JP2001056899A - Moving direction detecting device for object - Google Patents

Moving direction detecting device for object

Info

Publication number
JP2001056899A
JP2001056899A JP11231502A JP23150299A JP2001056899A JP 2001056899 A JP2001056899 A JP 2001056899A JP 11231502 A JP11231502 A JP 11231502A JP 23150299 A JP23150299 A JP 23150299A JP 2001056899 A JP2001056899 A JP 2001056899A
Authority
JP
Japan
Prior art keywords
satellite
moving direction
gps
information
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11231502A
Other languages
Japanese (ja)
Inventor
Kenji Nakada
健二 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP11231502A priority Critical patent/JP2001056899A/en
Publication of JP2001056899A publication Critical patent/JP2001056899A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect the moving direction of an object while using a single GPS receiver by discriminating the moving direction of the object on the basis of the lowering tendency of the reception level of a radio wave, which is transmitted from a GPS satellite, to be received by a receiving means installed in the traveling area of the object and the position information of the GPS satellite. SOLUTION: A GPS receiver 6 transmits each of reception information such as the elevation angle and azimuth angle of the satellite and the reception level of the radio wave from the orbit information of the GPS satellite, which receives the radio wave, to radio equipment 7. On the basis of each of information such as the elevation angle and azimuth angle of each GPS satellite and the reception level inputted from the GPS receiver 6 through radio equipment 7 and 8, a computer 9 discriminates the moving direction of an airplane from the lowering tendency of the reception level of each GPS satellite. In this case, based on the input information, the moving direction is determined from the moving tendency of an airplane position, which is estimated on a plane coordinate system with the install position of the GPS receiver 6 as an origin, on the plane coordinate system and on the basis of the compared result of the reception level information and a set threshold value, the presence of the airplane is detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1台のGPS受信
機だけで物体の移動方向を検出可能とする物体の移動方
向検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving direction detecting device for an object which can detect the moving direction of the object with only one GPS receiver.

【0002】[0002]

【従来の技術】従来、各種車両や地上の航空機等の物体
を検出するための装置としては、電気的、磁気的、光学
的、或いは超音波を利用したものが一般的である。これ
ら検出装置の検出方式は、検知領域に送信装置と受信装
置を対向配置し、送信装置から送信された信号波が、車
両や航空機によって影響を受け、受信装置側の受信信号
が予め設定された閾値レベルを境に変化した時、車両又
は航空機の検出信号を生成するのが一般的である。
2. Description of the Related Art Conventionally, as a device for detecting objects such as various vehicles and ground-based aircraft, devices utilizing electric, magnetic, optical, or ultrasonic waves are generally used. In the detection method of these detection devices, a transmission device and a reception device are arranged opposite to each other in a detection area, a signal wave transmitted from the transmission device is affected by a vehicle or an aircraft, and a reception signal on the reception device side is set in advance. When the threshold level is changed, a detection signal of a vehicle or an aircraft is generally generated.

【0003】ところで、車両や地上の航空機等の物体の
移動方向を検出する場合、従来では上述のような物体検
出装置を利用している。即ち、上述の物体検出装置を、
物体の移動経路に沿って間隔を置いて複数配置し、各物
体検出装置の検出信号の発生順序から物体の移動方向を
検出する。
[0003] When detecting the moving direction of an object such as a vehicle or an aircraft on the ground, the above-described object detection device is conventionally used. That is, the above-described object detection device is
A plurality of objects are arranged at intervals along the moving path of the object, and the moving direction of the object is detected from the order of generation of the detection signals of each object detecting device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の移動方向検出装置では、物体検出装置が少なく
とも2個必要であり、しかも、各物体検出装置が、送信
装置と受信装置を必要とするので、コストが高くなる。
また、例えば光学的や超音波利用の物体検出装置等で
は、物体の走路面より上に送受信装置を設置するので、
地上突起物となり車両や航空機の交通に支障を来す場合
がある。
However, in the conventional moving direction detecting device described above, at least two object detecting devices are required, and each object detecting device requires a transmitting device and a receiving device. , The cost will be higher.
In addition, for example, in an optical or ultrasonic object detection device, etc., since the transmission and reception device is installed above the running surface of the object,
It may become a ground protrusion, which may hinder traffic of vehicles and aircraft.

【0005】尚、本出願人によりGPS受信機を利用し
た物体検出装置が、国際公開WO97/4337号に開
示されている。この物体検出方式は、GPS受信機だけ
で送信装置が不要であり、また、GPS受信機を地中に
埋設できるので地上突起物がない等の利点がある。ま
た、この物体検出装置を利用した物体移動方向検出技術
についても示されているが、従来と同様に、複数のGP
S受信機を用い、GPS受信機の受信順序に基づいて移
動方向を検出している。
[0005] The applicant has disclosed an object detection apparatus using a GPS receiver in International Publication WO97 / 4337. This object detection method has an advantage that there is no need for a transmission device only with a GPS receiver, and there is no ground protrusion since the GPS receiver can be buried underground. Although an object movement direction detection technique using this object detection device is also shown, a plurality of GPs
Using the S receiver, the moving direction is detected based on the reception order of the GPS receiver.

【0006】本発明は上記問題点に着目してなされたも
ので、1個のGPS受信機だけを用いて物体の移動方向
を検出可能とした安価な物体の移動方向検出装置を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide an inexpensive object movement direction detecting device capable of detecting an object movement direction using only one GPS receiver. Aim.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1の発明の物体の移動方向検出装置は、物体
の走行領域に設けられGPS衛星から送信される電波を
受信可能な1個の受信手段と、前記受信手段で受信され
る複数の前記GPS衛星から送信される電波の各受信レ
ベルの低下傾向と前記複数のGPS衛星の位置情報とに
基づいて物体の移動方向を判定する方向判定手段とを備
えて構成した。
In order to achieve the above object, an object moving direction detecting apparatus according to the first aspect of the present invention is provided in a traveling area of the object and is capable of receiving a radio wave transmitted from a GPS satellite. And a moving direction of an object is determined on the basis of the number of receiving units and the receiving information of the plurality of GPS satellites received by the plurality of GPS satellites. And a direction determining means.

