JP2001043568A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JP2001043568A
JP2001043568A JP11214077A JP21407799A JP2001043568A JP 2001043568 A JP2001043568 A JP 2001043568A JP 11214077 A JP11214077 A JP 11214077A JP 21407799 A JP21407799 A JP 21407799A JP 2001043568 A JP2001043568 A JP 2001043568A
Authority
JP
Japan
Prior art keywords
recording medium
interface
optical recording
transparent substrate
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11214077A
Other languages
Japanese (ja)
Inventor
Takashi Kojima
隆 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11214077A priority Critical patent/JP2001043568A/en
Publication of JP2001043568A publication Critical patent/JP2001043568A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage

Landscapes

  • Holo Graphy (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and surely prevent the reflection of light at an interface regardlessly of material of a layer forming the interface by constructing an optical recording medium consisting of a multi-layered structure provided with a transparent substrate and a recording layer, and forming an antireflection structure on a surface of the transparent substrate or on at least one interface of each layer. SOLUTION: A hologram memory 1 as an optical recording medium is constituted of a recording layer 2 interposed by two sheet of transparent substrates 3 and 4. Each interface between the transparent substrates 3 and 4 and the recording layer 2 and each surface (interface between air and the transparent substrate 3 and 4) has each antireflection structure 5, 6, 7 and 8 formed by an integral forming as antireflection treatment. For example the antireflection structure 6 has a grid structure in which circular groove parts and circular higher parts concentric with the center of the transparent substrate 4 are alternately arranged at a prescribed period. The arranged period of ruggedness is specified to be one fourth of a wavelength of incident light or less, preferably one tenth of that or less, and an optical height for which a rugged part is effective is specified to be one fourth of the wavelength of the incident light (or an odd number times the value).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層構造からなる
光記録媒体に関し、特に、界面等における光の反射を防
止する反射防止処理が施された光記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium having a multilayer structure, and more particularly to an optical recording medium which has been subjected to an anti-reflection treatment for preventing light reflection at an interface or the like.

【0002】[0002]

【従来の技術】光記録媒体は、少なくとも記録層と透明
基板とをそなえており、記録方式や記録層の材質に応じ
て、誘電体膜,接着剤層,反射層等の種々の層が設けら
れる多層構造になっている。このような多層構造の場
合、各層の屈折率の相違から界面において光の反射がお
きるが、界面における光の反射はS/N比の低下の原因
となる。
2. Description of the Related Art An optical recording medium has at least a recording layer and a transparent substrate, and various layers such as a dielectric film, an adhesive layer and a reflective layer are provided according to a recording method and a material of the recording layer. It has a multilayer structure. In the case of such a multilayer structure, light reflection occurs at the interface due to the difference in the refractive index of each layer, but the light reflection at the interface causes a reduction in the S / N ratio.

【0003】そこで、光の反射を防止してS/N比を向
上させる手段として、従来から界面に反射防止膜(反射
防止層)を形成することが行なわれている。例えば、二
次元記録層と透明基板とを直接積層したような構造の場
合では、図13(a)に示すように、透明基板90の表
面(空気との界面)に反射防止膜92を形成したり、図
13(b)に示すように、透明基板90と二次元記録層
91との界面に反射防止膜93を形成することが行なわ
れていた。また、これらの反射防止膜92,93は、透
明基板90の表面へSiOX やMgF等を蒸着又はスパ
ッタリングすることにより形成されていた。
Therefore, as a means for preventing reflection of light and improving the S / N ratio, an antireflection film (antireflection layer) is conventionally formed on the interface. For example, in the case of a structure in which a two-dimensional recording layer and a transparent substrate are directly laminated, as shown in FIG. 13A, an antireflection film 92 is formed on the surface of the transparent substrate 90 (interface with air). In addition, as shown in FIG. 13B, an antireflection film 93 is formed on the interface between the transparent substrate 90 and the two-dimensional recording layer 91. Also, prevention of these reflective films 92 and 93, have been formed by depositing or sputtering a SiO X or MgF, etc. to the surface of the transparent substrate 90.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した反
射防止膜における反射率は、垂直入射の場合、光学的膜
厚(構造的な膜厚×屈折率)が入射光の波長の四分の一
(又はその奇数倍)であり、かつ、反射防止膜の屈折率
2 が、界面を形成する上下の層の屈折率n1 ,n3
対し、n2 2=n1 ×n3 (無反射条件)を満たしている
ときに0になる。つまり、反射防止膜における反射率
は、各屈折率n2 ,n1 ,n3 の関係により左右され、
反射率を最低に抑えようとするならば、上記の無反射条
件を満たす屈折率を有する材質で反射防止膜を形成する
必要がある。図13(a)に示す反射防止膜92の場
合、上層が空気であり下層が透明基板90であるのに対
して、図13(b)に示す反射防止膜93の場合、上層
が透明基板90であり下層が二次元記録層91であり、
空気,透明基板90,二次元記録層91の屈折率が異な
るならば、二つの反射防止膜92,93は異なる屈折率
が要求される。
By the way, the reflectivity of the above-described antireflection film is such that the optical film thickness (structural film thickness × refractive index) is one quarter of the wavelength of the incident light in the case of normal incidence. (Or an odd multiple thereof), and the refractive index n 2 of the antireflection film is n 2 2 = n 1 × n 3 (none) with respect to the refractive indices n 1 and n 3 of the upper and lower layers forming the interface. 0 when the reflection condition is satisfied. That is, the reflectance of the anti-reflection film depends on the relationship among the refractive indexes n 2 , n 1 , and n 3 .
In order to minimize the reflectance, it is necessary to form the antireflection film with a material having a refractive index that satisfies the above-described non-reflection condition. In the case of the antireflection film 92 shown in FIG. 13A, the upper layer is air and the lower layer is the transparent substrate 90, whereas in the case of the antireflection film 93 shown in FIG. And the lower layer is the two-dimensional recording layer 91,
If the refractive indexes of the air, the transparent substrate 90 and the two-dimensional recording layer 91 are different, the two antireflection films 92 and 93 require different refractive indexes.

【0005】しかしながら、反射防止膜として光記憶媒
体に使用可能な材質には限りがあり、上記の無反射条件
を満たす屈折率の材質を見つけることは容易ではない。
このため、従来の光記憶媒体では、界面で接する各層の
屈折率の組み合わせによっては、無反射条件を満たす屈
折率を有する適当な材質が存在せず、ある程度の反射は
妥協せざるを得なかった。
However, there are limitations on the materials that can be used for the optical storage medium as the antireflection film, and it is not easy to find a material having a refractive index that satisfies the above-described nonreflection condition.
For this reason, in the conventional optical storage medium, there is no suitable material having a refractive index satisfying the non-reflection condition depending on the combination of the refractive indices of the layers contacting at the interface, and some reflection has to be compromised. .

