JP2001059842A - Pathological diagnostic apparatus - Google Patents

Pathological diagnostic apparatus

Info

Publication number
JP2001059842A
JP2001059842A JP11238288A JP23828899A JP2001059842A JP 2001059842 A JP2001059842 A JP 2001059842A JP 11238288 A JP11238288 A JP 11238288A JP 23828899 A JP23828899 A JP 23828899A JP 2001059842 A JP2001059842 A JP 2001059842A
Authority
JP
Japan
Prior art keywords
cavity
cell nucleus
pathological diagnosis
image
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11238288A
Other languages
Japanese (ja)
Inventor
Shinichi Miyamoto
伸一 宮本
Kiyoshi Mukai
清 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11238288A priority Critical patent/JP2001059842A/en
Publication of JP2001059842A publication Critical patent/JP2001059842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a pathological diagnosis of high accuracy and a pathological diagnosis of a kind which requires the judgment of a physician or the like in conventional cases, by a method wherein information such as information on the overlap of a cell nucleus inside the image of a living-body tissue, information on the distribution state of a cave or information on a positional relationship between the cave and the cell nucleus in a closest position in its circumference is quatitized properly so that the information can be used for a pathological diagnosis by a pathological diagnostic apparatus. SOLUTION: This pathological diagnositic apparatus is provided with a pathological diagnostic feature judgment means 50, by which a feature by the positional relationship and the distribution of a cell nucleus or a cave used for a pathological disgnosis is judged as a numerical value on the basis of the image of a living-body tissue. The pathological diagnosistic feature judgment means is provided with a cell nucleus feature judgment means 51 by which the overlap degree of the cell nucleus as a whole is judged as a cell-nucleus structural feature. The judgment means is provided with a cave-feature judgment means 52 by which the distribution state of the cave is judged as a cave structural feature. The judgment means is provided with a cell nucleus-cave mutual-feature judgment means 53 by which a positional relationship between the cave and a nearest cell nucleus group constituted of a plurality of cell nuclei is judged as a cell nucleus-cave mutual structural feature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は病理診断装置に関
し、特に生体組織の画像から画像処理により診断に用い
る特徴を抽出することにより病理診断を行なう病理診断
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pathological diagnosis apparatus, and more particularly to a pathological diagnosis apparatus for performing a pathological diagnosis by extracting features used for diagnosis by image processing from an image of a living tissue.

【0002】[0002]

【従来の技術】人体等の生体組織から、標本を作成して
撮影装置によって画像化し、この画像内の細胞核や腔な
どから定義される組織構造特徴に基いて腫瘍の良悪性を
診断することを病理診断といい、この画像による病理診
断を行なう装置が病理診断装置として提供されている。
ここで腔とは、画像内に観測される細胞核領域におい
て、細胞核と細胞核の隙間に存在する無構造領域を意味
する。
2. Description of the Related Art A specimen is prepared from a living body tissue such as a human body and is imaged by a photographing apparatus. Diagnosis of benign and malignant tumors is performed based on tissue structure characteristics defined by cell nuclei and cavities in the image. A device for performing a pathological diagnosis based on this image, which is called a pathological diagnosis, is provided as a pathological diagnostic device.
Here, the cavity means a non-structural region existing in a gap between cell nuclei in a cell nucleus region observed in an image.

【0003】病理診断と同じく腫瘍の良悪性を判断する
ための方法には細胞診があり、細胞診では個々の細胞の
テクスチャに注目して診断を行なうものである。一方、
病理診断では多数の細胞核や腔の形状、分布といった構
造に注目することに特徴があるため、病理診断の診断精
度は細胞診よりも高い。
[0003] As in the pathological diagnosis, there is a cytology as a method for judging whether a tumor is benign or malignant. In the cytology, a diagnosis is made by paying attention to the texture of each cell. on the other hand,
Since pathological diagnosis is characterized by focusing on structures such as the shape and distribution of many cell nuclei and cavities, the diagnostic accuracy of pathological diagnosis is higher than that of cytodiagnosis.

【0004】診断は悪性の見落しは決して許されず、正
確な判断が求められるため、病理診断装置では生体組織
構造の特徴の認識において良性と悪性で明確な違いを表
す定量化の処理が必要である。
Since oversight of malignancy is never allowed in diagnosis and accurate judgment is required, a pathological diagnosis apparatus requires a quantification process that shows a clear difference between benign and malignant in recognizing the characteristics of the biological tissue structure. is there.

【0005】従来の生体組織の良性と悪性を診断する装
置の例が、特開昭57−153367及び、特開昭58
−223868に開示されている。
[0005] Examples of conventional devices for diagnosing benign and malignant living tissues are disclosed in Japanese Patent Application Laid-Open Nos.
223868.

【0006】特開昭57−153367に開示された細
胞診断装置は、画像内の個々の細胞の核面積や核濃度等
の形態学的特徴を測定し、この測定値に基き細胞の悪性
度を判定するものである。
[0006] The cytodiagnosis apparatus disclosed in Japanese Patent Application Laid-Open No. 57-15367 measures morphological characteristics such as nucleus area and nucleus concentration of individual cells in an image, and determines the degree of malignancy of the cells based on the measured values. It is to judge.

【0007】特開昭58−223868に開示された細
胞診断装置は、画像内の孤立細胞領域に対する細胞核の
抽出と共に、並列して細胞塊領域に対する細胞質の抽出
を行ない、細胞診を高速かつ詳細に行なうものである。
The cytodiagnosis apparatus disclosed in Japanese Patent Application Laid-Open No. 58-223868 extracts a cell nucleus from an isolated cell region in an image and, at the same time, extracts a cytoplasm from a cell mass region in parallel, thereby performing cytodiagnosis at high speed and in detail. It is what you do.

【0008】また、これら細胞診断装置のように個々の
細胞を調べるのみではなく、生体組織画像内の組織の情
報を調べる装置の例が、特開平10−197522に開
示されている。この病理組織診断支援装置では、細胞核
の数、面積等の測定計測を行ない、病理組織学的特徴を
表す予め定めた複数の診断カテゴリーに対する生体組織
画像の適合度を判定する。
Japanese Patent Application Laid-Open No. H10-197522 discloses an example of an apparatus for examining information on a tissue in a biological tissue image in addition to examining individual cells as in these cell diagnostic apparatuses. This pathological tissue diagnosis support apparatus performs measurement and measurement of the number and area of cell nuclei, and determines the degree of conformity of a biological tissue image to a plurality of predetermined diagnostic categories representing histopathological features.

【0009】[0009]

【発明が解決しようとする課題】上述したように従来の
病理診断装置では、個々の細胞のみに対する診断を行な
うものや、また、特開平10−197522に開示され
た生体組織画像内の組織の情報を調べる装置において
も、数値による比較の容易な細胞核の数や面積等の情報
を調べる一方で、各細胞核の間の位置関係や、腔の分布
状態、腔とその周囲の細胞核の位置関係等の、病理診断
において有用な特徴が調査の対象外となっている。
As described above, in the conventional pathological diagnosis apparatus, diagnosis is performed only on individual cells, or information on a tissue in a biological tissue image disclosed in Japanese Patent Application Laid-Open No. 10-197522 is disclosed. In the device for examining the number and area of cell nuclei, which can be easily compared by numerical values, while examining information such as the positional relationship between cell nuclei, the distribution of cavities, and the positional relationship between cavities and surrounding cell nuclei, etc. However, features useful in pathological diagnosis are excluded from the investigation.

【0010】このように、細胞核や腔の位置関係や分布
状態の情報は、適切な数値等により表現する定量化の技
術を特別に必要とする等のために、従来は病理診断に有
用であるにもかかわらず、病理診断装置により自動的に
診断を行なうことができなかった。
[0010] As described above, information on the positional relationship and distribution state of cell nuclei and cavities is conventionally useful for pathological diagnosis because it requires a special quantification technique of expressing appropriate numerical values and the like. Nevertheless, the diagnosis could not be made automatically by the pathological diagnosis device.

【0011】また、従来の病理診断装置においては、病
理診断において有用である情報として以下に述べるよう
な細胞核や腔の位置関係や分布状態の情報については判
定を行なうことができなかった。
Further, in the conventional pathological diagnosis apparatus, it was not possible to make a determination on the information on the positional relationship and distribution state of cell nuclei and cavities as information useful in pathological diagnosis as described below.

【0012】第1に、細胞核の重なり度の情報である。
病理診断では、細胞核の重なりが著しい時に良性と診断
する。なお病理医がこの細胞核の重なりが著しいと判断
する場合とは、注目領域内の細胞核の数が多い時であ
り、このために細胞核間の距離が小さい時である。
First, there is information on the degree of overlap of cell nuclei.
In pathological diagnosis, a benign diagnosis is made when cell nuclei overlap significantly. The case where the pathologist determines that the cell nuclei overlap significantly is when the number of cell nuclei in the region of interest is large, and when the distance between the cell nuclei is small.

【0013】第2に、腔の位置分布の偏りの情報であ
る。病理診断では、腔が診断対象の領域内に均等に分布
している場合に悪性と診断する。つまり、腔が一様に分
布する場合は悪性であり、腔の分布に偏りがある場合は
良性である。
Second, there is information on the bias of the distribution of the positions of the cavities. In pathological diagnosis, when the cavities are evenly distributed in the region to be diagnosed, it is diagnosed as malignant. That is, if the cavities are uniformly distributed, it is malignant, and if the distribution of the cavities is uneven, it is benign.

【0014】第3に、腔とその周囲の最も近接する位置
にある細胞核との間の位置関係の情報である。病理診断
では、腔とその周囲の細胞核との間にある程度の大きな
距離がある場合に悪性と診断する。
Third, there is information on the positional relationship between the cavity and the cell nucleus located closest to the cavity. In pathological diagnosis, when there is a certain large distance between a cavity and a cell nucleus around the cavity, it is diagnosed as malignant.

【0015】本発明の第1の目的は、上記従来技術の欠
点を解決し、生体組織画像内の細胞核や腔の位置関係や
分布状態等の情報を適切に定量化することにより、これ
らの情報を病理診断装置による病理診断のために用いる
ことを可能とし、従来では医師等の判断を必要とし病理
診断装置ではできなかった種類の病理診断や、精度の高
い病理診断を行なう病理診断装置を提供することにあ
る。
A first object of the present invention is to solve the above-mentioned drawbacks of the prior art and to appropriately quantify information such as the positional relationship and distribution state of cell nuclei and cavities in a living tissue image to obtain such information. Can be used for pathological diagnosis by a pathological diagnosis device, and provides a pathological diagnosis device that conventionally performs a type of pathological diagnosis that requires the judgment of a doctor or the like and cannot be performed by a pathological diagnostic device, or that performs a highly accurate pathological diagnosis. Is to do.

【0016】本発明の第2の目的は、上記従来技術の欠
点を解決し、生体組織画像内の細胞核の重なりの情報を
適切に定量化し、この細胞核の重なりの情報に基づく病
理診断を行なう病理診断装置を提供することにある。
A second object of the present invention is to solve the above-mentioned drawbacks of the prior art, appropriately quantify the information on the overlap of cell nuclei in a biological tissue image, and perform a pathological diagnosis based on the information on the overlap of cell nuclei. It is to provide a diagnostic device.