【0008】かかる構成では、1個の受信手段で、複数
のGPS衛星からの電波を受信する。物体の移動で電波
が遮断されると受信レベルは低下することから、受信手
段の設置位置を中心とすれば、物体と同じ方向にあるG
PS衛星から受信レベルが低下する。従って、方向判定
手段は、複数のGPS衛星からの電波の受信レベルの低
下傾向と各GPS衛星の位置情報から物体の方向を判定
する。
[0008] In this configuration, one receiving unit receives radio waves from a plurality of GPS satellites. If the radio wave is interrupted by the movement of the object, the reception level will decrease. Therefore, if the installation position of the receiving means is the center, G in the same direction as the object
The reception level from the PS satellite decreases. Therefore, the direction determining means determines the direction of the object based on the tendency of the reception level of radio waves from a plurality of GPS satellites to decrease and the position information of each GPS satellite.

【0009】前記方向判定手段は、具体的には、請求項
2のように、一定時間毎に得られる前記複数のGPS衛
星の仰角、方位角及び受信レベルの各情報に基づいて、
前記受信手段の設置位置に対する物体位置を前記一定時
間毎に推定する位置推定手段と、該位置推定手段で推定
された一定時間毎の物体位置の移動傾向に基づいて受信
手段の設置位置に対する物体の移動方向を決定する方向
決定手段とを備える。
[0009] Specifically, the direction judging means, based on information on elevation, azimuth and reception level of the plurality of GPS satellites obtained at regular intervals, as described in claim 2,
Position estimating means for estimating the object position with respect to the installation position of the receiving means at regular intervals, and the position of the object with respect to the installing position of the receiving means based on the moving tendency of the object position at regular intervals estimated by the position estimating means. Direction determining means for determining a moving direction.

【0010】前記位置推定手段は、請求項3のように、
前記複数のGPS衛星のそれぞれの仰角情報及び方位角
情報に基づいて、前記受信手段の設置位置を原点とする
x−y平面座標系における各GPS衛星の座標位置を算
出する衛星位置算出手段と、該衛星位置算出手段で算出
された各GPS衛星のx,y座標成分に対してそれぞれ
の受信レベルに基づいて重み付け処理し、前記各GPS
衛星の座標位置を、各GPS衛星と物体の位置関係を表
す座標位置に変換する座標位置変換手段と、該座標位置
変換手段で得られた各座標位置の重心位置を算出する重
心算出手段とを備え、算出した前記重心位置を、受信手
段の設置位置に対する物体位置と推定する構成であり、
前記方向決定手段は、前記重心算出手段で前記一定時間
毎に算出された重心位置データを、最新のデータで最先
のデータを更新しながら所定数記憶し重心位置の移動デ
ータを記憶する移動データ記憶手段と、該移動データ記
憶手段で記憶された所定数の各重心位置データのx,y
座標成分を加算して算出した座標位置から前記原点に向
かう方向を物体の移動方向とする方向算出手段とを備え
る構成である。
[0010] The position estimating means may be as follows.
Satellite position calculating means for calculating a coordinate position of each GPS satellite in an xy plane coordinate system having an installation position of the receiving means as an origin, based on elevation information and azimuth information of each of the plurality of GPS satellites; The x and y coordinate components of each GPS satellite calculated by the satellite position calculating means are weighted based on the respective reception levels, and the respective GPS satellites are weighted.
Coordinate position conversion means for converting the coordinate position of the satellite into a coordinate position representing the positional relationship between each GPS satellite and the object, and gravity center calculation means for calculating the center of gravity of each coordinate position obtained by the coordinate position conversion means. It is configured to estimate the calculated center of gravity position as an object position with respect to the installation position of the receiving means,
The direction determining means stores a predetermined number of pieces of center-of-gravity position data calculated by the center-of-gravity calculating means at regular time intervals while updating the earliest data with the latest data, and stores movement data of the center of gravity position. Storage means; and x, y of a predetermined number of respective centroid position data stored in the movement data storage means.
A direction calculating unit that sets a direction from the coordinate position calculated by adding the coordinate components to the origin as a moving direction of the object.

【0011】請求項4のように、前記受信手段における
前記電波の受信レベルと予め設定した閾値との比較結果
に基づいて物体の有無を検出する物体検出手段を備え、
前記方向算出手段は、前記物体検出手段から物体有りの
検出信号が入力した時点における算出座標位置から前記
原点に向かう方向を物体の移動方向とするとよい。
According to a fourth aspect of the present invention, there is provided an object detecting means for detecting the presence or absence of an object based on a comparison result between the reception level of the radio wave in the receiving means and a preset threshold value,
The direction calculation means may set a direction from the calculated coordinate position toward the origin to a movement direction of the object when a detection signal indicating presence of an object is input from the object detection means.

【0012】請求項5では、前記方向判定手段は、所定
仰角以上のGPS衛星からの電波を用いて方向を判定す
る構成である。かかる構成では、地上の建物等の影響を
低減できるので、方向判定の信頼性を向上できるように
なる。
According to a fifth aspect of the present invention, the direction determining means determines the direction using a radio wave from a GPS satellite having a predetermined elevation angle or more. In such a configuration, the influence of a building or the like on the ground can be reduced, so that the reliability of the direction determination can be improved.