【0006】ところで、近年、来るべきマルチメディア
情報化時代への対応として、光記録媒体のさらなる大容
量化,高密度化に向けた研究開発が行なわれている。例
えば、図14に示すように、透明基板103上に積層し
た記録層101を集束レーザビーム102の焦点深度以
上に厚くし、焦点位置をずらすことにより記録層101
内の深さ方向に三次元的な記録を行なう多層記録方式の
光記録媒体(多層光メモリ)100や、図15に示すよ
うに、物体からの反射光や信号等の情報を表す信号ビー
ム106と、記録層108中で信号ビーム106と干渉
を起こすための参照ビーム107とを照射し、参照ビー
ム107の入射角を少しずつ変えていくことにより、記
録層108内の同一箇所に複数個のホログラムを多重記
録するホログラム方式の光記録媒体(ホログラムメモ
リ)105のような、三次元光記録媒体が開発されてい
る。
In recent years, research and development for further increasing the capacity and density of optical recording media have been carried out in response to the coming multimedia information age. For example, as shown in FIG. 14, the recording layer 101 laminated on the transparent substrate 103 is made thicker than the focal depth of the focused laser beam 102 and the focal position is shifted so that the recording layer 101 is shifted.
An optical recording medium (multi-layer optical memory) 100 of a multilayer recording system for performing three-dimensional recording in a depth direction inside the apparatus, and a signal beam 106 representing information such as light reflected from an object and signals as shown in FIG. By irradiating the signal beam 106 with the reference beam 107 in the recording layer 108 and gradually changing the incident angle of the reference beam 107, a plurality of holograms are formed at the same position in the recording layer 108. A three-dimensional optical recording medium, such as a hologram type optical recording medium (hologram memory) 105 for multiplex recording, has been developed.

【0007】このような三次元光記録媒体は、記録層の
厚みが数十〜数百μmと従来の光記録媒体に比べて非常
に厚く、記録層の厚み方向にも三次元的に記録を行なう
ため、界面での反射の防止は従来の二次元的な光記録媒
体よりも厳しく要求される。例えば、上述のホログラム
メモリ105の場合、信号ビーム106と参照ビーム1
07との干渉によりホログラムを記録するが、図16に
示すように、入射側の透明基板109の表面(空気との
界面)や記録層108と入射側の透明基板109との界
面で信号ビームが反射してしまうと、ホログラムを記録
するためのエネルギが不足してしまう虞があり、また、
記録層108と出射側の透明基板110との界面で反射
した反射光111や出射側の透明基板110の表面(空
気との界面)で反射した反射光112が記録個所に入射
すると、誤情報が記録されてしまう虞がある。
In such a three-dimensional optical recording medium, the thickness of the recording layer is several tens to several hundreds μm, which is much larger than that of a conventional optical recording medium, and recording is performed three-dimensionally in the thickness direction of the recording layer. Therefore, prevention of reflection at the interface is more strictly required than in a conventional two-dimensional optical recording medium. For example, in the case of the hologram memory 105 described above, the signal beam 106 and the reference beam 1
The hologram is recorded by interference with the recording layer 108 at the interface (the interface with the air) or the interface between the recording layer 108 and the transparent substrate 109 on the incidence side, as shown in FIG. If reflected, the energy for recording the hologram may be insufficient, and
If the reflected light 111 reflected at the interface between the recording layer 108 and the transparent substrate 110 on the output side or the reflected light 112 reflected on the surface of the transparent substrate 110 on the output side (interface with air) is incident on the recording location, erroneous information is generated. There is a risk of being recorded.

【0008】本発明は上述の課題に鑑み創案されたもの
で、界面を形成する層の材質によらず、容易かつ確実に
界面における光の反射を防止できるようにした、光記録
媒体を提供することを目的とする。
The present invention has been made in view of the above problems, and provides an optical recording medium capable of easily and surely preventing light reflection at an interface irrespective of the material of a layer forming the interface. The purpose is to:

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光記録媒体は、少なくとも透明基板と記録
層とをそなえた多層構造からなる光記録媒体において、
該透明基板の表面又は各層の界面のうち少なくとも一つ
に反射防止構造が形成されていることを特徴としている
(請求項1)。
In order to achieve the above object, an optical recording medium according to the present invention comprises an optical recording medium having a multilayer structure having at least a transparent substrate and a recording layer.
An anti-reflection structure is formed on at least one of the surface of the transparent substrate and the interface of each layer (claim 1).

【0010】ここで、該反射防止構造は、周期的に連続
して配設された凹凸からなり、該凹凸の1配列周期は入
射光の波長の四分の一以下に設定されるとともに、該凹
凸の有効な光学的高さは入射光の波長の略四分の一の奇
数倍に設定され、該界面における平均屈折率が該界面で
接する両側の層の屈折率に対して無反射条件を満たすよ
うに、該凹凸の凹部と凸部との体積比率が設定されてい
ることが好ましい(請求項2)。なお、本明細書におい
て「入射光」とは、記録用及び/又は再生用のビーム光
として光記録媒体に照射され、該光記録媒体に入射する
光のことをさし、「入射光の波長」とは該入射光の反射
防止構造に進入する直前の波長をさす。
Here, the anti-reflection structure is composed of irregularities arranged periodically and continuously, and one arrangement period of the irregularities is set to one quarter or less of the wavelength of the incident light. The effective optical height of the concavities and convexities is set to an odd multiple of approximately one quarter of the wavelength of the incident light, and the average refractive index at the interface is a non-reflection condition with respect to the refractive indexes of the layers on both sides contacting at the interface. It is preferable that the volume ratio between the concave portion and the convex portion of the unevenness is set so as to satisfy the condition (claim 2). In this specification, the term “incident light” refers to light that is irradiated onto an optical recording medium as recording and / or reproducing beam light and is incident on the optical recording medium, and “wavelength of incident light” Means the wavelength immediately before the incident light enters the antireflection structure.

【0011】若しくは、該反射防止構造は、ランダムに
多数形成された凸部又は凹部により構成されていてもよ
く(請求項3)、この場合、上記凸部の配列間隔又は上
記凹部の配列間隔は入射光の波長の四分の一以下に設定
されるとともに、上記凸部の有効な光学的高さ又は上記
凹部の有効な光学的深さは入射光の波長の略四分の一の
奇数倍に設定され、該界面における平均屈折率が該界面
で接する両側の層の屈折率に対して無反射条件を満たす
ように、上記の凸部又は凹部の密度が設定されているこ
とが好ましい(請求項4)。
Alternatively, the antireflection structure may be composed of a large number of convex portions or concave portions formed at random (claim 3). In this case, the arrangement interval of the convex portions or the arrangement interval of the concave portions is The wavelength is set to be equal to or less than a quarter of the wavelength of the incident light, and the effective optical height of the convex portion or the effective optical depth of the concave portion is an odd multiple of approximately a quarter of the wavelength of the incident light. It is preferable that the density of the above-mentioned convex portions or concave portions is set so that the average refractive index at the interface satisfies the antireflection condition with respect to the refractive indexes of the layers on both sides contacting at the interface. Item 4).

