JP2001066275A - Electrochemical sensor device and measurement method using the same - Google Patents

Electrochemical sensor device and measurement method using the same

Info

Publication number
JP2001066275A
JP2001066275A JP24222899A JP24222899A JP2001066275A JP 2001066275 A JP2001066275 A JP 2001066275A JP 24222899 A JP24222899 A JP 24222899A JP 24222899 A JP24222899 A JP 24222899A JP 2001066275 A JP2001066275 A JP 2001066275A
Authority
JP
Japan
Prior art keywords
electrode
potential
counter electrode
working electrode
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24222899A
Other languages
Japanese (ja)
Other versions
JP3424611B2 (en
Inventor
Atsushi Saito
敦 齋藤
Soichi Saito
総一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24222899A priority Critical patent/JP3424611B2/en
Publication of JP2001066275A publication Critical patent/JP2001066275A/en
Application granted granted Critical
Publication of JP3424611B2 publication Critical patent/JP3424611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the abnormality of a device caused by a fault when the fault such as disconnection and short-circuiting occurs in an electric wiring system from each operation electrode, counter electrode, and reference electrode to an electric signal processing part, in an electrochemical sensor device that gives the specific potential difference between a sensor element with the operation, counter, and reference electrodes, and the operation and reference electrodes of the sensor element, changes the potential of the counter electrode so that the potential difference is kept constantly, and has the electric signal processing part for specifying the concentration of a substance to be measured according to current flowing between the operation and counter electrodes at that time. SOLUTION: For an electric signal processing part 20 of an electrochemical sensor device, at least one of a circuit 29A for detecting a reference electrode potential and a circuit for detecting a counter electrode potential is provided, and it is judged whether the value of detected potential exceeds a preset, specific range or not. Or, a means for judging whether current flowing between the operation and counter electrodes exceeds the preset value or not is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、作用極、対極及び
参照極を備える電気化学センサ装置及びこれを用いた測
定方法に関し、特に、電気配線系統の断線或いは短絡な
どの、上記三電極以外の部分の故障に起因する装置の異
常を検出する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical sensor device having a working electrode, a counter electrode and a reference electrode, and a measuring method using the same. The present invention relates to a technology for detecting an abnormality of a device caused by a failure of a part.

【0002】[0002]

【従来の技術】電気化学センサ装置は、作用極、対極及
び参照極の3つの電極を試料溶液中に浸漬させ、作用極
と参照極との間に測定対象物質に応じて選択した適当な
電位差を与え、その電位差を一定に保つように対極に与
える電位を変化させたとき、作用極と対極との間に流れ
る電流の値から試料溶液中の測定対象物質の濃度を特定
することを測定原理とし、基本的には、作用極、対極及
び参照極の3つの電極が形成されたセンサ素子を含むセ
ンサ部と、そのセンサ部(具体的には、上記の三電極)
に対して測定に必要な電位を与え、またセンサ素子の電
極間に流れる電流を測定するなど、電源の供給や信号の
処理などを行なう電気信号処理部とからなる。
2. Description of the Related Art In an electrochemical sensor device, three electrodes of a working electrode, a counter electrode and a reference electrode are immersed in a sample solution, and an appropriate potential difference selected between the working electrode and the reference electrode in accordance with a substance to be measured. When the potential applied to the counter electrode is changed so that the potential difference is kept constant, the measurement principle is to determine the concentration of the target substance in the sample solution from the value of the current flowing between the working electrode and the counter electrode. Basically, a sensor unit including a sensor element in which three electrodes of a working electrode, a counter electrode, and a reference electrode are formed, and the sensor unit (specifically, the three electrodes described above)
And an electric signal processing unit for supplying power and processing signals, for example, by applying a potential required for measurement and measuring a current flowing between electrodes of the sensor element.

【0003】センサ素子の一例を、図4に示す。図4
(a)は平面図を表し、図4(b)は図4(a)中のX
−x切断線における断面図を示す。図4を参照して、こ
の図に示すセンサ素子1は、絶縁基板2の一表面に、紙
面左側から右側に順に並ぶ矩形の参照極3、対極4及び
作用極5と、それら電極から1本ずつ引き出されたリー
ド線6と、各リード線の先に1つずつ設けられたコンタ
クト電極7とを形成した構造となっている。3つの電極
は、例えば、対極4と作用極5とはチタン層とこれを覆
う白金層とからなり、参照極3は更にその上に銀の層と
塩化銀の層とを順に積層した構造になっている。
FIG. 4 shows an example of a sensor element. FIG.
4A shows a plan view, and FIG. 4B shows X in FIG.
FIG. 4 shows a cross-sectional view taken along the line -x. Referring to FIG. 4, a sensor element 1 shown in FIG. 4 includes a rectangular reference electrode 3, a counter electrode 4, and a working electrode 5 arranged on one surface of an insulating substrate 2 in order from the left to the right in FIG. In this structure, lead wires 6 drawn out one by one and contact electrodes 7 provided one by one at the end of each lead wire are formed. The three electrodes have, for example, a structure in which a counter electrode 4 and a working electrode 5 are composed of a titanium layer and a platinum layer covering the same, and the reference electrode 3 has a structure in which a silver layer and a silver chloride layer are further laminated thereon in this order. Has become.

【0004】上記のセンサ素子1を、図5に示すように
外筒11の内部に封入して、電気信号処理部に対して交
換可能なカートリッジ構造にしたものが、センサ部(以
後、センサカートリッジ或いは、単にカートリッジと記
す)10である。図5を参照して、このセンサカートリ
ッジ10においては、外筒11の先端側(紙面左側)に
開口13が設けられていて、センサ素子1は、作用極、
対極及び参照極がその開口の下に位置し、リード線6及
びコンタクト電極7が後端側(紙面右側)に位置するよ
うに収納されている。外筒内のセンサ素子の更に後端側
には、外部の電気信号処理部と接続するためのコンタク
トピン14が設けられている。外筒11の開口部の内側
の周囲とセンサ素子1との間はシール材12で封止され
ている。先に述べたセンサ素子のコンタクト電極7とコ
ンタクトピン14とは接触により電気的に導通してい
て、これにより、作用極、対極、参照極の各電極から電
気信号処理部までの間に、リード線6、コンタクト電極
7及びコンタクトピン14からなる電流経路(電気配線
系統)が構成されている。
The above-described sensor element 1 is sealed in an outer cylinder 11 as shown in FIG. 5 to form a cartridge structure which can be exchanged for an electric signal processing section. Alternatively, it is simply referred to as a cartridge) 10. Referring to FIG. 5, in this sensor cartridge 10, an opening 13 is provided on the distal end side (left side of the paper surface) of outer cylinder 11, and sensor element 1 has a working electrode,
The counter electrode and the reference electrode are located below the opening, and the lead wire 6 and the contact electrode 7 are accommodated so as to be located on the rear end side (right side in the drawing). On the rear end side of the sensor element in the outer cylinder, a contact pin 14 for connecting to an external electric signal processing unit is provided. The space between the inside of the opening of the outer cylinder 11 and the sensor element 1 is sealed with a sealant 12. The contact electrode 7 and the contact pin 14 of the sensor element described above are electrically connected by contact, so that a lead is provided between the working electrode, the counter electrode, and the reference electrode to the electric signal processing unit. A current path (electrical wiring system) including the line 6, the contact electrode 7, and the contact pin 14 is configured.