【0013】請求項6では、前記方向判定手段の判定結
果に基づいて物体の移動方向を表示する表示手段を備え
る構成とした。かかる構成では、人間が目視でも物体の
移動方向を確認できるようになる。
According to a sixth aspect of the present invention, there is provided a display device for displaying a moving direction of an object based on a result of the determination by the direction determining means. With this configuration, a human can visually check the moving direction of the object.

【0014】請求項7の発明では、前記物体が航空機で
あり、前記受信手段を、誘導路の滑走路側端部近傍に設
置し、滑走路に対する前記航空機の進入/進出を判定す
る構成とした。
According to a seventh aspect of the present invention, the object is an aircraft, and the receiving means is installed near an end of the taxiway on the runway side to determine whether the aircraft enters or exits the runway.

【0015】かかる構成では、滑走路に対する航空機の
進入/進出等を判定できるようになる。
[0015] With this configuration, it is possible to determine the entry / exit of the aircraft to / from the runway.

【0016】[0016]

【発明の実施の形態】以下、本発明を航空機の移動方向
判定に適用した実施形態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to the determination of the moving direction of an aircraft will be described below with reference to the drawings.

【0017】図1に本実施形態の概略的な構成を示す。
図1において、1は滑走路、2は誘導路、3は駐機場、
4は管制塔を示す。誘導路2は、例えば図1に示すよう
にA1〜A4の4箇所で滑走路1と接続し、誘導路2の
これら滑走路側端部近傍には、それぞれストップバー5
が設けられる。このストップバー5と滑走路1との間
に、1個のGPS受信機6がそれぞれ設けられる。各G
PS受信機6には、それぞれ無線機7が接続される。
FIG. 1 shows a schematic configuration of the present embodiment.
In FIG. 1, 1 is a runway, 2 is a taxiway, 3 is a tarmac,
Reference numeral 4 denotes a control tower. The taxiway 2 is connected to the runway 1 at four points A1 to A4, for example, as shown in FIG.
Is provided. One GPS receiver 6 is provided between the stop bar 5 and the runway 1. Each G
A radio 7 is connected to each of the PS receivers 6.

【0018】前記管制塔4側には、前記各無線機7から
の情報を受信する無線機8と、該無線機8からの情報に
基づいて物体としての航空機の有無を検出する航空機検
出手段の機能と航空機の走行方向を判定する方向判定手
段の機能とをソフトウエア的に備えるコンピュータ9
と、コンピュータ9による方向判定結果等を表示する表
示手段としての表示装置10が設けられる。
On the control tower 4 side, there are a radio 8 for receiving information from each radio 7 and an aircraft detecting means for detecting the presence or absence of an aircraft as an object based on the information from the radio 8. Computer 9 having software and a function of a direction determining means for determining the traveling direction of the aircraft in software
And a display device 10 as display means for displaying a result of the direction determination by the computer 9 and the like.

【0019】前記各GPS受信機6は、図2に示すよう
に、GPS衛星からの電波を受信する受信アンテナ6A
と、方位角、仰角、受信レベル等の受信情報を伝送信号
に変換して無線機7に出力する受信機本体6Bとが、ハ
ードカバー6C内に収納され、電波が受信可能なように
カバー6C上面を地表面に露出させて誘導路2に埋設さ
れている。尚、6Dは、受信機本体6Bへの電源供給線
と無線機7への信号伝送線を一体化したケーブルであ
る。
As shown in FIG. 2, each of the GPS receivers 6 has a receiving antenna 6A for receiving a radio wave from a GPS satellite.
And a receiver main body 6B for converting reception information such as an azimuth angle, an elevation angle, a reception level and the like into a transmission signal and outputting the transmission signal to the radio device 7, is housed in a hard cover 6C, and a cover 6C for receiving radio waves. It is buried in the taxiway 2 with its upper surface exposed to the ground surface. 6D is a cable in which a power supply line to the receiver main body 6B and a signal transmission line to the wireless device 7 are integrated.

【0020】全地球測位システム(GPS)に用いられ
るGPS衛星は、地球上空約20,000kmで、赤道
面に対し55度の傾斜を有する6個の周回軌道に各4個
づつ、合計24個が配置され、全てのGPS衛星から一
定時間、例えば1秒毎に各衛星の仰角、方位角等の軌道
情報が発信されている。従って、前記GPS受信機6
は、電波を受信したGPS衛星の前記軌道情報からその
衛星の仰角、方位角及び電波の受信レベルの各受信情報
を無線機7に伝送する。GPS受信機6では、約8個程
度のGPS衛星から常時電波を受信している。
The GPS satellites used in the Global Positioning System (GPS) have a total of 24 GPS satellites, each of four orbits in six orbits having an inclination of 55 degrees with respect to the equatorial plane at about 20,000 km above the earth. Orbit information such as the elevation angle and azimuth angle of each satellite is transmitted from all the GPS satellites for a fixed time, for example, every second. Therefore, the GPS receiver 6
Transmits, to the wireless device 7, information on the elevation angle, the azimuth angle, and the reception level of the radio wave from the orbit information of the GPS satellite that has received the radio wave. The GPS receiver 6 constantly receives radio waves from about eight GPS satellites.