【0012】また、該記録層が、90重量%以上の合成
樹脂を含有して構成されるとともに、該記録層に三次元
的な記録が可能に構成されていてもよく(請求項5)、
さらに、該記録層が、一対の透明基板間に直接又は他の
層を介して挟持されていてもよい(請求項6)。また、
該透明基板が対をなしてそなえられるとともに、該記録
層が該一対の透明基板間で挟持されてそなえられる場
合、該一対の透明基板の該記録層と接する界面のうち少
なくともいずれか一方に反射防止構造が形成されている
ことが好ましく(請求項7)、該一対の透明基板の表面
のうち少なくともいずれか一方に反射防止構造が形成さ
れていることがより好ましい(請求項8)。さらに、該
反射防止構造が、該透明基板に一体成形されていること
がより好ましい(請求項9)。
[0012] The recording layer may contain 90% by weight or more of synthetic resin, and may be configured to enable three-dimensional recording on the recording layer.
Furthermore, the recording layer may be sandwiched between a pair of transparent substrates directly or via another layer. Also,
When the transparent substrates are provided in pairs and the recording layer is provided sandwiched between the pair of transparent substrates, reflection occurs on at least one of the interfaces of the pair of transparent substrates in contact with the recording layer. Preferably, an anti-reflection structure is formed (claim 7), and more preferably, an anti-reflection structure is formed on at least one of the surfaces of the pair of transparent substrates (claim 8). Further, it is more preferable that the anti-reflection structure is integrally formed with the transparent substrate.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1〜図7は本発明の一実施形態
としての光記録媒体について示すものであり、ここで
は、ホログラムメモリとして本光記録媒体を構成してい
る。図1に示すように、本ホログラムメモリ1は、記録
層2を2枚の透明基板3,4で挟持することにより構成
されている。記録層2は数十〜数百μmの厚さを有して
おり、合成樹脂、例えばバインダー樹脂と光重合性のモ
ノマー、或いは重合速度の異なる2種の光重合性モノマ
ーを主な材質(90重量%以上)として形成されてい
る。透明基板3,4は透明樹脂、例えばポリカーボネイ
ト樹脂,アクリル樹脂,メタクリル樹脂,ポリスチレン
樹脂,塩化ビニル樹脂,エポキシ樹脂,ポリエステル樹
脂,アモルファスポリオレフィン等の射出成型によりデ
ィスク状に形成されている。なお、ここで言う透明と
は、少なくとも記録用及び/又は再生用のビーム光とし
て、光記録媒体に照射される光線に対して透明であるこ
とを意味している。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 7 show an optical recording medium according to an embodiment of the present invention. Here, the optical recording medium is configured as a hologram memory. As shown in FIG. 1, the hologram memory 1 is configured by sandwiching a recording layer 2 between two transparent substrates 3 and 4. The recording layer 2 has a thickness of several tens to several hundreds of micrometers, and is made of a synthetic resin, for example, a binder resin and a photopolymerizable monomer, or two kinds of photopolymerizable monomers having different polymerization rates as main materials (90%). % By weight or more). The transparent substrates 3 and 4 are formed in a disk shape by injection molding of a transparent resin, for example, a polycarbonate resin, an acrylic resin, a methacryl resin, a polystyrene resin, a vinyl chloride resin, an epoxy resin, a polyester resin, an amorphous polyolefin, or the like. Here, the term “transparent” means that at least the recording and / or reproducing beam light is transparent to the light beam applied to the optical recording medium.

【0014】そして、透明基板3,4の記録層2との各
界面及び各表面(空気との界面)には、反射防止処理と
して、それぞれ反射防止構造5,6,7,8が一体成形
により形成されている。図2及び図3は反射防止構造の
構成の一例を示す図であり、図4はその作用を説明する
ための図である。以下、図2〜図4を用いて反射防止構
造の構成及び作用について説明する。なお、ここでは反
射防止構造6が透明基板4における記録層2との界面に
形成された場合を例にとって説明する。
Antireflection structures 5, 6, 7, and 8 are integrally formed on each interface of transparent substrates 3 and 4 with recording layer 2 and each surface (interface with air) as an antireflection treatment. Is formed. 2 and 3 are views showing an example of the configuration of the antireflection structure, and FIG. 4 is a view for explaining the operation. Hereinafter, the configuration and operation of the antireflection structure will be described with reference to FIGS. Here, a case where the antireflection structure 6 is formed at the interface with the recording layer 2 on the transparent substrate 4 will be described as an example.

【0015】図2及び図3に示すように、反射防止構造
6は、透明基板4の中心と同心の円環状の溝部11と山
部10とが所定の周期で交互に配列される格子構造を有
しており、半径方向への凹凸の配列周期Λは入射光の波
長λの四分の一以下、好ましくは五分の一以下、更に好
ましくは十分の一以下であり、凹凸の有効な光学的高さ
2 ×dは入射光の波長λの四分の一(又はその奇数
倍)に設定されている。ここでdは凹凸の幾何学的な高
さ(または深さ)を表し、N2 は後述する反射防止構造
6が形成する見かけ上の反射防止層12(以下、単に
「反射防止層12」と称することがある)の有効な屈折
率を表す。そして入射光の波長λとは見かけ上の反射防
止層12へ入射する直前の入射光の波長を表し、
As shown in FIGS. 2 and 3, the antireflection structure 6 has a lattice structure in which annular grooves 11 and peaks 10 concentric with the center of the transparent substrate 4 are alternately arranged at a predetermined period. The arrangement period Λ of the irregularities in the radial direction is の 一 or less, preferably 五 or less, more preferably 十分 or less of the wavelength λ of the incident light. The target height N 2 × d is set to a quarter (or an odd multiple thereof) of the wavelength λ of the incident light. Here, d represents the geometric height (or depth) of the unevenness, and N 2 represents the apparent antireflection layer 12 (hereinafter simply referred to as “antireflection layer 12”) formed by the antireflection structure 6 described later. (Which may be referred to as an effective refractive index). The wavelength λ of the incident light indicates the apparent wavelength of the incident light immediately before entering the antireflection layer 12,

【数1】 を無反射条件という。(Equation 1) Is referred to as a non-reflection condition.

【0016】図3において山部10は透明基板4に一体
に形成されており、溝部11には記録層2を形成する樹
脂が入り込んでいることから、微小部分で見れば、反射
防止構造6の屈折率は、山部10では透明基板4の屈折
率N1 となり、溝部11では記録層2の屈折率N3 とな
る。
In FIG. 3, the peak 10 is formed integrally with the transparent substrate 4 and the resin for forming the recording layer 2 enters the groove 11, so that, when viewed from a minute portion, the anti-reflection structure 6 The refractive index becomes the refractive index N 1 of the transparent substrate 4 at the peak portion 10 and becomes the refractive index N 3 of the recording layer 2 at the groove portion 11.