【0017】本発明の第3の目的は、上記従来技術の欠
点を解決し、生体組織画像内の腔の分布状態の情報を適
切に定量化し、この腔の分布状態の情報に基づく病理診
断を行なう病理診断装置を提供することにある。
A third object of the present invention is to solve the above-mentioned drawbacks of the prior art, appropriately quantify information on the distribution state of a cavity in a living tissue image, and perform pathological diagnosis based on the information on the distribution state of the cavity. An object of the present invention is to provide a pathological diagnosis apparatus for performing the diagnosis.

【0018】本発明の第4の目的は、上記従来技術の欠
点を解決し、生体組織画像内の腔とその周囲の最も近接
する位置にある細胞核との位置関係の情報を適切に定量
化し、この腔と細胞核との間の位置関係の情報に基づく
病理診断を行なう病理診断装置を提供することにある。
A fourth object of the present invention is to solve the above-mentioned drawbacks of the prior art and appropriately quantify information on the positional relationship between a cavity in a biological tissue image and the nearest cell nucleus around the cavity. An object of the present invention is to provide a pathological diagnosis apparatus for performing a pathological diagnosis based on information on a positional relationship between the cavity and a cell nucleus.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
本発明の病理診断装置は、生体組織の画像から病理診断
に用いる特徴を判定する病理診断特徴判定手段を備え、
前記病理診断特徴判定手段は、前記画像内の、細胞核や
腔の位置関係や分布状態による特徴を数値により判定す
ることを特徴とする.請求項2の本発明の病理診断装置
の前記病理診断特徴判定手段は、細胞核構造特徴とし
て、細胞核全体の重なり度を判定する細胞核特徴判定手
段を備えることを特徴とする。
In order to achieve the above object, a pathological diagnosis apparatus according to the present invention comprises a pathological diagnosis characteristic determining means for determining characteristics used for pathological diagnosis from an image of a living tissue,
The pathological diagnostic feature of the pathological diagnostic apparatus of the present invention according to claim 2, wherein the pathological diagnostic feature determination means determines a feature in the image based on a positional relationship or distribution state of cell nuclei or cavities. The determining means includes a cell nucleus feature determining means for determining the degree of overlap of the entire cell nucleus as the cell nucleus structural feature.

【0020】請求項3の本発明の病理診断装置の前記細
胞核特徴判定手段は、前記画像内における全細胞核が占
める面積を求め、前記面積を用いて前記重なり度を判定
することを特徴とする。
According to a third aspect of the present invention, the cell nucleus characteristic determining means of the pathological diagnosis apparatus obtains an area occupied by all cell nuclei in the image, and determines the degree of overlap using the area.

【0021】請求項4の本発明の病理診断装置の前記細
胞核特徴判定手段は、前記画像内の近接する個々の細胞
核の、前記細胞核の重心の間隔を求め、前記間隔を用い
て前記重なり度を判定することを特徴とする。
According to a fourth aspect of the present invention, the cell nucleus feature determining means of the pathological diagnosis apparatus obtains an interval between centers of gravity of the cell nuclei of adjacent cell nuclei in the image, and determines the degree of overlap using the interval. It is characterized by determining.

【0022】請求項5の本発明の病理診断装置の前記病
理診断特徴判定手段は、腔構造特徴として、腔の分布状
態を判定する腔特徴判定手段を備えることを特徴とす
る。
According to a fifth aspect of the present invention, in the pathological diagnosis apparatus of the present invention, the pathological diagnostic feature determining means includes a cavity characteristic determining means for determining a distribution state of the cavity as a cavity structure characteristic.

【0023】請求項6の本発明の病理診断装置の前記腔
特徴判定手段は、前記画像に対し前記画像内で腔を示す
部分の拡大を行ない、前記拡大後の画像内における腔を
示す部分が占める面積をもって、前記拡大前の画像内の
腔の分布状態の情報を表現する腔形状拡大処理を行な
い、前記腔形状拡大処理後の画像内における腔を示す部
分が占める面積を求め、前記面積を用いて前記分布状態
を判定することを特徴とする。
In the pathological diagnosis apparatus according to a sixth aspect of the present invention, the cavity characteristic determining means enlarges a portion indicating the cavity in the image with respect to the image, and determines a portion indicating the cavity in the image after the enlargement. With the occupied area, a cavity shape enlarging process for expressing information on the distribution state of the cavity in the image before the enlargement is performed, and an area occupied by a portion indicating the cavity in the image after the cavity shape enlarging process is obtained. It is characterized in that the distribution state is determined using the above.

【0024】請求項7の本発明の病理診断装置の前記腔
特徴判定手段が行なう前記腔形状拡大処理は、前期画像
に対し、拡大処理対象範囲の境界に接せずかつ他の腔と
の間隔が定められた閾値以上である前記画像内の全ての
腔を拡大処理対象の腔として選択する選択処理を行な
い、次に、各前記拡大処理対象の腔に対して、この前記
腔の輪郭から外部に向って定められた範囲内の画素を新
たに前記腔の内部に含める画像書換処理を行ない、これ
により得られる画像に対し再び前期選択処理を行ない,
前期選択処理により選択される腔が無くなるまで、前記
選択処理と前期画像書換処理との一連の処理を繰返すこ
とにより腔形状の拡大を行なうことを特徴とする。
In the pathological diagnosis apparatus according to the present invention, the cavity shape enlarging process performed by the cavity feature determining means may include a step of determining whether or not the image is in contact with a boundary of an enlarging process target range and with another cavity. Performs a selection process of selecting all the cavities in the image that are equal to or larger than the determined threshold as cavities to be subjected to enlargement processing. , An image rewriting process is performed to newly include pixels within a predetermined range in the interior of the cavity, and an image obtained thereby is again subjected to the above-described selection process,
Until there are no more cavities to be selected by the first-stage selection process, the series of processes of the selection process and the first-time image rewriting process are repeated to enlarge the cavity shape.

【0025】請求項8の本発明の病理診断装置の前記腔
特徴判定手段は、前記画像内の個々の前記腔の重心の間
の距離を求め、前記重心間の距離を用いて前記分布状態
を判定することを特徴とする。
In the pathological diagnosis apparatus according to the present invention, the cavity characteristic determining means obtains a distance between the centers of gravity of the individual cavities in the image, and determines the distribution state using the distance between the centers of gravity. It is characterized by determining.

【0026】請求項9の本発明の病理診断装置の前記病
理診断特徴判定手段は、細胞核−腔相互構造特徴とし
て、前記腔と前記腔の周囲に存在する複数の細胞核によ
って構成される最近接細胞核群との位置関係を判定する
細胞核−腔相互特徴判定手段を備えることを特徴とす
る。
According to a ninth aspect of the present invention, in the pathological diagnosis apparatus according to the present invention, the pathological diagnosis feature judging means includes a cell nucleus-cavity mutual structural feature, the nearest cell nucleus constituted by the cavity and a plurality of cell nuclei existing around the cavity. It is characterized by comprising a cell nucleus-cavity mutual feature determining means for determining a positional relationship with a group.

【0027】請求項10の本発明の病理診断装置の前記
細胞核−腔相互特徴判定手段は、前記腔の輪郭の外接矩
形の長さと前記最近接細胞核群の外接矩形の長さを求
め、前記腔輪郭外接矩形長と前記最近接細胞核群外接矩
形長を用いて、前記腔と前記最近接細胞核群との前記位
置関係を判定することを特徴とする。
According to a tenth aspect of the present invention, in the pathological diagnosis apparatus according to the present invention, the cell nucleus-cavity mutual characteristic determining means obtains a length of a circumscribed rectangle of the outline of the cavity and a length of a circumscribed rectangle of the group of nearest cell nuclei. The positional relationship between the cavity and the nearest cell nucleus group is determined using a contour circumscribed rectangle length and the nearest cell nucleus group circumscribed rectangle length.

【0028】請求項11の本発明の病理診断装置の前記
細胞核−腔相互特徴判定手段は、前記腔の面積と、前記
最近接細胞核群の個々の細胞核の面積と、前記最近接細
胞核群の個々の細胞核の重心を結ぶ閉領域の面積とを求
め、前記腔の面積と前記細胞核の面積と前記閉領域の面
積を用いて、前記腔と前記最近接細胞核群との前記位置
関係を判定することを特徴とする。
[0028] The cell nucleus-cavity mutual feature determination means of the pathological diagnosis apparatus of the present invention according to claim 11 is characterized in that: the area of the cavity, the area of each cell nucleus of the group of the closest cell nuclei, and the individual area of the group of the closest cell nuclei. Determining the area of a closed region connecting the centers of gravity of the cell nuclei, and using the area of the cavity, the area of the cell nucleus, and the area of the closed region to determine the positional relationship between the cavity and the nearest cell nucleus group. It is characterized by.

【0029】請求項12の本発明の病理診断装置の前記
細胞核−腔相互特徴判定手段は、前記腔の輪郭と前記最
近接細胞核群の個々の細胞との間の距離を求め、この距
離を用いて、前記腔と前記最近接細胞核群との前記位置
関係を判定することを特徴とする。
[0029] In the pathological diagnosis apparatus according to the twelfth aspect of the present invention, the cell nucleus-cavity mutual feature determining means obtains a distance between the contour of the cavity and each cell of the nearest cell nucleus group, and uses this distance. And determining the positional relationship between the cavity and the nearest cell nucleus group.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0031】図1は、本発明の第1の実施の形態による
病理診断装置の構成を示すブロック図である。本実施の
形態は、細胞核の重なりに基づく病理診断を行なう。
FIG. 1 is a block diagram showing a configuration of a pathological diagnosis apparatus according to the first embodiment of the present invention. In the present embodiment, a pathological diagnosis is performed based on the overlapping of cell nuclei.

【0032】病理診断における細胞核構造特徴には,細
胞核の重なり度等を調べるものであり、細胞核の重なり
が著しい時に良性と診断する。
The feature of the cell nucleus structure in pathological diagnosis is to examine the degree of overlap of cell nuclei, etc., and when the overlap of cell nuclei is remarkable, it is diagnosed as benign.

【0033】画像内で細胞核の重なりが著しい場合は、
調査対象の領域内で細胞核の領域が多くの面積を占め
る。
If the cell nuclei overlap significantly in the image,
The area of the cell nucleus occupies a large area in the area under investigation.

