JP2001056297A - Surface inspection method and device therefor - Google Patents

Surface inspection method and device therefor

Info

Publication number
JP2001056297A
JP2001056297A JP11230842A JP23084299A JP2001056297A JP 2001056297 A JP2001056297 A JP 2001056297A JP 11230842 A JP11230842 A JP 11230842A JP 23084299 A JP23084299 A JP 23084299A JP 2001056297 A JP2001056297 A JP 2001056297A
Authority
JP
Japan
Prior art keywords
light source
camera
inspection
yellow light
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11230842A
Other languages
Japanese (ja)
Inventor
Yoshiharu Watanabe
義治 渡辺
Hisanori Fujitomo
壽則 藤友
Eiichi Kataishi
栄一 片石
Takahiro Miura
隆弘 三浦
Satoshi Suzuki
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Techno Kk
Original Assignee
Electro Techno Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Techno Kk filed Critical Electro Techno Kk
Priority to JP11230842A priority Critical patent/JP2001056297A/en
Publication of JP2001056297A publication Critical patent/JP2001056297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly and accurately detect and discriminate the defect contents of the surface of an object by a single inspecting device by simultaneously applying irradiation of yellow light in plane shape from a yellow light source and linear blue light from a blue light source, picking up the image of reflected light by a color camera with an RGB output function, and analyzing the image. SOLUTION: Light from a surface yellow light source A is applied to irradiate the surface of an inspected body E, with broadening surrounded by two dotted lines a1, a2. The mutual directions of the yellow light source A and a color camera C are so set that an incidence angle (t) of yellow light a2 toward a focus position (e) of the camera C coincides with an image pickup angle (v) of the camera C. The camera C also picks up the image of irregularly reflected yellow light c2. Light from a linear blue light source B is applied to irradiate the focus position (e), and the camera C picks up the image of only blue light irregularly reflected toward the camera C in the focus position (e) and traveling as shown by c1. RGB output from the camera C and further monochromatic luminance output from a monochromatic camera D if necessary are subjected to OR processing or the like to analyze the image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体の表面を連続
的に自動検査する方法及びそれに用いる装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously and automatically inspecting the surface of an object and an apparatus used for the method.

【0002】[0002]

【従来の技術】従来、金属板などの物体の表面の検査
は、人間の目視による方法が主であったが、装置を使用
する方法も多く提案されており、モノクロカメラと単一
照明とを用いて検査対象物表面で反射される光の輝度変
化を検出して表面の欠陥を検知する方法や、カラーカメ
ラと単一照明とを用いて検査対象物表面で反射される光
の色度変化を検出して表面の欠陥を検査する方法、ま
た、レーザー光を用いて対象物表面をスキャンし、その
反射光の強度、反射角を測定して表面の欠陥を検査する
方法等がある。
2. Description of the Related Art Conventionally, the inspection of the surface of an object such as a metal plate has been mainly performed by visual observation by a human. However, many methods using an apparatus have been proposed. A method of detecting a surface defect by detecting a change in the luminance of light reflected on the surface of the inspection object using a color camera and a chromaticity change of light reflected on the surface of the inspection object using a color camera and a single illumination And inspecting the surface for defects using a laser beam, and measuring the intensity and angle of the reflected light to inspect the surface for defects.

【0003】まず、人間の目視検査では、個人差があ
り、また同一人であっても検査対象の全面にわたって同
一レベルで検査することは事実上不可能であり、欠陥の
検出にムラが生じる。一方、モノクロカメラと単一照明
を組み合わせた検査方法では、コントラストが明確な欠
陥でないと検出できず、薄い皮膜などの低コントラスト
の欠陥は検出が困難であり、また、進行方向に平行な筋
状欠陥は、ほとんどコントラストの差が生じないので検
出できない。
First, in a human visual inspection, there is an individual difference, and it is practically impossible to perform an inspection at the same level over the entire surface of an inspection object even for the same person, resulting in unevenness in defect detection. On the other hand, with an inspection method that combines a monochrome camera and a single illumination, it is not possible to detect a defect unless the contrast is clear, and it is difficult to detect a low-contrast defect such as a thin film. The defect cannot be detected because there is almost no difference in contrast.

【0004】カラーカメラと単一照明を組み合わせた検
査方法では、低コントラストの欠陥があっても色差があ
る場合、例えば白地に黄色の皮膜のような場合には検出
できるが、モノクロカメラの場合と同様に、進行方向に
平行な筋状欠陥においては色差も生じにくく、検出でき
ないケースが多くある。また、レーザー光を使用した検
査方法ではレーザー光が特定の波長である為、色に対す
る検出率が低く、また、価格的に高価なものである。
Inspection methods using a color camera and a single illumination can detect a color difference even if there is a low-contrast defect, for example, a yellow film on a white background. Similarly, in the case of a streak defect parallel to the traveling direction, a color difference is also hardly generated, and in many cases, it cannot be detected. Further, in the inspection method using laser light, since the laser light has a specific wavelength, the detection rate for the color is low, and the method is expensive.

