JP2001073812A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2001073812A
JP2001073812A JP25021299A JP25021299A JP2001073812A JP 2001073812 A JP2001073812 A JP 2001073812A JP 25021299 A JP25021299 A JP 25021299A JP 25021299 A JP25021299 A JP 25021299A JP 2001073812 A JP2001073812 A JP 2001073812A
Authority
JP
Japan
Prior art keywords
exhaust
control valve
engine
unburned
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25021299A
Other languages
Japanese (ja)
Other versions
JP3960720B2 (en
Inventor
Shinya Hirota
信也 広田
Takamitsu Asanuma
孝充 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25021299A priority Critical patent/JP3960720B2/en
Publication of JP2001073812A publication Critical patent/JP2001073812A/en
Application granted granted Critical
Publication of JP3960720B2 publication Critical patent/JP3960720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce combustible HC exhausted to atmosphere and actuate an exhaust turbocharger during acceleration at once. SOLUTION: An exhaust turbine 23 of an exhaust turbocharger 15 and an exhaust control valve 28 are arranged inside an exhaust passage. The exhaust control valve 28 is substantially fully closed during warming up the engine and under low load operation after it. An injection amount of main fuel is increased compared to an optimum injection amount at the time of full closing of the exhaust control valve. Sub-fuel is additionally injected during an expansion process. The exhaust control valve 28 is then fully opened when acceleration is carried out under substantially full closing of the exhaust control valve 28.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化
装置に関する。
The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine.

【0002】[0002]

【従来の技術】ディーゼル機関においては機関の低速低
負荷運転時、特に機関の暖機運転時には燃焼室内の温度
が低くなり、その結果多量の未燃HCが発生する。そこ
で機関排気通路内に排気制御弁を配置し、機関低速低負
荷運転時に排気制御弁を閉弁すると共に燃料噴射量を大
巾に増量することにより燃焼室内の温度を高めて噴射燃
料を燃焼室内で完全燃焼させ、それによって未燃HCの
発生量を抑制するようにしたディーゼル機関が公知であ
る(特開昭49−80414号公報参照)。
2. Description of the Related Art In a diesel engine, the temperature in a combustion chamber becomes low during low-speed low-load operation of the engine, particularly during warm-up operation of the engine, and as a result, a large amount of unburned HC is generated. Therefore, an exhaust control valve is arranged in the engine exhaust passage, the exhaust control valve is closed at the time of low-speed engine low-load operation, and the fuel injection amount is greatly increased to increase the temperature in the combustion chamber and to thereby inject the injected fuel into the combustion chamber. There is known a diesel engine in which combustion is completely performed by the above-described method to thereby suppress the amount of unburned HC generated (see Japanese Patent Application Laid-Open No. 49-80414).

【0003】また、機関排気通路内に排気浄化用触媒を
配置した場合には触媒温度が十分に高くならないと触媒
による良好な排気浄化作用は行われない。そこで機関の
出力を発生させるための主燃料の噴射に加え副燃料を膨
張行程中に噴射し、副燃料を燃焼させることにより排気
ガス温を上昇させ、それによって触媒の温度を上昇させ
るようにした内燃機関が公知である(特開平8−303
290号公報および特開平10−212995号公報参
照)。
In addition, when an exhaust gas purifying catalyst is disposed in an engine exhaust passage, a satisfactory exhaust gas purifying action cannot be performed by the catalyst unless the catalyst temperature becomes sufficiently high. Therefore, in addition to the injection of the main fuel for generating the engine output, the auxiliary fuel is injected during the expansion stroke, and the auxiliary fuel is burned to raise the exhaust gas temperature, thereby raising the temperature of the catalyst. BACKGROUND ART Internal combustion engines are known (Japanese Patent Laid-Open No. 8-303).
290 and JP-A-10-212995).

【0004】また、従来より未燃HCを吸着しうる触媒
が知られている。この触媒は周囲の圧力が高くなればな
るほど未燃HCの吸着量が増大し、周囲の圧力が低くな
ると吸着した未燃HCを放出する性質を有する。そこで
この性質を利用して触媒から放出された未燃HCにより
NOX を還元するために、機関排気通路内にこの触媒を
配置すると共に触媒下流の機関排気通路内に排気制御弁
を配置し、NOX の発生量の少ない機関低速低負荷運転
時には機関出力の発生のための主燃料に加え少量の副燃
料を膨張行程中又は排気行程中に噴射して多量の未燃H
Cを燃焼室から排出させ、更にこのとき機関の出力低下
が許容範囲内に納まるように排気制御弁を比較的に小さ
な開度まで閉弁することにより排気通路内の圧力を高め
て燃焼室から排出される多量の未燃HCを触媒内に吸着
させ、NOX の発生量の多い機関高速又は高負荷運転時
には排気制御弁を全開にして排気通路内の圧力を低下さ
せ、このとき触媒から放出される未燃HCによってNO
X を還元するようにした内燃機関が公知である(特開平
10−238336号公報参照)。
[0004] Further, a catalyst capable of adsorbing unburned HC has been conventionally known. This catalyst has a property that the adsorbed amount of unburned HC increases as the surrounding pressure increases, and releases the adsorbed unburned HC as the surrounding pressure decreases. Therefore, in order to reduce the unburned HC by NO X released from the catalyst using this property, placing the exhaust control valve downstream of the catalyst in the engine exhaust passage with placing the catalyst in the engine exhaust passage, During low-speed engine low-load operation with a small amount of NO X generated, a small amount of auxiliary fuel is injected during the expansion stroke or the exhaust stroke in addition to the main fuel for generating the engine output, and a large amount of unburned H
C is discharged from the combustion chamber, and at this time, the pressure in the exhaust passage is increased by closing the exhaust control valve to a relatively small opening so that the engine output falls within an allowable range. a large amount of unburned HC discharged is adsorbed on the catalyst, is in the event a large amount of engine high speed or high load operation of the NO X reducing the pressure in the exhaust passage in the fully opened exhaust valve, released from the catalyst at this time NO by unburned HC
An internal combustion engine configured to reduce X is known (see Japanese Patent Application Laid-Open No. H10-238336).

【0005】[0005]

【発明が解決しようとする課題】さて、現在ディーゼル
機関はもとより火花点火式内燃機関においても機関低負
荷運転時、特に機関の暖機運転時に発生する未燃HCの
量をいかにして低減するかが大きな問題となっている。
そこで本発明者はこの問題を解決すべく実験研究を行
い、その結果機関の暖機運転時等において大気中に排出
される未燃HCの量を大巾に低減するためには燃焼室内
における未燃HCの発生量を低減しかつ同時に排気通路
内における未燃HCの低減量を増大しなければならない
ことが判明したのである。
Now, how to reduce the amount of unburned HC generated in a low-load engine operation, particularly in a warm-up operation of the engine, not only in a diesel engine but also in a spark ignition type internal combustion engine at present. Is a major problem.
Therefore, the present inventor conducted experimental research to solve this problem. As a result, in order to significantly reduce the amount of unburned HC discharged into the atmosphere during a warm-up operation of the engine or the like, unburned HC in the combustion chamber was required. It has been found that the amount of combustion HC must be reduced and the amount of reduction of unburned HC in the exhaust passage must be increased at the same time.

【0006】具体的に言うと、膨張行程中又は排気行程
中に燃焼室内に副燃料を追加噴射してこの副燃料を燃焼
させ、機関排気ポートの出口からかなり距離を隔てた機
関排気通路内に排気制御弁を設けてこの排気制御弁をほ
ぼ全閉させると、これら副燃料の燃焼と排気制御弁によ
る排気絞り作用との相乗効果によって燃焼室内における
未燃HCの発生量が低減すると共に排気通路内における
未燃HCの低減量が増大し、斯くして大気中に排出され
る未燃HCの量を大巾に低減しうることが判明したので
ある。
More specifically, during the expansion stroke or the exhaust stroke, an auxiliary fuel is additionally injected into the combustion chamber to burn the auxiliary fuel, and the fuel is injected into the engine exhaust passage at a considerable distance from the outlet of the engine exhaust port. When the exhaust control valve is provided and the exhaust control valve is almost fully closed, the amount of unburned HC generated in the combustion chamber is reduced by the synergistic effect of the combustion of these auxiliary fuels and the exhaust throttle action of the exhaust control valve, and the exhaust passage is reduced. It has been found that the amount of reduction of unburned HC in the inside increases, and thus the amount of unburned HC discharged into the atmosphere can be significantly reduced.

【0007】もう少し詳しく言うと、副燃料が噴射され
ると副燃料自身が燃焼せしめられるばかりでなく主燃料
の燃え残りである未燃HCが燃焼室内で燃焼せしめられ
る。従って燃焼室内で発生する未燃HCの量が大巾に低
減するばかりでなく、主燃料の燃え残りである未燃HC
および副燃料が燃焼せしめられるので既燃ガス温がかな
り高温となる。
More specifically, when the auxiliary fuel is injected, not only the auxiliary fuel itself is burned, but also unburned HC, which is the unburned main fuel, is burned in the combustion chamber. Therefore, not only is the amount of unburned HC generated in the combustion chamber significantly reduced, but also the unburned HC remaining as unburned main fuel is reduced.
In addition, the burned gas temperature becomes considerably high because the auxiliary fuel is burned.

【0008】一方、排気制御弁がほぼ全閉せしめられる
と機関の排気ポートから排気制御弁に到る排気通路内の
圧力、即ち背圧がかなり高くなる。背圧が高いというこ
とは燃焼室内から排出された排気ガス温がさほど低下し
ないことを意味しており、従って排気ポート内における
排気ガス温はかなり高温となっている。一方、背圧が高
いということは排気ポート内に排出された排気ガスの流
速が遅いことを意味しており、従って排気ガスは高温の
状態で排気制御弁上流の排気通路内に長時間に亘って滞
留することになる。この間に排気ガス中に含まれる未燃
HCが酸化せしめられ、斯くして大気中に排出される未
燃HCの量が大巾に低減されることになる。
On the other hand, when the exhaust control valve is almost fully closed, the pressure in the exhaust passage from the exhaust port of the engine to the exhaust control valve, that is, the back pressure, becomes considerably high. The high back pressure means that the temperature of the exhaust gas discharged from the combustion chamber does not drop so much, and the temperature of the exhaust gas in the exhaust port is considerably high. On the other hand, a high back pressure means that the flow rate of the exhaust gas discharged into the exhaust port is low, and therefore, the exhaust gas is kept at a high temperature in the exhaust passage upstream of the exhaust control valve for a long time. Will stay. During this time, the unburned HC contained in the exhaust gas is oxidized, and the amount of unburned HC discharged into the atmosphere is greatly reduced.