【0034】このため本実施の形態による病理診断装置
は、細胞核領域の総面積と非細胞核領域の総面積の比を
取ることにより、細胞核の重なり度を数値により定量化
し、細胞核の重なり度に基づく病理診断を行なう 図1を参照すると、第1の実施の形態による病理診断装
置は、画像取得手段10、画像整形手段20、細胞核形
状抽出手段30、病理診断特徴判定手段50a、病理診
断手段60、診断結果出力手段70を備え、かつ病理診
断特徴判定手段50aは、細胞核特徴判定手段51を備
えて構成される。
For this reason, the pathological diagnosis apparatus according to the present embodiment quantifies the degree of overlap of the cell nuclei numerically by taking the ratio of the total area of the cell nucleus area to the total area of the non-cell nucleus area, and based on the degree of overlap of the cell nuclei. Performing Pathological Diagnosis Referring to FIG. 1, the pathological diagnostic apparatus according to the first embodiment includes an image acquiring unit 10, an image shaping unit 20, a cell nucleus shape extracting unit 30, a pathological diagnostic feature determining unit 50a, a pathological diagnostic unit 60, The diagnosis result output means 70 is provided, and the pathological diagnosis feature determination means 50a is provided with the cell nucleus feature determination means 51.

【0035】画像取得手段10は、生体組織の標本等に
対し撮影を行ない、得られた生体組織の画像を各座標毎
の画素の色彩データの集合である画像ファイルの形式に
変換し、画像情報としてこれを記憶する。
The image acquiring means 10 performs photographing on a specimen of a living tissue, converts the obtained image of the living tissue into an image file format which is a set of color data of pixels at each coordinate, and converts the image information. And memorize this.

【0036】画像整形手段20は、画像取得手段10に
より撮影され記憶されている生体組織の画像情報に対し
て、画像情報内の細胞核や腔の判別を正確に行なう等の
ためにノイズを除去する平滑化処理を行ない、平滑化し
た画像情報を出力する。
The image shaping means 20 removes noise from the image information of the living tissue photographed and stored by the image acquiring means 10 so as to accurately determine a cell nucleus and a cavity in the image information. Performs a smoothing process and outputs smoothed image information.

【0037】細胞核形状抽出手段30は、画像整形手段
20が出力する平滑化した画像情報に対して、この画像
情報から各細胞核の輪郭を個別に抽出し、各細胞核の輪
郭の位置の画素の座標を細胞核輪郭情報として出力す
る。
The cell nucleus shape extracting means 30 individually extracts the outline of each cell nucleus from the smoothed image information output from the image shaping means 20, from this image information, and coordinates the coordinates of the pixel at the position of the outline of each cell nucleus. Is output as cell nucleus contour information.

【0038】病理診断特徴判定手段50aは、入力され
る各種の情報を用いて、病理診断に用いる生体組織の各
種の特徴を判定し、生体組織内の細胞核や腔の形状や位
置分布等の特徴を表す構造特徴情報を出力するものであ
り、本第1の実施の形態の病理診断特徴判定手段50a
は、特に細胞核特徴判定手段51を備え、細胞核形状抽
出手段30が出力する細胞核輪郭情報に基き細胞核特徴
判定手段51により生体組織の細胞核構造特徴を判定し
これを出力する。
The pathological diagnosis feature judging means 50a judges various characteristics of the living tissue used for the pathological diagnosis using various kinds of input information, and determines the characteristics such as the shape and position distribution of cell nuclei and cavities in the living tissue. Is output, and the pathological diagnosis feature determining means 50a of the first embodiment is output.
Is provided with a cell nucleus feature determining unit 51, and based on the cell nucleus contour information output from the cell nucleus shape extracting unit 30, the cell nucleus feature determining unit 51 determines the cell nucleus structural feature of the living tissue and outputs it.

【0039】細胞核特徴判定手段51は、細胞核形状抽
出手段30が出力する細胞核輪郭情報に基き、細胞核領
域面積の、腔領域を除く非細胞核面積に対する比の値を
求め、かつこの比の値である細胞核の重なり度を細胞核
構造特徴として出力する。
The cell nucleus feature judging means 51 obtains the value of the ratio of the area of the cell nucleus area to the area of the non-cell nucleus excluding the cavity area based on the cell nucleus contour information output by the cell nucleus shape extracting means 30, and calculates the value of this ratio. The degree of cell nucleus overlap is output as a cell nucleus structural feature.

【0040】病理診断手段60は、病理診断特徴判定手
段50が出力する生体組織の構造特徴情報に基き、病理
診断を実行するものであり、本第1の実施の形態の病理
診断手段60は、病理診断特徴判定手段50が出力する
細胞核構造特徴に基き病理診断を実行する。
The pathological diagnosis means 60 executes pathological diagnosis based on the structural characteristic information of the living tissue output from the pathological diagnosis characteristic determination means 50. The pathological diagnosis means 60 according to the first embodiment comprises: The pathological diagnosis is executed based on the cell nucleus structural characteristics output from the pathological diagnosis characteristic determining means 50.

【0041】この、病理診断手段60による病理診断
は、細胞核の重なり度が著しい時に良性と判断する等
の、細胞核構造特徴に対する予め設定された判断方法に
基き病理診断を行なう。
In the pathological diagnosis by the pathological diagnosis means 60, a pathological diagnosis is performed based on a preset judging method for cell nucleus structural features, such as judging benign when the degree of cell nucleus overlap is remarkable.

【0042】診断結果出力手段70は、病理診断手段6
0による生体組織に対する病理診断結果を出力する。
The diagnosis result output means 70 is provided for the pathological diagnosis means 6.
0 to output the pathological diagnosis result for the living tissue.

【0043】次に、第1の実施の形態の細胞核特徴判定
手段51による細胞核構造特徴の判定処理を詳細に説明
する。図2は、第1の実施の形態の細胞核特徴判定手段
51による細胞核構造特徴の判定処理を説明するための
フローチャートである。
Next, the process of determining the cell nucleus structural feature by the cell nucleus feature determining means 51 of the first embodiment will be described in detail. FIG. 2 is a flowchart illustrating a process of determining a cell nucleus structure feature by the cell nucleus feature determination unit 51 according to the first embodiment.

【0044】図2を参照すると、第1の実施の形態の細
胞核特徴判定手段51による細胞核構造特徴の判定処理
は、まず、生体組織の画像の各画素に対応して、”0”
又は”1”の値を取る配列”flag[i][j]”の
設定と初期化を行なう。これは、生体組織の画像の横画
素数M、縦画素数Nの値の情報を取得し、この画素数に
基き2値配列{flag[i][j]:i=1,…,
M、j=1,…,N}を設定し、かつ全ての配列要素の
値を0に初期化する(ステップ301)。
Referring to FIG. 2, the cell nucleus structure feature determination processing by the cell nucleus feature determination means 51 of the first embodiment is performed by first setting “0” to each pixel of the image of the living tissue.
Alternatively, the array “flag [i] [j]” that takes a value of “1” is set and initialized. This obtains information on the values of the number of horizontal pixels M and the number of vertical pixels N of the image of the biological tissue, and based on the number of pixels, a binary array {flag [i] [j]: i = 1,.
M, j = 1,..., N} are set, and the values of all array elements are initialized to 0 (step 301).

【0045】次に、生体組織の画像の各画素の位置が、
細胞核輪郭に含まれる範囲の内部か外部かを(つまり、
細胞核の内部か外部かを)判定し、全ての細胞核輪郭内
部の画素に対応する配列要素値を”1”に設定する(ス
テップ302)。つまり、座標(i,j)の画素が細胞
核輪郭内部ならば対応する配列要素flag[i]
[j]の値を”1”に設定する。
Next, the position of each pixel of the image of the living tissue is
Whether it is inside or outside the area included in the cell nucleus contour (that is,
It is determined whether it is inside or outside the cell nucleus), and the array element values corresponding to all the pixels inside the cell nucleus contour are set to “1” (step 302). That is, if the pixel at the coordinates (i, j) is inside the cell nucleus contour, the corresponding array element flag [i]
Set the value of [j] to "1".

【0046】そして、生体組織の画像の各画素(i、
j)に対して、”flag[i][j]=0” である
細胞核輪郭内部の画素の総数”N1”、”flag
[i][j]=1”である細胞核輪郭外部の画素の総
数”N2”を累計する(ステップ303)。
Then, each pixel (i,
j), the total number of pixels “N1”, “flag” inside the cell nucleus contour where “flag [i] [j] = 0”
[I] The total number “N2” of pixels outside the cell nucleus where [j] = 1 ”is accumulated (step 303).

【0047】”N1/N2”の値を、細胞核の重なり度
を表す細胞核構造特徴として判定し、これを出力する
(ステップ304)。
The value of "N1 / N2" is determined as a cell nucleus structural feature indicating the degree of overlap of cell nuclei, and is output (step 304).

【0048】以上のように、本実施の形態の病理診断装
置は、細胞核の重なりの情報を適切に定量化し、この細
胞核の重なりの情報に基づく病理診断ができる。
As described above, the pathological diagnosis apparatus according to the present embodiment can appropriately quantify the information on the overlap of cell nuclei and perform a pathological diagnosis based on the information on the overlap of cell nuclei.

【0049】次に、本発明の第2の実施の形態について
詳細に説明する。図3は、第2の実施の形態による病理
診断装置の構成を示すブロック図である。本実施の形態
は、腔の位置分布の偏りに基づく病理診断を行なうもの
である。病理診断において腔が一様に分布するのは悪性
であり腔の分布に偏りがあるのは良性である。
Next, a second embodiment of the present invention will be described in detail. FIG. 3 is a block diagram illustrating a configuration of the pathological diagnosis device according to the second embodiment. In the present embodiment, a pathological diagnosis is performed based on the bias of the positional distribution of the cavity. In pathological diagnosis, uniform distribution of cavities is malignant, and uneven distribution of cavities is benign.

【0050】図3を参照すると、第2の実施の形態によ
る病理診断装置の、図1における第1の実施の形態によ
る病理診断装置との違いは、細胞核形状抽出手段30の
代りに腔形状抽出手段40を備え、病理診断特徴判定手
段50b内には、細胞核特徴判定手段51の代りに腔特
徴判定手段52を備えることである。
Referring to FIG. 3, the difference between the pathological diagnosis apparatus according to the second embodiment and the pathological diagnosis apparatus according to the first embodiment in FIG. A means 40 is provided, and a cavity feature determining means 52 is provided in place of the cell nucleus feature determining means 51 in the pathological diagnosis feature determining means 50b.

【0051】腔形状抽出手段40は、画像整形手段20
が出力する平滑化した画像情報に対して、この画像情報
から各腔の輪郭を個別に抽出し、各腔の腔輪郭の位置の
画素の座標を腔輪郭情報として出力する。
The cavity shape extracting means 40 includes the image shaping means 20
, The contour of each cavity is individually extracted from this image information, and the coordinates of the pixel at the position of the cavity contour of each cavity are output as cavity contour information.

【0052】第2の実施の形態の病理診断特徴判定手段
50bは、腔特徴判定手段52を備え、腔形状抽出手段
40が出力する腔輪郭情報に基き腔特徴判定手段52に
より生体組織の腔構造特徴を判定しこれを出力する。
The pathological diagnosis feature judging means 50b of the second embodiment includes a cavity feature judging means 52, and the cavity structure judging means 52 uses the cavity feature judging means 52 based on the cavity contour information outputted by the cavity shape extracting means 40. Judge the feature and output it.