【0021】コンピュータ9は、前記GPS受信機6か
ら無線機7,8を介して入力される各GPS衛星の仰
角、方位角及び受信レベルの各情報に基づいて、各GP
S衛星の受信レベルの低下傾向から航空機の移動方向を
判定する。具体的には、後述の図4のフローチャートで
説明するように、前記入力情報に基づいて、GPS受信
機6の設置位置を原点とする平面座標系で航空機位置を
推定し、推定された航空機位置の平面座標系における移
動傾向から物体の移動方向を決定する。また、後述の図
6のフローチャートで示すように、受信レベル情報と予
め設定した閾値との比較結果に基づいて航空機の有無を
検出する。
The computer 9 receives each GPS satellite on the basis of information on the elevation angle, azimuth angle and reception level of each GPS satellite input from the GPS receiver 6 via the radios 7 and 8.
The moving direction of the aircraft is determined from the decreasing tendency of the reception level of the S satellite. Specifically, as will be described later with reference to the flowchart of FIG. 4, based on the input information, the aircraft position is estimated in a plane coordinate system whose origin is the installation position of the GPS receiver 6, and the estimated aircraft position is determined. The moving direction of the object is determined from the moving tendency in the plane coordinate system. Further, as shown in a flowchart of FIG. 6 described later, the presence / absence of an aircraft is detected based on a comparison result between the reception level information and a preset threshold.

【0022】前記表示装置10は、例えば図3に示すよ
うに、滑走路(RUNWAY)と、4箇所の誘導路端部
を示すA1〜A4が表示され、A1〜A4の部分に航空
機に方向を表示するための矢印が表示されている。
For example, as shown in FIG. 3, the display device 10 displays a runway (RUNWAY) and A1 to A4 indicating four end portions of a taxiway. An arrow for display is displayed.

【0023】次に、図4のフローチャートに基づいてコ
ンピュータ9における本実施形態の航空機の移動方向検
出フローについて説明する。ステップ1(図ではS1と
し、以下同様とする。)では、受信した仰角θ及び方位
角αに基づいて、GPS受信機6の設置位置を原点とす
るx−y平面座標系における各GPS衛星の座標を求め
る。ここで、前記平面座標系は、南北方向をy軸、東西
方向をx軸とし、南から北、西から東へ向かう方向をそ
れぞれ正とする。このステップ1が衛星位置算出手段に
相当する。
Next, the flow of detecting the moving direction of the aircraft according to the present embodiment in the computer 9 will be described with reference to the flowchart of FIG. In step 1 (S1 in the figure, the same applies hereinafter), based on the received elevation angle θ and azimuth angle α, each GPS satellite in the xy plane coordinate system whose origin is the installation position of the GPS receiver 6 is set. Find coordinates. Here, in the plane coordinate system, the north-south direction is the y-axis, the east-west direction is the x-axis, and the direction from south to north and west to east is positive. This step 1 corresponds to satellite position calculation means.

【0024】具体的には、まず、図5(A)の関係か
ら、仰角θを用い、Hとして適当な値を定め、下記の
(1)式からRを算出する。尚、Hとしては、例えば地
上から航空機底面までの距離等を用いればよい。図中、
z軸は鉛直方向である。
Specifically, first, an appropriate value is determined as H using the elevation angle θ from the relationship shown in FIG. 5A, and R is calculated from the following equation (1). As H, for example, the distance from the ground to the bottom of the aircraft may be used. In the figure,
The z-axis is vertical.

【0025】R=H/tanθ (1) 次に、図5(B)の関係から、方位角αを用い、GPS
衛星のx,y各座標成分X,Yを下記の(2)、(3)
式から算出する。
R = H / tan θ (1) Next, from the relationship shown in FIG.
The x and y coordinate components X and Y of the satellite are represented by (2) and (3) below.
It is calculated from the formula.

【0026】 X=Rsinα=(H/tanθ)・sinα (2) Y=Rcosα=(H/tanθ)・cosα (3) ステップ2では、各衛星からの電波の受信レベルに基づ
いて、各衛星毎に重み付け係数Lsvを算出する。
X = R sin α = (H / tan θ) · sin α (2) Y = R cos α = (H / tan θ) · cos α (3) In step 2, each satellite is determined based on the reception level of the radio wave from each satellite. , A weighting coefficient Lsv is calculated.

【0027】ステップ3では、周囲の建物等による電波
受信レベルへの影響を極力排除するため、電波が受信さ
れる各GPS衛星の仰角θを予め設定した仰角θf(例
えばθf=20°)と比較し、θ≧θfであるGPS衛
星を方向検出対象衛星として選択する。
In step 3, the elevation angle θ of each GPS satellite from which radio waves are received is compared with a preset elevation angle θf (for example, θf = 20 °) in order to minimize the influence of surrounding buildings on the radio wave reception level. Then, a GPS satellite satisfying θ ≧ θf is selected as a direction detection target satellite.

【0028】ステップ4では、ステップ3で選択された
各GPS衛星について、その座標成分X,Yにステップ
2で算出されたそれぞれの重み付け係数Lsvを乗算
し、各GPS衛星について受信レベルを考慮した座標位
置、言い換えれば、各衛星と航空機の位置関係を表す座
標位置Xsv,Ysv(Xsv=Lsv・X、Ysv=
Lsv・Y)を算出する。この座標位置は、航空機と各
衛星との距離関係を表している。ここでステップ2,4
が座標位置変換手段に相当する。
In step 4, for each of the GPS satellites selected in step 3, their coordinate components X and Y are multiplied by the respective weighting coefficients Lsv calculated in step 2 to obtain coordinates for each GPS satellite in consideration of the reception level. Positions, in other words, coordinate positions Xsv, Ysv (Xsv = Lsv.X, Ysv =
Lsv · Y) is calculated. This coordinate position indicates the distance relationship between the aircraft and each satellite. Here steps 2 and 4
Corresponds to coordinate position conversion means.