【0009】この場合、もし副燃料を噴射しなかった場
合には主燃料の燃え残りの未燃HCがそのまま残存する
ために燃焼室内において多量の未燃HCが発生する。ま
た副燃料を噴射しなかった場合には燃焼室内の既燃ガス
温がさほど高くならないためにこのときたとえ排気制御
弁をほぼ全閉させても排気制御弁上流の排気通路内での
未燃HCの十分な酸化作用は期待できない。従ってこの
ときには多量の未燃HCが大気中に排出されることにな
る。
In this case, if the auxiliary fuel is not injected, a large amount of unburned HC is generated in the combustion chamber since unburned HC remaining unburned in the main fuel remains as it is. If the auxiliary fuel is not injected, the temperature of the burned gas in the combustion chamber does not increase so much. Therefore, even if the exhaust control valve is almost fully closed at this time, the unburned HC in the exhaust passage upstream of the exhaust control valve is not used. Cannot be expected to have a sufficient oxidizing effect. Therefore, at this time, a large amount of unburned HC is discharged into the atmosphere.

【0010】一方、排気制御弁による排気絞り作用を行
わない場合でも副燃料を噴射すれば燃焼室内で発生する
未燃HCの発生量は低減し、燃焼室内の既燃ガス温は高
くなる。しかしながら排気制御弁による排気絞り作用を
行わない場合には燃焼室から排気ガスが排出されるや否
や排気ガス圧はただちに低下し、斯くして排気ガス温も
ただちに低下する。従ってこの場合には排気通路内にお
ける未燃HCの酸化作用はほとんど期待できず、斯くし
てこのときにも多量の未燃HCが大気中に排出されるこ
とになる。
On the other hand, even when the exhaust control valve does not perform the exhaust throttling function, if the auxiliary fuel is injected, the amount of unburned HC generated in the combustion chamber is reduced, and the temperature of the burned gas in the combustion chamber is increased. However, if the exhaust control valve does not perform the exhaust throttling action, the exhaust gas pressure immediately drops as soon as the exhaust gas is exhausted from the combustion chamber, and thus the exhaust gas temperature immediately drops. Therefore, in this case, almost no oxidizing action of the unburned HC in the exhaust passage can be expected, and thus also at this time, a large amount of unburned HC is discharged into the atmosphere.

【0011】即ち、大気中に排出される未燃HCの量を
大巾に低減するためには副燃料を噴射しかつ同時に排気
制御弁をほぼ全閉にしなければならないことになる。前
述の特開昭49−80414号公報に記載されたディー
ゼル機関では副燃料が噴射されず、主燃料の噴射量が大
巾に増大せしめられるので排気ガス温は上昇するが極め
て多量の未燃HCが燃焼室内で発生する。このように燃
焼室内において極めて多量の未燃HCが発生するとたと
え排気通路内において未燃HCの酸化作用が行われたと
しても一部の未燃HCしか酸化されないので多量の未燃
HCが大気中に排出されることになる。
That is, in order to significantly reduce the amount of unburned HC discharged into the atmosphere, it is necessary to inject the auxiliary fuel and at the same time to close the exhaust control valve almost completely. In the diesel engine described in JP-A-49-80414, the auxiliary fuel is not injected, and the injection amount of the main fuel is greatly increased. Are generated in the combustion chamber. When an extremely large amount of unburned HC is generated in the combustion chamber in this way, even if the unburned HC is oxidized in the exhaust passage, only a part of the unburned HC is oxidized, so that a large amount of unburned HC is discharged to the atmosphere. Will be discharged.

【0012】一方、前述の特開平8−303290号公
報又は特開平10−212995号公報に記載された内
燃機関では排気制御弁による排気絞り作用が行われてい
ないので排気通路内における未燃HCの酸化作用はほと
んど期待できない。従ってこの内燃機関においても多量
の未燃HCが大気中に排出されることになる。また前述
の特開平10−238336号公報に記載された内燃機
関では機関の出力低下が許容範囲内に納まるように排気
制御弁が比較的小さな開度まで閉弁せしめられる。しか
しながら機関の出力低下が許容範囲内に納まる程度の排
気制御弁の閉弁量では背圧はそれほど高くなっていな
い。
On the other hand, in the internal combustion engine described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 8-303290 or Japanese Patent Application Laid-Open No. Hei 10-212995, since the exhaust throttle function is not performed by the exhaust control valve, the unburned HC in the exhaust passage is reduced. Oxidation can hardly be expected. Therefore, even in this internal combustion engine, a large amount of unburned HC is discharged into the atmosphere. Further, in the internal combustion engine described in the above-mentioned Japanese Patent Application Laid-Open No. 10-238336, the exhaust control valve is closed to a relatively small opening so that the output reduction of the engine falls within an allowable range. However, the back pressure is not so high with the closing amount of the exhaust control valve such that the output of the engine falls within an allowable range.

【0013】また、この内燃機関では触媒に吸着すべき
未燃HCを発生させるために少量の副燃料が膨張行程中
又は排気行程中に噴射される。この場合、副燃料が良好
に燃焼せしめられれば未燃HCが発生しなくなるのでこ
の内燃機関では副燃料が良好に燃焼しないように副燃料
の噴射制御を行っているものと考えられる。従ってこの
内燃機関では少量の副燃料が既燃ガス温の温度上昇には
さほど寄与していないものと考えられる。
Further, in this internal combustion engine, a small amount of auxiliary fuel is injected during an expansion stroke or an exhaust stroke in order to generate unburned HC to be adsorbed by a catalyst. In this case, if the auxiliary fuel is satisfactorily burned, unburned HC will not be generated. Therefore, it is considered that the injection control of the auxiliary fuel is performed in this internal combustion engine so that the auxiliary fuel is not satisfactorily burned. Therefore, in this internal combustion engine, it is considered that a small amount of auxiliary fuel does not significantly contribute to the increase in the temperature of the burned gas.

【0014】このようにこの内燃機関では多量の未燃H
Cが燃焼室内において発生せしめられ、しかも背圧はそ
れほど高くならず既燃ガス温もさほど温度上昇しないと
考えられるので排気通路内においても未燃HCはさほど
酸化されないものと考えられる。この内燃機関ではでき
るだけ多量の未燃HCを触媒に吸着させることを目的と
しており、従ってこのように考えるのが理にかなってい
ると言える。
Thus, in this internal combustion engine, a large amount of unburned H
Since C is generated in the combustion chamber and the back pressure is not so high and the temperature of the burned gas does not increase so much, it is considered that unburned HC is not oxidized so much in the exhaust passage. The purpose of this internal combustion engine is to adsorb as much unburned HC as possible to the catalyst, and thus it can be said that it is reasonable to think in this way.

【0015】ところで前述したように大気中に排出され
る未燃HCの量を大巾に低減するためには副燃料を噴射
しかつ同時に排気制御弁をほぼ全閉にしなければならな
い。ところがこのように副燃料を噴射しかつ排気制御弁
をほぼ全閉にすると前述した如く排気ポートから排出さ
れた排気ガスは高温高圧に維持される。即ち、副燃料を
噴射しかつ排気制御弁をほぼ全閉にしたときには排気制
御弁上流の排気通路に高温かつ高圧の排気ガスが形成さ
れるのでこれら高温かつ高圧の排気ガスをできるだけ有
効に利用することが望まれる。
As described above, in order to greatly reduce the amount of unburned HC discharged into the atmosphere, it is necessary to inject the auxiliary fuel and at the same time substantially close the exhaust control valve. However, when the auxiliary fuel is injected and the exhaust control valve is almost fully closed, the exhaust gas discharged from the exhaust port is maintained at a high temperature and a high pressure as described above. That is, when the auxiliary fuel is injected and the exhaust control valve is almost fully closed, high-temperature and high-pressure exhaust gas is formed in the exhaust passage upstream of the exhaust control valve, so that the high-temperature and high-pressure exhaust gas is used as effectively as possible. It is desired.

【0016】本発明の目的は大気中に排出される未燃H
Cの量を大巾に低減すべきときに形成される高温高圧の
排気ガスのエネルギを有効に利用した内燃機関の排気浄
化装置を提供することにある。
An object of the present invention is to provide unburned H discharged into the atmosphere.
An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that effectively utilizes the energy of high-temperature and high-pressure exhaust gas formed when the amount of C is to be greatly reduced.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に1番目の発明では、機関排気ポートの出口に接続され
た排気通路内に排気ターボチャージャの排気タービンと
排気制御弁を配置し、大気中への未燃HCの排出量を低
減すべきであると判断されたときには排気制御弁をほぼ
全閉にすると共に、機関出力を発生するために燃焼室内
に噴射された主燃料を空気過剰のもとで燃焼させること
に加え副燃料を副燃料が燃焼しうる膨張行程中又は排気
行程中の予め定められた時期に燃焼室内に追加噴射し、
排気制御弁がほぼ全閉にされているときに加速運転が行
われたときには排気制御弁の開度を増大するようにして
いる。
According to a first aspect of the present invention, an exhaust turbine of an exhaust turbocharger and an exhaust control valve are disposed in an exhaust passage connected to an outlet of an engine exhaust port. When it is determined that the amount of unburned HC to be discharged into the engine should be reduced, the exhaust control valve is almost fully closed and the main fuel injected into the combustion chamber to generate engine output is supplied with excess air. In addition to burning in the original, additional fuel is additionally injected into the combustion chamber at a predetermined time during an expansion stroke or an exhaust stroke in which the auxiliary fuel can burn,
When the acceleration operation is performed while the exhaust control valve is almost fully closed, the opening degree of the exhaust control valve is increased.

【0018】2番目の発明では1番目の発明において、
排気タービン下流の排気通路内に排気制御弁を配置して
いる。3番目の発明では1番目の発明において、排気制
御弁がほぼ全閉せしめられたときには同一の機関運転状
態のもとで排気制御弁が全開せしめられた場合の機関の
発生トルクに近づくように同一の機関運転状態のもとで
排気制御弁が全開せしめられた場合に比べて主燃料の噴
射量を増量させるようにしている。
In the second invention, in the first invention,
An exhaust control valve is arranged in an exhaust passage downstream of the exhaust turbine. According to a third aspect of the present invention, in the first aspect, when the exhaust control valve is almost fully closed, the same torque is obtained so as to approach the generated torque of the engine when the exhaust control valve is fully opened under the same engine operating condition. The main fuel injection amount is increased as compared with the case where the exhaust control valve is fully opened under the engine operation state.