【0053】腔特徴判定手段52は、腔形状抽出手段4
0が出力する腔輪郭情報に基き、注目領域内の腔輪郭の
拡大処理やモフォロジー処理を施すことにより、注目領
域内での腔輪郭の位置分布の偏りを判定し、かつこの腔
輪郭の位置分布の偏りの情報を腔構造特徴として出力す
る。
The cavity feature determining means 52 includes a cavity shape extracting means 4
0, based on the cavity contour information output, performs enlarging processing and morphology processing of the cavity contour in the region of interest, thereby determining the deviation of the position distribution of the cavity contour in the region of interest and determining the position distribution of the cavity contour. Is output as the cavity structure feature.

【0054】第2の実施の形態の病理診断手段60は、
病理診断特徴判定手段50bが出力する腔構造特徴に基
き病理診断を実行する。
The pathological diagnosis means 60 according to the second embodiment comprises:
The pathological diagnosis is executed based on the cavity structure characteristics output from the pathological diagnostic feature determination means 50b.

【0055】この、病理診断手段60による病理診断
は、腔が領域内に均等に分布している時に悪性と判断す
る等の、腔構造特徴に対する予め設定された判断方法に
基き病理診断を行なう。
In the pathological diagnosis by the pathological diagnosis means 60, a pathological diagnosis is performed based on a predetermined judging method for the cavity structure feature, such as judging malignant when the cavities are evenly distributed in the region.

【0056】次に、第2の実施の形態の腔特徴判定手段
52による腔構造特徴の判定処理を詳細に説明する。図
4は、第2の実施の形態の腔特徴判定手段52による腔
構造特徴の判定処理を説明するためのフローチャートで
ある。
Next, the process of determining the cavity structure feature by the cavity feature determination means 52 of the second embodiment will be described in detail. FIG. 4 is a flowchart for explaining the determination process of the cavity structure feature by the cavity feature determination unit 52 according to the second embodiment.

【0057】図4を参照すると、まず、診断対象の生体
組織の領域の腔の数Nを判断し、そして以下に説明する
輪郭拡大処理に関る距離閾値Tを設定する(ステップ5
01)。
Referring to FIG. 4, first, the number N of cavities in the region of the living tissue to be diagnosed is determined, and a distance threshold T relating to the contour enlarging process described below is set (step 5).
01).

【0058】全腔輪郭の座標(x,y)を配列{(Lx
[i][j],Ly[i][j]):i=1,…,N、
j=1,…}に保存し、ここで保存された全腔輪郭を包
含する閉領域の輪郭の座標(x,y)を配列{(Dx
[k]、Dy[k]):k=1,…}に保存する(ステ
ップ502)。
An array {(Lx
[I] [j], Ly [i] [j]): i = 1,..., N,
j = 1,...}, and the coordinates (x, y) of the contour of the closed region including the whole cavity contour stored here are arranged in an array {(Dx
[K], Dy [k]): k = 1,... (Step 502).

【0059】全ての腔輪郭を拡大処理対象輪郭リストL
に設定する(ステップ503)。
The contour list L for enlarging all the cavity contours
(Step 503).

【0060】拡大処理対象輪郭リストL内の、閉領域輪
郭に接する腔輪郭を全て削除する(ステップ504)。
All the cavity contours in contact with the closed region contour in the enlargement processing contour list L are deleted (step 504).

【0061】隣接する他の腔の輪郭との距離がステップ
501で設定した閾値T以下の腔の輪郭を全てリストL
から削除する(ステップ505)。
All the contours of the cavity whose distance from the contour of another adjacent cavity is equal to or smaller than the threshold value T set in step 501 are listed in a list L.
(Step 505).

【0062】リストLに腔輪郭が残っているかを確認し
(ステップ506)、残っている場合はリストL内の腔
の輪郭を腔外部に向って1画素だけ拡大する腔形状の拡
大処理を行ない(ステップ507)、処理をステップ5
04に戻す。
It is checked whether or not the cavity contour remains in the list L (step 506). If the contour remains, the cavity shape is enlarged by one pixel toward the outside of the cavity in the list L toward the outside of the cavity. (Step 507), the process proceeds to Step 5.
Return to 04.

【0063】リストL内の全ての腔輪郭に対して、上述
のステップ504からステップ507による腔形状の拡
大処理を実行する。
The processing for enlarging the cavity shape in steps 504 to 507 is executed for all the cavity contours in the list L.

【0064】閉領域内の全画素数Sと、拡大輪郭内の全
画素数S’を累計する(ステップ508)。
The total number of pixels S in the closed area and the total number of pixels S 'in the enlarged contour are accumulated (step 508).

【0065】S’/(S−S’)を閉領域内の腔分布を
表す腔構造特徴と判定し、これを出力する(ステップ5
09)。
It is determined that S ′ / (S−S ′) is a cavity structure feature representing the cavity distribution in the closed area, and this is output (step 5).
09).

【0066】次に、図5乃至図8を参照し、本実施の形
態の腔特徴判定手段52による腔形状の拡大処理を、具
体的な生体組織の画像の例により説明する。
Next, with reference to FIGS. 5 to 8, the process of enlarging the cavity shape by the cavity feature determining means 52 of the present embodiment will be described with reference to a specific example of a biological tissue image.

【0067】図5は、悪性腔分布を示す生体組織標本の
画像の一例であり、図6は、良性腔分布を示す生体組織
標本の画像の一例であり、図7は、図5の悪性腔分布を
示す生体組織標本の画像の腔形状拡大処理後の画像であ
り、図8は、図6の良性腔分布を示す生体組織標本の画
像の腔形状拡大処理後の画像である。
FIG. 5 is an example of an image of a biological tissue sample showing a malignant cavity distribution, FIG. 6 is an example of an image of a biological tissue sample showing a benign cavity distribution, and FIG. FIG. 8 is an image of the biological tissue sample image showing the distribution after the cavity shape enlarging process, and FIG. 8 is an image of the biological tissue sample image showing the benign cavity distribution of FIG. 6 after the cavity shape enlarging process.

【0068】図6と図7を比較すると、図6では一様に
腔構造を表す白領域が分布しており悪性を示している。
When FIG. 6 and FIG. 7 are compared, in FIG. 6, white regions uniformly representing the cavity structure are distributed, indicating malignancy.

【0069】これら二つの画像の腔構造である白領域に
本実施の形態の腔特徴判定手段52による腔形状の拡大
処理を施し、図8、図9を得る。
The white area, which is the cavity structure of these two images, is subjected to cavity shape enlargement processing by the cavity feature determination means 52 of the present embodiment, and FIGS. 8 and 9 are obtained.

【0070】図8と図9を比較すると、処理前の図6に
おいて腔が一様に分布していた図8では、画像内に全体
的に腔構造である白領域が拡大されており、また処理前
の図7において腔の分布が偏っていた図9では、腔構造
である白領域の拡大は画像一部分のみである。
When FIG. 8 and FIG. 9 are compared, in FIG. 8 in which the cavities are uniformly distributed in FIG. 6 before the processing, the white region having the cavity structure as a whole is enlarged in the image. In FIG. 9 in which the distribution of the cavity is biased in FIG. 7 before the processing, the white region as the cavity structure is enlarged only in a part of the image.

【0071】これにより、処理前の図6と図7における
腔構造である白領域の分布の一様性の違いを、拡大処理
により白領域の面積の違いとして表現することができ
る。
As a result, the difference in the uniformity of the distribution of the white area as the cavity structure in FIGS. 6 and 7 before the processing can be expressed as the difference in the area of the white area by the enlargement processing.

【0072】以上のように、本実施の形態では、人によ
る以外に判断が困難な腔の分布状態野の一様性の情報
を、腔構造の拡大処理により白領域の面積の違いにより
表現することを可能としたために、白領域と黒領域の面
積の比較により腔の分布状態の一様性の判定を、診断装
置により自動的に行なうことが可能となる。
As described above, in the present embodiment, information on the uniformity of the distribution area of the cavity, which is difficult to determine except by a person, is represented by the difference in the area of the white region by the enlargement processing of the cavity structure. This allows the diagnostic apparatus to automatically determine the uniformity of the cavity distribution state by comparing the areas of the white region and the black region.

【0073】また、これにより腔の分布状態の一様性の
情報を適切に定量化し、この腔の分布状態の一様性の情
報に基づく病理診断ができる。
In addition, the information on the uniformity of the distribution state of the cavity can be appropriately quantified, and a pathological diagnosis can be made based on the information on the uniformity of the distribution state of the cavity.

【0074】次に、本発明の第3の実施の形態について
詳細に説明する。図9は、第3の実施の形態による病理
診断装置の構成を示すブロック図である。
Next, a third embodiment of the present invention will be described in detail. FIG. 9 is a block diagram illustrating a configuration of a pathological diagnosis device according to the third embodiment.

【0075】本実施の形態は、個々の細胞核輪郭情報と
腔輪郭情報を基に腔とその周辺の細胞核との距離を表す
細胞核−腔相互構造特徴に基づく病理診断を行なうもの
である。病理診断では、悪性の生体組織では腔とその周
囲の細胞核との間にある程度大きな距離があるとされて
いる。
In the present embodiment, a pathological diagnosis is performed based on the cell nucleus-cavity mutual structure feature representing the distance between the cavity and the cell nuclei around the cavity based on the individual cell nucleus contour information and the cavity contour information. According to pathological diagnosis, in a malignant living tissue, there is a certain large distance between a cavity and a cell nucleus around the cavity.

【0076】図9を参照すると、第3の実施の形態によ
る病理診断装置の、図1における第1の実施の形態によ
る病理診断装置及び、図3における第2の実施の形態に
よる病理診断装置との違いは、細胞核形状抽出手段30
と共に腔形状抽出手段40を備え、病理診断特徴判定手
段50c内には、細胞核−腔相互特徴判定手段53を備
えることである。
Referring to FIG. 9, the pathological diagnosis apparatus according to the third embodiment is different from the pathological diagnosis apparatus according to the first embodiment in FIG. 1 and the pathological diagnosis apparatus according to the second embodiment in FIG. The difference is that the cell nucleus shape extraction means 30
In addition, a cavity shape extraction means 40 is provided, and a cell nucleus-cavity mutual feature determination means 53 is provided in the pathological diagnosis feature determination means 50c.

【0077】細胞核−腔相互特徴判定手段53は、細胞
核形状抽出手段30の出力である細胞核輪郭情報と腔形
状抽出手段40の出力である腔輪郭情報手段を用いて、
腔輪郭の外接矩形と腔輪郭の最近接細胞核群の外接矩形
から細胞核−腔相互構造特徴を判定する。
The cell nucleus-cavity mutual feature judging means 53 uses the cell nucleus contour information output from the cell nucleus shape extracting means 30 and the cavity contour information means output from the cavity shape extracting means 40.
The nucleus-cavity mutual structure feature is determined from the circumscribed rectangle of the cavity contour and the circumscribed rectangle of the nearest cell nucleus group of the cavity contour.