【0029】ステップ5では、ステップ4で算出した各
衛星のXsv,Ysvを符号を含めて成分毎の合計値X
s=ΣXsv,Ys=ΣYsvを算出する。このXs,
Ysは、ステップ4で算出した各座標位置の重心を表し
ており、選択された複数のGPS衛星の受信レベル及び
位置関係から推定される航空機位置を示している。この
ステップ5が重心算出手段に相当し、ステップ1,2,
4,5で位置推定手段を構成する。
In step 5, the Xsv and Ysv of each satellite calculated in step 4 are summed with the total value X
s = ΣXsv, Ys = ΣYsv are calculated. This Xs,
Ys represents the center of gravity of each coordinate position calculated in step 4, and indicates the aircraft position estimated from the reception levels and positional relationships of the selected GPS satellites. Step 5 corresponds to the center-of-gravity calculating means.
4 and 5 constitute the position estimating means.

【0030】ステップ6では、GPS衛星から情報を受
信する毎、即ち、1秒毎に算出されるXs,Ysの10
秒間の合計値Xsf=ΣXsi,Ysf=ΣYsi(i
=1〜10)を算出する。このXsf,Ysfは、10
秒前までの10個のデータの合計値であり、最新のデー
タXs,Ysが得られると10秒前の最先のデータX
s,Ysを最新のデータXs,Ysに置き換えて逐次デ
ータを更新して行く。
In step 6, every time information is received from a GPS satellite, that is, 10 times of Xs and Ys calculated every second.
Xsf = fXsi, Ysf = ΣYsi (i
= 1 to 10). Xsf and Ysf are 10
This is the total value of the ten pieces of data up to two seconds before, and when the latest data Xs and Ys are obtained, the earliest data X ten seconds ago is obtained.
The data is sequentially updated by replacing s and Ys with the latest data Xs and Ys.

【0031】ステップ7では、図6のフローチャートに
示す航空機検出動作で、航空機有りと判定された時点の
Xsf,Ysfを、Xd,Ydとする。ここで、図6の
航空機検出フローについて説明する。
In step 7, Xsf and Ysf at the time when it is determined that there is an aircraft in the aircraft detection operation shown in the flowchart of FIG. 6 are set to Xd and Yd. Here, the aircraft detection flow of FIG. 6 will be described.

【0032】ステップ11では、移動方向検出フローに
おいて得られる各GPS衛星の仰角情報に基づいて所定
仰角以上の衛生を航空機検出対象衛生を選択する。具体
的には、例えば40°以上の仰角の衛星を検出対象衛星
とする。
In step 11, based on the elevation angle information of each GPS satellite obtained in the movement direction detection flow, the sanitary having an elevation angle equal to or greater than a predetermined elevation angle is selected as the aircraft detection target hygiene. Specifically, for example, a satellite having an elevation angle of 40 ° or more is set as a detection target satellite.

【0033】ステップ12では、選択された対象衛生の
受信レベルを測定する。ステップ13では、ステップ1
2で測定された各衛星の受信レベルに基づいて航空機の
有無を判定し、判定がYESとなるまでステップ11〜
13の処理を新たな情報が受信される毎に繰り返し実行
する。
In step 12, the reception level of the selected target sanitation is measured. In step 13, step 1
The presence or absence of an aircraft is determined based on the reception level of each satellite measured in step 2, and steps 11 to 11 are performed until the determination becomes YES.
The process of step 13 is repeated each time new information is received.

【0034】この判定方法としては、例えば、選択され
た対象衛星の受信レベルを、それぞれ予め設定した閾値
と比較し、受信レベルが閾値以下であれば「1」、閾値
を超えていれば「0」とし、「1」を示す衛星の数が半
数以上になったら航空機有りと判定する。
As the determination method, for example, the reception level of the selected target satellite is compared with a preset threshold value, and if the reception level is below the threshold value, it is set to “1”; If the number of satellites indicating "1" is more than half, it is determined that an aircraft is present.

【0035】尚、他の判定方法としては、対象衛星の受
信レベルを合計し平均を算出し、平均値が設定閾値以下
になれば航空機有りと判定するようにしてもよい。ま
た、対象衛星の受信レベルが1つでも設定閾値以下にな
れば航空機有りと判定するようにしてもよい。更には、
これらの判定方法を組合わせて航空機の有無を判定する
ようにしてもよい。
As another determination method, an average may be calculated by summing the reception levels of the target satellites, and if the average value is equal to or less than the set threshold, it may be determined that an aircraft is present. If at least one of the receiving levels of the target satellite falls below the set threshold, it may be determined that an aircraft is present. Furthermore,
The presence or absence of an aircraft may be determined by combining these determination methods.

【0036】このステップ11〜13が物体検出手段と
しての機能に相当する。ステップ8では、図6のステッ
プ13で航空機有りと判定された時点におけるステップ
7の座標位置Xd,Ydから座標原点(GPS受信機6
の設置位置に相当する)に向かう方向を航空機の進行方
向と定める。ここで、ステップ6,7,8で移動データ
記憶手段、方向算出手段を含む方向決定手段を構成す
る。
Steps 11 to 13 correspond to the function as the object detecting means. In step 8, the coordinate origin (GPS receiver 6) is determined from the coordinate positions Xd and Yd in step 7 when it is determined in step 13 in FIG.
(Equivalent to the installation position of the aircraft) is defined as the traveling direction of the aircraft. Here, steps 6, 7, and 8 constitute a direction determining unit including a moving data storage unit and a direction calculating unit.

