JP2001057313A - Coaxial non-contact transformer - Google Patents

Coaxial non-contact transformer

Info

Publication number
JP2001057313A
JP2001057313A JP11232291A JP23229199A JP2001057313A JP 2001057313 A JP2001057313 A JP 2001057313A JP 11232291 A JP11232291 A JP 11232291A JP 23229199 A JP23229199 A JP 23229199A JP 2001057313 A JP2001057313 A JP 2001057313A
Authority
JP
Japan
Prior art keywords
magnetic
transformer
core
winding
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11232291A
Other languages
Japanese (ja)
Inventor
Yoshitaka Saito
義孝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11232291A priority Critical patent/JP2001057313A/en
Publication of JP2001057313A publication Critical patent/JP2001057313A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the transfer efficiency of a coaxial non-contact transformer using an electromagnetic induction system. SOLUTION: Formed materials consisting of a coil 2a formed by winding a wire material and two magnetic material cores, which pinch-in the coil 2a between them from the upper and lower sides and are formed into an annular discoid form, are used for a coaixal non-contact transformer, and these formed materials having different diameters are combined to each other into a concentrical form and in close proximity to the diametrical direction of the transformer, whereby the transfer efficiency of the transfomer is increased. Moreover, it is preferable that magnetic material sleeves 5a and 5b formed by winding a strip plate-shaped magnetic steel plate are provided on at least either of the inner peripheral part, which is formed on the innermost side of the core, and the outer peripheral part, which is formed on the outermost side of the core.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転軸のまわりの
可動部と固定部との間の電力供給及び信号伝達を行う電
磁誘導方式の電子部品に係わり、特に4輪自動車のハン
ドル部の軸の周りに装着され、ハンドル部での電力供給
及び信号伝達に好適な非接触式トランスの構成に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction type electronic component for supplying power and transmitting a signal between a movable portion and a fixed portion around a rotating shaft, and more particularly to a steering wheel portion of a four-wheel vehicle. And a non-contact type transformer suitable for power supply and signal transmission at the handle portion.

【0002】[0002]

【従来の技術】現在、4輪自動車は世界的に普及してお
り、それらのほとんど全てにエアコンやカーナビゲーシ
ョン等の電装系統が備えられており、その大半は、フロ
ントパネル近辺やハンドルの付け根付近に操作系が集中
している。この為、電装系を操作する場合は、一時的に
ではあるが、ハンドルから片手を離すことになり、高速
走行時などではハンドル操作を誤り大事故につながる可
能性が高くなる。この点を改善するため、最近ではハン
ドル部に電装系統のコントロールスイッチを有し、操作
時でもハンドルから手を離す必要のない、安全面を考慮
した4輪自動車が普及しつつある。この場合、ハンドル
部にある操作系との受給電には有線方式が用いられてお
り、ハンドル回転操作によって断線しないように、ばね
性を持ったフレキシブルな線材が用いられている。これ
は複数本の線材を並行させたフラットケーブルを丸めた
形をしており、ハンドルが回転しても線材には張力がか
からず、断線しないようになっている。
2. Description of the Related Art At present, four-wheeled vehicles are widely used worldwide, and almost all of them are equipped with an electric system such as an air conditioner and a car navigation system, and most of them are near a front panel or near a base of a steering wheel. The operation system is concentrated in For this reason, when operating the electrical system, one hand is temporarily removed from the steering wheel, and there is a high possibility that a wrong operation of the steering wheel may lead to a large accident during high-speed running. In order to improve this point, recently, a four-wheeled vehicle which has a control switch of an electric system in a steering wheel portion and which does not need to be released from the steering wheel even at the time of operation and which is considered in consideration of safety has been widely used. In this case, a wired system is used for power supply and reception to and from the operation system in the handle portion, and a flexible wire having spring properties is used so as not to be disconnected by the rotation operation of the handle. This is a rounded flat cable in which a plurality of wires are arranged in parallel, so that even if the handle is rotated, no tension is applied to the wires and the wires are not broken.

【0003】しかし、この線材の取り付けは、ハンドル
操作において左右均等に回転できる必要のあることか
ら、中立の位置に取り付けなければならず、位置調整は
組立作業の中でも非常に手間のかかる作業になってい
る。また、作動時には、線材同士が擦れるため、製品寿
命が短く、また線材が擦れる際に生ずる音や、ハンドル
操作時に若干の抵抗が生じるために快適性が損なわれる
と主張するユーザも存在する。
[0003] However, this wire must be installed in a neutral position because it is necessary to be able to rotate left and right evenly when operating the handle. Position adjustment is a very time-consuming operation during assembly. ing. In addition, some users argue that the wires are rubbed at the time of operation, so that the product life is short, and that the sound generated when the wires are rubbed and the comfort is impaired due to slight resistance generated when operating the steering wheel.