【0017】ところが、凹凸の1配列周期Λが入射光の
波長λの四分の一以下であれば、入射光から見たとき、
山部10,溝部11における屈折率N1 ,N3 の差は平
均化され、図4に示すように、一様な屈折率N2 の層1
2として映ることになる。つまり、透明基板4の記録層
2との界面に屈折率N2 の層12が設けられたことに等
しくなる。
However, if one arrangement period 凹凸 of the irregularities is equal to or less than a quarter of the wavelength λ of the incident light, when viewed from the incident light,
Crest 10, the difference in refractive index N 1, N 3 in the groove 11 are averaged, as shown in FIG. 4, the uniform refractive index N 2 layers 1
It will be reflected as 2. In other words, this is equivalent to the provision of the layer 12 having the refractive index N 2 at the interface between the transparent substrate 4 and the recording layer 2.

【0018】ここでN1 ,N2 及びN3 は、各層を形成
する材料固有の屈折率に加え、入射光の入射角、屈折角
および出射角の影響をも考慮した「 有効な屈折率」(以
下「有効屈折率」と称す)を表す。これらは、例えば反
射防止構造6が図5に示す単一の周期構造の場合、図6
に示すように透明基板4を形成する材料固有の屈折率を
1 、記録層2を形成する材料固有の屈折率をn3 、透
明基板4から反射防止層12への法線方向から測った入
射角をφ1 、反射防止層12での屈折角をφ2、反射防
止層12から記録層2への出射角をφ3 とし、記録層2
の充填率をFとしたとき、下記(1)又は(2)で表さ
れる一連の式で表される〔E.N.Glytsisand T.K.Gaylor
d,Applied Optics,31(22),4459(1992)〕。
Here, N 1 , N 2 and N 3 are “effective refractive indices” in consideration of the influence of the incident angle, refraction angle and emission angle of incident light in addition to the refractive index inherent to the material forming each layer. (Hereinafter referred to as “effective refractive index”). For example, when the antireflection structure 6 is a single periodic structure shown in FIG.
As shown in ( 1) , the refractive index of the material forming the transparent substrate 4 was measured as n 1 , the refractive index of the material forming the recording layer 2 was measured as n 3 , and the normal direction from the transparent substrate 4 to the antireflection layer 12 was measured. The incident angle is φ 1 , the refraction angle at the anti-reflection layer 12 is φ 2 , and the emission angle from the anti-reflection layer 12 to the recording layer 2 is φ 3.
Where F is the filling factor of ENGlytsisand TKGaylor, represented by a series of formulas represented by the following (1) or (2).
d, Applied Optics, 31 (22), 4459 (1992)].

【0019】(1)TEモードの場合 Kを反射防止層12に平行で反射防止構造6の溝に垂直
な格子ベクトル、Eを入射光の電場ベクトルとする。E
がKに垂直な場合、即ちTEモードの場合は、反射防止
構造6が形成する見かけ上の反射防止層12の有効屈折
率N2 は、
(1) In the case of the TE mode K is a lattice vector parallel to the antireflection layer 12 and perpendicular to the groove of the antireflection structure 6, and E is an electric field vector of the incident light. E
Is perpendicular to K, that is, in the case of the TE mode, the apparent effective refractive index N 2 of the antireflection layer 12 formed by the antireflection structure 6 is

【数2】 と表される。また、透明基板4及び記録層2の有効屈折
率N1 ,N3 はそれぞれ、
(Equation 2) It is expressed as The effective refractive indices N 1 and N 3 of the transparent substrate 4 and the recording layer 2 are respectively

【数3】 と表される。(Equation 3) It is expressed as

【0020】(2)TMモードの場合 Hを入射光の磁場ベクトルとし、Hが格子ベクトルKに
垂直な場合、即ちTMモードの場合は、反射防止構造6
が形成する見かけ上の反射防止層12の有効屈折率N2
は、
(2) In the case of TM mode In the case where H is the magnetic field vector of the incident light and H is perpendicular to the lattice vector K, that is, in the case of TM mode, the antireflection structure 6 is used.
The effective refractive index N 2 of the apparent antireflection layer 12 formed by
Is

【数4】 と表される。(Equation 4) It is expressed as

【0021】また、透明基板4及び記録層2の有効屈折
率N1 ,N3 はそれぞれ、
The effective refractive indices N 1 and N 3 of the transparent substrate 4 and the recording layer 2 are respectively

【数5】 と表される。(Equation 5) It is expressed as

【0022】また、反射防止層12へ入射する入射光の
波長をλとすると、下記(3)又は(4)が成り立つ
時、無反射条件(I)が満たされる。
When the wavelength of the light incident on the antireflection layer 12 is λ, the non-reflection condition (I) is satisfied when the following condition (3) or (4) is satisfied.

【0023】(3)TEモードの場合 充填率F及び反射防止構造6の幾何学的な高さdが、(3) In the case of TE mode The filling factor F and the geometric height d of the antireflection structure 6 are as follows:

【数6】 (Equation 6)

【数7】 と表される。(Equation 7) It is expressed as

【0024】(4)TMモードの場合 充填率F及び反射防止構造6の幾何学的な高さdが、(4) In the case of TM mode The filling factor F and the geometric height d of the antireflection structure 6 are as follows:

【数8】 (Equation 8)

【数9】 ここで、(Equation 9) here,

【数10】 と表される。(Equation 10) It is expressed as

【0025】実際に本発明の光記録媒体を設計する場合
には、この条件を満たすような充填率F及び幾何学的高
さ(又は深さ)dを満たす凹凸を形成すればよい。な
お、反射防止構造6が図5に示した単一の周期構造以外
の場合でも、E.N.Glytsis andT.K.Gaylord,Applied Opt
ics,31(22),4459(1992)に記載された計算方法に準じて
算出された、適切な充填率Fと幾何学的な高さdを用い
て反射防止構造6を形成することにより、同様の効果が
得られる。
When the optical recording medium of the present invention is actually designed, irregularities satisfying the filling factor F and the geometric height (or depth) d satisfying these conditions may be formed. Note that even when the antireflection structure 6 is other than the single periodic structure shown in FIG. 5, ENGlytsis and T.K. Gaylord, Applied Opt
ics, 31 (22), 4459 (1992), by forming the antireflection structure 6 using an appropriate filling factor F and a geometric height d calculated according to the calculation method described in Similar effects can be obtained.