【0005】測定の際には、上述のセンサカートリッジ
の開口部を試料溶液中に浸漬するのであるが、開口13
からカートリッジ内に入った試料溶液は、センサ素子の
作用極、対極及び参照極の三電極には接触するものの、
それ以外の部分への浸入はシール材12によって阻止さ
れる。従って、シール材12から先のリード線6、コン
タクト電極7、コンタクトピン14、電気信号処理部の
入力点までの間で、電気配線系統どうしが試料溶液によ
って短絡することはない。
At the time of measurement, the opening of the above-described sensor cartridge is immersed in a sample solution.
Although the sample solution that has entered the cartridge from comes into contact with the working electrode, counter electrode, and reference electrode of the sensor element,
Intrusion into other portions is prevented by the sealing material 12. Therefore, between the sealing material 12 and the lead wire 6, the contact electrode 7, the contact pin 14, and the input point of the electric signal processing unit, the electric wiring systems are not short-circuited by the sample solution.

【0006】以下に、電気化学センサを用いた濃度の測
定方法について、試料溶液中の過酸化水素水の濃度を測
定する場合を例にして、説明する。図6は、電気信号処
理部の一例にセンサカートリッジ10を接続したときの
回路図を示す図である。図6を参照して、この図に示す
電気信号処理部20は、直流電圧源21と、作用極に流
れる電流を検出するための電流検出回路22と、電流検
出回路が検出したアナログの電流値をディジタルデータ
に変換するA/Dコンバータ23と、CPU24と、R
OM25及びRAM26と、LCD27と、演算増幅器
28を用いた電位制御回路28Bとで構成される。演算
増幅器28は、非反転入力点が電圧源21に、出力点が
対極に接続されており、反転入力点は参照極に接続され
ている。
Hereinafter, a method for measuring the concentration using an electrochemical sensor will be described with reference to an example in which the concentration of a hydrogen peroxide solution in a sample solution is measured. FIG. 6 is a circuit diagram when the sensor cartridge 10 is connected to an example of the electric signal processing unit. Referring to FIG. 6, electric signal processing unit 20 shown in FIG. 6 includes a DC voltage source 21, a current detection circuit 22 for detecting a current flowing through the working electrode, and an analog current value detected by the current detection circuit. , An A / D converter 23 for converting the data into digital data, a CPU 24,
It comprises an OM 25 and a RAM 26, an LCD 27, and a potential control circuit 28B using an operational amplifier 28. The operational amplifier 28 has a non-inverting input point connected to the voltage source 21, an output point connected to the counter electrode, and an inverted input point connected to the reference electrode.

【0007】濃度測定を行うときは、先ず、上述のセン
サカートリッジの開口部側を、例えば電解質とpH緩衝
物質とを主成分とするような保存液に浸漬させ、センサ
装置の図示しない電源スイッチをオンにして、装置を稼
動状態にする。次に、センサカートリッジを試料溶液中
に浸漬する。そして、電圧源21の出力電圧を−700
mVにし、電位制御回路28Bによって、作用極と参照
極との間の電位差が700mV(作用極電位=0V、参
照極電位=−700mV)になるように対極に電位を加
える。この作用極と参照極との間の電位差としては、測
定対象物質に応じて適当な値を選択する。上記の操作に
より、作用極が試料溶液に対してプラスの一定電位を保
つことになり、作用極上で下記の反応式で表される陽極
酸化反応が起るので、試料溶液中の過酸化水素水の濃度
に相当する酸化電流が作用極から対極に向かって流れ
る。 H22 →2H+ +O2 +2e- 上記の酸化電流を電流検出回路22で検出する。電流は
作用極と対極との間を流れるので、電流検出回路22は
作用極側または対極側のどちら側に設けても良い。CP
U24は、ROM25に保存されたファームウエアに従
い、検出した電流値をA/Dコンバータ23でディジタ
ルデータに変換して取り込み、RAM26に保存する。
CPU24は更に、ROM25に保存されている電流値
と過酸化水素水の濃度との関係式に基づいて過酸化水素
水の濃度を算出し、LCD27に表示する。
When measuring the concentration, first, the opening side of the above-described sensor cartridge is immersed in a storage solution containing, for example, an electrolyte and a pH buffer substance as main components, and a power switch (not shown) of the sensor device is turned on. Turn on to put the device into operation. Next, the sensor cartridge is immersed in the sample solution. Then, the output voltage of the voltage source 21 is set to -700.
mV, and the potential control circuit 28B applies a potential to the counter electrode such that the potential difference between the working electrode and the reference electrode becomes 700 mV (working electrode potential = 0 V, reference electrode potential = -700 mV). As the potential difference between the working electrode and the reference electrode, an appropriate value is selected according to the substance to be measured. By the above operation, the working electrode maintains a positive constant potential with respect to the sample solution, and an anodic oxidation reaction represented by the following reaction formula occurs on the working electrode. An oxidation current corresponding to the concentration flows from the working electrode toward the counter electrode. H 2 O 2 → 2H + + O 2 + 2e -The above-mentioned oxidation current is detected by the current detection circuit 22. Since the current flows between the working electrode and the counter electrode, the current detection circuit 22 may be provided on either the working electrode side or the counter electrode side. CP
The U 24 converts the detected current value into digital data by the A / D converter 23 according to the firmware stored in the ROM 25, and stores it in the RAM 26.
The CPU 24 further calculates the concentration of the hydrogen peroxide solution based on the relational expression between the current value stored in the ROM 25 and the concentration of the hydrogen peroxide solution, and displays it on the LCD 27.

【0008】[0008]

【発明が解決しようとする課題】電気化学センサ装置に
おいて精度のよい測定結果を得るには、センサ素子の感
度の管理が重要であることは良く知られていて、従来、
以下に述べるような感度管理のためのいくつかの技術が
開発されている。
It is well known that it is important to control the sensitivity of a sensor element in order to obtain accurate measurement results in an electrochemical sensor device.
Several techniques have been developed for sensitivity management as described below.

【0009】すなわち、特公平7−119727号公報
(公報1)は、電気化学センサ素子の一種であるバイオ
センサにおける電極のリフレッシュ方法を開示してい
る。上記公報1記載のバイオセンサに用いられる酵素電
極は、Ptからなる作用極及び対極とAgからなる参照
極とで構成され、各電極上には所定の生理活性物質が固
定されている。上記公報1記載のバイオセンサにおいて
は、そのようなセンサ素子を用い、対極を基準として作
用極に順バイアス電圧を与えた状態で測定対象物質の濃
度測定を行うのであるが、測定を継続するに従って作用
極表面に酸化膜等の通電妨害膜が形成され、作用極の活
性が低下する。そこで、ある程度の回数の測定を行った
後、測定を行わない期間に、逆バイアスを与えることに
より上述の通電妨害膜を除去して、作用極の活性を回復
(リフレッシュ)させる。この公報1に開示されたリフ
レッシュ方法においては、その作用極のリフレッシュの
ときに、従来の方法に従って所定の逆バイアス電圧を所
定の時間印加した後、測定時の順バイアス電圧よりも高
い順バイアス電圧を供給することにより、リフレッシュ
後に測定を再開できるまでの時間を短縮する。
[0009] That is, Japanese Patent Publication No. Hei 7-119727 (publication 1) discloses a method of refreshing an electrode in a biosensor which is a kind of electrochemical sensor element. The enzyme electrode used in the biosensor described in the above publication 1 is composed of a working electrode and a counter electrode made of Pt and a reference electrode made of Ag, and a predetermined physiologically active substance is fixed on each electrode. In the biosensor described in the above publication 1, such a sensor element is used to measure the concentration of the substance to be measured in a state where a forward bias voltage is applied to the working electrode with reference to the counter electrode. A current blocking film such as an oxide film is formed on the surface of the working electrode, and the activity of the working electrode is reduced. Therefore, after the measurement is performed a certain number of times, during the period in which the measurement is not performed, a reverse bias is applied to remove the above-mentioned current-carrying film, thereby restoring (refreshing) the activity of the working electrode. In the refresh method disclosed in this publication, when a working electrode is refreshed, a predetermined reverse bias voltage is applied for a predetermined time according to a conventional method, and then a forward bias voltage higher than a forward bias voltage at the time of measurement is applied. Supply, the time until the measurement can be resumed after the refresh is reduced.