【0004】これらの問題に対して、従来は、図4に示
すような対向型非接触式トランスが用いられた。これ
は、一対の対向するフェライトコア21、22と、この
コアの対向面上に各々配置された線輪23、24と、磁
性鋼板から成る磁性体スリーブ25,26から構成さ
れ、電磁誘導方式にて、電力供給および信号伝達を行っ
ていた。
In order to solve these problems, conventionally, a facing non-contact type transformer as shown in FIG. 4 has been used. It is composed of a pair of opposing ferrite cores 21 and 22, wires 23 and 24 disposed on opposing surfaces of the cores, and magnetic sleeves 25 and 26 made of a magnetic steel plate. Power supply and signal transmission.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、対向型
非接触式トランスによる電力供給及び信号伝達の伝送効
率は40%程度にとどまっている。本発明においては、
電磁誘導方式による非接触式トランスの伝送効率を向上
させることを課題としている。
However, the transmission efficiency of power supply and signal transmission by the opposed type non-contact type transformer is only about 40%. In the present invention,
It is an object to improve the transmission efficiency of a non-contact type transformer using an electromagnetic induction method.

【0006】[0006]

【課題を解決するための手段】本発明の同軸型非接触式
トランスにおいては、線材を巻き回した線輪と、その線
輪を上下から挟み込む環状の平板形状をなす2枚の磁性
体コアからなる形成物を用い、直径の異なる前記形成物
を同心円状に、径方向に近接して組み合わせることによ
り伝送効率を上げている。
According to the present invention, there is provided a coaxial non-contact type transformer comprising a wire wound around a wire and two magnetic cores having an annular flat plate shape sandwiching the wire from above and below. The transmission efficiency is increased by using the formed products having different diameters and combining the formed products having different diameters concentrically and closely in the radial direction.

【0007】さらには、最も内側になる磁性体コアの内
周部分及び最も外側になる外周部分の少なくとも一方に
は、帯板状の磁性鋼板を巻き回して成る磁性体スリーブ
を設けることが好ましい。
Further, it is preferable to provide a magnetic sleeve formed by winding a strip-shaped magnetic steel sheet on at least one of the inner peripheral portion and the outer peripheral portion of the innermost magnetic core.

【0008】[0008]

【作用】本発明による同軸型非接触式トランスの構成を
模式的に図3に示す。11a,11b,13a,13b
はフェライトコア、12a,12bは巻線部、15a,
15bは磁性体スリーブである。
FIG. 3 schematically shows the configuration of a coaxial non-contact transformer according to the present invention. 11a, 11b, 13a, 13b
Is a ferrite core, 12a and 12b are winding portions, 15a and
15b is a magnetic sleeve.

【0009】非接触式トランスに同軸型を採用すること
で、磁性体コアの各部分の位置精度は、磁性体コアの加
工精度に、ほぼ依存して決まる。それゆえ、磁性体コア
同士の間隔、即ち、ギャップ長を1mm程度まで低減す
ることが可能になる。
By employing a coaxial type non-contact transformer, the positional accuracy of each portion of the magnetic core is determined substantially depending on the processing accuracy of the magnetic core. Therefore, the distance between the magnetic cores, that is, the gap length can be reduced to about 1 mm.

【0010】結果として、磁路長を短くできるため磁性
体コアのインダクタンス値が大きくなり、励磁電流を低
く抑えることが可能となり、巻線部の電気抵抗によるジ
ュール損失が低減する。励磁電流値の低下に伴い磁性体
コアに生ずる磁束密度も小さくなるので、磁性体コアの
ヒステリシス損失等の鉄損も小さくなる。ギャップ長が
狭まることで、漏洩磁束が減少し、伝送効率が向上す
る。
As a result, since the magnetic path length can be shortened, the inductance value of the magnetic core increases, the exciting current can be suppressed low, and the Joule loss due to the electric resistance of the winding portion is reduced. Since the magnetic flux density generated in the magnetic core decreases as the exciting current value decreases, iron loss such as hysteresis loss of the magnetic core also decreases. By reducing the gap length, the leakage magnetic flux is reduced, and the transmission efficiency is improved.