【0019】4番目の発明では1番目の発明において、
機関の暖機運転が行われているときには大気中への未燃
HCの排出量を低減すべきであると判断される。5番目
の発明では1番目の発明において、機関低負荷運転が行
われているときには大気中への未燃HCの排出量を低減
すべきであると判断される。
In the fourth invention, in the first invention,
When the engine is being warmed up, it is determined that the emission of unburned HC into the atmosphere should be reduced. In a fifth aspect based on the first aspect, it is determined that the emission of unburned HC into the atmosphere should be reduced when the engine is under low load operation.

【0020】[0020]

【発明の実施の形態】図1および図2は本発明を成層燃
焼式内燃機関に適用した場合を示している。しかしなが
ら本発明は均一リーン空燃比のもとで燃焼が行われる火
花点火式内燃機関、および空気過剰のもとで燃焼が行わ
れるディーゼル機関にも適用することができる。
1 and 2 show a case where the present invention is applied to a stratified combustion internal combustion engine. However, the present invention is also applicable to spark-ignition internal combustion engines that burn under a uniform lean air-fuel ratio and diesel engines that burn under excess air.

【0021】図2を参照すると、1は機関本体、2はシ
リンダブロック、3はシリンダヘッド、4はピストン、
5は燃焼室、6はシリンダヘッド3の内壁面周縁部に配
置された燃料噴射弁、7はシリンダヘッド3の内壁面中
央部に配置された点火栓、8は吸気弁、9は吸気ポー
ト、10は排気弁、11は排気ポートを夫々示す。図1
および図2を参照すると、吸気ポート9は対応する吸気
枝管12を介してサージタンク13に連結され、サージ
タンク13は吸気ダクト14、排気ターボチャージャ1
5のコンプレッサ16、吸気ダクト17およびエアフロ
ーメータ18を介してエアクリーナ19に連結される。
吸気ダクト17内にはステップモータ20により駆動さ
れるスロットル弁21が配置される。一方、排気マニホ
ルド22は排気ターボチャージャ15の排気タービン2
3および排気管24を介して触媒25を収容した触媒コ
ンバータ26に連結され、排気管24内には負圧ダイア
フラム装置又は電気モータからなるアクチュエータ27
により駆動される排気制御弁28が配置される。
Referring to FIG. 2, 1 is an engine body, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston,
Reference numeral 5 denotes a combustion chamber, 6 denotes a fuel injection valve disposed at a peripheral portion of an inner wall surface of the cylinder head 3, 7 denotes a spark plug disposed at a central portion of the inner wall surface of the cylinder head 3, 8 denotes an intake valve, 9 denotes an intake port, Reference numeral 10 denotes an exhaust valve, and reference numeral 11 denotes an exhaust port. FIG.
Referring to FIG. 2 and FIG. 2, the intake port 9 is connected to the surge tank 13 through the corresponding intake branch pipe 12, and the surge tank 13 is connected to the intake duct 14, the exhaust turbocharger 1 and the like.
5 is connected to an air cleaner 19 via a compressor 16, an intake duct 17 and an air flow meter 18.
A throttle valve 21 driven by a step motor 20 is arranged in the intake duct 17. On the other hand, the exhaust manifold 22 is an exhaust turbine 2 of the exhaust turbocharger 15.
3 and an exhaust pipe 24 connected to a catalytic converter 26 containing a catalyst 25. An exhaust pipe 24 has an actuator 27 comprising a negative pressure diaphragm device or an electric motor.
Is disposed.

【0022】図1に示されるように排気マニホルド22
とサージタンク13とは排気ガス再循環(以下EGRと
称す)通路29を介して互いに連結され、EGR通路2
9内には電気制御式EGR制御弁30が配置される。燃
料噴射弁6は共通の燃料リザーバ、いわゆるコモンレー
ル31に連結される。このコモンレール31内へは燃料
タンク32内の燃料が電気制御式の吐出量可変な燃料ポ
ンプ33を介して供給され、コモンレール31内に供給
された燃料が各燃料噴射弁6に供給される。コモンレー
ル31にはコモンレール31内の燃料圧を検出するため
の燃料圧センサ34が取付けられ、燃料圧センサ34の
出力信号に基づいてコモンレール31内の燃料圧が目標
燃料圧となるように燃料ポンプ33の吐出量が制御され
る。
As shown in FIG. 1, the exhaust manifold 22
And the surge tank 13 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 29, and the EGR passage 2
An electric control type EGR control valve 30 is arranged in 9. The fuel injectors 6 are connected to a common fuel reservoir, a so-called common rail 31. The fuel in the fuel tank 32 is supplied to the common rail 31 via a fuel pump 33 of an electrically controlled variable discharge amount, and the fuel supplied to the common rail 31 is supplied to each fuel injection valve 6. A fuel pressure sensor 34 for detecting the fuel pressure in the common rail 31 is attached to the common rail 31. Based on an output signal of the fuel pressure sensor 34, a fuel pump 33 is provided so that the fuel pressure in the common rail 31 becomes a target fuel pressure. Is controlled.

【0023】電子制御ユニット40はデジタルコンピュ
ータからなり、双方向性バス41によって互いに接続さ
れたROM(リードオンリメモリ)42、RAM(ラン
ダムアクセスメモリ)43、CPU(マイクロプロセッ
サ)44、入力ポート45および出力ポート46を具備
する。エアフローメータ18は吸入空気量に比例した出
力電圧を発生し、この出力電圧は対応するAD変換器4
7を介して入力ポート45に入力される。更に入力ポー
ト45には燃料圧センサ34の出力信号が対応するAD
変換器47を介して入力される。
The electronic control unit 40 is composed of a digital computer, and is connected to a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a CPU (Microprocessor) 44, an input port 45, An output port 46 is provided. The air flow meter 18 generates an output voltage proportional to the amount of intake air, and this output voltage is applied to the corresponding AD converter 4.
7 is input to the input port 45. Further, an input port 45 receives an AD signal corresponding to the output signal of the fuel pressure sensor 34.
It is input via the converter 47.

【0024】また、アクセルペダル50にはアクセルペ
ダル50の踏込み量Lに比例した出力電圧を発生する負
荷センサ51が接続され、負荷センサ51の出力電圧は
対応するAD変換器47を介して入力ポート45に入力
される。また、入力ポート45にはクランクシャフトが
例えば30°回転する毎に出力パルスを発生するクラン
ク角センサ52が接続される。一方、出力ポート46は
対応する駆動回路48を介して燃料噴射弁6、点火栓
7、スロットル弁制御用ステップモータ20、排気制御
弁制御用アクチュエータ27、EGR制御弁30および
燃料ポンプ33に接続される。
A load sensor 51 for generating an output voltage proportional to the depression amount L of the accelerator pedal 50 is connected to the accelerator pedal 50, and the output voltage of the load sensor 51 is supplied to an input port via a corresponding AD converter 47. 45 is input. The input port 45 is connected to a crank angle sensor 52 that generates an output pulse every time the crankshaft rotates, for example, by 30 °. On the other hand, the output port 46 is connected to the fuel injection valve 6, the ignition plug 7, the step motor 20 for controlling the throttle valve, the actuator 27 for controlling the exhaust control valve, the EGR control valve 30, and the fuel pump 33 via the corresponding drive circuit 48. You.

【0025】図3は燃料噴射量Q1,Q2,Q(=Q1
+Q2 )、噴射開始時期θS1,θS2、噴射完了時期
θE1,θE2および燃焼室5内における平均空燃比A
/Fを示している。なお、図3において横軸Lはアクセ
ルペダル50の踏込み量、即ち要求負荷を示している。
図3からわかるように要求負荷LがL1 よりも低いとき
には圧縮行程末期のθS2からθE2の間において燃料
噴射Q2が行われる。このときには平均空燃比A/Fは
かなりリーンとなっている。要求負荷LがL1 とL2
間のときには吸気行程初期のθS1からθE1の間にお
いて第1回目の燃料噴射Q1が行われ、次いで圧縮行程
末期のθS2からθE2の間において第2回目の燃料噴
射Q2が行われる。このときにも空燃比A/Fはリーン
となっている。要求負荷LがL2よりも大きいときには
吸気行程初期のθS1からθE1の間において燃料噴射
Q1が行われる。このときには要求負荷Lが低い領域で
は平均空燃比A/Fがリーンとされており、要求負荷L
が高くなると平均空燃比A/Fが理論空燃比とされ、要
求負荷Lが更に高くなると平均空燃比A/Fがリッチと
される。なお、圧縮行程末期にのみ燃料噴射Q2が行わ
れる運転領域、二回に亘って燃料噴射Q1およびQ2が
行われる運転領域および吸気行程初期にのみ燃料噴射Q
1が行われる運転領域は要求負荷Lのみにより定まるの
ではなく、実際には要求負荷Lおよび機関回転数により
定まる。
FIG. 3 shows the fuel injection amounts Q1, Q2, Q (= Q 1).
+ Q 2 ), the injection start timing θS1, θS2, the injection completion timing θE1, θE2, and the average air-fuel ratio A in the combustion chamber 5.
/ F. In FIG. 3, the horizontal axis L indicates the amount of depression of the accelerator pedal 50, that is, the required load.
When 3 required load L as can be seen from is lower than L 1 is the fuel injection Q2 is performed between θE2 from θS2 of the end of the compression stroke. At this time, the average air-fuel ratio A / F is considerably lean. Required load L first fuel injection Q1 is performed between θE1 from the beginning of the intake stroke of θS1 when between L 1 and L 2, then the second fuel in between θS2 of θE2 of the end of the compression stroke Injection Q2 is performed. At this time, the air-fuel ratio A / F is lean. When the required load L is greater than L 2 the fuel injection Q1 is performed between θE1 from the beginning of the intake stroke of the? S1. At this time, in the region where the required load L is low, the average air-fuel ratio A / F is lean, and the required load L
Becomes higher, the average air-fuel ratio A / F becomes the stoichiometric air-fuel ratio, and if the required load L further increases, the average air-fuel ratio A / F becomes rich. The operation region where the fuel injection Q2 is performed only at the end of the compression stroke, the operation region where the fuel injections Q1 and Q2 are performed twice, and the fuel injection Q only at the beginning of the intake stroke.
The operation range in which 1 is performed is not determined only by the required load L, but is actually determined by the required load L and the engine speed.