【0005】更に、上記のカラーカメラと単一照明を組
み合わせた検査方法の改良方法として、対象物表面を照
射する赤、緑、青の3原色光源とRGB出力機能を有す
る1台のカラーカメラとを用い、RGB出力の解析によ
り表面状態を検知する方法もある(特開平5−1880
06号)。しかしこの方法も、カメラの撮像範囲で均一
な照射を得る各光源, 対象物、カメラの位置関係が難し
く、同じ欠陥が対象物の位置により異なった反射をする
為、得られた撮像結果に対し, 複雑な処理を加えなけれ
ばならない。
[0005] Further, as an improved method of the inspection method combining the above color camera and a single illumination, a three color light source of three primary colors of red, green and blue for irradiating the object surface and one color camera having an RGB output function are provided. There is also a method of detecting the surface state by analyzing the RGB output using the method described in Japanese Patent Application Laid-Open No. H5-1880.
06). However, this method also has a difficult positional relationship between each light source, object, and camera to obtain uniform illumination in the camera's imaging range, and the same defect reflects differently depending on the position of the object. , You have to add complicated processing.

【0006】実際に発生する物体表面の欠陥は種々であ
るが、これらの従来の方法はいずれも一長一短であるた
め、ある種の欠陥についてのみを対象としたり、複数の
検査方法を併用しているのが現状である。また、単一の
検査方法では異なった種類の欠陥が同じような変化とし
て捉えられることが多く、正確な欠陥種の判別は困難で
あった。
There are various types of defects on the surface of an object which actually occur. However, these conventional methods have advantages and disadvantages. Therefore, only a certain type of defect is targeted, or a plurality of inspection methods are used in combination. is the current situation. Further, with a single inspection method, different types of defects are often regarded as similar changes, and it has been difficult to accurately determine the type of defect.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、従来
同時に検出することが困難であった物体表面の欠陥及び
その種類を効率よく検出・判別する方法及び装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for efficiently detecting and discriminating a defect on the surface of an object and its type, which have been difficult to detect at the same time.

【0008】[0008]

【課題を解決するための手段】本発明は、1台のカラー
カメラを使用してRGB出力を画像処理する方法におい
て、被検査体表面の検査対象部に照射する光の種類を3
原色の一つである青色光と他の2原色の合成である黄色
光との2種とし、且つ前者を線状に後者を面状に照射す
ることにより上記課題を解決したものである。
According to the present invention, there is provided a method of performing image processing on RGB output using one color camera.
The above-mentioned problem has been solved by using two types of blue light, one of the primary colors, and yellow light, which is a combination of the other two primary colors, and irradiating the former linearly and the latter planarly.

【0009】即ち、本発明は、被検査体表面の検査対象
部に、黄色光源から黄色光を面状に、青色光源から青色
光を線状に、各々同時に照射し、反射光を1台のRGB
出力機能を有するカラーカメラで撮像し、RGB出力の
画像解析により被検査体表面の欠陥を検知することを特
徴する表面検査方法であり、被検査体表面の検査対象部
に黄色光を面状に照射する為の黄色光源、被検査体表面
の検査対象部に青色光を線状に照射する為の青色光源、
1台のRGB出力機能を有するカラーカメラ及びRGB
出力の画像解析装置を有することを特徴とする表面検査
装置である。
That is, the present invention simultaneously irradiates a yellow light from the yellow light source in a planar shape and a blue light from the blue light source in a linear shape to the inspection target portion on the surface of the object to be inspected, and reflects the reflected light to one unit. RGB
This is a surface inspection method characterized in that images are taken with a color camera having an output function, and defects on the surface of the object to be inspected are detected by image analysis of RGB output. A yellow light source for irradiating, a blue light source for linearly irradiating blue light to an inspection target portion on a surface of an inspection object,
One color camera and RGB having RGB output function
A surface inspection device having an output image analysis device.

【0010】本発明は更に、上記の方法での反射光をモ
ノクロカメラでも撮像し、白黒輝度の画像処理をも併せ
て行うことにより、検査効率を高める態様も包含してい
る。
The present invention also includes a mode in which the reflected light obtained by the above-described method is imaged by a monochrome camera, and image processing of black-and-white luminance is also performed, thereby improving the inspection efficiency.

【0011】[0011]

【実施例】以下、本発明を、図1及び図2に示す具体例
に基づき、さらに詳細に説明するが、ここに描かれた具
体例は、前記した反射光をモノクロカメラでも撮像し、
白黒輝度の画像処理をも併せて行う態様である。図1
は、黄色光源、青色光源、被検査体、カラーカメラ及び
モノクロカメラの相互位置関係を平面図的に示した図で
あり、図2は、光の照射及びカメラの被検査体との角度
を側面図的に示した図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to specific examples shown in FIGS. 1 and 2. In the specific example described here, the above-mentioned reflected light is imaged by a monochrome camera.
In this embodiment, black-and-white luminance image processing is also performed. FIG.
FIG. 2 is a plan view showing a mutual positional relationship between a yellow light source, a blue light source, an object to be inspected, a color camera, and a monochrome camera, and FIG. It is the figure shown graphically.