【0010】一方、特開平4−230843号公報(公
報2)は、電気化学式ガスセンサにおけるセンサ素子の
寿命の予知技術を開示している。上記公報2記載のガス
センサにおいては、同じ一つの絶縁基板上に、検知対象
ガスを検知するための対象ガス検知部と、使用環境に一
定の濃度で存在する基準ガスを検知するための基準ガス
検知部とを設ける。それら対象ガス検知部と基準ガス検
知部とは、それぞれ、作用極、対極及び参照極の組を1
組ずつ備えている。このようにすることによって、対象
ガス検知部の感度の経時変化特性と基準ガス検知部の感
度の経時特性とが同等になるようにする。そして、上記
基準ガス検知部の検知電流(作用極と対極との間に流れ
る電流)が予め定めた電流以下になって、基準ガス検知
部のセンサの寿命が来たと判断されたときをもって、対
象ガス検知部のセンサにも寿命が来たと判断するように
している。
[0010] On the other hand, Japanese Patent Application Laid-Open No. Hei 4-230843 discloses a technique for predicting the life of a sensor element in an electrochemical gas sensor. In the gas sensor described in the above publication 2, a target gas detection unit for detecting a detection target gas and a reference gas detection for detecting a reference gas existing at a certain concentration in a use environment are provided on the same one insulating substrate. Parts are provided. Each of the target gas detector and the reference gas detector has a pair of a working electrode, a counter electrode, and a reference electrode.
Each pair is equipped. By doing so, the temporal change characteristic of the sensitivity of the target gas detecting unit and the temporal characteristic of the sensitivity of the reference gas detecting unit are made equal. Then, when the detection current of the reference gas detection unit (current flowing between the working electrode and the counter electrode) becomes equal to or less than a predetermined current and it is determined that the life of the sensor of the reference gas detection unit has come, The sensor of the gas detector is also determined to have reached the end of its life.

【0011】このように、電気化学センサ装置における
センサ素子の経時変化を管理する技術はいくつか考えら
れている。しかしながら、それらの技術は、飽くまで
も、センサ素子の作用極、対極及び参照極の各電極から
電気信号処理部までの電気配線系統に断線或いは短絡な
どの故障がないことを前提とするものであって、従来の
電気化学センサ装置はいずれも、そのような故障を検出
する手段を何ら備えていない。その結果、装置に上述の
ような電気信号系統の故障が発生したときにもそのまま
測定を実行してしまい、誤った測定結果を出力する可能
性がある。
As described above, several techniques have been considered for managing the change over time of the sensor element in the electrochemical sensor device. However, these techniques are based on the premise that there is no failure such as disconnection or short circuit in the electric wiring system from the working electrode, counter electrode and reference electrode of each sensor element to the electric signal processing unit. None of the conventional electrochemical sensor devices have any means for detecting such a failure. As a result, even when the above-described failure of the electric signal system occurs in the device, the measurement is performed as it is, and an erroneous measurement result may be output.

【0012】従って、本発明は、作用極、対極及び参照
極の三電極を有するセンサ素子と、センサ素子の作用極
と参照極との間に所定の電位差を与え、その電位差を一
定に保持するように対極に与える電位を変化させ、その
とき作用極と対極との間に流れる電流から測定対象物質
の濃度を特定する電気信号処理部とを備える電気化学セ
ンサ装置において、各作用極、対極及び参照極から電気
信号処理部に至る電気配線系統に断線や短絡などの故障
があったとき、その故障に基づく装置の異常を確実に検
出できるようにすることを目的とするものである。
Accordingly, the present invention provides a sensor element having three electrodes of a working electrode, a counter electrode and a reference electrode, and a predetermined potential difference between the working electrode and the reference electrode of the sensor element, and keeps the potential difference constant. In the electrochemical sensor device including an electric signal processing unit that changes the potential applied to the counter electrode and specifies the concentration of the substance to be measured from the current flowing between the working electrode and the counter electrode at that time, each working electrode, the counter electrode, and It is an object of the present invention to reliably detect an abnormality of a device based on a failure such as a disconnection or a short circuit in an electric wiring system from a reference electrode to an electric signal processing unit.

【0013】[0013]

【課題を解決するための手段】本発明の電気化学センサ
装置は、作用極、対極及び参照極の三電極を有するセン
サ素子と、前記センサ素子の作用極と参照極との間に所
定の電位差を与え、その電位差を一定に保持するように
対極に与える電位を変化させ、そのとき作用極と対極と
の間に流れる電流から測定対象物質の濃度を特定する電
気信号処理部とを備える電気化学センサ装置において、
参照極の電位、対極の電位の少なくとも一つを検出し、
その検出値が予め定めた所定の範囲外であるか否かによ
り各々の前記電極から前記電気信号処理部に至る電流経
路の断線又は電流経路間の短絡に基づく装置の異常の有
無を判定する手段を設けたことを特徴とする。また、前
記作用極と対極との間に流れる電流が予め定めた値より
大であることを検出することにより、各々の前記電極か
ら前記電気信号処理部に至る電流経路の間の短絡に基づ
く装置の異常を検出する手段を設けたことを特徴とす
る。
According to the present invention, there is provided an electrochemical sensor device comprising a sensor element having a working electrode, a counter electrode and a reference electrode, and a predetermined potential difference between the working electrode and the reference electrode of the sensor element. And an electric signal processing unit that changes the potential applied to the counter electrode so as to keep the potential difference constant, and then specifies the concentration of the substance to be measured from the current flowing between the working electrode and the counter electrode. In the sensor device,
Detecting at least one of the potential of the reference electrode and the potential of the counter electrode,
Means for judging the presence or absence of an abnormality in the device based on a disconnection of a current path from each of the electrodes to the electric signal processing unit or a short circuit between the current paths depending on whether or not the detected value is outside a predetermined range. Is provided. Further, by detecting that the current flowing between the working electrode and the counter electrode is greater than a predetermined value, a device based on a short circuit between current paths from each of the electrodes to the electric signal processing unit is detected. Characterized in that a means for detecting an abnormality is provided.

【0014】[0014]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて、図面を参照して説明する。図1は、本発明の第1
の実施の形態に係る電気化学センサ装置の構成を示すブ
ロック図である。図1を参照して、本実施の形態に係る
装置は、参照極の電位を検出するための参照極電位検出
回路29Aを設け、その回路で検出したアナログの参照
極電位をA/Dコンバータ23でディジタルデータに変
換している点が、図6に示す従来の電気化学センサ装置
と異なっている。尚、本実施の形態においては、従来の
装置における直流電圧源21をD/Aコンバータ21A
で構成し、CPU24からのディジタル信号を取り込み
アナログ直流電圧に変換するようにして、出力の有無や
電圧値を制御しやすくしている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention.
FIG. 3 is a block diagram illustrating a configuration of an electrochemical sensor device according to an embodiment. Referring to FIG. 1, the apparatus according to the present embodiment includes a reference pole potential detection circuit 29A for detecting the potential of a reference pole, and converts an analog reference pole potential detected by the circuit into an A / D converter 23. Is different from the conventional electrochemical sensor device shown in FIG. In the present embodiment, the DC voltage source 21 in the conventional device is replaced with the D / A converter 21A.
, And takes in a digital signal from the CPU 24 and converts it into an analog DC voltage, thereby making it easy to control the presence or absence of an output and the voltage value.