【0011】また、最も内側になる磁性体コアの内周部
分及び最も外側になる外周部分の双方もしくは一方に、
帯板状の磁性鋼板を巻き回して成る磁性体スリーブを設
けることで、線輪を挟み込んだ一対の磁性体コアの間の
磁気的結合が更に向上し、磁束の漏洩が減少する。即
ち、銅損及び漏洩磁束の減少によって伝送効率が向上す
る。また、磁性体スリーブの介在により、外部雑音の大
半が、この部分で遮蔽され、外部雑音の影響を受けにく
い信頼性の高い非接触式トランスが得られる。
Further, at least one of the inner peripheral portion of the innermost magnetic core and the outer peripheral portion of the outermost core,
By providing the magnetic sleeve formed by winding a strip-shaped magnetic steel plate, the magnetic coupling between the pair of magnetic cores sandwiching the wire loop is further improved, and the leakage of magnetic flux is reduced. That is, the transmission efficiency is improved by reducing the copper loss and the leakage magnetic flux. In addition, most of the external noise is shielded by this part due to the interposition of the magnetic sleeve, so that a highly reliable non-contact type transformer which is hardly affected by the external noise can be obtained.

【0012】[0012]

【実施例】本発明の実施例について、図面を参照して説
明する。
Embodiments of the present invention will be described with reference to the drawings.

【0013】(実施例1)図1に、本発明による非接触
式トランスの実施例を示す。このトランスは、52.7
mol%Fe−39.3mol%NiO−8.0m
ol%ZnOのMn−Zn系フェライト材からなる、外
径φ70mm、内径φ60mm、厚さ3mmの円板型の
コア1b、3bと、同じ材質で、寸法が外径φ58m
m、内径48mm、厚さ3mmの円板型のコア1a、3
aと、直径0.4mmのフォルマル被覆銅線を30ター
ン巻き回した巻線部2a及び2bとから成る。
(Embodiment 1) FIG. 1 shows an embodiment of a non-contact type transformer according to the present invention. This transformer is 52.7
mol% Fe 2 O 3 -39.3mol% NiO-8.0m
ol% ZnO Mn-Zn ferrite material, made of the same material as the disk-shaped cores 1b and 3b having an outer diameter of 70 mm, an inner diameter of 60 mm, and a thickness of 3 mm, and having an outer diameter of 58 m.
m, inner diameter 48 mm, thickness 3 mm, disk-shaped core 1a, 3
a, and winding portions 2a and 2b formed by winding a formal coated copper wire having a diameter of 0.4 mm for 30 turns.

【0014】本実施例では、巻線部2aから巻線部2b
に電力伝送が行われている。コア1aとコア1b及びコ
ア3aとコア3bは、各々2枚1組になっており、巻線
部2a及び2bは、各々コア1aと3a及びコア1bと
3bによって挟み込まれ、熱伝導性及び電気絶縁性に優
れたシリコン樹脂4aと4bによって埋め込まれてい
る。これらを同心円状に組み合わせることで同軸型非接
触式トランスを形成している。
In this embodiment, the windings 2a to 2b
Power is being transmitted. The core 1a and the core 1b and the core 3a and the core 3b are each a pair, and the winding portions 2a and 2b are sandwiched by the cores 1a and 3a and the cores 1b and 3b, respectively. It is embedded with silicon resins 4a and 4b having excellent insulating properties. These are concentrically combined to form a coaxial non-contact transformer.

【0015】この非接触式トランスを用いて、伝送効率
を実測してみた。入力は16V/15Wとし、ファンク
ションジェネレータにより周波数20kHzの正弦波入
力とした。出力はスペクトルアナライザにより測定し、
出力電力を求めたところ、6.5Wの出力電力が得ら
れ、その伝送効率は43%であった。
Using this non-contact transformer, the transmission efficiency was measured. The input was 16 V / 15 W, and a sine wave input having a frequency of 20 kHz was used by a function generator. The output is measured by a spectrum analyzer,
When the output power was determined, an output power of 6.5 W was obtained, and the transmission efficiency was 43%.

【0016】また、同様の方法で、図4に示したような
従来の対向型非接触式トランスにおいて、フェライトコ
ア21と22の対向間隔を、この形状で許容しうる最短
の間隔である3mmとし、また本実施例と同等の条件で
比較するために磁性体スリーブを外した場合について測
定したところ、出力電力は4.9Wであり、その伝送効
率は33%であった。ちなみに、従来の対向型非接触式
トランスにおいて磁性体スリーブを有する場合について
も同様の測定をしたところ、出力電力は6.0Wであ
り、その伝送効率は40%であった。
Further, in the same manner, in the conventional non-contact type non-contact transformer shown in FIG. 4, the opposing interval between the ferrite cores 21 and 22 is set to 3 mm which is the shortest interval allowable in this shape. In addition, for comparison under the same conditions as those of the present embodiment, measurement was made with the magnetic sleeve removed, and the output power was 4.9 W and the transmission efficiency was 33%. By the way, when the same measurement was performed for a conventional facing non-contact type transformer having a magnetic sleeve, the output power was 6.0 W and the transmission efficiency was 40%.