【0037】そして、ステップ8で航空機の方向が決定
されると、図3の表示装置10でその方向が矢印で表示
される。例えば、A1の位置で、航空機の誘導路2から
滑走路1への移動が検出されれば、図3で示すようにA
1の滑走路進入矢印(図中左側)を、例えば5秒間点滅
後5秒間点灯させる。また、同時に例えば「滑走路進入
アットアルファー1」等のように音声を発生させる。
When the direction of the aircraft is determined in step 8, the direction is indicated by an arrow on the display device 10 of FIG. For example, if the movement of the aircraft from the taxiway 2 to the runway 1 is detected at the position of A1, as shown in FIG.
The first runway approach arrow (left side in the figure) is lit, for example, for 5 seconds and then for 5 seconds. At the same time, a sound such as “runway approach at alpha 1” is generated.

【0038】かかる構成の方向検出装置によれば、送信
装置が不要で1つのGPS受信機6で航空機の移動方向
を検出でき、従来に比べて安価な方向検出装置を提供で
きる。また、GPS受信機6は埋設されるので、地上の
突起物にならず航空機の走行の邪魔にならない。更に、
GPSシステムによる航空機検出用の設備を利用できる
利点がある。雨、雪等の天候の影響がほとんどなく信頼
性に優れる。そして、本実施形態のように、検出した方
向を表示させることで、視程不良時の滑走路への進入航
空機、滑走路からの進出航空機の確認できる。これによ
り、管制官の管制作業を支援でき、錯誤事故の予防に有
効である。
According to the direction detecting device having such a configuration, the direction of movement of the aircraft can be detected by one GPS receiver 6 without the need for a transmitting device, and a direction detecting device that is less expensive than the conventional one can be provided. In addition, since the GPS receiver 6 is buried, it does not become a protrusion on the ground and does not hinder the travel of the aircraft. Furthermore,
There is an advantage that equipment for detecting aircraft by the GPS system can be used. Excellent reliability with almost no influence of weather such as rain and snow. Then, by displaying the detected direction as in the present embodiment, it is possible to confirm the aircraft entering the runway and the aircraft exiting from the runway when visibility is poor. As a result, it is possible to support the traffic control operation of the traffic controller, which is effective in preventing a mistaken accident.

【0039】尚、図4のステップ1で算出した座標を利
用して、図7のように電波が受信可能なGPS衛星Sv
1〜Sv8(本実施形態では8個とする)の位置を、G
PS受信機を中心として円表示方式で表示させることが
できる。図中の0°〜90°は、仰角を示し、中心の仰
角90°の位置はGPS受信機の設置位置である。
By using the coordinates calculated in step 1 of FIG. 4, a GPS satellite Sv capable of receiving radio waves as shown in FIG.
The positions of 1 to Sv8 (eight in this embodiment) are G
It can be displayed in a circle display system centering on the PS receiver. 0 ° to 90 ° in the drawing indicate the elevation angle, and the position at the central elevation angle of 90 ° is the installation position of the GPS receiver.

【0040】かかる表示を利用して航空機の移動方向の
判定ができる。即ち、表示された各衛星Sv1〜Sv8
の明るさを、例えば受信レベルが低下するにつれて暗く
表示させる。図7で説明すれば、航空機20が西(W)
から東(E)に矢印方向へ向かって移動しているとす
る。この場合、最初に衛星Sv3の受信レベルが低下し
暗くなる。その後、Sv1→Sv2→Sv6→Sv5→
Sv7の順で受信レベルが低下し、この順で表示が暗く
なる。このようにして、これら各衛星の表示状態を目視
していれば航空機の移動方向を判定できる。また、判定
する方向が滑走路への進入と滑走路からの進出のような
1方向だけで単純であれば、原点を中心にしてどちら側
の衛星が先に暗くなったかを判定するだけでも方向を判
定することができる。
Using such a display, the moving direction of the aircraft can be determined. That is, each of the displayed satellites Sv1 to Sv8
Is displayed darker as the reception level decreases, for example. Referring to FIG. 7, the aircraft 20 is west (W)
Is moving east (E) in the direction of the arrow. In this case, first, the reception level of the satellite Sv3 decreases and darkens. After that, Sv1 → Sv2 → Sv6 → Sv5 →
The reception level decreases in the order of Sv7, and the display becomes dark in this order. In this way, the moving direction of the aircraft can be determined by visually observing the display state of each of these satellites. Also, if the direction to be determined is simple in only one direction, such as approaching to the runway and exiting from the runway, then it is possible to determine which side of the satellite has become darker first by centering on the origin. Can be determined.

【0041】本実施形態では、航空機の方向検出に適用
した例を示したが、航空機に限らず、自動車、列車等の
移動する物体であればどのような物体でもその方向検出
に適用できることは言うまでもない。
In this embodiment, an example in which the present invention is applied to the direction detection of an aircraft has been described. However, it is needless to say that the present invention is not limited to the aircraft and any moving object such as an automobile or a train can be applied to the direction detection. No.

【0042】[0042]

【発明の効果】以上説明したように、請求項1〜4の発
明によれば、送信装置が不要で1個のGPS受信機を用
いて物体の方向検出が可能であるので、従来の方向検出
装置にくらべて安価である。また、地上の突起物がなく
物体の通行に影響を及ぼすことがない。更に、雨、雪等
の天候の影響がほとんどなく信頼性に優れる等、多くの
利点がある。
As described above, according to the first to fourth aspects of the present invention, the direction of an object can be detected using a single GPS receiver without the need for a transmission device. It is cheaper than the device. In addition, there is no protrusion on the ground, and there is no influence on the traffic of the object. Furthermore, there are many advantages such as excellent reliability with little influence of weather such as rain and snow.

【0043】請求項5の発明によれば、請求項1〜4の
効果に加えて、周囲の建物の影響を低減できる。請求項
6の発明によれば、検出した物体の移動方向を目視で確
認できる。
According to the fifth aspect of the invention, in addition to the effects of the first to fourth aspects, the influence of the surrounding buildings can be reduced. According to the invention of claim 6, it is possible to visually confirm the moving direction of the detected object.