【0015】参照極電位検出回路29Aは、非反転入力
点が参照極に接続され、出力点と反転入力点とが直結さ
れた演算増幅器29で構成され、その演算増幅器29の
出力点がA/Dコンバータ23の入力点に接続されてい
る。演算増幅器29の出力点はまた、対極の演算増幅器
28の反転入力点に接続されている。従って、参照極
は、演算増幅器29における出力点から反転入力点への
全帰還により、等価的に演算増幅器28の反転入力点と
直結していることになる。
The reference pole potential detection circuit 29A is composed of an operational amplifier 29 having a non-inverting input point connected to the reference pole and an output point and an inverting input point directly connected. The output point of the operational amplifier 29 is A / A. It is connected to the input point of the D converter 23. The output of the operational amplifier 29 is also connected to the inverting input of the opposing operational amplifier 28. Therefore, the reference pole is equivalently directly connected to the inverting input point of the operational amplifier 28 by the total feedback from the output point of the operational amplifier 29 to the inverting input point.

【0016】本実施の形態においては、図1に示す電気
化学センサ装置を過酸化水素水の濃度測定に適用して、
発明の効果を確認した。センサ素子には、下記のように
して作製したものを用いた。図4及び図5を参照して、
先ず、60×70mmのガラス基板に、下から順に、チ
タン層(0.02〜0.2μm)、白金層(0.1〜
1.0μm)、銀層(0.1〜1.0μm)をスパッタ
法により形成する。
In this embodiment, the electrochemical sensor device shown in FIG.
The effect of the invention was confirmed. As the sensor element, one manufactured as described below was used. Referring to FIGS. 4 and 5,
First, on a 60 × 70 mm glass substrate, a titanium layer (0.02 to 0.2 μm) and a platinum layer (0.1 to
1.0 μm) and a silver layer (0.1 to 1.0 μm) are formed by a sputtering method.

【0017】次いで、フォトリソグラフィによって、参
照極3、対極4、作用極5、リード線6及びコンタクト
電極7のパターンを形成する。このとき、参照極3だけ
は最上層の銀層が残るようにしておき、他の電極及びリ
ード線については銀層を取り除き、白金層が露出するよ
うにする。尚、各電極及びリード線の形状は、参照極3
は0.4×2.0mm、対極4は0.4×2.0mm、
作用極5は1.2×2.0mm、リード線6は1本当り
1.2×2.8mm、コンタクト電極7は1電極当り
1.6×0.8mmである。
Next, patterns of the reference electrode 3, the counter electrode 4, the working electrode 5, the lead wire 6, and the contact electrode 7 are formed by photolithography. At this time, only the reference electrode 3 is left with the uppermost silver layer remaining, and the silver layer is removed for the other electrodes and lead wires so that the platinum layer is exposed. Note that the shape of each electrode and lead wire is
Is 0.4 × 2.0 mm, the counter electrode 4 is 0.4 × 2.0 mm,
The working electrode 5 has a size of 1.2 × 2.0 mm, the lead wire 6 has a size of 1.2 × 2.8 mm, and the contact electrode 7 has a size of 1.6 × 0.8 mm per electrode.

【0018】次に、塩化鉄(3)水溶液で処理し、参照
極3上の銀層の表面に塩化銀層を形成する。その後、絶
縁基板2を個々のセンサ素子(6×9mm)に分割し、
更にこのセンサ素子を外筒に収納して、図5に示すカー
トリッジ構造にする。
Next, a silver chloride layer is formed on the surface of the silver layer on the reference electrode 3 by treating with an aqueous solution of iron chloride (3). Thereafter, the insulating substrate 2 is divided into individual sensor elements (6 × 9 mm),
Further, this sensor element is housed in an outer cylinder to form a cartridge structure shown in FIG.

【0019】尚、絶縁基板2は、ガラスに限らず、シリ
コン基板上に酸化シリコン膜を形成したものや石英、或
いはポリイミド、ポリカーボネートやガラスエポキシ基
板でも良い。電極3,4,5,7やリード線6には、白
金の他に、カーボン、金、イリジウム等の導電性材料を
使用できる。それら導電性材料の堆積方法には、スパッ
タ法の他に、蒸着法、スクリーン印刷或いはめっき法な
どが採用できる。参照極上の塩化銀層の形成には、塩化
鉄(3)水溶液で処理する方法の他に、塩化クロム
(3)水溶液で処理する方法も利用できる。或いは、塩
化物水溶液中で電解する方法により形成することもでき
る。
The insulating substrate 2 is not limited to glass, but may be a silicon substrate having a silicon oxide film formed thereon, quartz, polyimide, polycarbonate, or a glass epoxy substrate. For the electrodes 3, 4, 5, 7 and the lead wires 6, conductive materials such as carbon, gold, iridium and the like can be used in addition to platinum. As a method for depositing the conductive material, a vapor deposition method, a screen printing method, a plating method, or the like can be employed in addition to the sputtering method. For the formation of the silver chloride layer on the reference electrode, a method of treating with an aqueous solution of chromium chloride (3) can be used in addition to a method of treating with an aqueous solution of iron chloride (3). Alternatively, it can be formed by a method of electrolysis in a chloride aqueous solution.

【0020】過酸化水素水の濃度測定に当っては、上記
のセンサカートリッジを過酸化水素水を含む試料溶液中
に浸漬させる。そして、CPU24よりD/Aコンバー
タ21Aに−700mVの電圧を出力させ、電位制御回
路28A(演算増幅器28と参照極電位検出回路29A
とからなる)により、作用極と参照極との間の電位差が
700mVとなるように対極に電位を加える。その後、
実際の作用極電流を測定する前に、参照極電位検出回路
29Aにより、参照極の電位を検出する。CPU24
は、ROM25に保存されているファームウエアに従っ
て、検出した参照極電位をA/Dコンバータ23でディ
ジタルデータに変換して取り込み,RAM26に保存す
る。CPU24は、更に、ROM25に保存されている
条件を参照して、参照極電位が予め定めておいた範囲内
の電位であるか否かを判定し、範囲内のときは「正
常」、範囲外の場合は「異常あり」とする。「異常あ
り」の場合、CPU24は電圧源であるD/Aコンバー
タ21Aの出力を停止させ、電位制御回路28Aを停止
して参照極及び対極への電位印加を中断すると共に、L
CD27に「センサ交換」などを表示させる。
In measuring the concentration of the hydrogen peroxide solution, the sensor cartridge is immersed in a sample solution containing the hydrogen peroxide solution. Then, the CPU 24 causes the D / A converter 21A to output a voltage of -700 mV, and the potential control circuit 28A (the operational amplifier 28 and the reference pole potential detection circuit 29A).
) Is applied to the counter electrode such that the potential difference between the working electrode and the reference electrode becomes 700 mV. afterwards,
Before measuring the actual working electrode current, the reference electrode potential detection circuit 29A detects the potential of the reference electrode. CPU 24
According to the firmware stored in the ROM 25, the detected reference pole potential is converted into digital data by the A / D converter 23, taken in, and stored in the RAM 26. The CPU 24 further refers to the conditions stored in the ROM 25 to determine whether or not the reference electrode potential is within a predetermined range. In the case of, "abnormal" is determined. In the case of "abnormal", the CPU 24 stops the output of the D / A converter 21A as a voltage source, stops the potential control circuit 28A to suspend the application of the potential to the reference electrode and the counter electrode,
A message such as "sensor replacement" is displayed on the CD 27.