【0026】反射防止構造6では、上記のような光学的
性質を利用し、透明基板4の屈折率N1 と記録層2の屈
折率N3 とに応じて、反射防止層の有効屈折率N2 が無
反射条件を満たすように山部10と溝部11との体積比
率を設定している。また、他の反射防止構造5,7,8
も同様であり、透明基板4の記録層2との界面に形成さ
れた反射防止構造5では、反射防止構造6と同様に、透
明基板3の屈折率N1と記録層2の屈折率N3 とに応じ
て凹凸を形成し、透明基板3,4の表面に形成された反
射防止構造7,8では、透明基板3,4の屈折率N1
空気の屈折率N 0 とに応じて凹凸を形成している。
In the anti-reflection structure 6, the optical
Utilizing the properties, the refractive index N of the transparent substrate 41Of the recording layer 2
Folding rate NThree, The effective refractive index N of the antireflection layerTwoIs nothing
The volume ratio of the peak 10 and the groove 11 so as to satisfy the reflection condition
The rate is set. Also, other anti-reflection structures 5, 7, 8
The same applies to the case where the transparent substrate 4 is formed at the interface with the recording layer 2.
In the anti-reflection structure 5 thus formed, like the anti-reflection structure 6,
Refractive index N of bright substrate 31And the refractive index N of the recording layer 2ThreeAnd according to
To form irregularities on the surface of the transparent substrates 3 and 4.
In the anti-irradiation structures 7 and 8, the refractive indices N of the transparent substrates 3 and 41When
Refractive index N of air 0Thus, the unevenness is formed.

【0027】本発明の一実施形態としての光記録媒体1
は上述のように構成されているので、ホログラムの記録
時において、次のような作用がある。以下、図7を参照
しながら、本光記録媒体1の作用及び効果について説明
する。図7に示すように、ホログラムの記録時において
は、記録層2内に物体からの反射光や信号等の情報を表
す信号ビーム16と参照ビーム17とが照射される。そ
して、信号ビーム16と参照ビーム17との交差点にお
いて干渉が起こり、この信号ビーム16と参照ビーム1
7との干渉による光強度分布に応じて記録層2の屈折率
が変化し、ホログラムが記録される。また、参照ビーム
17が平面波の場合には、照射角度を少しずつ換えてい
くことにより(角度多重記録方式)、また、参照ビーム
17が球面波の場合には、被記録部分を少しずつずらし
ていくことにより(シフト多重記録方式)、同一箇所に
複数個のホログラムが多重記録される。
Optical recording medium 1 as one embodiment of the present invention
Is configured as described above, and has the following operation when recording a hologram. Hereinafter, the operation and effect of the optical recording medium 1 will be described with reference to FIG. As shown in FIG. 7, at the time of recording a hologram, the recording layer 2 is irradiated with a signal beam 16 and a reference beam 17 representing information such as light reflected from an object and a signal. Then, interference occurs at the intersection between the signal beam 16 and the reference beam 17, and the signal beam 16 and the reference beam 1
The refractive index of the recording layer 2 changes in accordance with the light intensity distribution due to the interference with the hologram 7, and a hologram is recorded. When the reference beam 17 is a plane wave, the irradiation angle is changed little by little (angle multiplex recording method). When the reference beam 17 is a spherical wave, the recording portion is slightly shifted. As a result (shift multiplex recording method), a plurality of holograms are multiplex-recorded at the same location.

【0028】このとき、信号ビーム16,参照ビーム1
7は、まず、透明基板3に入射し、透明基板3内を透過
した後、記録層2に入射するので、信号ビーム16,参
照ビーム17は、透明基板3の表面(空気との界面)に
ぶつかり、さらに、透明基板3と記録層2との界面にぶ
つかることになる。しかしながら、本光記録媒体1で
は、各界面に無反射条件を満たした有効屈折率を有する
反射防止構造7,5が形成されているので、界面におけ
る信号ビーム16,参照ビーム17の反射が防止され、
記録のためのエネルギ不足を防止することができる。ま
た、ノイズ光18が記録層2内に入ってきた場合でも、
出射側の透明基板4の各界面には無反射条件を満たした
平均屈折率を有する反射防止構造6,8が形成されてい
るので、ノイズ光18は界面で反射されることなく透明
基板4から出射され、ノイズ光18による誤情報の記録
を防止することができる。
At this time, the signal beam 16 and the reference beam 1
7 first enters the transparent substrate 3, transmits through the transparent substrate 3, and then enters the recording layer 2. Therefore, the signal beam 16 and the reference beam 17 are applied to the surface of the transparent substrate 3 (the interface with air). Then, it will hit the interface between the transparent substrate 3 and the recording layer 2. However, in the optical recording medium 1, since the antireflection structures 7, 5 having an effective refractive index satisfying the non-reflection condition are formed at each interface, the reflection of the signal beam 16 and the reference beam 17 at the interface is prevented. ,
Energy shortage for recording can be prevented. Further, even when the noise light 18 enters the recording layer 2,
Since the antireflection structures 6 and 8 having an average refractive index satisfying the non-reflection condition are formed at each interface of the transparent substrate 4 on the emission side, the noise light 18 is reflected from the transparent substrate 4 without being reflected at the interface. Emitted information can be prevented from being recorded due to the emitted noise light 18.

【0029】このように、本光記録媒体1によれば、反
射防止構造5,6,7,8により界面における光の反射
を防止してS/N比を大きく向上させることができ、記
録層の厚み方向の三次元的な記録も確実に行なうことが
できるという利点がある。また、反射防止構造5,6,
7,8は、界面を形成する各層の屈折率に応じて溝部と
山部との体積比率を設定するだけで、界面における反射
率を最小にすることができるので、界面を形成する各層
の材質によらず、容易かつ確実に界面における光の反射
を防止することができるという利点がある。
As described above, according to the present optical recording medium 1, the S / N ratio can be greatly improved by preventing the reflection of light at the interface by the anti-reflection structures 5, 6, 7, and 8. There is an advantage that three-dimensional recording in the thickness direction can be reliably performed. In addition, antireflection structures 5, 6,
Reference numerals 7 and 8 denote a material for each layer forming the interface because the reflectance at the interface can be minimized simply by setting the volume ratio between the groove and the peak according to the refractive index of each layer forming the interface. Regardless of this, there is an advantage that light reflection at the interface can be easily and reliably prevented.

【0030】さらに、反射防止構造5,6,7,8は、
透明基板3,4とともに射出成形によって容易に形成す
ることができるという利点もある。なお、本発明は上述
の実施形態に限定されるものではなく、本発明の趣旨を
逸脱しない範囲内で種々変形して実施することができ
る。例えば、反射防止構造の格子構造としては、上述の
実施形態のように山部と溝部とを円環状に配列するもの
に限定されず、入射光の偏光方向によっては、図8に示
すように、透明基板20の中心から放射状に山部21と
溝部22とを配列したような構造の反射防止構造23で
あってもよく、図9に示すように図2に示した反射防止
構造6と図8に示した反射防止構造23とをあわせたよ
うな構造の反射防止構造24であってもよい。ただし、
この場合でも、任意の場所における山部21と溝部22
との凹凸周期が入射光の波長の四分の一以下になってい
ることを要する。また、図10に示す反射防止構造28
のように、直交方向にそれぞれ入射光の波長の四分の一
以下の周期で溝27を配置することにより溝27に囲ま
れた部分に方形の突起26を形成して、透明基板25上
に凹凸を形成するようにしてもよい。
Further, the antireflection structures 5, 6, 7, 8
There is also an advantage that it can be easily formed by injection molding together with the transparent substrates 3 and 4. Note that the present invention is not limited to the above-described embodiment, and can be implemented with various modifications without departing from the spirit of the present invention. For example, the grating structure of the anti-reflection structure is not limited to the one in which the peaks and the grooves are arranged in a ring shape as in the above-described embodiment. Depending on the polarization direction of the incident light, as shown in FIG. An anti-reflection structure 23 having a structure in which peaks 21 and grooves 22 are arranged radially from the center of the transparent substrate 20 may be used. As shown in FIG. 9, the anti-reflection structures 6 and 8 shown in FIG. An anti-reflection structure 24 having a structure obtained by combining the anti-reflection structure 23 shown in FIG. However,
Even in this case, the crest 21 and the groove 22 at any place
Is required to be equal to or less than a quarter of the wavelength of the incident light. Further, the anti-reflection structure 28 shown in FIG.
The rectangular projections 26 are formed in the portions surrounded by the grooves 27 by arranging the grooves 27 at a period equal to or less than one-fourth of the wavelength of the incident light in the orthogonal direction. Irregularities may be formed.