【0017】(実施例2)図2に、本発明の他の実施例
による同軸型非接触式トランスを示す。このトランス
は、実施例1で示した同軸型非接触式トランスに厚さ
0.1mmの45%Ni−Fe磁性鋼板を巻き回して形
成した磁性体スリーブ5aと5bを付加したものであ
る。この磁性体スリーブ5aと5bは、巻線部2aをコ
ア1aと3aで挟み込んだ成形体の内周部、及び、巻線
部2bをコア1bと3bで挟み込んだ成形体の外周部に
各々10層巻き回され、同様にシリコン樹脂4a、4b
にて接着固定されている。
(Embodiment 2) FIG. 2 shows a coaxial non-contact type transformer according to another embodiment of the present invention. This transformer is obtained by adding magnetic sleeves 5a and 5b formed by winding a 45% Ni-Fe magnetic steel sheet having a thickness of 0.1 mm to the coaxial non-contact transformer described in the first embodiment. The magnetic sleeves 5a and 5b are respectively provided on the inner peripheral portion of the molded body in which the winding portion 2a is sandwiched between the cores 1a and 3a and on the outer peripheral portion of the molded body in which the winding portion 2b is sandwiched between the cores 1b and 3b. The layers are wound and the silicone resin 4a, 4b
It is fixed by bonding.

【0018】この同軸型非接触式トランスを用いて、伝
送効率を実測してみた。入力は16V/15Wとし、フ
ァンクションジェネレータにより周波数20kHzの正
弦波入力とした。出力はスペクトルアナライザにより測
定し、出力電力を求めたところ、7.5Wの出力電力が
得られ、その伝送効率は50%であった。
Using this coaxial non-contact transformer, the transmission efficiency was measured. The input was 16 V / 15 W, and a sine wave input having a frequency of 20 kHz was used by a function generator. The output was measured by a spectrum analyzer, and the output power was obtained. As a result, an output power of 7.5 W was obtained, and the transmission efficiency was 50%.

【0019】また、同様の方法で、図4に示したような
従来の対向型非接触式トランスにおいて、フェライトコ
ア21と22の対向間隔をこの形状で許容しうる最短の
間隔である3mmとした場合について測定した。その結
果は、実施例1で説明したように、出力電力は6.0W
であり、その伝送効率は40%であった。このような同
軸形状にフェライトコアを配置したことによる伝送効率
の向上は、他の磁性体コアにおいても可能であると考え
られる。
In the same manner, in the conventional opposed-type non-contact type transformer shown in FIG. 4, the opposed interval between the ferrite cores 21 and 22 is set to 3 mm which is the shortest interval allowable in this shape. The case was measured. As a result, as described in the first embodiment, the output power is 6.0 W
And its transmission efficiency was 40%. It is considered that the transmission efficiency can be improved by arranging the ferrite cores in such a coaxial shape in other magnetic cores.

【0020】[0020]

【発明の効果】非接触式トランスに同軸型を採用するこ
とで、コア同士の間隔、即ち、ギャップ長を低減でき、
磁路長を短くできるため、コアのインダクタンス値が大
きくなり、励磁電流値を低く抑えることが可能となる。
これらの結果、鉄損および銅損が低減し、伝送効率が向
上した非接触式トランスが得られる。
According to the present invention, by adopting a coaxial type as the non-contact type transformer, the interval between cores, that is, the gap length can be reduced.
Since the magnetic path length can be shortened, the inductance value of the core increases, and the exciting current value can be suppressed low.
As a result, a non-contact type transformer with reduced iron loss and copper loss and improved transmission efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例による同軸型非接触式ト
ランスを示す断面斜視図。
FIG. 1 is a sectional perspective view showing a coaxial non-contact type transformer according to a first embodiment of the present invention.

【図2】本発明の第2の実施例による同軸型非接触式ト
ランスを示す断面斜視図。
FIG. 2 is a sectional perspective view showing a coaxial non-contact type transformer according to a second embodiment of the present invention.

【図3】本発明による同軸型非接触式トランスの構成を
示す模式図。
FIG. 3 is a schematic diagram showing a configuration of a coaxial non-contact transformer according to the present invention.