【0012】先ず、図1により説明する。被検査体Eは
矢印fで示した方向に移動し、その結果カラーカメラC
及びモノクロカメラDは被検査体の表面をスキャンする
形となる。本例では、黄色光源Aと青色光源Bとは矢印
fと逆方向で被検査体表面に対して一定で且つ各々異な
った角度をもって向いており、カラーカメラCとモノク
ロカメラDとは矢印fと同方向で被検査体表面に対して
一定で且つ各々異なった角度をもって向いている。但し
光源とカメラの相互位置はこの例の場合と逆、即ち光源
が矢印fと同方向でカメラが矢印fと逆方向となってい
ても差し支えない。また、図1では2つの光源は被検査
体の横幅をカバーし得る長方形のものとして描いている
が、カメラがカバーし得る幅に限度があり、図1のよう
な場合は、被検査体の横幅に応じて複数対のカラーカメ
ラ及びモノクロカメラを設置する必要があることはいう
までもない。
First, a description will be given with reference to FIG. The test object E moves in the direction indicated by the arrow f, and as a result, the color camera C
The monochrome camera D scans the surface of the inspection object. In this example, the yellow light source A and the blue light source B are oriented in a direction opposite to the arrow f at a fixed angle with respect to the surface of the test object, and the color camera C and the monochrome camera D are aligned with the arrow f. In the same direction, they face the surface of the test object at constant and different angles. However, the mutual position of the light source and the camera may be opposite to that in this example, that is, the light source may be in the same direction as the arrow f and the camera may be in the opposite direction to the arrow f. Also, in FIG. 1, the two light sources are drawn as rectangles that can cover the lateral width of the test object. However, the width that the camera can cover is limited, and in the case of FIG. Needless to say, it is necessary to install a plurality of pairs of color cameras and monochrome cameras according to the width.

【0013】次に、図2により説明する。黄色光源Aは
面状光源であり、被検査体Eの表面に図中で2本の点線
a1、a3で囲んだ広がりをもって照射されるが、黄色光源
Aとカラーカメラの相互の向きは、被検査体表に対し正
反射の関係、即ち、カメラの焦点位置eへ向かう黄色光
a2の入射角度tとカラーカメラの撮像角度vとが一致す
る方向とする。従って、カラーカメラは焦点位置eで正
反射しc1の如くに進んだ黄色光を撮像するが、黄色光は
面状に照射されるので、正反射した黄色光だけではな
く、焦点位置e以外の位置でカラーカメラ方向に散乱反
射した、例えばc2の如くに進んだ黄色光をも撮像する。
Next, a description will be given with reference to FIG. The yellow light source A is a planar light source, and is indicated by two dotted lines on the surface of the test object E in the figure.
The light is radiated in a range surrounded by a1 and a3, and the mutual orientation of the yellow light source A and the color camera is specularly reflected with respect to the surface of the test object, that is, the yellow light traveling toward the focal position e of the camera.
It is assumed that the incident angle t of a2 coincides with the imaging angle v of the color camera. Accordingly, the color camera captures yellow light specularly reflected at the focal position e and proceeds like c1. However, since the yellow light is illuminated in a planar shape, not only the specularly reflected yellow light but also other than the focal position e is captured. It also captures yellow light that has been scattered and reflected in the direction of the color camera at the position, for example, advancing like c2.

【0014】青色光源Bは線状光源であり、焦点位置e
に照射されるが、青色光源Bとカラーカメラの相互の向
きは、被検査体表に対し正反射の関係とはせず、従って
カラーカメラは、焦点位置eでカラーカメラ方向に散乱
反射しc1の如くに進んだ青色光のみを撮像することとな
る。なお、図では黄色光は便宜的に線で示しているが、
ある程度の幅を持つ光であることは云うまでも無い。
The blue light source B is a linear light source and has a focal position e.
However, the mutual orientation of the blue light source B and the color camera does not have a relationship of regular reflection with respect to the surface of the inspection object. Therefore, the color camera scatters and reflects in the direction of the color camera at the focal position e and c1. As a result, only the blue light that has advanced as described above is imaged. In the figure, the yellow light is indicated by a line for convenience,
It goes without saying that the light has a certain width.

【0015】一方、モノクロカメラDもその焦点位置は
カラーカメラと同じくeであるが、両光源との相互の向
きは、何れの光源についても被検査体表面に対し正反射
の関係とはせず、従って、モノクロカメラでは、焦点位
置eでモノクロカメラ方向に散乱反射しd1の如くに進ん
だ青色光及び黄色光並びに黄色光の照射部分のいずこか
でモノクロカメラ方向に散乱反射しd2の如くに進んだ黄
色光を撮像することとなる。
On the other hand, the focal position of the monochrome camera D is the same as that of the color camera, but the mutual directions of the two light sources do not have a regular reflection relation to the surface of the object to be inspected. Therefore, in the monochrome camera, at the focal position e, the blue light and the yellow light scattered and reflected in the direction of the monochrome camera at the focal position e, and scattered and reflected in the direction of the monochrome camera at any of the irradiation portions of the yellow light and the yellow light, as in d1. Thus, the advanced yellow light is imaged.