【0031】さらに、上記各構成例のように規則正しい
構造の反射防止構造ではなく、透明基板上にランダムに
突起を形成するようにしてもよい。すなわち、界面にお
ける反射を防止するには格子構造が規則正しい配列にな
っている必要はなく、任意の箇所における凹凸の配列間
隔(凹部の配列間隔又は凸部の配列間隔)が入射光の波
長の四分の一以下であり、凹凸の高さ(凸部の高さ又は
凹部の深さ)が入射光の波長の略四分の一の奇数倍であ
り、凹部と凸部とが、界面における有効屈折率が界面で
接する両側の層の屈折率に対して無反射条件を満たすよ
うに、反射防止を求める平面における凸部又は凹部の存
在密度が設定されていればよいのである。もちろん、透
明基板上に反射防止構造が規則正しく配列されている部
分と、ランダムに設けられている部分が混在していても
よい。
Further, instead of the antireflection structure having a regular structure as in the above-described respective configuration examples, the protrusions may be formed randomly on the transparent substrate. That is, in order to prevent reflection at the interface, the lattice structure does not need to be regularly arranged. The height of the unevenness (the height of the convex portion or the depth of the concave portion) is an odd multiple of approximately a quarter of the wavelength of the incident light, and the concave portion and the convex portion are effective at the interface. It is only necessary that the density of the convex portions or concave portions on the plane for which antireflection is required be set so that the refractive index of the layers on both sides of which the interface is in contact with the interface satisfies the non-reflection condition. Of course, a part where the antireflection structures are regularly arranged on the transparent substrate and a part where the antireflection structures are provided at random may be mixed.

【0032】したがって、格子構造の形状も、上記各構
成例に示したような矩形に限定されず、有効屈折率が無
反射条件を満たす限りは、三角波形,階段形,サインカ
ーブ形等、種々の形状に成形することができ、例えば、
図11に示す反射防止構造32のように、透明基板30
上に四角錐形の突起31が連続して配列されたような構
造にすることも可能である。もちろん、有効屈折率が無
反射条件を満たす限り、既に図面で例示したように、個
々の反射防止構造が同じ又は類似の形状である場合のみ
ならず、複数の形状が混在するか、或いは個々に全く異
なる形状のものであってもよい。
Therefore, the shape of the grating structure is not limited to the rectangle as shown in each of the above configuration examples, and various shapes such as a triangular waveform, a staircase shape, and a sine curve shape can be used as long as the effective refractive index satisfies the nonreflection condition. Can be molded into, for example,
As in the anti-reflection structure 32 shown in FIG.
It is also possible to adopt a structure in which quadrangular pyramid-shaped projections 31 are continuously arranged on the upper side. Of course, as long as the effective refractive index satisfies the non-reflection condition, not only the case where each antireflection structure has the same or similar shape, but also a plurality of shapes are mixed or individually as illustrated in the drawings. It may have a completely different shape.

【0033】また、上述の実施形態では、本発明の光記
録媒体をホログラムメモリとして構成した場合について
説明したが、多層メモリ等の他の三次元光記憶媒体に適
用することも可能であり、さらに、従来の二次元の光記
憶媒体に適用することも勿論可能である。また、反射防
止構造の形成方法としては、上述のように、射出成形に
よる透明基板との一体成形に限定されず、フォトレジス
トやエッチング等により透明基板上に形成してもよく、
また、フォトポリマーを用いて形成してもよい。ただ
し、この場合には、図12に示すように、反射防止構造
38を形成する突起物35は透明基板36と別体である
ため、突起物35の屈折率Nd と突起物35の周囲媒体
37の屈折率Na とで決まる層内の有効屈折率Nb が、
周囲媒体37の屈折率Na と透明基板36の屈折率Nc
に対して無反射条件を満たすような体積比率になってい
ることが必要になる。
In the above embodiment, the case where the optical recording medium of the present invention is configured as a hologram memory has been described. However, the present invention can be applied to other three-dimensional optical storage media such as a multilayer memory. Of course, it is also possible to apply to a conventional two-dimensional optical storage medium. Further, the method of forming the antireflection structure is not limited to the integral molding with the transparent substrate by injection molding, as described above, and may be formed on the transparent substrate by a photoresist, etching, or the like,
Further, it may be formed using a photopolymer. In this case, however, as shown in FIG. 12, since the projection 35 forming the anti-reflection structure 38 is separate from the transparent substrate 36, the refractive index Nd of the projection 35 and the surrounding medium of the projection 35 the effective refractive index N b of the layer in which is determined by the refractive index N a of 37,
Refractive index N c of the refractive index N a and the transparent substrate 36 of the surrounding medium 37
It is necessary that the volume ratio be such that the non-reflection condition is satisfied.

【0034】また、上述の実施形態では、記録層を一対
の透明基板により直接挟持していたが、透明基板と記録
層との間に透湿防止層や接着材層等の他の層を設けても
よい。そして、反射防止構造を形成する界面としては、
透明基板が接する界面に限定されるものではなく、反射
を防止すべき任意の界面に形成することができる。さら
に、上述の実施形態では、光記録媒体における全ての界
面及び表面に、本発明にかかる反射防止構造を設けた例
を示したが、必ずしも全ての界面及び表面に設ける必要
はなく、媒体の構造や記録方式に応じて必要とされる部
分に設ければよい。
In the above embodiment, the recording layer is directly sandwiched between the pair of transparent substrates. However, another layer such as a moisture-permeable layer or an adhesive layer is provided between the transparent substrate and the recording layer. You may. And as an interface for forming an anti-reflection structure,
It is not limited to the interface where the transparent substrate contacts, but can be formed at any interface where reflection should be prevented. Further, in the above-described embodiment, the example in which the antireflection structure according to the present invention is provided on all interfaces and surfaces of the optical recording medium has been described. However, it is not always necessary to provide the antireflection structure on all interfaces and surfaces. Or a portion required according to the recording method.