【0021】本実施の形態においては、センサ素子が正
常で且つ作用極、対極及び参照極の各電極から電気信号
処理部までの電気配線系統に異常がなければ、参照極電
位は−700±10mVであることが確認された。これ
により、作用極電流の測定に先立つ参照極電位の測定結
果が−710〜−690mVであれば、CPU24は装
置が「正常」であると判断して、作用極電流の測定、過
酸化水素水の濃度算出に移る。
In this embodiment, if the sensor element is normal and there is no abnormality in the electric wiring system from the working electrode, the counter electrode and the reference electrode to the electric signal processing section, the reference electrode potential is -700 ± 10 mV. Was confirmed. Accordingly, if the measurement result of the reference electrode potential prior to the measurement of the working electrode current is −710 to −690 mV, the CPU 24 determines that the device is “normal”, and measures the working electrode current, Move on to the calculation of concentration.

【0022】これに対し、参照極からの電気配線系統
(図4,5において、センサ素子のリード線6、コンタ
クト電極7とコンタクトピン14との接触及びコンタク
トピン14と電気信号処理部の入力点との接触)が断線
している場合は、参照極電位は本来あるべき−700m
Vから徐々にプラス側或いはマイナス側にドリフトし、
例えば0mVに近付いていくような不安定な挙動を示
す。これは、上述の参照極からの電気配線系統が断線し
た場合、センサ素子の絶縁基板2や参照極の漏れ電位の
ような不定の電位が演算増幅器29へ入力されるためで
あると考えられる。一方、センサカートリッジ内部のシ
ール材12のシール性が悪く、参照極の電気配線系統と
作用極の電気配線系統とが短絡状態になった場合にも、
参照極電位が不安定になることが観測された。
On the other hand, the electrical wiring system from the reference electrode (in FIGS. 4 and 5, the lead wire 6 of the sensor element, the contact between the contact electrode 7 and the contact pin 14, and the input point of the contact pin 14 and the electrical signal processing unit) Is broken, the reference electrode potential should be -700 m
Drifts gradually from V to the plus or minus side,
For example, it shows an unstable behavior approaching 0 mV. It is considered that this is because when the electric wiring system from the reference electrode is disconnected, an indefinite potential such as the leakage potential of the insulating substrate 2 of the sensor element or the reference electrode is input to the operational amplifier 29. On the other hand, even when the sealing property of the sealing material 12 inside the sensor cartridge is poor and the electric wiring system of the reference electrode and the electric wiring system of the working electrode are short-circuited,
It was observed that the reference pole potential became unstable.

【0023】以上のことから、本実施の形態において、
参照極電位が設定値−700±10mVの範囲外の値で
あるときは、少なくとも、参照極からの電気配線系統の
断線又は、センサカートリッジ内でのシール不全などに
よる電気配線系統どうしの短絡があると判断して差し支
えない。
From the above, in the present embodiment,
When the reference electrode potential is a value outside the range of the set value -700 ± 10 mV, at least there is a disconnection of the electric wiring system from the reference electrode or a short circuit between the electric wiring systems due to insufficient sealing in the sensor cartridge. You can judge it.

【0024】次に、本発明の第2の実施の形態につい
て、説明する。図2は、本発明の第2の実施の形態に係
る電気化学センサ装置の構成を示すブロック図である。
図2を参照して、本実施の形態に係る電気化学センサ装
置は、参照極電位検出回路に換えて、対極の電位を検出
するための対極電位検出回路30Aを備えている点が、
第1の実施の形態に係る電気化学センサ装置と異なって
いる。対極電位検出回路30Aは、非反転入力点が対極
に接続され、出力点と反転入力点とが直結された演算増
幅器30で構成され、演算増幅器30の出力点がA/D
コンバータ23の入力点に接続されている。
Next, a second embodiment of the present invention will be described. FIG. 2 is a block diagram showing a configuration of the electrochemical sensor device according to the second embodiment of the present invention.
Referring to FIG. 2, the electrochemical sensor device according to the present embodiment includes a counter electrode potential detection circuit 30A for detecting the potential of the counter electrode, instead of the reference electrode potential detection circuit,
This is different from the electrochemical sensor device according to the first embodiment. The counter electrode potential detection circuit 30A includes an operational amplifier 30 in which a non-inverting input point is connected to a counter electrode, and an output point and an inverting input point are directly connected, and the output point of the operational amplifier 30 is A / D
It is connected to the input point of the converter 23.

【0025】本実施の形態においても、第1の実施の形
態におけると同じ構造のセンサカートリッジを用い、過
酸化水素水の濃度測定に適用した。すなわち、上記のセ
ンサカートリッジを過酸化水素水を含む試料溶液中に浸
漬し、CPU24よりD/Aコンバータ21Aに−70
0mVの電圧を出力させ、電位制御回路28A(対極の
演算増幅器28と参照極の演算増幅器29とからなる)
により、作用極と参照極との間の電位差が700mVと
なるように、対極に電位を与える。その後、実際の作用
極電流を測定する前に、対極電位検出回路30Aによ
り、対極の電位を検出した。その場合、センサ素子及び
電気配線系統が正常であれば、対極電位は0〜800m
Vの範囲内の値になることが確かめられた。
In this embodiment, a sensor cartridge having the same structure as that of the first embodiment is used to measure the concentration of hydrogen peroxide solution. That is, the above-described sensor cartridge is immersed in a sample solution containing a hydrogen peroxide solution, and the D / A converter 21A receives a −70 from the CPU 24.
A voltage of 0 mV is output, and the potential control circuit 28A (consisting of the operational amplifier 28 of the counter electrode and the operational amplifier 29 of the reference electrode)
Thus, the potential is applied to the counter electrode such that the potential difference between the working electrode and the reference electrode becomes 700 mV. Thereafter, before measuring the actual working electrode current, the counter electrode potential was detected by the counter electrode potential detection circuit 30A. In this case, if the sensor element and the electric wiring system are normal, the counter electrode potential is 0 to 800 m.
It was confirmed that the value was within the range of V.

【0026】これに対し、参照極からの電気配線系統が
断線している場合、対極電位は1.0V又は−1.0V
に飽和する。これは、センサ素子が正常で且つ電気配線
系統に異常がなければ、対極には電位制御回路28Aに
よって参照極の電位−700mVに対応した電位が与え
られるのであるが、既に述べたように、参照極の電気配
線系統が断線していると、参照極の演算増幅器29の入
力電位が不定になるので、電位制御回路28Aはこの不
定の電位に対応した電位を対極に与え、最終的には演算
増幅器28の電源電圧である±1.0Vのどちらかの電
圧に飽和するのであろうと考えられる。
On the other hand, when the electric wiring system from the reference electrode is disconnected, the counter electrode potential is 1.0 V or -1.0 V
To saturate. This is because if the sensor element is normal and there is no abnormality in the electric wiring system, a potential corresponding to the potential of the reference electrode -700 mV is applied to the counter electrode by the potential control circuit 28A. If the electric wiring system of the pole is disconnected, the input potential of the operational amplifier 29 of the reference pole becomes indefinite, and the potential control circuit 28A gives a potential corresponding to this undetermined potential to the counter electrode, and finally the operation is performed. It is considered that the voltage will saturate to any of ± 1.0 V which is the power supply voltage of the amplifier 28.

【0027】一方、対極からの電気配線系統が断線して
いる場合も、対極電位は、1.0V或いは−1.0Vの
電位に飽和する。これは、電位制御回路28Aは作用極
と参照極との間の電位差を700mVにするように対極
に電位を与えようとするが、対極への電気配線系統が断
線しているために作用極と参照極との間を700mVに
保つことができず、最終的に、演算増幅器28の電源電
圧である±1.0Vのどちらかの電圧に飽和するのであ
ろうと推測される。
On the other hand, even when the electric wiring system from the counter electrode is disconnected, the counter electrode potential saturates to a potential of 1.0 V or -1.0 V. This is because the potential control circuit 28A tries to apply a potential to the counter electrode so that the potential difference between the working electrode and the reference electrode is 700 mV, but the electrical wiring system to the counter electrode is disconnected, and the potential control circuit 28A It is presumed that the voltage between the reference electrode and the reference electrode cannot be maintained at 700 mV, and that the voltage eventually saturates to any of ± 1.0 V, which is the power supply voltage of the operational amplifier 28.