【0016】本発明の表面検査装置は、これらの光源類
とカメラ類の他に、カラーカメラからのRGB出力、更
に必要に応じてモノクロカメラからの白黒輝度出力をO
R演算処理等して画像解析するための装置を組み合わせ
て構成されるが、かかる画像解析装置には特に制約は無
く、通常この種の目的で使用されている装置の何れもが
使用できる。
The surface inspection apparatus of the present invention can output RGB output from a color camera and, if necessary, black and white luminance output from a monochrome camera in addition to these light sources and cameras.
Although the apparatus is configured by combining apparatuses for performing image processing by performing R operation processing or the like, there is no particular limitation on such an image analysis apparatus, and any apparatus that is generally used for this kind of purpose can be used.

【0017】次に、欠陥の種類とカメラの出力波形を模
式的に示した図3により説明する。図3の上部には、被
検査体表面に特徴の異なる4つの欠陥の例g、h、i及
びjが、被検査体の進行方向に縦に並ぶ形で存在する例
が示されている。欠陥gは色は被検査体と同じであるが
表面光沢のない欠陥であり、欠陥hは表面光沢は被検査
体と同じであるが黒い色の欠陥であり、欠陥iは被検査
体の進行方向に平行についた溝状の筋状欠陥であり、欠
陥jは薄い色むら欠陥である。
Next, a description will be given with reference to FIG. 3 which schematically shows the types of defects and the output waveform of the camera. The upper part of FIG. 3 shows an example in which examples of four defects g, h, i, and j having different characteristics on the surface of the inspection object are vertically arranged in the traveling direction of the inspection object. The defect g is a defect having the same color as the object to be inspected but without surface gloss, the defect h is a defect having the same surface gloss as the object to be inspected but having a black color, and the defect i is a defect having a progression of the object to be inspected. A groove-like streak defect parallel to the direction, and defect j is a light color unevenness defect.

【0018】図3の下部には、上記4種の欠陥をカラー
カメラで撮像した場合のR、G、Bの出力波形R’、
G’,B’及びモノクロカメラで撮像した場合の白黒輝
度Wの出力波形W’が示されている。正反射及び散乱反
射してカラーカメラに撮像された黄色光のR、Gの出力
波形R’、G’は、欠陥の色合い、形状、大きさにより
変化する。欠陥gと欠陥hとでは同様の形状、大きさの
欠陥であるが、上記したような色合い等の違いがあり、
出力波形R’、G’は図3の如く異なっている。これ
は、出力波形R’が対象物表面の反射率に依存し、光沢
の差に大きく影響を受け、輝度の差に影響は余り受けな
いのに対し、出力波形G’が対象物表面の乱反射や吸収
に依存し、輝度差に大きく影響を受けるが、光沢差の影
響は余り受けない故である。また、R、G共欠陥iのよ
うな筋状欠陥についてはほとんど影響を受けない。R、
Gの反射率は安定しており、欠陥の色合い、形状、大き
さに対応した出力波形R’、G’が得られるので、その
対応関係を予め知ることにより、欠陥の有無だけではな
く、色合い、形状、大きさをも知ることができる。
The lower part of FIG. 3 shows output waveforms R ′, G ′, and B ′ when the above four types of defects are imaged by a color camera.
G ′, B ′ and an output waveform W ′ of black-and-white luminance W when an image is captured by a monochrome camera are shown. The output waveforms R ′ and G ′ of R and G of yellow light captured by a color camera after specular reflection and scatter reflection change depending on the color, shape and size of the defect. Although the defect g and the defect h have the same shape and size, there is a difference in the color tone and the like as described above.
The output waveforms R 'and G' are different as shown in FIG. This is because the output waveform R ′ depends on the reflectance of the surface of the object, is greatly affected by the difference in gloss, and is not significantly affected by the difference in luminance, whereas the output waveform G ′ is irregularly reflected on the surface of the object. This is because the luminance difference greatly depends on the brightness and the absorption, but the gloss difference is not so much affected. Also, line-shaped defects such as R and G co-defects i are hardly affected. R,
The reflectance of G is stable, and output waveforms R 'and G' corresponding to the color, shape, and size of the defect can be obtained. , Shape and size.

【0019】一方、青色光源は、短い波長範囲であり、
そこから散乱反射されたBの出力波形B’は、微小キズ
でも大きく変化する。欠陥iは、黄色の光源では、
R’,G’ともに変化がないが、出力波形B’で強く変
化している。即ち、出力波形B’は欠陥iのように、対
象物の表面の断面が斜めになっている欠陥について、光
源とカラーカメラとの間に正反射の位置関係を生じ、強
く反応する。 モノクロカメラによる明るさの出力波形
の画像処理はコントラスト差の小さい色むら、緩やかな
凹凸等を対象とし、欠陥jのような色合いの変化のない
ものの検出に特化させる。
On the other hand, a blue light source has a short wavelength range,
The output waveform B ′ of B scattered and reflected therefrom changes greatly even with a minute flaw. Defect i is a yellow light source,
Both R ′ and G ′ do not change, but change strongly in the output waveform B ′. In other words, the output waveform B ′ has a specular positional relationship between the light source and the color camera for a defect whose surface on the surface of the object is oblique, such as the defect i, and reacts strongly. The image processing of the output waveform of the brightness by the monochrome camera targets color unevenness with a small contrast difference, gentle unevenness, and the like, and specializes in detection of a defect such as a defect j which has no change in hue.