【0044】請求項7の発明によれば、空港における航
空機の管制支援システムとして有効である。
According to the seventh aspect of the present invention, it is effective as an air traffic control support system at an airport.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を航空機の方向検出に適用した実施形態
の概略構成図
FIG. 1 is a schematic configuration diagram of an embodiment in which the present invention is applied to aircraft direction detection.

【図2】同上実施形態のGPS受信機の設置例を示す図FIG. 2 is a diagram showing an installation example of a GPS receiver according to the embodiment;

【図3】同上実施形態の表示装置の例を示す図FIG. 3 is a diagram showing an example of the display device of the embodiment.

【図4】本実施形態の方向検出動作のフローチャートFIG. 4 is a flowchart of a direction detecting operation according to the embodiment;

【図5】衛星の座標位置の算出動作の説明図FIG. 5 is an explanatory diagram of a calculation operation of a coordinate position of a satellite.

【図6】本実施形態の航空機検出動作のフローチャートFIG. 6 is a flowchart of an aircraft detection operation according to the embodiment.

【図7】衛星の位置を円表示した例を示す図FIG. 7 is a diagram showing an example in which the positions of satellites are displayed in a circle.

【符号の説明】[Explanation of symbols]

1 滑走路 2 誘導路 6 GPS受信機 7,8 無線機 9 コンピュータ 10 表示装置 20 航空機 DESCRIPTION OF SYMBOLS 1 Runway 2 Taxiway 6 GPS receiver 7,8 Radio 9 Computer 10 Display 20 Aircraft

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】物体の走行領域に設けられGPS衛星から
送信される電波を受信可能な1個の受信手段と、 前記受信手段で受信される複数の前記GPS衛星から送
信される電波の各受信レベルの低下傾向と前記複数のG
PS衛星の位置情報とに基づいて物体の移動方向を判定
する方向判定手段と、 を備える物体の移動方向検出装置。
1. One receiving means provided in a traveling area of an object and capable of receiving a radio wave transmitted from a GPS satellite, and receiving each of radio waves transmitted from a plurality of the GPS satellites received by the receiving means. The decreasing tendency of the level and the plurality of G
A direction determining means for determining a moving direction of the object based on the position information of the PS satellite;
【請求項2】前記方向判定手段は、 一定時間毎に得られる前記複数のGPS衛星の仰角、方
位角及び受信レベルの各情報に基づいて、前記受信手段
の設置位置に対する物体位置を前記一定時間毎に推定す
る位置推定手段と、 該位置推定手段で推定された一定時間毎の物体位置の移
動傾向に基づいて受信手段の設置位置に対する物体の移
動方向を決定する方向決定手段と、を備える請求項1に
記載の物体の移動方向検出装置。
2. The method according to claim 1, wherein the direction determining means determines an object position with respect to an installation position of the receiving means based on each of information on an elevation angle, an azimuth angle, and a reception level of the plurality of GPS satellites obtained at predetermined time intervals. Position estimating means for estimating the position of the receiving means based on the tendency of movement of the object position for each fixed time estimated by the position estimating means. Item 1. A moving direction detecting device for an object according to Item 1.
【請求項3】前記位置推定手段は、 前記複数のGPS衛星のそれぞれの仰角情報及び方位角
情報に基づいて、前記受信手段の設置位置を原点とする
x−y平面座標系における各GPS衛星の座標位置を算
出する衛星位置算出手段と、 該衛星位置算出手段で算出された各GPS衛星のx,y
座標成分に対してそれぞれの受信レベルに基づいて重み
付け処理し、前記各GPS衛星の座標位置を、各GPS
衛星と物体の位置関係を表す座標位置に変換する座標位
置変換手段と、 該座標位置変換手段で得られた各座標位置の重心位置を
算出する重心算出手段とを備え、算出した前記重心位置
を、受信手段の設置位置に対する物体位置と推定する構
成であり、 前記方向決定手段は、 前記重心算出手段で前記一定時間毎に算出された重心位
置データを、最新のデータで最先のデータを更新しなが
ら所定数記憶し重心位置の移動データを記憶する移動デ
ータ記憶手段と、 該移動データ記憶手段で記憶された所定数の各重心位置
データのx,y座標成分を加算して算出した座標位置か
ら前記原点に向かう方向を物体の移動方向とする方向算
出手段と、を備える構成である請求項2に記載の物体の
移動方向検出装置。
3. The position estimating means, based on elevation information and azimuth information of each of the plurality of GPS satellites, determines the position of each GPS satellite in an xy plane coordinate system whose origin is the installation position of the receiving means. Satellite position calculating means for calculating a coordinate position; x, y of each GPS satellite calculated by the satellite position calculating means
A weighting process is performed on the coordinate components based on the respective reception levels, and the coordinate position of each GPS satellite is determined by each GPS satellite.
Coordinate position conversion means for converting to a coordinate position representing the positional relationship between the satellite and the object, and a center of gravity calculation means for calculating the center of gravity of each coordinate position obtained by the coordinate position conversion means, the calculated center of gravity position The direction determining means updates the center-of-gravity position data calculated by the center-of-gravity calculating means at regular intervals with the latest data. A movement data storage means for storing a predetermined number of pieces of the center-of-gravity position movement data, and a coordinate position calculated by adding the x and y coordinate components of the predetermined number of pieces of the center-of-gravity position data stored in the movement data storage means The moving direction detecting device for an object according to claim 2, further comprising: a direction calculating unit that sets a direction from the object to the origin as a moving direction of the object.
【請求項4】前記受信手段における前記電波の受信レベ
ルと予め設定した閾値との比較結果に基づいて物体の有
無を検出する物体検出手段を備え、前記方向算出手段
は、前記物体検出手段から物体有りの検出信号が入力し
た時点における算出座標位置から前記原点に向かう方向
を物体の移動方向とする請求項3に記載の物体の移動方
向検出装置。
4. An object detecting means for detecting the presence or absence of an object based on a result of comparison between a reception level of the radio wave in the receiving means and a preset threshold value, wherein the direction calculating means detects the presence of the object from the object detecting means. 4. The object movement direction detecting device according to claim 3, wherein a direction from the calculated coordinate position at the time when the presence detection signal is input to the origin is set as the object movement direction.
【請求項5】前記方向判定手段は、所定仰角以上のGP
S衛星からの電波を用いて方向を判定する構成である請
求項1〜4のいずれか1つに記載の物体の移動方向検出
装置。
5. The apparatus according to claim 1, wherein said direction judging means comprises a GP having a predetermined elevation angle or more.
The apparatus according to any one of claims 1 to 4, wherein the direction is determined using a radio wave from the S satellite.
【請求項6】前記方向判定手段の判定結果に基づいて物
体の移動方向を表示する表示手段を備える請求項1〜5
のいずれか1つに記載の物体の移動方向検出装置。
6. A display device for displaying a moving direction of an object based on a determination result of said direction determining device.
The moving direction detecting device for an object according to any one of the above.
【請求項7】前記物体が航空機であり、前記受信手段
を、誘導路の滑走路側端部近傍に設置し、滑走路に対す
る前記航空機の進入/進出を判定する構成である請求項
1〜6のいずれか1つに記載の物体の移動方向検出装
置。
7. The apparatus according to claim 1, wherein said object is an aircraft, and said receiving means is installed near an end of a taxiway on a runway side to determine whether said aircraft enters or exits a runway. An apparatus for detecting a moving direction of an object according to any one of the above.
JP11231502A 1999-08-18 1999-08-18 Moving direction detecting device for object Pending JP2001056899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231502A JP2001056899A (en) 1999-08-18 1999-08-18 Moving direction detecting device for object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231502A JP2001056899A (en) 1999-08-18 1999-08-18 Moving direction detecting device for object

