563B2 (en) Motor control device
JP4186750B2 (en) Motor control device
JP2000041397A (en) Vibration alleviating apparatus for air conditioner
JPH11141464A (en) Vibration type compressor
JPH10288165A (en) Vibrating type compressor
JP2005039930A (en) Controller for inverter device
JP2002027780A (en) Compressor driver
JP2008072779A (en) Motor driver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408