【0028】以上のことから、本実施の形態において、
対極電位0〜800mVの範囲を外れたときは装置が故
障している可能性があり、特に、対極電位が演算増幅器
の電源電圧に等しいような大きな電圧を示すときは、参
照極の電気配線系統又は対極の電気配線系統の少なくと
もどちらかに断線が生じているといえる。
From the above, in the present embodiment,
If the potential of the counter electrode is out of the range of 0 to 800 mV, the device may be faulty. In particular, when the potential of the counter electrode indicates a large voltage equal to the power supply voltage of the operational amplifier, the electric wiring system of the reference electrode Alternatively, it can be said that disconnection has occurred in at least one of the electrical wiring systems of the counter electrode.

【0029】次に、本発明の第3の実施の形態につい
て、説明する。図3は、本発明の第3の実施の形態に係
る電気化学センサ装置の構成を示すブロック図である。
図3を参照して、本実施の形態においては、作用極と対
極との間に流れる電流、つまり電流検出回路22で検出
される電流値に対して、電気信号処理部までの電気配線
系統の故障の有無を判定するための上限値を設ける。例
えば、図5に示すセンサーカートリッジにおいて、シー
ル材12のシール性が不完全で、コンタクトピン14の
部分まで試料溶液が浸入したとすると、各コンタクトピ
ンどうしの間が短絡される。その場合、作用極のコンタ
クトピンと参照極のコンタクトピンとの間が短絡すれ
ば、電位制御回路28Aは作用極と参照極との間の電位
差を700mVにすることができず、対極には演算増幅
器28の電源電圧のようなプラス又はマイナスの大きな
電位が加えられる。その結果、作用極又は対極上で水の
電気分解が起り、作用極と対極との間に、センサ素子及
び電気配線系統が正常であれば例えば1000nA程度
以内であるべきところ、5000nAというような測定
系の誤差の範囲を大きく越える大電流が流れる。本実施
の形態によれば、このような、主にセンサカートリッジ
内での電気配線系統の短絡による装置の異常を検出する
ことができる。
Next, a third embodiment of the present invention will be described. FIG. 3 is a block diagram showing a configuration of the electrochemical sensor device according to the third embodiment of the present invention.
Referring to FIG. 3, in the present embodiment, the current flowing between the working electrode and the counter electrode, that is, the current value detected by current detection circuit 22 is compared with the electric wiring system to the electric signal processing unit. An upper limit for determining the presence or absence of a failure is provided. For example, in the sensor cartridge shown in FIG. 5, if the sealing property of the sealing material 12 is incomplete and the sample solution penetrates to the contact pins 14, the contact pins are short-circuited. In this case, if the contact pin of the working electrode and the contact pin of the reference electrode are short-circuited, the potential control circuit 28A cannot make the potential difference between the working electrode and the reference electrode 700 mV, and the counter electrode has the operational amplifier 28 A large positive or negative potential such as the power supply voltage of As a result, electrolysis of water occurs on the working electrode or the counter electrode, and if the sensor element and the electric wiring system are normal between the working electrode and the counter electrode, the measurement should be within about 1000 nA, for example, 5000 nA. A large current that greatly exceeds the range of system error flows. According to the present embodiment, it is possible to detect such an abnormality of the device mainly due to a short circuit of the electric wiring system in the sensor cartridge.

【0030】なお、これまでは、参照極電位検出回路、
対極電位検出回路を個々に備えるセンサ装置の例につい
て述べたが、もちろん、一つの装置内に両方の検出回路
を設けることも可能である。更には、第3の実施の形態
におけるような、作用極電流の上限を越えているかどう
かの判定機能を付加してもよい。
Heretofore, the reference electrode potential detecting circuit,
Although the example of the sensor device individually including the counter electrode potential detection circuit has been described, it is needless to say that both the detection circuits can be provided in one device. Further, a function of determining whether or not the working electrode current exceeds the upper limit as in the third embodiment may be added.

【0031】なお又、カートリッジ構造にしたセンサ素
子を例にして説明したが、特にカートリッジ構造でなく
ても本発明の作用効果が損なわれないことは、明らかで
あろう。
Although the sensor element having a cartridge structure has been described as an example, it will be apparent that the function and effect of the present invention will not be impaired even if the sensor element has no cartridge structure.

【0032】[0032]

【発明の効果】以上説明したように、本発明は、作用
極、対極及び参照極の三電極を有するセンサ素子と、セ
ンサ素子の作用極と参照極との間に所定の電位差を与
え、その電位差を一定に保持するように対極に与える電
位を変化させ、そのとき作用極と対極との間に流れる電
流から測定対象物質の濃度を特定する電気信号処理部と
を備える電気化学センサ装置に対し、参照極の電位、対
極の電位の少なくとも一つを検出し、その検出値が予め
定めた所定の範囲外であるか否かを判定する手段を設け
ている。或いは、作用極と対極との間に流れる電流が予
め定めた値より大であることを検出する手段を設けてい
る。
As described above, the present invention provides a sensor element having a working electrode, a counter electrode, and a reference electrode, and a predetermined potential difference between the working electrode and the reference electrode of the sensor element. The potential applied to the counter electrode is changed so as to keep the potential difference constant, and then an electric signal processing unit for specifying the concentration of the substance to be measured from the current flowing between the working electrode and the counter electrode. Means for detecting at least one of the potential of the reference electrode and the potential of the counter electrode and determining whether or not the detected value is outside a predetermined range. Alternatively, there is provided means for detecting that the current flowing between the working electrode and the counter electrode is larger than a predetermined value.

【0033】これにより、本発明によれば、電気化学セ
ンサ装置において、作用極、対極及び参照極の各電極か
ら電気信号処理部に至る電気配線系統に断線や短絡など
の故障があっても、その故障に基づく装置の異常を確実
に検出できるようにすることができる。
Thus, according to the present invention, in the electrochemical sensor device, even if there is a failure such as disconnection or short circuit in the electric wiring system from the working electrode, the counter electrode and the reference electrode to the electric signal processing section, It is possible to reliably detect an abnormality of the device based on the failure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る電気化学セン
サ装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an electrochemical sensor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態に係る電気化学セン
サ装置の構成を示すブロック図である。
FIG. 2 is a block diagram illustrating a configuration of an electrochemical sensor device according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態に係る電気化学セン
サ装置の構成を示すブロック図である。
FIG. 3 is a block diagram illustrating a configuration of an electrochemical sensor device according to a third embodiment of the present invention.

【図4】センサ素子の一例の構造を示す平面図及び断面
図である。
4A and 4B are a plan view and a cross-sectional view illustrating a structure of an example of a sensor element.

【図5】センサカートリッジの一例の構造を示す平面
図、側面図及び断面図である。
FIG. 5 is a plan view, a side view, and a cross-sectional view illustrating a structure of an example of a sensor cartridge.

【図6】電気化学センサ装置の測定方法を説明するため
の回路のブロック図である。
FIG. 6 is a block diagram of a circuit for explaining a measuring method of the electrochemical sensor device.