Publications (1)

Publication Number Publication Date
JP2001056899A true JP2001056899A (en) 2001-02-27

Family

ID=16924508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231502A Pending JP2001056899A (en) 1999-08-18 1999-08-18 Moving direction detecting device for object

Country Status (1)

Country Link
JP (1) JP2001056899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202380A (en) * 2001-01-04 2002-07-19 Hitachi Ltd Material detecting system and method thereof
KR100424462B1 (en) * 2001-11-21 2004-03-26 삼성전자주식회사 Apparatus for displaying position information and direction in portable terminal and method same
JPWO2011043377A1 (en) * 2009-10-09 2013-03-04 オプテックス株式会社 Object detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004337A1 (en) * 1995-07-17 1997-02-06 The Nippon Signal Co., Ltd. Object detection apparatus
JPH09251599A (en) * 1996-03-18 1997-09-22 Nec Corp Traffic monitoring system for airport
JP2000268300A (en) * 1999-01-13 2000-09-29 Hitachi Ltd Aircraft position detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004337A1 (en) * 1995-07-17 1997-02-06 The Nippon Signal Co., Ltd. Object detection apparatus
JPH09251599A (en) * 1996-03-18 1997-09-22 Nec Corp Traffic monitoring system for airport
JP2000268300A (en) * 1999-01-13 2000-09-29 Hitachi Ltd Aircraft position detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202380A (en) * 2001-01-04 2002-07-19 Hitachi Ltd Material detecting system and method thereof
KR100424462B1 (en) * 2001-11-21 2004-03-26 삼성전자주식회사 Apparatus for displaying position information and direction in portable terminal and method same
JPWO2011043377A1 (en) * 2009-10-09 2013-03-04 オプテックス株式会社 Object detection device

Similar Documents

Publication Publication Date Title
JP3362183B2 (en) Object detection device
US6539306B2 (en) Automotive mirror with integrated Loran components
EP1693681B1 (en) Method and device for determining an initial position in a navigation system
EP2637041A1 (en) System and method for estimating indoor location using satellite signal generation device
EP3502748B1 (en) Train position detection device and method
CN109358352A (en) A kind of spaceborne real-time occultation forecasting procedure
US10908300B2 (en) Navigation method, navigation device and navigation system
US20160340056A1 (en) Precision guidance method and system for aircraft approaching and landing
JP2005004542A (en) Mobile communication device, server device, walk guidance device, method of mobile communication, method of communication, method of guiding walk, program, and computer readable recording medium for recording this program
JP2001056899A (en) Moving direction detecting device for object
JP2853670B2 (en) Position detection system
JP2005156246A (en) Vehicle-mounted positioning system and present location positioning system
JP3526402B2 (en) Landing guidance system
JP4470944B2 (en) Mobile positioning device
JPH0833036A (en) Mobile object position detecting system
US20200183019A1 (en) Information processing apparatus, information processing system, method for outputting result of positioning, and non-transitory computer-readable medium storing program
JP3638582B2 (en) Civil aircraft position recognition system
JP2006337262A (en) Positioning device and positioning method
JPS6326589A (en) Generation device for map data with estimation information for gps
KR100285804B1 (en) Structural system and control method to prevent choking accident of automobile
CN211943153U (en) Two-axis stable guideboard recognition device
JP2007041706A (en) Obstacle detection system, obstacle detection method, and program
Abd EL-Kader et al. An integrated navigation system for Suez Canal (SCINS)
JPH06265627A (en) Collision avoiding apparatus for flying body
JPH06230101A (en) Detector for avalanche, landslide and the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603