【0035】さらに、本光記録媒体の形状は、上述した
ディスク形に限定されるものではなく、例えばメモリカ
ードのようなカード形の光記録媒体等、種々の形状の光
記録媒体に適用することができる。
Further, the shape of the present optical recording medium is not limited to the above-mentioned disk type, but may be applied to optical recording media of various shapes such as a card type optical recording medium such as a memory card. Can be.

【0036】[0036]

【発明の効果】以上詳述したように、本発明の光記録媒
体(請求項1〜9)によれば、界面に形成された反射防
止構造により、界面を形成する各層の材質によらず、容
易かつ確実に界面における光の反射を防止することがで
きるという利点がある。特に、記録層の厚み方向にも三
次元的に記録を行なう三次元記録媒体においては、界面
における反射の確実な防止によりS/N比を大きく向上
させることができ、記録層の厚み方向の三次元的な記録
も確実に行なうことができるという利点がある(請求項
5)。
As described in detail above, according to the optical recording medium of the present invention (claims 1 to 9), the anti-reflection structure formed at the interface makes it possible to use the anti-reflection structure regardless of the material of each layer forming the interface. There is an advantage that light reflection at the interface can be easily and reliably prevented. In particular, in a three-dimensional recording medium in which recording is performed three-dimensionally also in the thickness direction of the recording layer, the S / N ratio can be greatly improved by reliably preventing reflection at the interface, and the third order in the thickness direction of the recording layer can be improved. There is an advantage that original recording can be reliably performed (claim 5).

【0037】また、透明基板とともに射出成形すること
によって反射防止構造を容易に形成することができると
いう利点もある(請求項9)。
Another advantage is that the antireflection structure can be easily formed by injection molding together with the transparent substrate (claim 9).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態としての光記録媒体の構成
を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration of an optical recording medium according to an embodiment of the present invention.

【図2】本発明の一実施形態としての光記録媒体にかか
る反射防止構造の構成例を示す斜視図である。
FIG. 2 is a perspective view showing a configuration example of an anti-reflection structure according to the optical recording medium as one embodiment of the present invention.

【図3】本発明の一実施形態としての光記録媒体にかか
る反射防止構造の構成例を示す部分断面図である。
FIG. 3 is a partial cross-sectional view showing a configuration example of an antireflection structure according to an optical recording medium according to an embodiment of the present invention.

【図4】本発明の一実施形態としての光記録媒体にかか
る反射防止構造の作用を説明するための図である。
FIG. 4 is a diagram for explaining an operation of the antireflection structure according to the optical recording medium as one embodiment of the present invention.

【図5】本発明の一実施形態としての光記録媒体にかか
る反射防止構造の無反射条件の成立条件を説明するため
の図である。
FIG. 5 is a diagram illustrating a condition for satisfying a non-reflection condition of the antireflection structure according to the optical recording medium as one embodiment of the present invention.

【図6】本発明の一実施形態としての光記録媒体にかか
る反射防止構造の無反射条件の成立条件を説明するため
の図である。
FIG. 6 is a diagram for explaining conditions for satisfying a non-reflection condition of the antireflection structure according to the optical recording medium as one embodiment of the present invention.

【図7】本発明の一実施形態としての光記録媒体の作用
効果を説明するための模式図である。
FIG. 7 is a schematic diagram for explaining the operation and effect of the optical recording medium as one embodiment of the present invention.

【図8】本発明の一実施形態としての光記録媒体にかか
る反射防止構造の他の構成例を示す斜視図である。
FIG. 8 is a perspective view showing another configuration example of the antireflection structure according to the optical recording medium as one embodiment of the present invention.

【図9】本発明の一実施形態としての光記録媒体にかか
る反射防止構造の他の構成例を示す斜視図である。
FIG. 9 is a perspective view showing another configuration example of the antireflection structure according to the optical recording medium as one embodiment of the present invention.

【図10】本発明の一実施形態としての光記録媒体にか
かる反射防止構造の他の構成例を示す部分斜視図であ
る。
FIG. 10 is a partial perspective view showing another configuration example of the antireflection structure according to the optical recording medium as one embodiment of the present invention.

【図11】本発明の一実施形態としての光記録媒体にか
かる反射防止構造の他の構成例を示す部分斜視図であ
る。
FIG. 11 is a partial perspective view illustrating another configuration example of the antireflection structure according to the optical recording medium as one embodiment of the present invention.

【図12】本発明の一実施形態としての光記録媒体にか
かる反射防止構造の他の構成例を示す部分断面図であ
る。
FIG. 12 is a partial cross-sectional view showing another configuration example of the antireflection structure according to the optical recording medium as one embodiment of the present invention.

【図13】従来の光記録媒体の構成を示す部分断面図で
あり、(a)は透明基板の表面(空気との界面)に反射
防止膜を形成した場合を示し、(b)は透明基板と記録
層との界面に反射防止膜を形成した場合について示して
いる。
13A and 13B are partial cross-sectional views illustrating a configuration of a conventional optical recording medium, in which FIG. 13A illustrates a case where an antireflection film is formed on the surface of a transparent substrate (interface with air), and FIG. The case where an antireflection film is formed at the interface between the recording layer and the recording layer is shown.

【図14】三次元光記録媒体の一つである多重光メモリ
の構成を示す模式図である。
FIG. 14 is a schematic diagram showing a configuration of a multiplex optical memory which is one of three-dimensional optical recording media.

【図15】三次元光記録媒体の一つであるホログラムメ
モリの構成を示す模式図である。
FIG. 15 is a schematic diagram showing a configuration of a hologram memory which is one of the three-dimensional optical recording media.

【図16】従来のホログラムメモリにおける課題を説明
するための断面図である。
FIG. 16 is a cross-sectional view for explaining a problem in a conventional hologram memory.

【符号の説明】[Explanation of symbols]