【図4】従来の対向型非接触式トランスの概略構成を示
す断面斜視図。
FIG. 4 is a sectional perspective view showing a schematic configuration of a conventional opposed-type non-contact transformer.

【符号の説明】[Explanation of symbols]

1a,1b フェライトコア 2a,2b 巻線部 3a,3b フェライトコア 4a,4b シリコン樹脂 5a,5b 磁性体スリーブ 11a,11b フェライトコア 12a,12b 巻線部 13a,13b フェライトコア 15a,15b 磁性体スリーブ 21,22 フェライトコア 23,24 巻線部 25,26 磁性体スリーブ 1a, 1b Ferrite core 2a, 2b Winding section 3a, 3b Ferrite core 4a, 4b Silicon resin 5a, 5b Magnetic sleeve 11a, 11b Ferrite core 12a, 12b Winding section 13a, 13b Ferrite core 15a, 15b Magnetic sleeve 21 , 22 Ferrite core 23, 24 Winding part 25, 26 Magnetic sleeve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 線材を巻き回した線輪と、その線輪を上
下から挟み込む環状の平板形状をなす2枚の磁性体コア
からなる形成物を構成要素とし、直径の異なる前記形成
物を同心円状に、径方向に近接して組み合わせて成るこ
とを特徴とする同軸型非接触式トランス。
1. A structure comprising a wire wound around a wire and two magnetic cores having an annular flat plate shape sandwiching the wire from above and below, and the concentric circles having different diameters. A coaxial non-contact type transformer characterized by being combined in a radially close proximity.
【請求項2】 請求項1記載の、同軸型非接触式トラン
スにおいて、最も内側になる磁性体コアの内周部分及び
最も外側になる外周部分の少なくとも一方に、帯板状の
磁性鋼板を巻き回して成る磁性体スリーブを有すること
を特徴とする同軸型非接触式トランス。
2. The coaxial non-contact transformer according to claim 1, wherein a strip-shaped magnetic steel sheet is wound around at least one of an inner peripheral portion and an outer peripheral portion of the innermost magnetic core. A coaxial non-contact type transformer having a magnetic sleeve formed by rotation.
JP11232291A 1999-08-19 1999-08-19 Coaxial non-contact transformer Pending JP2001057313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11232291A JP2001057313A (en) 1999-08-19 1999-08-19 Coaxial non-contact transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11232291A JP2001057313A (en) 1999-08-19 1999-08-19 Coaxial non-contact transformer

Publications (1)

Publication Number Publication Date
JP2001057313A true JP2001057313A (en) 2001-02-27

Family

ID=16936926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11232291A Pending JP2001057313A (en) 1999-08-19 1999-08-19 Coaxial non-contact transformer

Country Status (1)

Country Link
JP (1) JP2001057313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005472A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
JP2018064332A (en) * 2016-10-11 2018-04-19 Tdk株式会社 Rotary magnetic coupling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005472A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
JP2018064332A (en) * 2016-10-11 2018-04-19 Tdk株式会社 Rotary magnetic coupling device

Similar Documents

Publication Publication Date Title
JP3725177B2 (en) Transmission controller using separation transformer and separation transformer
US4754180A (en) Forceless non-contacting power transformer
US6388548B1 (en) Non-contact transformer and vehicular signal relay apparatus using it
JP5335226B2 (en) Movable transmission device
US20180102211A1 (en) Rotary type magnetic coupling device
JP3458916B2 (en) Rotary transformer type resolver
CN108695048B (en) Magnetic coupling device and wireless power transmission system using the same
JP2012225921A (en) Current sensor with magnetic core
US9583260B2 (en) System and method for increasing coupling of an axle rotary transformer
JP2001057313A (en) Coaxial non-contact transformer
JP2001015363A (en) Noncontact-type transformer
JP2002305121A (en) Non-contact power transmission device
JP2009135840A (en) Drive unit
JP4532034B2 (en) Zero phase current transformer
JP5297129B2 (en) Non-contact power feeding device
JP2000114077A (en) Separate transformer
JP3717324B2 (en) Separation transformer
US20200076478A1 (en) Magnetic coupler and communication system
WO2018180313A1 (en) Coil apparatus
JP2001076949A (en) Coaxial type noncontact transformer
JP2016105464A (en) Magnetic component and electric power transmitter
JP2000199770A (en) Low-noise multicore parallel-cord current detector
JP2001006955A (en) Non-contacting type transformer
JP3644310B2 (en) Non-contact type transformer
JP2000353630A (en) Noncontact type transformer