【0020】このように、黄色光は波長が500−70
0nmで分光度(相対感度)が比較的大きなピークがな
く、安定していて、長波長で分光される欠陥が撮像可能
であり、微小キズ以外の大部分の欠陥、例えば、打痕、
キズ、錆び、油汚れ、樹脂紛、しわを検出する。一方、
青色光は波長が400−500nmで分光度(相対感
度)が黄色の波長とピークが異なり、短波長で分光され
る欠陥が撮像可能であり、微小キズ欠陥を検出する。ま
た、金属表面に緩やかな凹凸や薄い色むらなどの色合い
での変化率が小さい欠陥については、RGB出力の画像
処理では検知できないが、モノクロカメラの撮像からの
白黒輝度の画像処理により検知することができる。
Thus, yellow light has a wavelength of 500-70.
There is no relatively large peak at 0 nm in the spectral resolution (relative sensitivity), and the defect that is stable and can be imaged at a long wavelength can be imaged. Most defects other than minute scratches, for example, dents,
Detects scratches, rust, oil stains, resin powder, wrinkles. on the other hand,
Blue light has a wavelength of 400 to 500 nm and a spectral density (relative sensitivity) having a peak different from that of a yellow wavelength. A defect which is separated at a short wavelength can be imaged, and a minute flaw defect is detected. Defects with a small rate of change in hue, such as gentle unevenness and light color unevenness on the metal surface, cannot be detected by RGB output image processing, but can be detected by monochrome image processing from monochrome camera imaging. Can be.

【0021】このように本発明は、1回の検査で全欠陥
の分類判別を可能としたものでありあらゆる物体の表面
検査に有効であるが、金属、特に銅張積層板の表面の検
査に有効である。ガラスクロスや紙などの基材に樹脂を
含浸したシート若しくは基材を含まない樹脂シートと銅
箔を重ね、加圧加熱処理して得た、絶縁板の片面または
両面に銅箔を施したものが銅張積層板であり、主として
プリント配線基板に使用されるが、その表面状態は、厳
密にはフラットではなく、基材を使用した場合、紙やガ
ラスクロスの布目が表面に数μ程度の凹凸を作ってい
る。即ち、布目のピッチ、太ささや基材の厚みにより、
また、銅箔の製造方法(電解銅箔、圧延銅箔)や製造工
程での方向性、表面処理(防錆、熱変色防止)、厚みに
より、銅張積層板の表面状態に様様な差が出るが、これ
らの差は光源からカメラへ正反射または散乱反射された
光の特定の出力として如実に反映される。このような表
面状態の差は、その全てが欠陥ではないが、欠陥以外の
情報として有効に活用することができる。
As described above, the present invention makes it possible to classify all defects in one inspection and is effective in inspecting the surface of any object. It is valid. Insulating board with copper foil on one or both sides obtained by laminating copper foil on a resin impregnated sheet or a resin sheet containing no base material such as glass cloth or paper, and applying pressure and heat treatment Is a copper-clad laminate, which is mainly used for printed wiring boards, but the surface condition is not strictly flat, and when using a base material, the texture of paper or glass cloth is about several μm on the surface. Making irregularities. That is, the pitch of the cloth, the thickness and the thickness of the substrate,
Also, depending on the method of producing copper foil (electrolytic copper foil, rolled copper foil), the direction in the production process, surface treatment (rust prevention, thermal discoloration prevention), and thickness, there are various differences in the surface condition of the copper clad laminate. However, these differences are reflected in the specific output of specularly or scattered light from the light source to the camera. Such differences in surface state are not all defects, but can be effectively used as information other than defects.

【0022】[0022]

【発明の効果】本発明により、従来複数の検査装置を併
用しなければ実現できなかった検査内容の表面検査が、
1つの検査装置で実現でき、なおかつその欠陥内容を正
確に知ることが可能となり、欠陥発生原因の解析と対策
が迅速に行え、品質の安定化、生産性の向上、コストダ
ウンにつながり、その効果は大きい。
According to the present invention, the surface inspection of the inspection contents which could not be realized without using a plurality of inspection apparatuses in the past,
It can be realized with a single inspection device, and the content of the defect can be accurately known. The cause of the defect can be quickly analyzed and countermeasures can be taken, leading to the stabilization of the quality, the improvement of the productivity, and the cost reduction. Is big.

【図面の簡単な説明】[Brief description of the drawings]

【図1】黄色光源、青色光源、被検査体、カラーカメラ
及びモノクロカメラの相互位置関係を平面図的に示した
図である。
FIG. 1 is a plan view showing a mutual positional relationship among a yellow light source, a blue light source, a test object, a color camera, and a monochrome camera.

【図2】光の照射及びカメラの被検査体との撮像角度を
側面図的に示した図である。
FIG. 2 is a side view showing light irradiation and an imaging angle of a camera with an object to be inspected.

【図3】欠陥の種類とカメラの出力波形を模式的に示し
た図である。
FIG. 3 is a diagram schematically showing types of defects and output waveforms of a camera.