【0026】図2は要求負荷LがL1 (図3)よりも小
さいとき、即ち圧縮行程末期においてのみ燃料噴射Q2
が行われる場合を示している。図2に示されるようにピ
ストン4の頂面上にはキャビティ4aが形成されてお
り、要求負荷LがL1 よりも低いときには燃料噴射弁6
からキャビティ4aの底壁面に向けて圧縮行程末期に燃
料が噴射される。この燃料はキャビティ4aの周壁面に
より案内されて点火栓7に向かい、それによって点火栓
7の周りに混合気Gが形成される。次いでこの混合気G
は点火栓7により着火せしめられる。
FIG. 2 shows that the fuel injection Q2 is performed only when the required load L is smaller than L 1 (FIG. 3), that is, only at the end of the compression stroke.
Is performed. Cavity 4a is to the top surface of the piston 4 as shown in FIG. 2 are formed, required load L fuel injection valve when less than L 1 6
Is injected toward the bottom wall of the cavity 4a at the end of the compression stroke. This fuel is guided by the peripheral wall surface of the cavity 4a toward the spark plug 7, whereby an air-fuel mixture G is formed around the spark plug 7. Then this mixture G
Is ignited by the spark plug 7.

【0027】一方、前述したように要求負荷LがL1
2 との間にあるときには二回に分けて燃料噴射が行わ
れる。この場合、吸気行程初期に行われる第1回目の燃
料噴射Q1によって燃焼室5内に稀薄混合気が形成され
る。次いで圧縮行程末期に行われる第2回目の燃料噴射
Q2によって点火栓7周りに最適な濃度の混合気が形成
される。この混合気が点火栓7により着火せしめられ、
この着火火炎によって稀薄混合気が燃焼せしめられる。
On the other hand, the fuel injection is performed in two batches when the required load L as described above is between L 1 and L 2. In this case, a lean mixture is formed in the combustion chamber 5 by the first fuel injection Q1 performed at the beginning of the intake stroke. Next, an air-fuel mixture having an optimum concentration is formed around the ignition plug 7 by the second fuel injection Q2 performed at the end of the compression stroke. This mixture is ignited by the spark plug 7,
This ignition flame causes the lean mixture to burn.

【0028】一方、要求負荷LがL2 よりも大きいとき
には図3に示されるように燃焼室5内にはリーン又は理
論空燃比又はリッチ空燃比の均一混合気が形成され、こ
の均一混合気が点火栓7により着火せしめられる。次に
図4を参照しつつまず初めに本発明による未燃HCの低
減方法について概略的に説明する。なお、図4において
横軸はクランク角を示しており、BTDCおよびATD
Cは夫々上死点前および上死点後を示している。
On the other hand, when the required load L is larger than L 2, a homogeneous mixture having a lean or stoichiometric air-fuel ratio or a rich air-fuel ratio is formed in the combustion chamber 5 as shown in FIG. It is ignited by the spark plug 7. Next, a method for reducing unburned HC according to the present invention will be schematically described first with reference to FIG. In FIG. 4, the horizontal axis indicates the crank angle, and BTDC and ATD
C indicates before the top dead center and after the top dead center, respectively.

【0029】図4(A)は本発明による方法によって特
に未燃HCを低減する必要のない場合であって要求負荷
LがL1 よりも小さいときの燃料噴射時期を示してい
る。図4(A)に示されるようにこのときには圧縮行程
末期に主燃料Qmのみが噴射され、このとき排気制御弁
28は全開状態に保持されている。これに対し、本発明
による方法によって未燃HCを低減する必要がある場合
には排気制御弁28がほぼ全閉せしめられ、更に図4
(B)に示されるように機関出力を発生させるための主
燃料Qmの噴射に加え、膨張行程中に、図4(B)に示
される例では圧縮上死点後(ATDC)60°付近にお
いて副燃料Qaが追加噴射される。なおこの場合、主燃
料Qmの燃焼後、副燃料Qaを完全に燃焼せしめるのに
十分な酸素が燃焼室5内に残存するように主燃料Qmは
空気過剰のもとで燃焼せしめられる。また、図4(A)
と図4(B)とは機関負荷と機関回転数が同一であると
きの燃料噴射期間を示しており、従って機関負荷と機関
回転数が同一である場合には図4(B)に示される場合
の主燃料Qmの噴射量の方が図4(A)に示される場合
の主燃料Qmの噴射量に比べて増量せしめられている。
[0029] FIG. 4 (A) shows the fuel injection timing when the required load L even if no particular need to reduce the unburned HC by the method according to the present invention is smaller than L 1. As shown in FIG. 4A, at this time, only the main fuel Qm is injected at the end of the compression stroke, and at this time, the exhaust control valve 28 is held in a fully opened state. On the other hand, when it is necessary to reduce the unburned HC by the method according to the present invention, the exhaust control valve 28 is almost completely closed.
As shown in FIG. 4B, in addition to the injection of the main fuel Qm for generating the engine output, during the expansion stroke, in the example shown in FIG. The auxiliary fuel Qa is additionally injected. In this case, after the main fuel Qm has been burned, the main fuel Qm is burned with excess air so that sufficient oxygen remains in the combustion chamber 5 to completely burn the sub fuel Qa. FIG. 4 (A)
FIG. 4B and FIG. 4B show the fuel injection period when the engine load and the engine speed are the same. Therefore, when the engine load and the engine speed are the same, the fuel injection period is shown in FIG. The injection amount of the main fuel Qm in the case is increased compared to the injection amount of the main fuel Qm in the case shown in FIG.

【0030】図5は機関排気通路の各位置における排気
ガス中の未燃HCの濃度(ppm) の一例を示している。図
5に示す例において黒三角は排気制御弁28を全開にし
た状態で図4(A)に示す如く圧縮行程末期において主
燃料Qmを噴射した場合の排気ポート11出口における
排気ガス中の未燃HCの濃度(ppm) を示している。この
場合には排気ポート11出口における排気ガス中の未燃
HCの濃度は6000ppm 以上の極めて高い値となる。
FIG. 5 shows an example of the concentration (ppm) of unburned HC in the exhaust gas at each position in the engine exhaust passage. In the example shown in FIG. 5, the black triangle indicates unburned fuel in the exhaust gas at the outlet of the exhaust port 11 when the main fuel Qm is injected at the end of the compression stroke as shown in FIG. 4A with the exhaust control valve 28 fully opened. Shows the concentration (ppm) of HC. In this case, the concentration of unburned HC in the exhaust gas at the outlet of the exhaust port 11 is an extremely high value of 6000 ppm or more.

【0031】一方、図5に示す例において黒丸および実
線は排気制御弁28をほぼ全閉とし、図4(B)に示さ
れるように主燃料Qmおよび副燃料Qaを噴射した場合
の排気ガス中の未燃HCの濃度(ppm) を示している。こ
の場合には排気ポート11出口における排気ガス中の未
燃HCの濃度は2000ppm 以下となり、排気制御弁2
8の付近においては排気ガス中の未燃HCの濃度は15
0ppm 程度まで減少する。従ってこの場合には大気中に
排出される未燃HCの量が大巾に低減せしめられること
がわかる。
On the other hand, in the example shown in FIG. 5, a black circle and a solid line indicate that the exhaust control valve 28 is almost fully closed, and the main fuel Qm and the sub fuel Qa are injected as shown in FIG. Indicates the concentration (ppm) of the unburned HC in FIG. In this case, the concentration of unburned HC in the exhaust gas at the outlet of the exhaust port 11 becomes 2000 ppm or less, and the exhaust control valve 2
8, the concentration of unburned HC in the exhaust gas is 15
It decreases to about 0 ppm. Therefore, in this case, it can be seen that the amount of unburned HC discharged into the atmosphere is greatly reduced.

【0032】このように排気制御弁28上流の排気通路
内において未燃HCが減少するのは未燃HCの酸化反応
が促進されているからである。しかしながら図5の黒三
角で示されるように排気ポート11出口における未燃H
Cの量が多い場合、即ち燃焼室5内での未燃HCの発生
量が多い場合にはたとえ排気通路内における未燃HCの
酸化反応を促進しても大気中に排出される未燃HCの量
はさほど低減しない。即ち、排気通路内における未燃H
Cの酸化反応を促進することによって大気中に排出され
る未燃HCの量を大巾に低減しうるのは図5の黒丸で示
されるように排気ポート11出口における未燃HCの濃
度が低いとき、即ち燃焼室5内での未燃HCの発生量が
少ないときである。
The reason why the unburned HC is reduced in the exhaust passage upstream of the exhaust control valve 28 is that the oxidation reaction of the unburned HC is promoted. However, as shown by a black triangle in FIG.
When the amount of C is large, that is, when the amount of unburned HC generated in the combustion chamber 5 is large, even if the oxidation reaction of unburned HC in the exhaust passage is promoted, the unburned HC discharged into the atmosphere is increased. Does not decrease much. That is, the unburned H in the exhaust passage
The fact that the amount of unburned HC discharged into the atmosphere can be significantly reduced by promoting the oxidation reaction of C is because the concentration of unburned HC at the outlet of the exhaust port 11 is low as shown by the black circle in FIG. That is, when the amount of unburned HC generated in the combustion chamber 5 is small.

【0033】このように大気中に排出される未燃HCの
量を低減させるためには燃焼室5内での未燃HCの発生
量を低下させかつ排気通路内における未燃HCの酸化反
応を促進させるという二つの要求を同時に満たす必要が
ある。そこでまず初めに2番目の要求、即ち排気通路内
における未燃HCの酸化反応を促進させることから説明
する。
As described above, in order to reduce the amount of unburned HC discharged into the atmosphere, the amount of unburned HC generated in the combustion chamber 5 is reduced and the oxidation reaction of unburned HC in the exhaust passage is reduced. It is necessary to fulfill both demands for promotion at the same time. Therefore, the second requirement, that is, the promotion of the oxidation reaction of unburned HC in the exhaust passage will be described first.