【0078】図10は、第3の実施の形態の細胞核−腔
相互特徴判定手段による細胞核−腔相互構造特徴の判定
処理を説明するためのフローチャートである。
FIG. 10 is a flowchart for explaining the process of determining the mutual feature of the cell nucleus and the cavity by the cell nucleus and cavity mutual feature determining means of the third embodiment.

【0079】まず、腔を1つ選択する(ステップ110
1)。
First, one cavity is selected (step 110).
1).

【0080】選択した腔の輪郭の外接矩形の周長lnを
求める(ステップ1102)。
The circumference ln of the circumscribed rectangle of the contour of the selected cavity is obtained (step 1102).

【0081】選択した腔の輪郭の周囲の細胞核のうち、
腔輪郭に近接している細胞核を最近接細胞核群として選
択し、かつ、その個数CNを数え、最近接細胞核群に含
まれる各細胞核の輪郭の外接矩形の周長を配列{C
[i]:i=1,…,CN}に保存する(ステップ11
03)。
Of the cell nuclei around the contour of the selected cavity,
A cell nucleus close to the cavity contour is selected as the nearest cell nucleus group, and the number CN is counted, and the perimeter of the circumscribed rectangle of the contour of each cell nucleus included in the nearest cell nucleus array is arrayed.
[I]: Stored in i = 1,..., CN} (Step 11)
03).

【0082】配列{C[i]:i=1,…,CN}の要
素の平均値を求めることによって、最近接細胞核群の細
胞核輪郭の外接矩形周長の平均値CLを求める(ステッ
プ1104)。
The average value CL of the circumscribed rectangle circumference of the cell nucleus contour of the nearest cell nucleus group is obtained by obtaining the average value of the elements of the array {C [i]: i = 1,..., CN} (step 1104). .

【0083】最近接細胞核群を含む外接矩形領域の周長
LNを求める(ステップ1105)。
The perimeter LN of the circumscribed rectangular area including the nearest cell nucleus group is determined (step 1105).

【0084】(LN−ln)/CLを、腔とその周囲の
細胞核との間の距離を表す細胞核−腔相互構造特徴とし
て判定する(ステップ1106)。
(LN-ln) / CL is determined as a cell nucleus-cavity mutual structural feature representing the distance between the cavity and the surrounding cell nuclei (step 1106).

【0085】図11は、本実施の形態の細胞核−腔相互
特徴判定手段53による、腔輪郭の外接矩形領域周長と
最近接細胞核群の外接矩形領域周長の判定の一例を示す
図である。
FIG. 11 is a diagram showing an example of the determination of the perimeter of the circumscribed rectangular area of the cavity contour and the perimeter of the circumscribed rectangular area of the nearest cell nucleus group by the cell nucleus-cavity mutual feature determination means 53 of this embodiment. .

【0086】細胞核−腔相互特徴判定手段53は、図1
1に示されるように、腔輪郭の外接矩形領域の周長ln
と、腔の最近接細胞核群の外接矩形領域の周長LNを測
定する。
The cell nucleus-cavity mutual feature judging means 53 is shown in FIG.
As shown in FIG. 1, the circumference ln of the circumscribed rectangular area of the cavity contour
Then, the circumference LN of the circumscribed rectangular region of the cell nucleus group closest to the cavity is measured.

【0087】このように、腔輪郭の外接矩形領域の周長
lnと、腔の最近接細胞核群の外接矩形領域の周長LN
を用い、その差(LN−ln)を最近接細胞核群の平均
大きさCLで正規化することで、画像の倍率によらな
い、腔とその周囲の細胞核との間の距離を表す細胞核−
腔相互構造特徴(LN−ln)/CLを判定できる。
As described above, the perimeter ln of the circumscribed rectangular area of the cavity contour and the perimeter LN of the circumscribed rectangular area of the cell nucleus group closest to the cavity are obtained.
And the difference (LN-ln) is normalized by the average size CL of the nearest cell nucleus group, so that the cell nucleus representing the distance between the cavity and the surrounding cell nuclei regardless of the magnification of the image.
The cavity interaction feature (LN-ln) / CL can be determined.

【0088】以上のように、本実施の形態の病理診断装
置は、腔とその周囲の細胞核との間の位置関係の情報
を、腔と細胞核群の外接矩形領域周長を用いて適切に定
量化し、この腔と周囲の細胞核との間の位置関係の情報
に基づく病理診断ができる。
As described above, the pathological diagnosis apparatus of the present embodiment appropriately quantifies the information on the positional relationship between the cavity and the cell nuclei around the cavity using the circumscribed rectangular region circumference of the cavity and the cell nucleus group. Pathological diagnosis based on information on the positional relationship between the cavity and the surrounding cell nuclei.

【0089】次に、本発明の第4の実施の形態について
詳細に説明する。図12は、第4の実施の形態による病
理診断装置の構成を示すブロック図である。
Next, a fourth embodiment of the present invention will be described in detail. FIG. 12 is a block diagram illustrating a configuration of a pathological diagnosis apparatus according to the fourth embodiment.

【0090】本実施の形態は、第3の実施の形態と同様
に、個々の細胞核輪郭情報と腔輪郭情報を基に腔とその
周辺の細胞核との距離を表す細胞核−腔相互構造特徴に
基づく病理診断を行なうものである。
As in the third embodiment, the present embodiment is based on the cell nucleus-cavity mutual structure feature representing the distance between the cavity and the surrounding cell nuclei based on the individual cell nucleus contour information and the cavity contour information. A pathological diagnosis is made.

【0091】図12を参照すると、第4の実施の形態に
よる病理診断装置の、図9における第3の実施の形態に
よる病理診断装置との違いは、病理診断特徴判定手段5
0d内に、細胞核−腔相互特徴判定手段53aを備える
ことである。
Referring to FIG. 12, the difference between the pathological diagnosis apparatus according to the fourth embodiment and the pathological diagnosis apparatus according to the third embodiment in FIG.
0d is provided with a cell nucleus-cavity mutual feature determination means 53a.

【0092】細胞核−腔相互特徴判定手段53aは、細
胞核形状抽出手段30の出力である細胞核輪郭情報と腔
形状抽出手段40の出力である腔輪郭情報手段を用い
て、第3の実施の形態の細胞核−腔相互特徴判定手段5
3と異なり腔と細胞核の位置関係を表す細胞核−腔相互
構造特徴を面積を求める事により判定する。
The cell nucleus-cavity mutual feature judging means 53 a uses the cell nucleus contour information output from the cell nucleus shape extracting means 30 and the cavity contour information means output from the cavity shape extracting means 40 to obtain the third embodiment. Cell nucleus-cavity mutual feature determination means 5
Unlike the case of No. 3, the cell nucleus-cavity mutual structure characteristic representing the positional relationship between the cavity and the cell nucleus is determined by calculating the area.

【0093】図13は、第4の実施の形態の細胞核−腔
相互特徴判定手段53aによる細胞核と腔の相互構造特
徴の判定処理を説明するためのフローチャートである。
FIG. 13 is a flowchart for explaining the process of determining the mutual structural feature between the cell nucleus and the cavity by the cell nucleus-cavity mutual feature determining means 53a of the fourth embodiment.

【0094】まず、腔を1つ選択する(ステップ140
1)。
First, one cavity is selected (step 140).
1).

【0095】選択した腔の輪郭の面積Sを求める(ステ
ップ1402)。
The area S of the contour of the selected cavity is obtained (step 1402).

【0096】選択した腔の輪郭の周囲の細胞核のうち、
腔輪郭に近接している細胞核を最近接細胞核群として選
択し、かつ、その個数CNを数え、最近接細胞核群に含
まれる各細胞核の輪郭の外接矩形の面積を配列{C
[i]:i=1,…,CN}に保存する(ステップ14
03)。
Of the cell nuclei around the contour of the selected cavity,
The cell nuclei in close proximity to the cavity contour are selected as the nearest cell nucleus group, and the number CN is counted, and the area of the circumscribed rectangle of the contour of each cell nucleus included in the nearest cell nucleus array is arrayed.
[I]: Stored in i = 1,..., CN # (Step 14)
03).

【0097】配列{C[i]:i=1,…,CN}の要
素の平均値を求めることによって、最近接細胞核群の細
胞核輪郭の外接矩形面積の平均値CLを求める(ステッ
プ1404)。
The average value CL of the circumscribed rectangular area of the cell nucleus contour of the nearest cell nucleus group is obtained by obtaining the average value of the elements of the array {C [i]: i = 1,..., CN} (step 1404).

【0098】最近接細胞核群の隣接した細胞核の中心を
結んでできる閉領域の面積S’を求める(ステップ14
05)。
The area S 'of the closed region formed by connecting the centers of the adjacent cell nuclei of the group of closest cell nuclei is obtained (step 14).
05).

【0099】(S’−S)/CLを、腔とその周囲の細
胞核との間の距離を表す細胞核−腔相互構造特徴として
判定する(ステップ1406)。
(S'-S) / CL is determined as a cell nucleus-cavity mutual structural feature representing the distance between the cavity and the cell nuclei around the cavity (step 1406).

【0100】以上のように、本実施の形態の病理診断装
置は、腔とその周囲の細胞核との間の位置関係の情報
を、腔や細胞核等の面積を用いて適切に定量化し、この
腔とその周囲の細胞核との間の位置関係の情報に基づく
病理診断ができる。
As described above, the pathological diagnosis apparatus according to the present embodiment appropriately quantifies the information on the positional relationship between the cavity and the cell nuclei around the cavity by using the area of the cavity, the cell nucleus, and the like. A pathological diagnosis can be performed based on information on the positional relationship between the cell and its surrounding cell nuclei.

【0101】本発明の第1の実施の形態に関して、細胞
核特徴判定手段51が細胞核の重なり度を細胞核領域と
非細胞核領域の面積比で判定する例で説明しているが、
細胞核の重なり度を近接した各々の細胞核重心間の距離
の分布を用いて判定することもできる。
The first embodiment of the present invention has been described with an example in which the cell nucleus feature determining means 51 determines the degree of cell nucleus overlap based on the area ratio between the cell nucleus region and the non-cell nucleus region.
The degree of overlap of the cell nuclei can also be determined using the distribution of the distance between the centers of gravity of the adjacent cell nuclei.

【0102】つまり、面積比を求める代りに、近接した
各々の細胞核重心間の距離の平均値等を細胞核の重なり
度として判定し、この細胞核重心間の距離を表す細胞核
の重なり度の値が低いほどに、より細胞核が重なってお
りこれを良性と判断するものである。
That is, instead of calculating the area ratio, the average value of the distance between the centers of gravity of the cell nuclei and the like is determined as the degree of overlap of the cell nuclei. The more the cell nuclei overlap, the more this is judged to be benign.

【0103】本発明の第2の実施の形態に関して、腔特
徴判定手段52による腔構造特徴の判定において拡大腔
輪郭内画素総数S’と注目閉領域内画素総数Sを用いて
S’/(S−S’)により腔位置分布の偏りを定義した
が、S’/Sと定義してもよい。
According to the second embodiment of the present invention, in the determination of the cavity structure feature by the cavity feature determination unit 52, S ′ / (S −S ′) defines the deviation of the cavity position distribution, but may be defined as S ′ / S.