【符号の説明】[Explanation of symbols]

A:黄色の面状光源 a1:最上部に向かう黄色光 a2:カメラの焦点位置に向かう黄色光線 a3:最下部に向かう黄色光 B:青色の線状光源 b1:カメラの焦点位置に向かう青色光 C:カラーカメラ c1:カラーカメラが撮像する黄色光のカメラの焦点位置
での正反射光及び青色色光のカメラの焦点位置での散乱
反射光 c2:カラーカメラが撮像する黄色光のカメラの焦点位置
以外での散乱反射光 D:モノクロカメラ d1:モノクロカメラが撮像する黄色光のカメラの焦点位
置での散乱反射光及び青色光のカメラの焦点位置での散
乱反射光 d2:モノクロカメラが撮像する黄色光のカメラの焦点位
置以外での散乱反射光 E:被検査体 e:カメラの焦点位置 t:黄色光a2の入射角度 v:カラーカメラの撮像角度 f:被検査体の進行方向 g:欠陥 h:欠陥 i:欠陥 j:欠陥 k:カラーカメラ及びモノクロカメラのスキャン方向 l:欠陥gを検出した波形 m:欠陥hを検出した波形 n:欠陥iを検出した波形 o:欠陥jを検出した波形 R’:黄色光の正反射光及び散乱反射光からの赤の映像
信号波形 G’:黄色光の正反射光及び散乱反射光からの緑の映像
信号波形 B’:青色光の散乱反射光からの青の映像信号波形 W’:黄色光の散乱反射光及び青色光の散乱反射光から
の明るさの映像信号波形
A: Yellow planar light source a1: Yellow light going to the top a2: Yellow light going to the focal position of the camera a3: Yellow light going to the bottom B: Blue linear light source b1: Blue light going to the focal position of the camera C: Color camera c1: Specular reflection light at the focal position of the yellow light camera captured by the color camera and scattered reflected light at the focal position of the blue light camera c2: Focus position of the yellow light camera captured by the color camera D: monochrome camera d1: scattered reflected light at the focal position of the yellow light captured by the monochrome camera and scattered reflected light at the focal position of the blue light camera d2: yellow captured by the monochrome camera E: Inspection object e: Camera focal position t: Incident angle of yellow light a2 v: Color camera imaging angle f: Traveling direction of inspection object g: Defect h : Defect i : Defect j: Defect k: Scan direction of the color camera and the monochrome camera l: Waveform in which defect g is detected m: Waveform in which defect h is detected n: Waveform in which defect i is detected o: Waveform in which defect j is detected R ': Red image signal waveform from specular reflection light and scattered reflection light of yellow light G ': Green image signal waveform from specular reflection light of yellow light and scattered reflection light B': Blue from scattered reflection light of blue light Image signal waveform W ′: Image signal waveform of brightness from scattered reflected light of yellow light and scattered reflected light of blue light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片石 栄一 福島県西白河郡西郷村大字米字椙山9−41 エレクトロテクノ株式会社内 (72)発明者 三浦 隆弘 福島県西白河郡西郷村大字米字椙山9−41 エレクトロテクノ株式会社内 (72)発明者 鈴木 智 福島県西白河郡西郷村大字米字椙山9−41 エレクトロテクノ株式会社内 Fターム(参考) 2G051 AA37 AA90 AB02 AB07 BA08 BA20 CA03 CA04 CA07 CB01 CB05 DA01 DA06 EA16 EA17 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Eiichi Kataishi 9-41 Sugiyama, Nishigo-mura, Nishishirakawa-gun, Fukushima Prefecture Inside Electrotechno Co., Ltd. −41 Inside Electrotechno Co., Ltd. (72) Inventor Satoshi Suzuki 9-41, Sugiyama, Nishigomura, Nishishirakawa-gun, Fukushima Prefecture F-term (reference) 2G051 AA37 AA90 AB02 AB07 BA08 BA20 CA03 CA04 CA07 CB01 CB05 DA01 DA06 EA16 EA17