【0034】本発明によれば大気中に排出される未燃H
Cの量を低減すべきときには排気制御弁28がほぼ全閉
とされる。このように排気制御弁28がほぼ全閉にされ
ると排気ポート11内および排気マニホルド22内の圧
力、即ち背圧はかなり高くなる。背圧が高くなるという
ことは燃焼室5内から排気ポート11内に排気ガスが排
出されたときに排気ガスの圧力がさほど低下せず、従っ
て燃焼室5から排出された排気ガス温もさほど低下しな
いことを意味している。従って排気ポート11内に排出
された排気ガス温はかなり高温に維持されている。一
方、背圧が高いということは排気ガスの密度が高いこと
を意味しており、排気ガスの密度が高いということは排
気ポート11から排気制御弁28に至る排気通路内にお
ける排気ガスの流速が遅いことを意味している。従って
排気ポート11内に排出された排気ガスは高温のもとで
長時間に亘り排気制御弁28上流の排気通路内に滞留す
ることになる。
According to the present invention, unburned H discharged into the atmosphere
When the amount of C should be reduced, the exhaust control valve 28 is almost fully closed. When the exhaust control valve 28 is almost fully closed in this way, the pressure in the exhaust port 11 and the exhaust manifold 22, that is, the back pressure, becomes considerably high. The increase in the back pressure means that the pressure of the exhaust gas does not decrease so much when the exhaust gas is discharged from the combustion chamber 5 into the exhaust port 11, and therefore the temperature of the exhaust gas discharged from the combustion chamber 5 also decreases significantly. Means not. Therefore, the temperature of the exhaust gas discharged into the exhaust port 11 is maintained at a considerably high temperature. On the other hand, a high back pressure means that the density of the exhaust gas is high, and a high density of the exhaust gas means that the flow rate of the exhaust gas in the exhaust passage from the exhaust port 11 to the exhaust control valve 28 is high. It means late. Therefore, the exhaust gas discharged into the exhaust port 11 stays in the exhaust passage upstream of the exhaust control valve 28 for a long time at a high temperature.

【0035】このように排気ガスが高温のもとで長時間
に亘り排気制御弁28上流の排気通路内に滞留せしめら
れるとその間に未燃HCの酸化反応が促進される。この
場合、本発明者による実験によると排気通路内における
未燃HCの酸化反応を促進するためには排気ポート11
出口における排気ガス温をほぼ750℃以上、好ましく
は800℃以上にする必要があることが判明している。
As described above, when the exhaust gas is kept in the exhaust passage upstream of the exhaust control valve 28 at a high temperature for a long time, the oxidation reaction of the unburned HC is accelerated. In this case, according to an experiment by the inventor, in order to promote the oxidation reaction of the unburned HC in the exhaust passage, the exhaust port 11 is required.
It has been found that the exhaust gas temperature at the outlet needs to be approximately 750 ° C. or higher, preferably 800 ° C. or higher.

【0036】また、高温の排気ガスが排気制御弁28上
流の排気通路内に滞留している時間が長くなればなるほ
ど未燃HCの低減量は増大する。この滞留時間は排気制
御弁28の位置が排気ポート11出口から離れれば離れ
るほど長くなり、従って排気制御弁28は排気ポート1
1出口から未燃HCを十分に低減するのに必要な距離を
隔てて配置する必要がある。排気制御弁28を排気ポー
ト11出口から未燃HCを十分に低減するのに必要な距
離を隔てて配置すると図5の実線に示されるように未燃
HCの濃度は大巾に低減する。
The longer the high-temperature exhaust gas stays in the exhaust passage upstream of the exhaust control valve 28, the greater the amount of unburned HC reduction. This residence time becomes longer as the position of the exhaust control valve 28 is further away from the outlet of the exhaust port 11, so that the exhaust control valve 28
It is necessary to arrange a distance necessary for sufficiently reducing unburned HC from one outlet. When the exhaust control valve 28 is arranged at a distance required to sufficiently reduce the unburned HC from the outlet of the exhaust port 11, the concentration of the unburned HC is greatly reduced as shown by the solid line in FIG.

【0037】ところで前述したように排気通路内におけ
る未燃HCの酸化反応を促進するためには排気ポート1
1出口における排気ガス温をほぼ750℃以上、好まし
くは800℃以上にする必要がある。また、大気中に排
出される未燃HCの量を低減するためには前述した1番
目の要求を満たさなければならない。即ち燃焼室5内で
の未燃HCの発生量を低下させる必要がある。そのため
に本発明では機関出力を発生するための主燃料Qmに加
え、主燃料Qmの噴射後に副燃料Qaを追加噴射して副
燃料Qaを燃焼室5内で燃焼せしめるようにしている。
As described above, in order to promote the oxidation reaction of unburned HC in the exhaust passage, the exhaust port 1
The exhaust gas temperature at one outlet needs to be approximately 750 ° C. or higher, preferably 800 ° C. or higher. Further, in order to reduce the amount of unburned HC discharged into the atmosphere, the first requirement described above must be satisfied. That is, it is necessary to reduce the amount of unburned HC generated in the combustion chamber 5. Therefore, in the present invention, in addition to the main fuel Qm for generating the engine output, the auxiliary fuel Qa is additionally injected after the injection of the main fuel Qm so that the auxiliary fuel Qa is burned in the combustion chamber 5.

【0038】即ち、副燃料Qaを燃焼室5内で燃焼せし
めると副燃料Qaの燃焼時に主燃料Qmの燃え残りであ
る多量の未燃HCが燃焼せしめられる。また、この副燃
料Qaは高温ガス中に噴射されるので副燃料Qaは良好
に燃焼せしめられ、従って副燃料Qaの燃え残りである
未燃HCはさほど発生しなくなる。斯くして最終的に燃
焼室5内で発生する未燃HCの量はかなり少なくなる。
That is, when the auxiliary fuel Qa is burned in the combustion chamber 5, a large amount of unburned HC, which is the unburned main fuel Qm, is burned when the auxiliary fuel Qa is burned. Further, since the auxiliary fuel Qa is injected into the high-temperature gas, the auxiliary fuel Qa is satisfactorily burned, so that unburned HC, which is the remaining unburned auxiliary fuel Qa, is not generated much. Thus, the amount of unburned HC finally generated in the combustion chamber 5 is considerably reduced.

【0039】また、副燃料Qaを燃焼室5内で燃焼せし
めると主燃料Qm自身および副燃料Qa自身の燃焼によ
る発熱に加え、主燃料Qmの燃え残りである未燃HCの
燃焼熱が追加的に発生するので燃焼室5内の既燃ガス温
はかなり高くなる。このように主燃料Qmに加え副燃料
Qaを追加噴射して副燃料Qaを燃焼させることにより
燃焼室5内で発生する未燃HCの量を低減しかつ排気ポ
ート11出口における排気ガス温を750℃以上、好ま
しくは800℃以上にすることができる。
When the auxiliary fuel Qa is burned in the combustion chamber 5, the heat generated by the combustion of the main fuel Qm itself and the auxiliary fuel Qa itself, and the combustion heat of the unburned HC remaining as unburned main fuel Qm are added. Therefore, the temperature of the burned gas in the combustion chamber 5 becomes considerably high. As described above, the auxiliary fuel Qa is additionally injected in addition to the main fuel Qm to burn the auxiliary fuel Qa, thereby reducing the amount of unburned HC generated in the combustion chamber 5 and reducing the exhaust gas temperature at the outlet of the exhaust port 11 to 750. C. or higher, preferably 800 C. or higher.

【0040】このように本発明では副燃料Qaを燃焼室
5内で燃焼せしめる必要があり、そのためには副燃料Q
aの燃焼時に燃焼室5内に十分な酸素が残存しているこ
とが必要であり、しかも噴射された副燃料Qaが燃焼室
5内で良好に燃焼せしめられる時期に副燃料Qaを噴射
する必要がある。そこで本発明では副燃料Qaの燃焼時
に燃焼室5内に十分な酸素が残存しうるように主燃料Q
mは空気過剰のもとで燃焼せしめられる。また、図2に
示される成層燃焼式内燃機関において噴射された副燃料
Qaが燃焼室5において良好に燃焼せしめられる噴射時
期は図4において矢印Zで示される圧縮上死点後(AT
DC)ほぼ50°からほぼ90°の膨張行程であり、従
って図2に示される成層燃焼式内燃機関においては副燃
料Qaは圧縮上死点後(ATDC)ほぼ50°からほぼ
90°の膨張行程において噴射される。なお、圧縮上死
点後(ATDC)ほぼ50°からほぼ90°の膨張行程
において噴射された副燃料Qaは機関の出力の発生には
あまり寄与しない。
As described above, in the present invention, it is necessary to burn the auxiliary fuel Qa in the combustion chamber 5, and for that purpose,
It is necessary that sufficient oxygen remains in the combustion chamber 5 at the time of combustion of a, and that the auxiliary fuel Qa must be injected at a time when the injected auxiliary fuel Qa can be satisfactorily burned in the combustion chamber 5. There is. Therefore, in the present invention, the main fuel Q is controlled so that sufficient oxygen can remain in the combustion chamber 5 during combustion of the auxiliary fuel Qa.
m is burned under excess air. Further, the injection timing at which the auxiliary fuel Qa injected in the stratified combustion internal combustion engine shown in FIG. 2 is favorably burned in the combustion chamber 5 is after the compression top dead center (AT
DC) The expansion stroke is approximately 50 ° to approximately 90 °, and therefore, in the stratified combustion internal combustion engine shown in FIG. 2, the auxiliary fuel Qa has an expansion stroke approximately 50 ° to approximately 90 ° after compression top dead center (ATDC). Is injected. The auxiliary fuel Qa injected during the expansion stroke from approximately 50 ° to approximately 90 ° after the compression top dead center (ATDC) does not contribute much to the generation of engine output.

【0041】ところで本発明者による実験によると図2
に示される成層燃焼式内燃機関では副燃料Qaが圧縮上
死点後(ATDC)60°付近において噴射されたとき
に大気中に排出される未燃HCの量は最も少なくなる。
従って本発明による実施例では図4(B)に示されるよ
うに副燃料Qaの噴射時期はほぼ圧縮上死点後(ATD
C)60°付近とされる。
According to an experiment conducted by the inventor, FIG.
In the stratified combustion internal combustion engine shown in FIG. 1, when the auxiliary fuel Qa is injected at around 60 ° after the compression top dead center (ATDC), the amount of unburned HC discharged into the atmosphere is the smallest.
Therefore, in the embodiment according to the present invention, as shown in FIG. 4B, the injection timing of the auxiliary fuel Qa is almost after the compression top dead center (ATD
C) It is around 60 °.