【0104】いずれも、腔位置分布の偏りの値が低いほ
どに、より腔位置分布が偏っている事を示す。ただし、
S’/Sで定義する場合には、腔位置分布の偏りの値が
常に1以下の正の数で表すことができる。
In each case, the lower the bias value of the cavity position distribution, the more the cavity position distribution is biased. However,
In the case of defining by S ′ / S, the value of the bias of the cavity position distribution can always be represented by a positive number of 1 or less.

【0105】本発明の第2の実施の形態に関して、腔特
徴判定手段52が腔輪郭の位置分布を腔輪郭の拡大処理
を用いて判定する例で説明したが、各々の腔輪郭の距離
や面積や重心間の距離を用いて判定することもできる。
The second embodiment of the present invention has been described with an example in which the cavity feature determination means 52 determines the position distribution of the cavity contour by using the cavity contour enlarging process. Alternatively, the determination can be made using the distance between the centers of gravity.

【0106】本発明の第3の実施の形態と第4の実施の
形態に関して、細胞核−腔相互特徴判定手段53、53
aが細胞核と腔の相互構造特徴を、腔輪郭の外接矩形と
最近接細胞核群の外接矩形の周長や面積を用いて判定す
る例で説明したが、腔輪郭と各々の最近接細胞核との距
離を用いて判定することもできる。
Regarding the third embodiment and the fourth embodiment of the present invention, the cell nucleus-cavity mutual feature judging means 53, 53
a described the mutual structural feature between the cell nucleus and the cavity using the circumference and area of the circumscribed rectangle of the cavity contour and the circumscribed rectangle of the nearest cell nucleus group. The determination can be made using the distance.

【0107】また、上述のような病理診断特徴判定手段
50における細胞核特徴判定手段51、腔特徴判定手段
52、細胞核−腔相互特徴判定手段53の画像の特徴の
様々な判定方法は、1種類のみではなく上述のような複
数の特徴の判定方法を合わせて備えるものとしても良
い。
In the above-described pathological diagnosis feature determining means 50, the cell nucleus feature determining means 51, the cavity feature determining means 52, and the cell nucleus-cavity mutual feature determining means 53 have only one kind of various methods for determining image characteristics. Instead, a plurality of features determination methods as described above may be combined.

【0108】さらに、病理診断特徴判定手段50におい
ても細胞核特徴判定手段51、腔特徴判定手段52、細
胞核−腔相互特徴判定手段53はこの内1種類のみを備
えるものに限らず、任意の1つ以上の判定手段を備えて
よい。この例として図13は、病理診断特徴判定手段5
0内に細胞核特徴判定手段51と、腔特徴判定手段52
と、細胞核−腔相互特徴判定手段53を備える本発明の
一実施の形態による病理診断装置の構成を示すブロック
図である。
Further, in the pathological diagnosis characteristic determining means 50, the cell nucleus characteristic determining means 51, the cavity characteristic determining means 52, and the cell nucleus-cavity mutual characteristic determining means 53 are not limited to those having only one type, but may be any one. The above determination means may be provided. As an example of this, FIG.
Within 0, the cell nucleus feature determining means 51 and the cavity feature determining means 52
1 is a block diagram showing a configuration of a pathological diagnosis apparatus according to an embodiment of the present invention, which includes a cell nucleus-cavity mutual feature determination unit 53. FIG.

【0109】また、上記の実施の形態では、画像整形手
段20、細胞核形状抽出手段30、腔形状抽出手段40
は、病理診断特徴判定手段50とは独立した部分とし
て、病理診断特徴判定処理のための事前処理を行なう
が、これらの手段は病理診断特徴判定手段50や、細胞
核特徴判定手段51や、腔特徴判定手段52や、細胞核
−腔相互特徴判定手段53の内部に備えてもよい。
In the above embodiment, the image shaping means 20, the cell nucleus shape extracting means 30, and the cavity shape extracting means 40
Performs preprocessing for pathological diagnosis feature determination processing as a part independent of the pathological diagnosis feature determination means 50. These means include a pathological diagnosis feature determination means 50, a cell nucleus feature determination means 51, and a cavity feature The determination unit 52 and the cell nucleus-cavity mutual feature determination unit 53 may be provided.

【0110】また、上記の実施の形態では、病理診断手
段60が病理診断特徴判定手段50が判定した各種の特
徴に基づく診断結果を出力するが、この各種の特徴の値
を診断結果と合わせて出力しても良い。また、病理診断
手段60を備えずに病理診断特徴判定手段50が判定し
た各種の特徴の値を出力するものとし、診断は医師等が
この出力された各種の特徴に基き行なうものとしてもよ
い。
In the above embodiment, the pathological diagnosis means 60 outputs a diagnosis result based on the various characteristics determined by the pathological diagnosis characteristic determination means 50. The values of the various characteristics are combined with the diagnosis results. May be output. Further, the values of the various characteristics determined by the pathological diagnosis characteristic determining unit 50 may be output without the pathological diagnosis unit 60, and the diagnosis may be performed by a doctor or the like based on the output various characteristics.

【0111】また、上記の実施の形態では、画像取得手
段10により生体組織の標本等に対する撮影を行ないか
つこの情報を電気的信号から成る画像ファイルに変換を
行なうが、予め撮影された写真のフイルム等の画像を診
断対象としてもよい。この場合には画像取得手段10に
よる生体組織の標本等に対する撮影以後の処理を行なう
ものとする。
In the above embodiment, the image acquisition means 10 performs photographing on a specimen of a living tissue, and converts this information into an image file composed of electrical signals. Or the like may be used as a diagnosis target. In this case, processing after photographing of a biological tissue sample or the like by the image acquisition unit 10 is performed.

【0112】同様に、予め画像が電気的信号から成る画
像ファイルに変換されており、ハードディスクやフロッ
ピィディスク等の記録媒体に納められている画像を診断
対象としてもよい。この場合には画像取得手段10を備
えることを必要としない。
Similarly, the image may be converted into an image file composed of electrical signals in advance, and the image stored in a recording medium such as a hard disk or a floppy disk may be used as a diagnosis target. In this case, it is not necessary to provide the image acquisition unit 10.

【0113】以上好ましい実施の形態及び実施例をあげ
て本発明を説明したが、本発明は必ずしも上記実施の形
態及び実施例に限定されるものではなく、その技術的思
想の範囲内において様々に変形して実施することができ
る。
Although the present invention has been described with reference to the preferred embodiments and examples, the present invention is not necessarily limited to the above embodiments and examples, and various modifications may be made within the scope of the technical idea. Modifications can be made.

【0114】[0114]

【発明の効果】以上説明したように本発明の病理診断装
置によれば、以下のような効果が達成される。
According to the pathological diagnosis apparatus of the present invention as described above, the following effects can be achieved.

【0115】第1に、生体組織画像内の細胞核や腔の位
置関係や分布状態等の情報を適切に定量化することによ
り、これらの情報を病理診断装置による病理診断のため
に用いることを可能としたために、従来では医師等の判
断を必要とし病理診断装置ではできなかった種類の病理
診断や、精度の高い病理診断を行なうことができる。
First, by appropriately quantifying information such as the positional relationship and distribution state of cell nuclei and cavities in a biological tissue image, it is possible to use such information for pathological diagnosis by a pathological diagnosis apparatus. Therefore, it is possible to perform a pathological diagnosis of a type that has conventionally required the judgment of a doctor or the like and cannot be performed by a pathological diagnostic apparatus, or a pathological diagnosis with high accuracy.

【0116】第2に、細胞核の重なりの情報を適切に定
量化し、この細胞核の重なりの情報に基づく病理診断が
できる。
Second, the information on the overlapping of cell nuclei is appropriately quantified, and a pathological diagnosis can be made based on the information on the overlapping of cell nuclei.

【0117】第3に、腔の分布状態の情報を適切に定量
化し、この腔の分布状態の情報に基づく病理診断ができ
る。
Third, information on the distribution state of the cavity is appropriately quantified, and a pathological diagnosis can be made based on the information on the distribution state of the cavity.

【0118】第4に、腔とその周囲の最も近接する位置
にある細胞核との位置関係の情報を適切に定量化し、こ
の腔と細胞核との間の位置関係の情報に基づく病理診断
ができる。
Fourth, information on the positional relationship between the cavity and the cell nucleus located closest to the cavity is appropriately quantified, and a pathological diagnosis can be made based on the information on the positional relationship between the cavity and the cell nucleus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態による病理診断装
置の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a pathological diagnosis apparatus according to a first embodiment of the present invention.

【図2】 本発明の第1の実施の形態の細胞核特徴判定
手段による細胞核構造特徴の判定処理を説明するための
フローチャートである。
FIG. 2 is a flowchart illustrating a process of determining a cell nucleus structural feature by a cell nucleus feature determining unit according to the first embodiment of the present invention.

【図3】 本発明の第2の実施の形態による病理診断装
置の構成を示すブロック図である。
FIG. 3 is a block diagram illustrating a configuration of a pathological diagnosis device according to a second embodiment of the present invention.

【図4】 本発明の第2の実施の形態の腔特徴判定手段
による腔構造特徴の判定処理を説明するためのフローチ
ャートである。
FIG. 4 is a flowchart illustrating a cavity structure feature determination process performed by a cavity feature determination unit according to the second embodiment of this invention.

【図5】 悪性腔分布を示す生体組織標本の画像の一例
である。
FIG. 5 is an example of an image of a biological tissue specimen showing a malignant cavity distribution.

【図6】 良性腔分布を示す生体組織標本の画像の一例
である。
FIG. 6 is an example of an image of a biological tissue specimen showing a benign cavity distribution.

【図7】 本発明の第2の実施の形態の細胞核特徴判定
手段による、図5の悪性腔分布を示す生体組織標本の画
像の腔形状拡大処理後の画像である。
FIG. 7 is an image of the biological tissue specimen image showing the malignant cavity distribution shown in FIG. 5 after the cavity shape enlarging process by the cell nucleus feature determination unit according to the second embodiment of the present invention.

【図8】 本発明の第2の実施の形態の細胞核特徴判定
手段による、図6の良性腔分布を示す生体組織標本の画
像の腔形状拡大処理後の画像である。
FIG. 8 is an image of the biological tissue specimen image showing the benign cavity distribution shown in FIG. 6 after the cavity shape enlarging process performed by the cell nucleus feature determination unit according to the second embodiment of the present invention.

【図9】 本発明の第3の実施の形態による病理診断装
置の構成を示すブロック図である。
FIG. 9 is a block diagram illustrating a configuration of a pathological diagnosis apparatus according to a third embodiment of the present invention.

【図10】 本発明の第3の実施の形態の細胞核−腔相
互特徴判定手段による細胞核−腔相互構造特徴の判定処
理を説明するためのフローチャートである。
FIG. 10 is a flowchart illustrating a process of determining a cell nucleus-cavity mutual structure feature by a cell nucleus-cavity mutual feature determination unit according to the third embodiment of the present invention.