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被検査体表面の検査対象部に、黄色光源
から黄色光を面状に、青色光源から青色光を線状に、各
々同時に照射し、反射光を1台のRGB出力機能を有す
るカラーカメラで撮像し、RGB出力の画像解析により
被検査体表面の欠陥を検知することを特徴とする表面検
査方法。
1. An RGB output function for simultaneously irradiating a yellow light from a yellow light source in a planar shape and a blue light from a blue light source in a linear shape to an inspection target portion on the surface of an object to be inspected and reflecting light from one unit. A surface inspection method characterized in that an image is picked up by a color camera and a defect on the surface of the inspection object is detected by image analysis of RGB output.
【請求項2】 被検査体表面の検査対象部に、黄色光源
から黄色光を面状に、青色光源から青色光を線状に、各
々同時に照射し、反射光を1台のRGB出力機能を有す
るカラーカメラ及び1台の白黒輝度出力機能を有するモ
ノクロカメラで各々撮像し、カラーカメラからのRGB
出力の画像解析及びモノクロカメラからの白黒輝度出力
の画像解析により被検査体表面の欠陥を検知することを
特徴とする表面検査方法。
2. An RGB output function for simultaneously irradiating a yellow light from a yellow light source in a planar shape and a blue light from a blue light source in a linear shape to an inspection target portion on the surface of an object to be inspected and reflecting light from one unit. RGB images from a color camera and a monochrome camera having a monochrome brightness output function.
A surface inspection method characterized by detecting defects on the surface of an object to be inspected by image analysis of an output and image analysis of a monochrome luminance output from a monochrome camera.
【請求項3】 黄色光源とカラーカメラとが被検査体表
面に対して正反射の位置関係にあり、青色光源とカラー
カメラとが被検査体表面に対して散乱反射の位置関係に
ある請求項1記載の表面検査方法。
3. The apparatus according to claim 1, wherein the yellow light source and the color camera have a positional relationship of specular reflection with respect to the surface of the inspection object, and the blue light source and the color camera have a positional relationship of scattering reflection with respect to the surface of the inspection object. 1. The surface inspection method according to 1.
【請求項4】 黄色光源とカラーカメラとが被検査体表
面に対して正反射の位置関係にあり、青色光源とカラー
カメラとが被検査体表面に対して散乱反射の位置関係に
あり、黄色光源及び青色光源とモノクロカメラとが被検
査体表面に対して散乱反射の位置関係にある請求項2記
載の表面検査方法。
4. A yellow light source and a color camera have a positional relationship of specular reflection with respect to the surface of the test object, a blue light source and a color camera have a positional relationship of scattered reflection with respect to the surface of the test object. 3. The surface inspection method according to claim 2, wherein the light source, the blue light source, and the monochrome camera have a positional relationship of scattering and reflection with respect to the surface of the inspection object.
【請求項5】 被検査体が銅張積層板である請求項1又
は2記載の表面検査方法。
5. The surface inspection method according to claim 1, wherein the object to be inspected is a copper-clad laminate.
【請求項6】 被検査体表面の検査対象部に黄色光を面
状に照射する為の黄色光源、被検査体表面の検査対象部
に青色光を線状に照射する為の青色光源、1台のRGB
出力機能を有するカラーカメラ及びRGB出力の画像解
析装置を有することを特徴とする表面検査装置。
6. A yellow light source for irradiating the inspection target portion on the surface of the inspection object with yellow light in a planar manner, a blue light source for irradiating blue inspection light linearly on the inspection target portion of the inspection object surface, RGB
A surface inspection device comprising a color camera having an output function and an image analysis device for RGB output.
【請求項7】 被検査体表面の検査対象部に黄色光を面
状に照射する為の黄色光源、被検査体表面の検査対象部
に青色光を線状に照射する為の青色光源、1台のRGB
出力機能を有するカラーカメラ、白黒輝度出力機能を有
するモノクロカメラ並びにRGB出力及び白黒輝度出力
の画像解析装置を有することを特徴とする表面検査装
置。
7. A yellow light source for irradiating the inspection target portion on the surface of the inspection object with yellow light in a plane, a blue light source for irradiating blue light linearly on the inspection target portion of the inspection object surface, RGB
A surface inspection apparatus comprising: a color camera having an output function, a monochrome camera having a black-and-white luminance output function, and an image analyzer for RGB output and black-and-white luminance output.
【請求項8】 黄色光源とカラーカメラとが被検査体に
対して正反射の位置関係にあり、青色光源とカラーカメ
ラとが被検査体に対して散乱反射の位置関係にあり、黄
色光源及び青色光源とモノクロカメラとが被検査体に対
して散乱反射の位置関係にある請求項6又は7記載の表
面検査装置。
8. A yellow light source and a color camera have a positional relationship of specular reflection with respect to the object to be inspected, a blue light source and a color camera have a positional relationship of scattered reflection with respect to the object to be inspected. 8. The surface inspection apparatus according to claim 6, wherein the blue light source and the monochrome camera have a positional relationship of scattering and reflection with respect to the inspection object.
JP11230842A 1999-08-17 1999-08-17 Surface inspection method and device therefor Pending JP2001056297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11230842A JP2001056297A (en) 1999-08-17 1999-08-17 Surface inspection method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11230842A JP2001056297A (en) 1999-08-17 1999-08-17 Surface inspection method and device therefor

Publications (1)

Publication Number Publication Date
JP2001056297A true JP2001056297A (en) 2001-02-27

Family

ID=16914150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11230842A Pending JP2001056297A (en) 1999-08-17 1999-08-17 Surface inspection method and device therefor

Country Status (1)