【0042】副燃料Qaの最適な噴射時期は機関の型式
によって異なり、例えばディーゼル機関では副燃料Qa
の最適な噴射時期は膨張行程中か又は排気行程中とな
る。従って本発明では副燃料Qaの燃料噴射は膨張行程
中又は排気行程中に行われる。一方、燃焼室5内の既燃
ガス温は主燃料Qmの燃焼熱と副燃料Qaの燃焼熱の双
方の影響を受ける。即ち、燃焼室5内の既燃ガス温は主
燃料Qmの噴射量が増大するほど高くなり、副燃料Qa
の噴射量が増大するほど高くなる。更に、燃焼室5内の
既燃ガス温は背圧の影響を受ける。即ち、背圧が高くな
るほど燃焼室5から既燃ガスが流出しにくくなるために
燃焼室5内に残留する既燃ガス量が多くなり、斯くして
排気制御弁28がほぼ全閉せしめられると燃焼室5内の
既燃ガス温が上昇せしめられる。
The optimum injection timing of the auxiliary fuel Qa differs depending on the model of the engine.
Is during the expansion stroke or the exhaust stroke. Therefore, in the present invention, the fuel injection of the auxiliary fuel Qa is performed during the expansion stroke or the exhaust stroke. On the other hand, the temperature of the burned gas in the combustion chamber 5 is affected by both the combustion heat of the main fuel Qm and the combustion heat of the auxiliary fuel Qa. That is, the burned gas temperature in the combustion chamber 5 increases as the injection amount of the main fuel Qm increases, and the sub-fuel Qa
Increases as the injection amount of the fuel increases. Further, the temperature of the burned gas in the combustion chamber 5 is affected by the back pressure. That is, as the back pressure increases, the burned gas is less likely to flow out of the combustion chamber 5, so that the amount of burned gas remaining in the combustion chamber 5 increases. Thus, when the exhaust control valve 28 is almost completely closed. The temperature of the burned gas in the combustion chamber 5 is increased.

【0043】ところで排気制御弁28がほぼ閉弁せしめ
られ、それによって背圧が高くなると機関の発生トルク
が最適な要求発生トルクに対して減少する。そこで本発
明では図4(B)に示されるように排気制御弁28がほ
ぼ全閉せしめられたときには図4(A)に示されるよう
に同一の機関運転状態のもとで排気制御弁28が全開せ
しめられた場合の機関の要求発生トルクに近づくように
同一の機関運転状態のもとで排気制御弁28が全開せし
められた場合に比べて主燃料Qmの噴射量が増量せしめ
られる。なお、本発明による実施例では排気制御弁28
がほぼ全閉せしめられたときにはそのときの機関の発生
トルクが同一の機関運転状態のもとで排気制御弁28が
全開せしめられた場合の機関の要求発生トルクに一致す
るように主燃料Qmが増量される。
By the way, when the exhaust pressure control valve 28 is almost closed, thereby increasing the back pressure, the generated torque of the engine decreases from the optimum required generated torque. Therefore, in the present invention, when the exhaust control valve 28 is almost fully closed as shown in FIG. 4B, the exhaust control valve 28 is operated under the same engine operating state as shown in FIG. The injection amount of the main fuel Qm is increased as compared with the case where the exhaust control valve 28 is fully opened under the same engine operation state so as to approach the required generated torque of the engine when fully opened. In the embodiment according to the present invention, the exhaust control valve 28
Is almost completely closed, the main fuel Qm is adjusted so that the generated torque of the engine at that time matches the required generated torque of the engine when the exhaust control valve 28 is fully opened under the same engine operating state. Will be increased.

【0044】図6は要求負荷Lに対して機関の要求発生
トルクを得るのに必要な主燃料Qmの変化を示してい
る。なお、図6において実線は排気制御弁28がほぼ全
閉せしめられた場合を示しており、破線は排気制御弁2
8が全開せしめられた場合を示している。一方、図7は
排気制御弁28をほぼ全閉せしめた場合において排気ポ
ート11出口における排気ガス温をほぼ750℃からほ
ぼ800℃にするのに必要な主燃料Qmと副燃料Qaの
関係を示している。前述したように主燃料Qmを増量し
ても燃焼室5内の既燃ガス温は高くなり、副燃料Qaを
増量しても燃焼室5内の既燃ガス温は高くなる。従って
排気ポート11出口における排気ガス温をほぼ750℃
からほぼ800℃にするのに必要な主燃料Qmと副燃料
Qaとの関係は図7に示されるように主燃料Qmを増大
すれば副燃料Qaは減少し、主燃料Qmを減少すれば副
燃料Qaは増大する関係となる。
FIG. 6 shows a change in the main fuel Qm required to obtain the required torque of the engine with respect to the required load L. In FIG. 6, the solid line shows the case where the exhaust control valve 28 is almost completely closed, and the broken line shows the case where the exhaust control valve 2 is closed.
8 shows the case where it is fully opened. On the other hand, FIG. 7 shows the relationship between the main fuel Qm and the auxiliary fuel Qa required to bring the exhaust gas temperature at the outlet of the exhaust port 11 from approximately 750 ° C. to approximately 800 ° C. when the exhaust control valve 28 is almost fully closed. ing. As described above, even if the main fuel Qm is increased, the burned gas temperature in the combustion chamber 5 increases, and even if the auxiliary fuel Qa is increased, the burned gas temperature in the combustion chamber 5 increases. Therefore, the temperature of the exhaust gas at the outlet of the exhaust port 11 is almost 750 ° C.
As shown in FIG. 7, the relationship between the main fuel Qm and the auxiliary fuel Qa required to make the temperature approximately 800 ° C. is as follows. As shown in FIG. 7, when the main fuel Qm is increased, the auxiliary fuel Qa is decreased. The fuel Qa has an increasing relationship.

【0045】ただし、主燃料Qmおよび副燃料Qaを同
一量増大した場合には副燃料Qaを増量した場合の方が
主燃料Qmを増量した場合に比べて燃焼室5内の温度上
昇量がはるかに大きくなる。従って燃料消費量の低減と
いう観点からみると副燃料Qaを増大させることによっ
て燃焼室5内の既燃ガス温を上昇させることが好ましい
と言える。
However, when the main fuel Qm and the sub fuel Qa are increased by the same amount, the temperature increase in the combustion chamber 5 is much larger when the sub fuel Qa is increased than when the main fuel Qm is increased. Become larger. Therefore, from the viewpoint of reducing the fuel consumption, it can be said that it is preferable to increase the temperature of the burned gas in the combustion chamber 5 by increasing the auxiliary fuel Qa.

【0046】従って本発明による実施例では排気制御弁
28をほぼ全閉せしめたときに機関の発生トルクを要求
発生トルクまで上昇させるのに必要な分だけ主燃料Qm
を増量し、主として副燃料Qaの燃焼熱によって燃焼室
5内の既燃ガス温を上昇させるようにしている。このよ
うに排気制御弁28をほぼ全閉せしめ、排気ポート11
出口における排気ガスをほぼ750℃以上、好ましくは
ほぼ800℃以上とするのに必要な量の副燃料Qaを噴
射すると排気ポート11から排気制御弁28に至る排気
通路内において未燃HCの濃度を大巾に減少することが
できる。このとき排気ポート11から排気制御弁28に
至る排気通路内において図5に示されるように未燃HC
の濃度をほぼ150p.p.m 程度まで低下させるには排気
制御弁28上流の排気通路内の圧力をゲージ圧でもって
ほぼ80KPa 程度にする必要がある。このときの排気制
御弁28による排気通路断面積の閉鎖割合はほぼ95パ
ーセント以上である。従って図1に示される実施例では
大気中への未燃ガスの排出量を大巾に低減すべきときに
は排気制御弁28による排気通路断面積の閉鎖割合がほ
ぼ95パーセント以上となるように排気制御弁28がほ
ぼ全閉せしめられる。
Therefore, in the embodiment according to the present invention, when the exhaust control valve 28 is almost fully closed, the main fuel Qm is increased by an amount necessary to increase the engine generated torque to the required generated torque.
And the temperature of the burned gas in the combustion chamber 5 is increased mainly by the combustion heat of the auxiliary fuel Qa. In this way, the exhaust control valve 28 is almost completely closed, and the exhaust port 11 is closed.
When the auxiliary fuel Qa is injected in an amount required to make the exhaust gas at the outlet approximately 750 ° C. or more, preferably approximately 800 ° C. or more, the concentration of unburned HC in the exhaust passage from the exhaust port 11 to the exhaust control valve 28 is reduced. Can be greatly reduced. At this time, in the exhaust passage from the exhaust port 11 to the exhaust control valve 28, as shown in FIG.
In order to reduce the concentration to about 150 ppm, it is necessary to make the pressure in the exhaust passage upstream of the exhaust control valve 28 about 80 KPa by gauge pressure. At this time, the closing ratio of the exhaust passage cross-sectional area by the exhaust control valve 28 is approximately 95% or more. Therefore, in the embodiment shown in FIG. 1, when the amount of unburned gas discharged into the atmosphere is to be greatly reduced, the exhaust control is performed such that the closing ratio of the cross-sectional area of the exhaust passage by the exhaust control valve 28 becomes approximately 95% or more. The valve 28 is almost completely closed.

【0047】内燃機関において多量の未燃HCが発生す
るのは燃焼室5内の温度が低いときである。燃焼室5内
の温度が低いときは機関の始動および暖機運転時、およ
び機関低負荷時であり、従って機関の始動および暖機運
転時、および機関低負荷時に多量の未燃HCが発生する
ことになる。このように燃焼室5内の温度が低いときに
はたとえ排気通路内に酸化機能を有する触媒を配置して
おいても触媒温度が低い触媒が活性化していないのでこ
のときに発生する多量の未燃HCを触媒により酸化させ
ることは困難である。
A large amount of unburned HC is generated in the internal combustion engine when the temperature in the combustion chamber 5 is low. When the temperature in the combustion chamber 5 is low, the engine is started and warmed up, and the engine is under low load. Therefore, a large amount of unburned HC is generated when the engine is started and warmed up, and when the engine is under low load. Will be. As described above, when the temperature in the combustion chamber 5 is low, even if a catalyst having an oxidizing function is disposed in the exhaust passage, a large amount of unburned HC generated at this time is not activated because the catalyst having a low catalyst temperature is not activated. Is difficult to oxidize with a catalyst.