【図11】 本発明の第3の実施の形態の細胞核−腔相
互特徴判定手段による、腔輪郭の外接矩形領域周長と最
近接細胞核群の外接矩形領域周長の判定の一例を示す図
である。
FIG. 11 is a diagram illustrating an example of determination of a perimeter of a circumscribed rectangular region of a cavity contour and a perimeter of a circumscribed rectangular region of a nearest cell nucleus group by the cell nucleus-cavity mutual feature determination unit according to the third embodiment of this invention; is there.

【図12】 本発明の第4の実施の形態による病理診断
装置の構成を示すブロック図である。
FIG. 12 is a block diagram illustrating a configuration of a pathological diagnosis apparatus according to a fourth embodiment of the present invention.

【図13】 本発明の第4の実施の形態の細胞核−腔相
互特徴判定手段による細胞核−腔相互構造特徴の判定処
理を説明するためのフローチャートである。
FIG. 13 is a flowchart illustrating a process of determining a cell nucleus-cavity mutual structure feature by a cell nucleus-cavity mutual feature determination unit according to the fourth embodiment of the present invention.

【図14】 本発明のその他の実施の形態による病理診
断装置の構成を示すブロック図である。
FIG. 14 is a block diagram showing a configuration of a pathological diagnosis apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 画像取得手段 20 画像整形手段 30 細胞核形状抽出手段 40 腔形状抽出手段 50 病理診断特徴判定手段 51 細胞核特徴判定手段 52 腔特徴判定手段 53 細胞核−腔相互特徴判定手段 60 病理診断手段 70 診断結果出力手段 DESCRIPTION OF SYMBOLS 10 Image acquisition means 20 Image shaping means 30 Cell nucleus shape extraction means 40 Cavity shape extraction means 50 Pathology diagnosis feature determination means 51 Cell nucleus feature determination means 52 Cavity feature determination means 53 Cell nucleus-cavity mutual feature determination means 60 Pathology diagnosis means 70 Diagnosis result output means

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G045 AA24 AA25 CB01 FA19 GB02 GB04 GB10 JA01 JA07 5B057 AA10 DA03 DA07 DB02 DC02 DC03 DC04 DC06  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 2G045 AA24 AA25 CB01 FA19 GB02 GB04 GB10 JA01 JA07 5B057 AA10 DA03 DA07 DB02 DC02 DC03 DC04 DC06

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】生体組織の画像から病理診断に用いる特徴
を判定する病理診断特徴判定手段を備え、 前記病理診断特徴判定手段は、 前記画像内の、細胞核や腔の位置関係や分布状態による
特徴を数値により判定することを特徴とする病理診断装
置。
1. A pathological diagnosis feature determining unit that determines a feature used for pathological diagnosis from an image of a living tissue, wherein the pathological diagnostic feature determining unit determines a characteristic based on a positional relationship or a distribution state of a cell nucleus or a cavity in the image. A pathological diagnosis apparatus characterized in that is determined by a numerical value.
【請求項2】前記病理診断特徴判定手段は、 細胞核構造特徴として、細胞核全体の重なり度を判定す
る細胞核特徴判定手段を備えることを特徴とする請求項
1に記載の病理診断装置。
2. The pathological diagnosis apparatus according to claim 1, wherein said pathological diagnosis feature determining means includes a cell nucleus characteristic determining means for determining, as a cell nucleus structural feature, the degree of overlap of the entire cell nucleus.
【請求項3】前記細胞核特徴判定手段は、 前記画像内における全細胞核が占める面積を求め、前記
面積を用いて前記重なり度を判定することを特徴とする
請求項2に記載の病理診断装置。
3. The pathological diagnosis apparatus according to claim 2, wherein said cell nucleus feature determining means obtains an area occupied by all cell nuclei in the image, and determines the degree of overlap using the area.
【請求項4】前記細胞核特徴判定手段は、 前記画像内の近接する個々の細胞核の、前記細胞核の重
心の間隔を求め、前記間隔を用いて前記重なり度を判定
することを特徴とする請求項2に記載の病理診断装置。
4. The method according to claim 1, wherein said cell nucleus feature determining means obtains an interval between centroids of said cell nuclei of adjacent cell nuclei in said image, and judges said degree of overlap using said interval. 3. The pathological diagnosis apparatus according to 2.
【請求項5】前記病理診断特徴判定手段は、 腔構造特徴として、腔の分布状態を判定する腔特徴判定
手段を備えることを特徴とする請求項1に記載の病理診
断装置。
5. The pathological diagnosis apparatus according to claim 1, wherein said pathological diagnosis characteristic determining means includes a cavity characteristic determining means for determining a distribution state of the cavity as a cavity structure characteristic.
【請求項6】前記腔特徴判定手段は、 前記画像に対し前記画像内で腔を示す部分の拡大を行な
い、前記拡大後の画像内における腔を示す部分が占める
面積をもって、前記拡大前の画像内の腔の分布状態の情
報を表現する腔形状拡大処理を行ない、 前記腔形状拡大処理後の画像内における腔を示す部分が
占める面積を求め、前記面積を用いて前記分布状態を判
定することを特徴とする請求項5に記載の病理診断装
置。
6. The pre-enlargement image is obtained by enlarging a portion indicating a cavity in the image with respect to the image, and determining an area occupied by the portion indicating the cavity in the enlarged image. Performing a cavity shape enlarging process expressing information on the distribution state of the cavity in the cavity, obtaining an area occupied by a portion indicating the cavity in the image after the cavity shape enlarging process, and determining the distribution state using the area. The pathological diagnosis apparatus according to claim 5, wherein:
【請求項7】前記腔特徴判定手段が行なう前記腔形状拡
大処理は、 前期画像に対し、拡大処理対象範囲の境界に接せずかつ
他の腔との間隔が定められた閾値以上である前記画像内
の全ての腔を拡大処理対象の腔として選択する選択処理
を行ない、 次に、各前記拡大処理対象の腔に対して、この前記腔の
輪郭から外部に向って定められた範囲内の画素を新たに
前記腔の内部に含める画像書換処理を行ない、 これにより得られる画像に対し再び前期選択処理を行な
い,前期選択処理により選択される腔が無くなるまで、
前記選択処理と前期画像書換処理との一連の処理を繰返
すことにより腔形状の拡大を行なうことを特徴とする請
求項6に記載の病理診断装置。
7. The cavity shape enlarging process performed by the cavity feature judging means may be such that the image does not touch a boundary of an enlarging process target range and an interval with another cavity is equal to or greater than a predetermined threshold value. Performing a selection process of selecting all the cavities in the image as cavities to be subjected to enlargement processing. Next, for each of the cavities to be subjected to enlargement processing, a region within a range defined outward from the outline of the cavity is selected. An image rewriting process for newly including pixels inside the cavity is performed, and the above-described image is subjected to the above-mentioned selection process again, until the cavity selected by the above-mentioned selection process disappears.
7. The pathological diagnosis apparatus according to claim 6, wherein the cavity shape is enlarged by repeating a series of processes of the selection process and the image rewriting process.
【請求項8】前記腔特徴判定手段は、 前記画像内の個々の前記腔の重心の間の距離を求め、前
記重心間の距離を用いて前記分布状態を判定することを
特徴とする請求項5に記載の病理診断装置。
8. The apparatus according to claim 1, wherein said cavity characteristic determining means determines a distance between the centers of gravity of the individual chambers in the image, and determines the distribution state using the distance between the centers of gravity. 6. The pathological diagnosis apparatus according to 5.
【請求項9】前記病理診断特徴判定手段は、 細胞核−腔相互構造特徴として、前記腔と前記腔の周囲
に存在する複数の細胞核によって構成される最近接細胞
核群との位置関係を判定する細胞核−腔相互特徴判定手
段を備えることを特徴とする請求項1に記載の病理診断
装置。
9. A cell nucleus for determining a positional relationship between the cavity and a group of closest cell nuclei constituted by a plurality of cell nuclei existing around the cavity as a cell nucleus-cavity mutual structure characteristic. The pathological diagnosis apparatus according to claim 1, further comprising: a cavity mutual characteristic determination unit.
【請求項10】前記細胞核−腔相互特徴判定手段は、 前記腔の輪郭の外接矩形の長さと前記最近接細胞核群の
外接矩形の長さを求め、前記腔輪郭外接矩形長と前記最
近接細胞核群外接矩形長を用いて、前記腔と前記最近接
細胞核群との前記位置関係を判定することを特徴とする
請求項9に記載の病理診断装置。
10. The cell nucleus-cavity mutual feature determination means obtains a length of a circumscribed rectangle of the outline of the cavity and a length of a circumscribed rectangle of the group of nearest cell nuclei, and determines the length of the rectangle circumscribed of the cavity contour and the nearest cell nucleus. The pathological diagnosis apparatus according to claim 9, wherein the positional relationship between the cavity and the nearest cell nucleus group is determined using a group circumscribed rectangle length.
【請求項11】前記細胞核−腔相互特徴判定手段は、 前記腔の面積と、前記最近接細胞核群の個々の細胞核の
面積と、前記最近接細胞核群の個々の細胞核の重心を結
ぶ閉領域の面積とを求め、前記腔の面積と前記細胞核の
面積と前記閉領域の面積を用いて、前記腔と前記最近接
細胞核群との前記位置関係を判定することを特徴とする
請求項9に記載の病理診断装置。
11. The cell nucleus-cavity mutual feature determination means, comprising: an area of the cavity, an area of an individual cell nucleus of the group of the closest cell nuclei, and a closed region connecting a center of gravity of each cell nucleus of the group of the closest cell nucleus. The area of the cavity, the area of the cell nucleus, and the area of the closed region are determined, and the positional relationship between the cavity and the nearest cell nucleus group is determined using the area of the cavity. Pathological diagnostic device.
【請求項12】前記細胞核−腔相互特徴判定手段は、 前記腔の輪郭と前記最近接細胞核群の個々の細胞との間
の距離を求め、この距離を用いて、前記腔と前記最近接
細胞核群との前記位置関係を判定することを特徴とする
請求項9に記載の病理診断装置。
12. The cell nucleus-cavity mutual feature determination means obtains a distance between a contour of the cavity and individual cells of the nearest cell nucleus group, and uses the distance to determine the distance between the cavity and the nearest cell nucleus. The pathological diagnosis apparatus according to claim 9, wherein the positional relationship with a group is determined.
JP11238288A 1999-08-25 1999-08-25 Pathological diagnostic apparatus Pending JP2001059842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11238288A JP2001059842A (en) 1999-08-25 1999-08-25 Pathological diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11238288A JP2001059842A (en) 1999-08-25 1999-08-25 Pathological diagnostic apparatus

Publications (1)

Publication Number Publication Date
JP2001059842A true JP2001059842A (en) 2001-03-06