Country Link
JP (1) JP2001056297A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054530A1 (en) * 2001-12-13 2003-07-03 Kokusai Gijutsu Kaihatsu Co., Ltd. Copper foil inspection device, copper foil inspection method, defect inspection device, defect inspection method
JP2009047517A (en) * 2007-08-17 2009-03-05 Kokusai Gijutsu Kaihatsu Co Ltd Inspection apparatus
JP2010266430A (en) * 2009-04-15 2010-11-25 Jfe Steel Corp Method and apparatus for inspecting defect of steel plate surface
KR101027289B1 (en) * 2008-12-23 2011-04-06 주식회사 포스코 System and method for optically detecting surface defect using time division multplexing mode
CN104198494A (en) * 2014-08-18 2014-12-10 苏州克兰兹电子科技有限公司 On-line detection system for surface defects of plate strips
JP2016011874A (en) * 2014-06-27 2016-01-21 キヤノン株式会社 Image processor and method thereof
JP2019207114A (en) * 2018-05-28 2019-12-05 日本製鉄株式会社 Acceptance/rejection determination method and acceptance/rejection determination device for dull-finished material surface
JP2020147814A (en) * 2019-03-14 2020-09-17 パンパシフィック・カッパー株式会社 System of producing metallic material, and method of producing metallic material
JPWO2022030083A1 (en) * 2020-08-06 2022-02-10
CN115165926A (en) * 2022-07-29 2022-10-11 湖南科洛德科技有限公司 Rolled glass defect detection system
CN115629079A (en) * 2022-10-19 2023-01-20 湖南迪普视智能科技有限公司 Film surface defect detection system and method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054530A1 (en) * 2001-12-13 2003-07-03 Kokusai Gijutsu Kaihatsu Co., Ltd. Copper foil inspection device, copper foil inspection method, defect inspection device, defect inspection method
US7286234B2 (en) 2001-12-13 2007-10-23 Kokusai Gijutsu Kaihatsu Co. Ltd. Copper foil inspection device copper foil inspection method defect inspection device and defeat inspection method
KR100862339B1 (en) * 2001-12-13 2008-10-13 고꾸사이 기쥬쯔 가이하쯔 가부시키가이샤 Copper foil inspection device, copper foil inspection method
JP2009047517A (en) * 2007-08-17 2009-03-05 Kokusai Gijutsu Kaihatsu Co Ltd Inspection apparatus
KR101027289B1 (en) * 2008-12-23 2011-04-06 주식회사 포스코 System and method for optically detecting surface defect using time division multplexing mode
JP2010266430A (en) * 2009-04-15 2010-11-25 Jfe Steel Corp Method and apparatus for inspecting defect of steel plate surface
JP2016011874A (en) * 2014-06-27 2016-01-21 キヤノン株式会社 Image processor and method thereof
CN104198494A (en) * 2014-08-18 2014-12-10 苏州克兰兹电子科技有限公司 On-line detection system for surface defects of plate strips
JP2019207114A (en) * 2018-05-28 2019-12-05 日本製鉄株式会社 Acceptance/rejection determination method and acceptance/rejection determination device for dull-finished material surface
JP2020147814A (en) * 2019-03-14 2020-09-17 パンパシフィック・カッパー株式会社 System of producing metallic material, and method of producing metallic material
WO2020184462A1 (en) * 2019-03-14 2020-09-17 パンパシフィック・カッパー株式会社 System for manufacturing metal material and method of manufacturing metal material
CN113498443A (en) * 2019-03-14 2021-10-12 环太铜业株式会社 System for manufacturing metal material and method for manufacturing metal material
JPWO2022030083A1 (en) * 2020-08-06 2022-02-10
CN115165926A (en) * 2022-07-29 2022-10-11 湖南科洛德科技有限公司 Rolled glass defect detection system
CN115165926B (en) * 2022-07-29 2024-01-19 湖南科洛德科技有限公司 Rolled glass defect detection system
CN115629079A (en) * 2022-10-19 2023-01-20 湖南迪普视智能科技有限公司 Film surface defect detection system and method

Similar Documents

Publication Publication Date Title
JP6629455B2 (en) Appearance inspection equipment, lighting equipment, photography lighting equipment
JP4511978B2 (en) Surface flaw inspection device
JPH109838A (en) Processing method of image and detecting method of defect of surface of substance
JP2010112941A (en) Surface inspection apparatus
JP2001056297A (en) Surface inspection method and device therefor
WO2011086634A1 (en) Liquid crystal panel inspection method and device
TWI495867B (en) Application of repeated exposure to multiple exposure image blending detection method
JPH07218451A (en) Device for optically inspecting steel plate for surface flaw
JP4108829B2 (en) Thickness defect inspection apparatus and inspection method thereof
JP4216485B2 (en) Pattern inspection method and apparatus
JP2984151B2 (en) Surface defect detection method
JP7136064B2 (en) Apparatus for inspecting surface of object to be inspected and method for inspecting surface of object to be inspected
JP3089079B2 (en) Circuit pattern defect inspection method
JP2002214152A (en) Surface inspecting method and device
JP2004138417A (en) Method and apparatus for inspecting scratch in steel plate
KR20230139166A (en) Inspection Method for Wood Product
JPH04294204A (en) Apparatus for extracting defect in object surface
JP3427248B2 (en) Foreign object detection method
JP2018132355A (en) Inspection method for screen printing plate
JPH08304295A (en) Method and apparatus for detecting surface defect
JPS62156547A (en) Detecting method for surface defect
JPH0579999A (en) Inspecting device for precipitated foreign object in bottle
JP3454162B2 (en) Inspection system for flat plate with holes
JP2013044635A (en) Defect detecting device
JPH10103938A (en) Method and apparatus for visual examination of cast product