1 光記録媒体 2 記録層 3,4 透明基板 5〜8 反射防止構造 10 山部(凸部) 11 溝部(凹部) 12 反射防止層 DESCRIPTION OF SYMBOLS 1 Optical recording medium 2 Recording layer 3, 4 Transparent substrate 5-8 Antireflection structure 10 Mountain part (convex part) 11 Groove part (concave part) 12 Antireflection layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも透明基板と記録層とをそなえ
た多層構造からなる光記録媒体において、 該透明基板の表面又は各層の界面のうち少なくとも一つ
に反射防止構造が形成されていることを特徴とする、光
記録媒体。
1. An optical recording medium having a multilayer structure including at least a transparent substrate and a recording layer, wherein an antireflection structure is formed on at least one of the surface of the transparent substrate or an interface between the layers. An optical recording medium.
【請求項2】 該反射防止構造は、周期的に連続して配
設された凹凸からなり、 該凹凸の1配列周期は入射光の波長の四分の一以下に設
定されるとともに、 該凹凸の有効な光学的高さは入射光の波長の略四分の一
の奇数倍に設定され、 該界面における平均屈折率が該界面で接する両側の層の
屈折率に対して無反射条件を満たすように、該凹凸の凹
部と凸部との体積比率が設定されたことを特徴とする、
請求項1記載の光記録媒体。
2. The anti-reflection structure comprises irregularities arranged periodically and continuously, and one arrangement period of the irregularities is set to one quarter or less of the wavelength of incident light. The effective optical height is set to an odd multiple of approximately one quarter of the wavelength of the incident light, and the average refractive index at the interface satisfies the non-reflection condition with respect to the refractive indexes of the layers on both sides contacting at the interface. As described above, the volume ratio of the concave and convex portions of the irregularities is set,
The optical recording medium according to claim 1.
【請求項3】 該反射防止構造は、ランダムに多数形成
された凸部又は凹部により構成されていることを特徴と
する、請求項1記載の光記録媒体。
3. The optical recording medium according to claim 1, wherein the antireflection structure is constituted by a large number of convex portions or concave portions formed at random.
【請求項4】 上記凸部の配列間隔又は上記凹部の配列
間隔は入射光の波長の四分の一以下に設定されるととも
に、 上記凸部の有効な光学的高さ又は上記凹部の有効な光学
的深さは入射光の波長の略四分の一の奇数倍に設定さ
れ、 該界面における平均屈折率が該界面で接する両側の層の
屈折率に対して無反射条件を満たすように、上記の凸部
又は凹部の密度が設定されたことを特徴とする、請求項
3記載の光記録媒体。
4. The arrangement interval of the convex portions or the arrangement interval of the concave portions is set to be equal to or less than a quarter of the wavelength of the incident light, and the effective optical height of the convex portions or the effective interval of the concave portions. The optical depth is set to an odd multiple of approximately a quarter of the wavelength of the incident light, and the average refractive index at the interface satisfies the non-reflection condition with respect to the refractive indexes of the layers on both sides contacting at the interface. 4. The optical recording medium according to claim 3, wherein the density of the convex portions or the concave portions is set.
【請求項5】 該記録層が、90重量%以上の合成樹脂
を含有して構成されるとともに、該記録層に三次元的な
記録が可能に構成されていることを特徴とする、請求項
1記載の光記録媒体。
5. The recording layer according to claim 1, wherein the recording layer contains 90% by weight or more of a synthetic resin, and the recording layer is configured to enable three-dimensional recording. 2. The optical recording medium according to 1.
【請求項6】 該記録層が、一対の透明基板間に直接又
は他の層を介して挟持されていることを特徴とする、請
求項5記載の光記録媒体。
6. The optical recording medium according to claim 5, wherein the recording layer is sandwiched between a pair of transparent substrates directly or via another layer.
【請求項7】 該透明基板が対をなしてそなえられると
ともに、該記録層が該一対の透明基板間で挟持されてそ
なえられ、 該一対の透明基板の該記録層と接する界面のうち少なく
ともいずれか一方に反射防止構造が形成されていること
を特徴とする、請求項1記載の光記録媒体。
7. The transparent substrate is provided as a pair, and the recording layer is provided sandwiched between the pair of transparent substrates, and at least one of an interface of the pair of transparent substrates in contact with the recording layer. 2. The optical recording medium according to claim 1, wherein an anti-reflection structure is formed on one of the sides.
【請求項8】 該一対の透明基板の表面のうち少なくと
もいずれか一方に反射防止構造が形成されていることを
特徴とする、請求項7記載の光記録媒体。
8. The optical recording medium according to claim 7, wherein an antireflection structure is formed on at least one of the surfaces of said pair of transparent substrates.
【請求項9】 該反射防止構造が、該透明基板に一体成
形されていることを特徴とする、請求項7又は8記載の
光記録媒体。
9. The optical recording medium according to claim 7, wherein said anti-reflection structure is formed integrally with said transparent substrate.
JP11214077A 1999-07-28 1999-07-28 Optical recording medium Pending JP2001043568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11214077A JP2001043568A (en) 1999-07-28 1999-07-28 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11214077A JP2001043568A (en) 1999-07-28 1999-07-28 Optical recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006349885A Division JP2007080516A (en) 2006-12-26 2006-12-26 Optical recording medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001043568A true JP2001043568A (en) 2001-02-16

Family

ID=16649876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11214077A Pending JP2001043568A (en) 1999-07-28 1999-07-28 Optical recording medium

Country Status (1)

Country Link
JP (1) JP2001043568A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352956A (en) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp Thin-film light emitting substance and manufacturing method therefor
EP1411508A3 (en) * 2002-10-07 2007-02-07 TDK Corporation Holographic recording medium
JP2007515667A (en) * 2003-11-14 2007-06-14 アプリリス インコーポレーテッド Holographic data storage medium with structured surface
JP2011137854A (en) * 2009-12-25 2011-07-14 Univ Of Electro-Communications Composition for volume hologram recording material containing semiconductor fine particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352956A (en) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp Thin-film light emitting substance and manufacturing method therefor
EP1411508A3 (en) * 2002-10-07 2007-02-07 TDK Corporation Holographic recording medium
JP2007515667A (en) * 2003-11-14 2007-06-14 アプリリス インコーポレーテッド Holographic data storage medium with structured surface
JP2011137854A (en) * 2009-12-25 2011-07-14 Univ Of Electro-Communications Composition for volume hologram recording material containing semiconductor fine particle

Similar Documents

Publication Publication Date Title
KR100642951B1 (en) Optical head device and production method thereof
US4616237A (en) Data storage medium
US6426837B1 (en) Diffractive selectively polarizing beam splitter and beam routing prisms produced thereby
US5559784A (en) Multi-layer optical information detection by two laser beam and optical multilayer recording medium
EP0322714B1 (en) Polarizing optical element and device using the same
MY112838A (en) Optical data storage system with multiple write-once phase-change recording layers
US7164514B2 (en) Holographic data storage media with structured surfaces
EP0613126B1 (en) Optical information recording medium and method of reading the same information
US5060223A (en) Optical type information recording medium having specified pit and guide groove shapes
JP2001043568A (en) Optical recording medium
JPH0950642A (en) Optical head device and its production
CN1131315A (en) Multi-layer optical recording device
JP4620220B2 (en) Computer generated hologram and method for manufacturing the same
JP2002040219A (en) Computer hologram, reflection plate using computer hologram, reflection type liquid crystal display device using computer hologram
JP2007080516A (en) Optical recording medium and its manufacturing method
JP2001006215A (en) Three-dimensional optical recording medium
JP4112239B2 (en) Multilayer recording medium and method for manufacturing multilayer recording medium
JP4442178B2 (en) Hologram recording medium
JP3739727B2 (en) Hologram medium with waveguide
JP3910105B2 (en) Optical recording medium device and tracking method
JPH0714209A (en) Optical recording carrier
JP2004022157A (en) Optical disk and method for manufacturing the same
JP2009223942A (en) Optical information recording medium
JP2005004067A (en) Apodizer
JPH09185837A (en) Optical head device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070221

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070413