【0048】そこで本発明による実施例では機関の始動
および暖機運転時、および機関低負荷時には排気制御弁
28をほぼ全閉せしめ、主燃料Qmを増量すると共に副
燃料Qaを追加噴射し、それによって大気中に排出され
る未燃HCの量を大巾に低減せしめるようにしている。
図8は機関始動および暖機運転時における主燃料Qmの
変化の一例および排気制御弁24の開度を示している。
なお、図8において実線Xは排気制御弁28をほぼ全閉
にした場合の最適な主燃料Qmの噴射量を示しており、
破線Yは排気制御弁28を全開にした場合の最適な主燃
料Qmの噴射量を示している。図8からわかるように機
関始動および暖機運転時には排気制御弁28がほぼ全閉
せしめられ、同一の機関運転状態のもとで排気制御弁2
8が全開せしめられた場合の最適な主燃料Qmの噴射量
Yよりも主燃料Qmの噴射量Xが増量せしめられ、更に
副燃料Qaが追加噴射される。
Therefore, in the embodiment according to the present invention, the exhaust control valve 28 is almost completely closed at the time of starting and warming-up of the engine and at the time of low engine load, so that the main fuel Qm is increased and the auxiliary fuel Qa is additionally injected. Thus, the amount of unburned HC discharged into the atmosphere is greatly reduced.
FIG. 8 shows an example of the change of the main fuel Qm and the opening of the exhaust control valve 24 at the time of engine start and warm-up operation.
In FIG. 8, a solid line X indicates an optimal injection amount of the main fuel Qm when the exhaust control valve 28 is almost fully closed.
A broken line Y indicates an optimal injection amount of the main fuel Qm when the exhaust control valve 28 is fully opened. As can be seen from FIG. 8, when the engine is started and the engine is warmed up, the exhaust control valve 28 is almost completely closed, and the exhaust control valve 2 is operated under the same engine operating condition.
The injection amount X of the main fuel Qm is increased more than the optimum injection amount Y of the main fuel Qm when the valve 8 is fully opened, and the auxiliary fuel Qa is additionally injected.

【0049】図9は機関低負荷時における主燃料Qmの
変化の一例および排気制御弁28の開度を示している。
なお、図9において実線Xは排気制御弁28をほぼ全閉
にした場合の最適な主燃料Qmの噴射量を示しており、
破線Yは排気制御弁28を全開にした場合の最適な主燃
料Qmの噴射量を示している。図9からわかるように機
関低負荷時には排気制御弁28がほぼ全閉せしめられ、
同一の機関運転状態のもとで排気制御弁28が全開せし
められた場合の最適な主燃料Qmの噴射量Yよりも主燃
料Qmの噴射量Xが増量せしめられ、更に副燃料Qaが
追加噴射される。
FIG. 9 shows an example of the change of the main fuel Qm and the opening of the exhaust control valve 28 when the engine is under a low load.
In FIG. 9, a solid line X indicates an optimal injection amount of the main fuel Qm when the exhaust control valve 28 is almost fully closed.
A broken line Y indicates an optimal injection amount of the main fuel Qm when the exhaust control valve 28 is fully opened. As can be seen from FIG. 9, when the engine is under a low load, the exhaust control valve 28 is almost completely closed,
The injection amount X of the main fuel Qm is increased more than the optimum injection amount Y of the main fuel Qm when the exhaust control valve 28 is fully opened under the same engine operating state, and the auxiliary fuel Qa is additionally injected. Is done.

【0050】ところで本発明による実施例では暖機運転
中は上述したように排気制御弁28がほぼ全閉せしめら
れる。一方、暖機運転は通常低負荷のもとで行われ、従
って排気ガス量は少なくなっている。従ってこのとき排
気ターボチャージャ15は過給作用を行なっていない。
一方、このような暖機運転中において車両が走行せしめ
られ、加速すべくアクセルペダル50が踏込まれたとき
にはたとえ暖機運転中であっても排気ターボチャージャ
15による過給作用をただちに開始させ、機関の出力を
急速に上昇させるのが好ましい。
In the embodiment according to the present invention, during the warm-up operation, the exhaust control valve 28 is almost completely closed as described above. On the other hand, the warm-up operation is usually performed under a low load, and thus the amount of exhaust gas is small. Therefore, at this time, the exhaust turbocharger 15 is not performing the supercharging operation.
On the other hand, when the vehicle is driven during such a warm-up operation and the accelerator pedal 50 is depressed to accelerate, the supercharging action of the exhaust turbocharger 15 is started immediately even during the warm-up operation, and the engine is started. It is preferable to increase the output of the device rapidly.

【0051】この点に関し、本発明の実施例におけるよ
うに排気タービン23下流の排気通路内に排気制御弁2
8を配置し、暖機運転中に加速運転が行われたときに排
気制御弁28の開度を増大させると、本発明による実施
例では排気制御弁28をほぼ全閉状態から全開状態にす
ると排気ターボチャージャ15による過給作用をただち
に開始させることができる。
In this regard, the exhaust control valve 2 is provided in the exhaust passage downstream of the exhaust turbine 23 as in the embodiment of the present invention.
When the opening of the exhaust control valve 28 is increased when the acceleration operation is performed during the warm-up operation, the exhaust control valve 28 is changed from the almost fully closed state to the fully open state in the embodiment according to the present invention. The supercharging operation by the exhaust turbocharger 15 can be started immediately.

【0052】即ち、暖機運転中において未燃HCを低減
すべく排気制御弁28がほぼ全閉せしめられているとき
には排気制御弁28上流の排気通路内の排気ガスは前述
したように高温かつ高圧に維持されている。このとき排
気ターボチャージャ15による過給作用は行われておら
ず、従って排気タービン23の入口側における圧力は排
気タービン23の出口側における圧力とほぼ等しくなっ
ている。このような状態のときに排気制御弁28が全開
せしめられると排気タービン23の出口側の圧力が急激
に低下し、斯くして排気タービン23の入口側の圧力と
排気タービン23の出口側の圧力との圧力差が瞬時的に
大きくなる。その結果、排気タービン23の回転数は急
速に高回転まで上昇し、斯くしてただちに排気タービン
23による過給作用が開始される。その結果、機関出力
が急速に上昇するために良好な加速運転を確保すること
ができる。従って本発明による実施例では暖機運転中に
加速運転が行われたときには排気制御弁28をほぼ全閉
状態から全開させるようにしている。
That is, when the exhaust control valve 28 is almost fully closed to reduce unburned HC during the warming-up operation, the exhaust gas in the exhaust passage upstream of the exhaust control valve 28 has a high temperature and a high pressure as described above. Has been maintained. At this time, the supercharging action by the exhaust turbocharger 15 is not performed, so that the pressure on the inlet side of the exhaust turbine 23 is substantially equal to the pressure on the outlet side of the exhaust turbine 23. In such a state, when the exhaust control valve 28 is fully opened, the pressure on the outlet side of the exhaust turbine 23 drops sharply, and thus the pressure on the inlet side of the exhaust turbine 23 and the pressure on the outlet side of the exhaust turbine 23 The pressure difference instantaneously increases. As a result, the rotation speed of the exhaust turbine 23 rapidly increases to a high rotation, and thus the supercharging action by the exhaust turbine 23 is started immediately. As a result, a favorable acceleration operation can be ensured because the engine output increases rapidly. Therefore, in the embodiment according to the present invention, when the acceleration operation is performed during the warm-up operation, the exhaust control valve 28 is fully opened from the almost fully closed state.

【0053】また、本発明による実施例では図9に示さ
れるように機関低負荷運転時に負荷が増大すると排気制
御弁28がほぼ全閉状態から全開せしめられる。即ち、
機関低負荷運転時に加速運転が行われると排気制御弁2
8がほぼ全閉状態から全開せしめられる。従ってこのと
きにも加速運転が開始されると排気タービン23の回転
数が高回転まで急速に上昇し、斯くして良好な加速運転
を確保することができる。
In the embodiment according to the present invention, as shown in FIG. 9, when the load increases during the low-load operation of the engine, the exhaust control valve 28 is fully opened from the almost fully closed state. That is,
When acceleration operation is performed during low engine load operation, the exhaust control valve 2
8 is fully opened from the almost fully closed state. Therefore, also at this time, when the acceleration operation is started, the rotation speed of the exhaust turbine 23 rapidly increases to a high rotation speed, and thus a favorable acceleration operation can be secured.

【0054】このように本発明では排気制御弁28をほ
ぼ全閉にしたときに排気制御弁28の上流に発生する高
圧を利用して排気ターボチャージャ23の過給作用を急
速に開始させるようにしている。なお、図1に示す実施
例では排気制御弁28が排気タービン23の下流に設け
られているが排気制御弁28を排気タービン23の上流
に配置することもできる。
As described above, in the present invention, the supercharging action of the exhaust turbocharger 23 is started quickly by utilizing the high pressure generated upstream of the exhaust control valve 28 when the exhaust control valve 28 is almost fully closed. ing. Although the exhaust control valve 28 is provided downstream of the exhaust turbine 23 in the embodiment shown in FIG. 1, the exhaust control valve 28 may be arranged upstream of the exhaust turbine 23.

【0055】図10は運転制御ルーチンを示している。
図10を参照するとまず初めにステップ100において
機関始動および暖機運転時であるか否かが判別される。
機関始動および暖機運転時であるときにはステップ10
1に進んで加速運転時であるか否かが判別される。加速
運転時でないときにはステップ102に進んで排気制御
弁28がほぼ全閉せしめられ、次いでステップ103で
は主燃料Qmの噴射制御が行われる。即ち、主燃料Qm
の噴射量が図8に示されるXとされる。次いでステップ
104では副燃料Qaの噴射制御が行われる。
FIG. 10 shows an operation control routine.
Referring to FIG. 10, first, at step 100, it is determined whether or not the engine is being started and the engine is being warmed up.
Step 10 when the engine is being started and the engine is warming up.
Proceeding to 1, it is determined whether or not the vehicle is accelerating. When the acceleration operation is not being performed, the routine proceeds to step 102, where the exhaust control valve 28 is almost completely closed. Then, at step 103, the injection control of the main fuel Qm is performed. That is, the main fuel Qm
Is assumed to be X shown in FIG. Next, at step 104, injection control of the auxiliary fuel Qa is performed.

【0056】これに対し、ステップ101において加速
運転時であると判別されたときにはステップ106に進
んで排気制御弁28が全開せしめられ、次いでステップ
107に進んで主燃料Qmの噴射制御が行われる。この
とき副燃料Qaの噴射は行われない。一方、ステップ1
00において機関始動および暖機運転時でないと判断さ
れたときにはステップ105に進んで機関低負荷時か否
かが判別される。機関低負荷時でないときにはステップ
106に進んで排気制御弁28が全開せしめられ、次い
でステップ107に進んで主燃料Qmの噴射制御が行わ
れる。このとき副燃料Qaの噴射は行われない。
On the other hand, when it is determined in step 101 that the vehicle is in the acceleration operation, the routine proceeds to step 106, where the exhaust control valve 28 is fully opened, and then proceeds to step 107 to perform the injection control of the main fuel Qm. At this time, the injection of the auxiliary fuel Qa is not performed. Step 1
When it is determined at 00 that the engine is not being started or warmed up, the routine proceeds to step 105, where it is determined whether or not the engine is under a low load. When the engine is not in the low load state, the routine proceeds to step 106, where the exhaust control valve 28 is fully opened, and then proceeds to step 107, where injection control of the main fuel Qm is performed. At this time, the injection of the auxiliary fuel Qa is not performed.