【符号の説明】[Explanation of symbols]

1 センサ素子 2 絶縁基板 3 参照極 4 対極 5 作用極 10 センサカートリッジ 11 外筒 12 シール材 13 開口 14 コンタクトピン 20 電気信号処理部 21 電圧源 21A D/Aコンバータ 22 電流検出回路 23 A/Dコンバータ 24 CPU 25 ROM 26 RAM 27 LCD 28,29,30 演算増幅器 28A,28B 電位制御回路 29A 参照極電位検出回路 30A 対極電位検出回路 DESCRIPTION OF SYMBOLS 1 Sensor element 2 Insulating substrate 3 Reference electrode 4 Counter electrode 5 Working electrode 10 Sensor cartridge 11 Outer cylinder 12 Sealing material 13 Opening 14 Contact pin 20 Electric signal processing unit 21 Voltage source 21 A D / A converter 22 Current detection circuit 23 A / D converter 24 CPU 25 ROM 26 RAM 27 LCD 28, 29, 30 Operational amplifier 28A, 28B Potential control circuit 29A Reference pole potential detection circuit 30A Counter pole potential detection circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 作用極、対極及び参照極の三電極を有す
るセンサ素子と、前記センサ素子の作用極と参照極との
間に所定の電位差を与え、その電位差を一定に保持する
ように対極に与える電位を変化させ、そのとき作用極と
対極との間に流れる電流から測定対象物質の濃度を特定
する電気信号処理部とを備える電気化学センサ装置にお
いて、 参照極の電位、対極の電位の少なくとも一つを検出し、
その検出値が予め定めた所定の範囲外であるか否かによ
り各々の前記電極から前記電気信号処理部に至る電流経
路の断線又は電流経路間の短絡に基づく装置の異常の有
無を判定する手段を設けたことを特徴とする電気化学セ
ンサ装置。
1. A sensor element having three electrodes of a working electrode, a counter electrode and a reference electrode, and a predetermined potential difference between a working electrode and a reference electrode of the sensor element, and a counter electrode for maintaining the potential difference constant. And an electric signal processing unit for specifying the concentration of the substance to be measured from the current flowing between the working electrode and the counter electrode at that time, the potential of the reference electrode, the potential of the counter electrode, Detect at least one,
Means for judging the presence or absence of an abnormality in the device based on a disconnection of a current path from each of the electrodes to the electric signal processing unit or a short circuit between the current paths depending on whether or not the detected value is outside a predetermined range. An electrochemical sensor device comprising:
【請求項2】 作用極、対極及び参照極の三電極を有す
るセンサ素子と、前記センサ素子の作用極と参照極との
間に所定の電位差を与え、その電位差を一定に保持する
ように対極に与える電位を変化させ、そのとき作用極と
対極との間に流れる電流から測定対象物質の濃度を特定
する電気信号処理部とを備える電気化学センサ装置にお
いて、 前記作用極と対極との間に流れる電流が予め定めた値よ
り大であることを検出することにより、各々の前記電極
から前記電気信号処理部に至る電流経路の間の短絡に基
づく装置の異常を検出する手段を設けたことを特徴とす
る電気化学センサ装置。
2. A sensor element having three electrodes of a working electrode, a counter electrode and a reference electrode, and a predetermined potential difference between a working electrode and a reference electrode of the sensor element, and a counter electrode for maintaining the potential difference constant. In the electrochemical sensor device comprising an electric signal processing unit for specifying the concentration of the substance to be measured from the current flowing between the working electrode and the counter electrode at that time, between the working electrode and the counter electrode Means for detecting a device abnormality based on a short circuit between current paths from each of the electrodes to the electric signal processing unit by detecting that a flowing current is greater than a predetermined value. An electrochemical sensor device.
【請求項3】 作用極、対極及び参照極の三電極を有す
るセンサ素子と、前記センサ素子の作用極と参照極との
間に所定の電位差を与え、その電位差を一定に保持する
ように対極に与える電位を変化させ、そのとき作用極と
対極との間に流れる電流から測定対象物質の濃度を特定
する電気信号処理部とを備え、前記電気信号処理部が、 直流電圧供給手段と、 対極の電位を、作用極と参照極との間の電位差が前記直
流電圧供給手段の出力電圧に等しくなるように制御する
電位制御手段と、 参照極の電位の値を検出する参照極電位検出手段と、 作用極と対極との間に流れる電流の値を検出する電流検
出手段と、 前記電流検出手段の出力値及び前記参照極電位検出手段
の出力値をアナログ値からディジタル値に変換するアナ
ログ・ディジタル変換手段と、 前記アナログ・ディジタル変換手段の出力値に基いて前
記参照極の電位が予め定めた所定の範囲外であるか否か
を判定すると共にその判定結果に応じて前記測定対象物
質の濃度を特定する手段とを含んでなることを特徴とす
る電気化学センサ装置。
3. A sensor element having three electrodes of a working electrode, a counter electrode and a reference electrode, and a predetermined potential difference between a working electrode and a reference electrode of the sensor element, and a counter electrode so as to keep the potential difference constant. And an electric signal processing unit for specifying the concentration of the substance to be measured from the current flowing between the working electrode and the counter electrode at that time, the electric signal processing unit comprising: a DC voltage supply unit; Potential control means for controlling the potential difference between the working electrode and the reference electrode to be equal to the output voltage of the DC voltage supply means, and reference electrode potential detection means for detecting the value of the potential of the reference electrode. Current detection means for detecting a value of a current flowing between a working electrode and a counter electrode; analog / digital for converting an output value of the current detection means and an output value of the reference electrode potential detection means from an analog value to a digital value conversion And determining whether or not the potential of the reference electrode is outside a predetermined range based on the output value of the analog / digital conversion means, and determining the concentration of the substance to be measured in accordance with the determination result. An electrochemical sensor device.
【請求項4】 作用極、対極及び参照極の三電極を有す
るセンサ素子と、前記センサ素子の作用極と参照極との
間に所定の電位差を与え、その電位差を一定に保持する
ように対極に与える電位を変化させ、そのとき作用極と
対極との間に流れる電流から測定対象物質の濃度を特定
する電気信号処理部とを備え、前記電気信号処理部が、 直流電圧供給手段と、 対極の電位を、作用極と参照極との間の電位差が前記直
流電圧供給手段の出力電圧に等しくなるように制御する
電位制御手段と、 対極の電位の値を検出する対極電位検出手段と、 作用極と対極との間に流れる電流の値を検出する電流検
出手段と、 前記電流検出手段の出力値及び前記対極電位検出手段の
出力値をアナログ値からディジタル値に変換するアナロ
グ・ディジタル変換手段と、 前記アナログ・ディジタル変換手段の出力値に基いて前
記対極の電位が予め定めた所定の範囲外であるか否かを
判定すると共にその判定結果に応じて前記測定対象物質
の濃度を特定する手段とを含んでなることを特徴とする
電気化学センサ装置。
4. A sensor element having three electrodes of a working electrode, a counter electrode and a reference electrode, and a predetermined potential difference between a working electrode and a reference electrode of the sensor element, and a counter electrode so as to keep the potential difference constant. And an electric signal processing unit for specifying the concentration of the substance to be measured from the current flowing between the working electrode and the counter electrode at that time, the electric signal processing unit comprising: a DC voltage supply unit; Potential control means for controlling the potential difference between the working electrode and the reference electrode to be equal to the output voltage of the DC voltage supply means; counter electrode potential detection means for detecting the value of the potential of the counter electrode; Current detection means for detecting the value of the current flowing between the pole and the counter electrode; and analog / digital conversion means for converting the output value of the current detection means and the output value of the counter electrode potential detection means from an analog value to a digital value. Means for determining whether or not the potential of the counter electrode is outside a predetermined range based on the output value of the analog-to-digital conversion means, and for specifying the concentration of the substance to be measured in accordance with the result of the determination. An electrochemical sensor device comprising:
【請求項5】 作用極、対極及び参照極の三電極を備え
るセンサ素子と、前記センサ素子の作用極と参照極との
間に所定の電位差を与え、その電位差を一定に保持する
ように対極に与える電位を変化させ、そのとき作用極と
対極との間に流れる電流から測定対象物質の濃度を特定
する電気信号処理部とからなり、前記電気信号処理部
が、 直流電圧供給手段と、 対極の電位を、作用極と参照極との間の電位差が前記直
流電圧供給手段の出力電圧に等しくなるように制御する
電位制御手段と、 作用極と対極との間に流れる電流の値を検出する電流検
出手段と、 前記電流検出手段の出力値をアナログ値からディジタル
値に変換するアナログ・ディジタル変換手段と、 前記アナログ・ディジタル変換手段の出力値に基いて前
記作用極と対極との間に流れる電流が予め定めた値以上
であるか否かを判定すると共にその判定結果に応じて前
記測定対象物質の濃度を特定する手段とを含んでなるこ
とを特徴とする電気化学センサ装置。
5. A sensor element provided with three electrodes of a working electrode, a counter electrode and a reference electrode, and a predetermined potential difference between a working electrode and a reference electrode of the sensor element, and a counter electrode so as to keep the potential difference constant. And an electric signal processing unit for specifying the concentration of the substance to be measured from the current flowing between the working electrode and the counter electrode at that time, the electric signal processing unit comprising: a DC voltage supply means; Potential control means for controlling the potential difference between the working electrode and the reference electrode to be equal to the output voltage of the DC voltage supply means, and detecting the value of the current flowing between the working electrode and the counter electrode. Current detection means, analog-to-digital conversion means for converting the output value of the current detection means from an analog value to a digital value, and between the working electrode and the counter electrode based on the output value of the analog-to-digital conversion means. The electrochemical sensor apparatus characterized by comprising a means for identifying the concentration of the analyte in accordance with the determination result together with the current to determine whether a predetermined value or more to be.
【請求項6】 請求項1又は請求項2に記載の電気化学
センサ装置を用い、測定対象物質の濃度測定に先立っ
て、予め前記装置の異常の有無を判定する過程を設けた
ことを特徴とする物質の濃度の測定方法。
6. The method according to claim 1, further comprising the step of, prior to the measurement of the concentration of the substance to be measured, a step of judging the presence or absence of an abnormality in the device, using the electrochemical sensor device according to claim 1 or 2. Method for measuring the concentration of a substance.
JP24222899A 1999-08-27 1999-08-27 Electrochemical sensor device and measuring method using the same Expired - Fee Related JP3424611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24222899A JP3424611B2 (en) 1999-08-27 1999-08-27 Electrochemical sensor device and measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24222899A JP3424611B2 (en) 1999-08-27 1999-08-27 Electrochemical sensor device and measuring method using the same