Family

ID=17027971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11238288A Pending JP2001059842A (en) 1999-08-25 1999-08-25 Pathological diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP2001059842A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286666A (en) * 2003-03-24 2004-10-14 Olympus Corp Pathological diagnosis support apparatus and pathological diagnosis support program
JP2004350508A (en) * 2003-05-27 2004-12-16 Japan Science & Technology Agency Method for cleaving bound nuclear region on recognition of nuclear region
JP2005519625A (en) * 2002-03-13 2005-07-07 キュー3ディーエム エルエルシー System and method for automated color segmentation and minimal significant response for measurement of fractional localized intensity of intracellular compartments
JP2009115598A (en) * 2007-11-06 2009-05-28 Nec Corp Module for detecting poorly differentiated cancer and pathological image diagnosis support apparatus, program, and recording medium including the same
JP2009210409A (en) * 2008-03-04 2009-09-17 Kddi Corp Method and device for image area division
JP2009229203A (en) * 2008-03-21 2009-10-08 Nec Corp Pathologic image diagnostic system, pathologic image diagnostic method and program
WO2010041423A1 (en) * 2008-10-09 2010-04-15 日本電気株式会社 Histopathologic diagnosis support system, histopathologic diagnosis support program, and histopathologic diagnosis support method
US7826648B2 (en) 2004-05-20 2010-11-02 Olympus Corporation Image processing apparatus which processes an image obtained by capturing a colored light-transmissive sample
WO2010140654A1 (en) * 2009-06-03 2010-12-09 日本電気株式会社 Pathologic tissue image analyzing apparatus, pathologic tissue image analyzing method, and pathologic tissue image analyzing program
WO2013175683A1 (en) * 2012-05-24 2013-11-28 日本電気株式会社 Pathological diagnosis results assessment system, pathological diagnosis results assessment method, and pathological diagnosis results assessment device
US8847012B2 (en) 2007-12-05 2014-09-30 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US8847011B2 (en) 2007-12-05 2014-09-30 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US9045786B2 (en) 2008-03-04 2015-06-02 Toyota Jidosha Kabushiki Kaisha Gene that increases production of plant fat-and-oil and method for using the same
US9169488B2 (en) 2009-06-04 2015-10-27 Toyota Jidosha Kabushiki Kaisha Gene capable of improving material productivity in seed and method for use thereof
US9303265B2 (en) 2009-06-04 2016-04-05 Toyota Jidosha Kabushiki Kaisha Gene for increasing plant weight and method for using the same
US9309531B2 (en) 2009-06-04 2016-04-12 Toyota Jidosha Kabushiki Kaisha Plant with reduced protein productivity in seeds, and method for producing same
JP2018185265A (en) * 2017-04-27 2018-11-22 日本電気株式会社 Information processor, method for control, and program
WO2019082283A1 (en) 2017-10-24 2019-05-02 暢 長坂 Image interpretation device
WO2023017843A1 (en) * 2021-08-12 2023-02-16 学校法人 久留米大学 Diagnosis device, information acquisition method, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694706A (en) * 1992-09-10 1994-04-08 Sumitomo Metal Ind Ltd Pathology image inspection support device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694706A (en) * 1992-09-10 1994-04-08 Sumitomo Metal Ind Ltd Pathology image inspection support device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519625A (en) * 2002-03-13 2005-07-07 キュー3ディーエム エルエルシー System and method for automated color segmentation and minimal significant response for measurement of fractional localized intensity of intracellular compartments
JP2004286666A (en) * 2003-03-24 2004-10-14 Olympus Corp Pathological diagnosis support apparatus and pathological diagnosis support program
JP2004350508A (en) * 2003-05-27 2004-12-16 Japan Science & Technology Agency Method for cleaving bound nuclear region on recognition of nuclear region
US7826648B2 (en) 2004-05-20 2010-11-02 Olympus Corporation Image processing apparatus which processes an image obtained by capturing a colored light-transmissive sample
JP2009115598A (en) * 2007-11-06 2009-05-28 Nec Corp Module for detecting poorly differentiated cancer and pathological image diagnosis support apparatus, program, and recording medium including the same
US8199998B2 (en) 2007-11-06 2012-06-12 Nec Corporation Module for detecting poorly differentiated cancers and pathological image diagnosis support apparatus, program and recording medium including the same
US9018450B2 (en) 2007-12-05 2015-04-28 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US9012726B2 (en) 2007-12-05 2015-04-21 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US9018446B2 (en) 2007-12-05 2015-04-28 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US9068193B2 (en) 2007-12-05 2015-06-30 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US8847012B2 (en) 2007-12-05 2014-09-30 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US9062318B2 (en) 2007-12-05 2015-06-23 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US9012727B2 (en) 2007-12-05 2015-04-21 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
US8847011B2 (en) 2007-12-05 2014-09-30 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
JP2009210409A (en) * 2008-03-04 2009-09-17 Kddi Corp Method and device for image area division
US9045786B2 (en) 2008-03-04 2015-06-02 Toyota Jidosha Kabushiki Kaisha Gene that increases production of plant fat-and-oil and method for using the same
JP2009229203A (en) * 2008-03-21 2009-10-08 Nec Corp Pathologic image diagnostic system, pathologic image diagnostic method and program
US8644582B2 (en) 2008-10-09 2014-02-04 Nec Corporation Support system for histopathological diagnosis, support program for histopathological diagnosis and support method for histopathological diagnosis
WO2010041423A1 (en) * 2008-10-09 2010-04-15 日本電気株式会社 Histopathologic diagnosis support system, histopathologic diagnosis support program, and histopathologic diagnosis support method
JP2010281636A (en) * 2009-06-03 2010-12-16 Nec Corp Pathologic tissue image analyzing apparatus, pathologic tissue image analyzing method, pathologic tissue image analyzing program
WO2010140654A1 (en) * 2009-06-03 2010-12-09 日本電気株式会社 Pathologic tissue image analyzing apparatus, pathologic tissue image analyzing method, and pathologic tissue image analyzing program
US8594411B2 (en) 2009-06-03 2013-11-26 Nec Corporation Pathologic tissue image analyzing apparatus, pathologic tissue image analyzing method, and pathologic tissue image analyzing program
US9856488B2 (en) 2009-06-04 2018-01-02 Toyota Jidosha Kabushiki Kaisha Plant with reduced protein productivity in seeds and method for producing same
US9840717B2 (en) 2009-06-04 2017-12-12 Toyota Jidosha Kabushiki Kaisha Plant with reduced protein productivity in seeds and method for producing same
US10000764B2 (en) 2009-06-04 2018-06-19 Toyota Jidosha Kabushiki Kaisha Gene for increasing plant weight and method for using the same
US9303265B2 (en) 2009-06-04 2016-04-05 Toyota Jidosha Kabushiki Kaisha Gene for increasing plant weight and method for using the same
US9309531B2 (en) 2009-06-04 2016-04-12 Toyota Jidosha Kabushiki Kaisha Plant with reduced protein productivity in seeds, and method for producing same
US9309530B2 (en) 2009-06-04 2016-04-12 Toyota Jidosha Kabushiki Kaisha Gene capable of improving material productivity in seed and method for use thereof
US9309529B2 (en) 2009-06-04 2016-04-12 Toyota Jidosha Kabushiki Kaisha Gene capable of improving material productivity in seed and method for use thereof
US9970020B2 (en) 2009-06-04 2018-05-15 Toyota Jidosha Kabushiki Kaisha Plant with reduced protein productivity in seeds and method for producing same
US9816099B2 (en) 2009-06-04 2017-11-14 Toyota Jidosha Kabushiki Kaisha Gene for increasing plant weight and method for using the same
US9169488B2 (en) 2009-06-04 2015-10-27 Toyota Jidosha Kabushiki Kaisha Gene capable of improving material productivity in seed and method for use thereof
WO2013175683A1 (en) * 2012-05-24 2013-11-28 日本電気株式会社 Pathological diagnosis results assessment system, pathological diagnosis results assessment method, and pathological diagnosis results assessment device
US9383347B2 (en) 2012-05-24 2016-07-05 Nec Corporation Pathological diagnosis results assessment system, pathological diagnosis results assessment method, and pathological diagnosis results assessment device
JPWO2013175683A1 (en) * 2012-05-24 2016-01-12 日本電気株式会社 Pathological diagnosis result determination system, pathological diagnosis result determination method, and pathological diagnosis result determination apparatus
JP2018185265A (en) * 2017-04-27 2018-11-22 日本電気株式会社 Information processor, method for control, and program
WO2019082283A1 (en) 2017-10-24 2019-05-02 暢 長坂 Image interpretation device
US11321832B2 (en) 2017-10-24 2022-05-03 Toru Nagasaka Image analysis device
WO2023017843A1 (en) * 2021-08-12 2023-02-16 学校法人 久留米大学 Diagnosis device, information acquisition method, and program

Similar Documents

Publication Publication Date Title
JP2001059842A (en) Pathological diagnostic apparatus
Chang et al. Performance measure characterization for evaluating neuroimage segmentation algorithms
CN102525381B (en) The recording equipment of image processing apparatus, image processing method and embodied on computer readable
JP6168426B2 (en) Disease analysis apparatus, control method, and program
US7865000B2 (en) Medical image processing apparatus for analyzing properties of living body based on image data thereof
CN108596894A (en) A kind of prostate automatic Mesh Partition Method for multi-parameter nuclear magnetic resonance image
KR20180082817A (en) Automated prostate cancer detection and localization in the peripheral zone of the prostate in multi-parametric mr images
CN112288704B (en) Visualization method for quantifying glioma invasiveness based on nuclear density function
CN110956634A (en) Deep learning-based automatic detection method and system for cerebral microhemorrhage
Lu et al. Automated segmentation and analysis of the epidermis area in skin histopathological images
JP2018116685A (en) Cytological image processing device, and method for quantifying characteristics of cytological image
CN108961222A (en) A kind of cervical carcinoma early screening recognition methods based on gynecatoptron image
WO2022247573A1 (en) Model training method and apparatus, image processing method and apparatus, device, and storage medium
CN114332132A (en) Image segmentation method and device and computer equipment
JP5532730B2 (en) CNR measuring apparatus, method and computer program
WO2018098697A1 (en) Image feature repeatability measurement method and device
JP2019028887A (en) Image processing method
JP6161146B2 (en) Pathological tissue image analysis method, pathological tissue image analysis apparatus, and pathological tissue image analysis program
Atiyah et al. Brain MRI Images Segmentation Based on U-Net Architecture
JP2023517703A (en) Scalable and highly accurate context-guided segmentation of histological structures including ducts/glands and lumens, duct/gland clusters, and individual nuclei in whole-slide images of tissue samples from spatial multiparameter cellular and subcellular imaging platforms
CN117036343A (en) FFOCT image analysis method and device for identifying axillary lymph node metastasis
JP2003515828A (en) Dynamic thresholding of segmented datasets and display of similar values in similar images
Dika et al. Advantages of manual and automatic computer-aided compared to traditional histopathological diagnosis of melanoma: A pilot study
CN108765399B (en) Lesion site recognition device, computer device, and readable storage medium
CN114022481B (en) Method and system for determining size of blood vessel-lacking area of esophageal cancer