【0057】これに対し、ステップ105において機関
低負荷時であると判別されたときにはステップ102に
進んで、排気制御弁28がほぼ全閉せしめられ、次いで
ステップ103では主燃料Qmの噴射制御が行われる。
即ち、主燃料Qmの噴射量が図9に示されるXとされ
る。次いでステップ104では副燃料Qaの噴射制御が
行われる。
On the other hand, when it is determined in step 105 that the engine is under low load, the routine proceeds to step 102, where the exhaust control valve 28 is almost completely closed. Then, in step 103, the injection control of the main fuel Qm is performed. Will be
That is, the injection amount of the main fuel Qm is set to X shown in FIG. Next, at step 104, injection control of the auxiliary fuel Qa is performed.

【0058】[0058]

【発明の効果】大気中に排出される未燃HCの量を大巾
に低減しつつ加速運転時に排気ターボチャージャの過給
作用をただちに開始させることができる。
According to the present invention, the supercharging action of the exhaust turbocharger can be immediately started during the acceleration operation while significantly reducing the amount of unburned HC discharged into the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】燃焼室の側面断面図である。FIG. 2 is a side sectional view of a combustion chamber.

【図3】噴射量、噴射時期および空燃比を示す図であ
る。
FIG. 3 is a diagram showing an injection amount, an injection timing, and an air-fuel ratio.

【図4】噴射時期を示す図である。FIG. 4 is a view showing an injection timing.

【図5】未燃HCの濃度を示す図である。FIG. 5 is a diagram showing the concentration of unburned HC.

【図6】主燃料の噴射量を示す図である。FIG. 6 is a diagram showing an injection amount of a main fuel.

【図7】主燃料の噴射量と副燃料の噴射量との関係を示
す図である。
FIG. 7 is a diagram showing a relationship between an injection amount of a main fuel and an injection amount of a sub fuel.

【図8】主燃料の噴射量と排気制御弁の開度を示す図で
ある。
FIG. 8 is a diagram showing an injection amount of a main fuel and an opening degree of an exhaust control valve.

【図9】主燃料の噴射量と排気制御弁の開度を示す図で
ある。
FIG. 9 is a diagram showing an injection amount of a main fuel and an opening degree of an exhaust control valve.

【図10】運転制御を行うためのフローチャートであ
る。
FIG. 10 is a flowchart for performing operation control.

【符号の説明】[Explanation of symbols]

6…燃料噴射弁 15…排気ターボチャージャ 23…排気タービン 28…排気制御弁 6 fuel injection valve 15 exhaust turbocharger 23 exhaust turbine 28 exhaust control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/04 375 F02D 41/04 375 41/06 330 41/06 330B 380 380B 41/34 41/34 H 41/38 41/38 B 43/00 301 43/00 301H 301J 301Z 45/00 310 45/00 310B 310E 310J Fターム(参考) 3G065 AA03 AA04 AA09 AA10 CA12 DA02 DA05 DA06 EA02 EA04 EA09 GA00 GA05 GA10 GA46 JA04 JA09 JA11 KA02 3G084 AA03 BA05 BA13 BA14 BA15 BA19 BA20 CA02 CA03 CA04 DA10 EA11 EC01 EC03 FA07 FA10 FA33 3G091 AA02 AA11 AA17 AA18 AA24 AA28 BA15 CB02 CB03 CB07 DB11 EA01 EA05 EA07 FA04 FA13 FA17 HB05 HB06 3G301 HA01 HA02 HA04 HA06 HA11 HA13 HA16 JA26 KA05 KA08 KA12 LA03 LB04 LB06 LC03 LC04 LC07 MA12 MA19 NA08 NC02 PA01Z PB08Z PE01Z PE03Z PF03Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/04 375 F02D 41/04 375 41/06 330 41/06 330B 380 380B 41/34 41/34 H 41/38 41/38 B 43/00 301 43/00 301H 301J 301Z 45/00 310 45/00 310B 310E 310J F term (reference) 3G065 AA03 AA04 AA09 AA10 CA12 DA02 DA05 DA06 EA02 EA04 EA09 GA00 GA05 GA10 GA46 JA04 JA09 JA11 KA02 3G084 AA03 BA05 BA13 BA14 BA15 BA19 BA20 CA02 CA03 CA04 DA10 EA11 EC01 EC03 FA07 FA10 FA33 3G091 AA02 AA11 AA17 AA18 AA24 AA28 BA15 CB02 CB03 CB07 DB11 EA01 EA05 EA07 FA04 HA13 HA05 HA05 HA05 HA05 HA05 KA08 KA12 LA03 LB04 LB06 LC03 LC04 LC07 MA12 MA19 NA08 NC02 PA01Z PB08Z PE01Z PE03Z PF03Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 機関排気ポートの出口に接続された排気
通路内に排気ターボチャージャの排気タービンと排気制
御弁を配置し、大気中への未燃HCの排出量を低減すべ
きであると判断されたときには排気制御弁をほぼ全閉に
すると共に、機関出力を発生するために燃焼室内に噴射
された主燃料を空気過剰のもとで燃焼させることに加え
副燃料を副燃料が燃焼しうる膨張行程中又は排気行程中
の予め定められた時期に燃焼室内に追加噴射し、排気制
御弁がほぼ全閉にされているときに加速運転が行われた
ときには排気制御弁の開度を増大するようにした内燃機
関の排気浄化装置。
1. An exhaust turbine of an exhaust turbocharger and an exhaust control valve are disposed in an exhaust passage connected to an outlet of an engine exhaust port, and it is determined that the emission of unburned HC into the atmosphere should be reduced. In this case, the exhaust control valve is almost fully closed, the main fuel injected into the combustion chamber for generating the engine output is burned under excess air, and the auxiliary fuel is burned. Additional injection is performed into the combustion chamber at a predetermined time during the expansion stroke or the exhaust stroke, and the opening degree of the exhaust control valve is increased when the acceleration operation is performed when the exhaust control valve is almost fully closed. Exhaust gas purifying apparatus for an internal combustion engine.
【請求項2】 排気タービン下流の排気通路内に排気制
御弁を配置した請求項1に記載の内燃機関の排気浄化装
置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein an exhaust control valve is disposed in an exhaust passage downstream of the exhaust turbine.
【請求項3】 排気制御弁がほぼ全閉せしめられたとき
には同一の機関運転状態のもとで排気制御弁が全開せし
められた場合の機関の発生トルクに近づくように同一の
機関運転状態のもとで排気制御弁が全開せしめられた場
合に比べて主燃料の噴射量を増量させるようにした請求
項1に記載の内燃機関の排気浄化装置。
3. When the exhaust control valve is almost fully closed, the same engine operating state is set so as to approach the generated torque of the engine when the exhaust control valve is fully opened under the same engine operating state. 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the main fuel injection amount is increased as compared with the case where the exhaust control valve is fully opened.
【請求項4】 機関の暖機運転が行われているときには
大気中への未燃HCの排出量を低減すべきであると判断
される請求項1に記載の内燃機関の排気浄化装置。
4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein it is determined that the amount of unburned HC discharged into the atmosphere should be reduced when the engine is being warmed up.
【請求項5】 機関低負荷運転が行われているときには
大気中への未燃HCの排出量を低減すべきであると判断
される請求項1に記載の内燃機関の排気浄化装置。
5. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein it is determined that the amount of unburned HC discharged into the atmosphere should be reduced when the engine is under low load operation.
JP25021299A 1999-09-03 1999-09-03 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3960720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25021299A JP3960720B2 (en) 1999-09-03 1999-09-03 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25021299A JP3960720B2 (en) 1999-09-03 1999-09-03 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001073812A true JP2001073812A (en) 2001-03-21
JP3960720B2 JP3960720B2 (en) 2007-08-15

Family

ID=17204502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25021299A Expired - Fee Related JP3960720B2 (en) 1999-09-03 1999-09-03 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3960720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295277A (en) * 2001-03-30 2002-10-09 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP2008267340A (en) * 2007-04-24 2008-11-06 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Fuel managing device of construction machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295277A (en) * 2001-03-30 2002-10-09 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP4538976B2 (en) * 2001-03-30 2010-09-08 マツダ株式会社 Spark ignition direct injection engine with turbocharger
JP2008267340A (en) * 2007-04-24 2008-11-06 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Fuel managing device of construction machine

Also Published As

Publication number Publication date
JP3960720B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US7178327B2 (en) Internal combustion engine and control method thereof
EP1245815B1 (en) Direct-injection spark-ignition engine with a turbo-charging device, engine control method , and computer-readable storage medium therefor
JP2000240485A (en) Cylinder injection type internal combustion engine
JP2002188474A (en) Control device for diesel engine with turbosupercharger
JP2001041027A (en) Exhaust emission control device for internal combustion engine
JP2002188468A (en) Combustion control device for diesel engine
JP4560978B2 (en) Spark ignition direct injection engine with turbocharger
JP4253984B2 (en) Diesel engine control device
JP3680568B2 (en) Control device for turbocharged engine
JP3960720B2 (en) Exhaust gas purification device for internal combustion engine
JP3614051B2 (en) Exhaust gas purification device for internal combustion engine
JP3785870B2 (en) Exhaust gas purification device for internal combustion engine
JPH10212986A (en) In-cylinder injection type engine
JP3536739B2 (en) Exhaust gas purification device for internal combustion engine
JP2002038990A (en) Fuel injection device for diesel engine
JP3386008B2 (en) Exhaust gas purification device for internal combustion engine
JP3575370B2 (en) Fuel injection device for internal combustion engine
JP2002038995A (en) Fuel injection device for diesel engine
JP2002021605A (en) Exhaust emission control device of internal combustion engine
JP4811139B2 (en) Intake and exhaust valve control device for internal combustion engine
JP3684968B2 (en) Fuel injection device for internal combustion engine
JP3536749B2 (en) Exhaust gas purification device for internal combustion engine
JP3617382B2 (en) Exhaust gas purification device for internal combustion engine
JP3536727B2 (en) Exhaust gas purification device for internal combustion engine
JP2002295277A (en) Spark ignition type direct injection engine equipped with turbo supercharger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

LAPS Cancellation because of no payment of annual fees