Publications (2)

Publication Number Publication Date
JP2001066275A true JP2001066275A (en) 2001-03-16
JP3424611B2 JP3424611B2 (en) 2003-07-07

Family

ID=17086150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24222899A Expired - Fee Related JP3424611B2 (en) 1999-08-27 1999-08-27 Electrochemical sensor device and measuring method using the same

Country Status (1)

Country Link
JP (1) JP3424611B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079170A (en) * 2001-04-13 2002-10-19 박종욱 a
JP2006047125A (en) * 2004-08-05 2006-02-16 Tanita Corp Unit for detecting concentration in liquid and measuring apparatus of concentration in liquid using it, and measuring apparatus of concentration in liquid
JP2008510127A (en) * 2004-06-18 2008-04-03 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Biosensor specimen quality assurance system and method
JP2008286724A (en) * 2007-05-21 2008-11-27 Hochiki Corp Gas alarm
JP2009056311A (en) * 2007-09-01 2009-03-19 F Hoffmann-La Roche Ag Measuring system for in vivo monitoring analyte concentration and method for detecting malfunction of such measuring system
JP2018189651A (en) * 2017-05-04 2018-11-29 アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー Impedance characteristic circuit for electrochemical sensor
CN111656173A (en) * 2018-01-26 2020-09-11 A&T株式会社 Electrolyte measuring device and method for determining connection state of electrode portion of electrolyte measuring device
JP6805321B1 (en) * 2019-11-21 2020-12-23 新コスモス電機株式会社 Detector
WO2023145300A1 (en) * 2022-01-27 2023-08-03 Phcホールディングス株式会社 Sample measuring device, sample measuring method, and sample measuring program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10782263B2 (en) 2017-05-04 2020-09-22 Analog Devices Global Systems and methods for determining the condition of a gas sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079170A (en) * 2001-04-13 2002-10-19 박종욱 a
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
JP2011053232A (en) * 2004-06-18 2011-03-17 F Hoffmann-La Roche Ag System and method for quality assurance of biosensor test strip
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
JP4722917B2 (en) * 2004-06-18 2011-07-13 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Biosensor specimen quality assurance system and method
JP2008510127A (en) * 2004-06-18 2008-04-03 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Biosensor specimen quality assurance system and method
JP4545515B2 (en) * 2004-08-05 2010-09-15 株式会社タニタ Liquid concentration detection unit, liquid concentration measuring device using the same, and liquid concentration measuring device
JP2006047125A (en) * 2004-08-05 2006-02-16 Tanita Corp Unit for detecting concentration in liquid and measuring apparatus of concentration in liquid using it, and measuring apparatus of concentration in liquid
JP2008286724A (en) * 2007-05-21 2008-11-27 Hochiki Corp Gas alarm
JP2009056311A (en) * 2007-09-01 2009-03-19 F Hoffmann-La Roche Ag Measuring system for in vivo monitoring analyte concentration and method for detecting malfunction of such measuring system
JP2018189651A (en) * 2017-05-04 2018-11-29 アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー Impedance characteristic circuit for electrochemical sensor
CN111656173A (en) * 2018-01-26 2020-09-11 A&T株式会社 Electrolyte measuring device and method for determining connection state of electrode portion of electrolyte measuring device
JP6805321B1 (en) * 2019-11-21 2020-12-23 新コスモス電機株式会社 Detector
JP2021081345A (en) * 2019-11-21 2021-05-27 新コスモス電機株式会社 Detector
WO2023145300A1 (en) * 2022-01-27 2023-08-03 Phcホールディングス株式会社 Sample measuring device, sample measuring method, and sample measuring program

Also Published As

Publication number Publication date
JP3424611B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
US5611909A (en) Method for detecting source of error in an amperometric measuring cell
JP5239860B2 (en) Biosensor measurement system and measurement method
US7323091B1 (en) Multimode electrochemical sensing array
JP5015432B2 (en) Measuring probe for potentiometric measurement
US6478950B1 (en) Sensing liquids in oil well using electrochemical sensor
EP0064337B1 (en) Carbon dioxide measurement
JP3424611B2 (en) Electrochemical sensor device and measuring method using the same
US20050121338A1 (en) Self-diagnostic method for electrochemical gas sensor and gas detecting device
EP1593962B1 (en) Eletrochemical oxygen sensor
US20190187091A1 (en) Glass electrode
JPH08271470A (en) Determination of state of electrochemical gas sensor
JP2001242134A (en) Ph sensor
JP2002257782A (en) Electrochemical sensor measuring device
KR100586832B1 (en) Measurement equipment for a biosensor which measures the reaction result of a sample
WO2020066518A1 (en) Measurement device
JP2005030955A (en) Electrochemical gas sensor apparatus
JP2001174436A (en) Method and apparatus for measuring ion concentration
JPH01262460A (en) Self-diagnosis method for deterioration of oxygen sensor
JP2000206088A (en) Chemical sensor
CN219830933U (en) Electrochemical composite sensor
JP2813423B2 (en) Electrochemical gas sensor
JPH0232242A (en) Method of diagnosing deterioration gas concentration sensor
JP2004117085A (en) Electrochemical measurement device
JP2942010B2 (en) Electrochemical gas sensor
JPH05142194A (en) Electrochemical gas sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees