JP2001041719A - Inspection device and method of transparent material and storage medium - Google Patents

Inspection device and method of transparent material and storage medium

Info

Publication number
JP2001041719A
JP2001041719A JP11212545A JP21254599A JP2001041719A JP 2001041719 A JP2001041719 A JP 2001041719A JP 11212545 A JP11212545 A JP 11212545A JP 21254599 A JP21254599 A JP 21254599A JP 2001041719 A JP2001041719 A JP 2001041719A
Authority
JP
Japan
Prior art keywords
inspection
transparent material
image
inspection object
light image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11212545A
Other languages
Japanese (ja)
Inventor
Hiroshi Kumasaka
博 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11212545A priority Critical patent/JP2001041719A/en
Publication of JP2001041719A publication Critical patent/JP2001041719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect an irregular defect on the surface of a transparent material stably and surely, and to determine whether the material is a good article or not. SOLUTION: In this device for inspecting the surface state of a transparent material, a parallel luminous flux 3a having a roughly uniform intensity and a prescribed area is irradiated onto the surface of a test object 4 from the tilted direction at a prescribed angle, and a transmitted light figure and a reflected light figure of the test object 4 produced by the irradiated parallel luminous flux 3a are projected respectively to prescribed imaging elements 7A, 7B by respective independent optical systems, and the surface state of the test object 4 is inspected based on photoelectric conversion signals of the transmitted light figure and the reflected light figure obtained by executing photoelectric conversion. By imaging light intensity distributions of the transmitted light figure and the reflected light figure, an irregular defect on the surface of the transparent material can be detected stably and surely, to enable to determine whether the material is a good article or not.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明材の検査装置
及び検査方法並びに記憶媒体に関し、特に、複写機等に
使用されるクリーニングブレード等の透明シート材の検
査、若しくは透明フィルム、透明ガラス板等の検査に適
用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for inspecting a transparent material, and a storage medium, and more particularly to an inspection of a transparent sheet material such as a cleaning blade used in a copying machine or the like, or a transparent film or a transparent glass plate. It is suitable for application to inspections such as.

【0002】[0002]

【従来の技術】従来、透明材表面の凹凸状欠陥の検査方
法として、例えばスリット状の光束を被検査物表面に照
射し、その光束の直線性の変化から表面形状を得る光切
断法による検査方法が知られている。また、検査装置と
しては、スリット状光束を出射する光源とスリット状光
束を照射した表面の光束直線性を検出する受光系、たと
えば、エリアセンサーカメラを備えた検査装置が知られ
ている。
2. Description of the Related Art Conventionally, as a method of inspecting an irregular defect on the surface of a transparent material, for example, a slit-shaped light beam is applied to a surface of an object to be inspected, and an inspection is performed by a light cutting method for obtaining a surface shape from a change in linearity of the light beam. Methods are known. Further, as an inspection device, an inspection device including a light source that emits a slit-like light beam and a light receiving system that detects the light beam linearity of a surface irradiated with the slit-like light beam, for example, an area sensor camera is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、複写機
の感光ドラム表面をムラ無くきれいにクリーニングする
ためのクリーニングブレードは表面の均一性が要求され
ているが、従来の表面検査方法及び検査装置では表面形
状の緩やかな変化の検出が困難であり、また変化量が微
小な凹凸に対しは受光倍率を大きくする必要があった。
However, the cleaning blade for cleaning the surface of the photosensitive drum of the copying machine without unevenness is required to have a uniform surface. However, it is difficult to detect a gradual change in the light intensity, and it is necessary to increase the light receiving magnification for unevenness having a small change amount.

【0004】これにより、被検査物の送り、及び回転等
による表面の位置変動が受光系の合焦を乱し、また、光
束の直線および傾きを乱す要因となるため、被検査物の
表面の形状変化による直線性の変化を検出するのが困難
となっていた。
[0004] As a result, fluctuations in the position of the surface due to the movement and rotation of the object to be inspected disturb the focusing of the light receiving system and also disturb the straight line and the inclination of the light beam. It has been difficult to detect a change in linearity due to a change in shape.

【0005】また、被検査物の位置変動を極力少なくす
るためには光源、受光系、被検査物表面の相対位置を合
致させる必要があり、検査装置が複雑となっていた。
Further, in order to minimize the positional fluctuation of the object to be inspected, it is necessary to match the relative positions of the light source, the light receiving system, and the surface of the object to be inspected, so that the inspection apparatus is complicated.

【0006】更に、変化量が微小な凹凸に対しては受光
倍率を大きくする必要があることから、検査視野が狭く
なり被検査物全面の検査に要する時間が長くなるという
問題も生じていた。
Further, since it is necessary to increase the light receiving magnification for unevenness having a small variation, there has been a problem that the inspection field of view is narrowed and the time required for inspection of the entire inspection object is increased.

【0007】本発明は、このような問題を解決するため
に成されたものであり、透明材表面の凹凸状欠陥を安定
的且つ確実に検出し、良品か否かの判定を行うことが可
能とした透明材の検査装置及びその検査装置並びに記憶
媒体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is possible to stably and surely detect unevenness defects on the surface of a transparent material and to judge whether or not the product is good. It is an object of the present invention to provide a transparent material inspection device, an inspection device thereof, and a storage medium.

【0008】[0008]

【課題を解決するための手段】本発明の透明材の検査装
置は、透明材の表面状態を検査する装置であって、被検
査物の表面に略均等な強度を有する所定面積の平行光束
を照射し、照射された前記平行光束による前記被検査物
の透過光像と反射光像を各々独立の光学系にて各々所定
の撮像素子に投影し、前記撮像素子にて光電変換された
前記透過光像及び反射光像の光電変換信号を基に、前記
被検査物の表面状態を検査する。
SUMMARY OF THE INVENTION An apparatus for inspecting a transparent material according to the present invention is an apparatus for inspecting a surface condition of a transparent material, and a parallel light beam having a predetermined area having substantially uniform intensity on a surface of an object to be inspected. Irradiating, projecting a transmitted light image and a reflected light image of the object to be inspected by the irradiated parallel light beam onto respective predetermined image sensors by independent optical systems, and transmitting the transmission light photoelectrically converted by the image sensors. The surface condition of the inspection object is inspected based on the photoelectric conversion signals of the light image and the reflected light image.

【0009】本発明の透明材の検査装置の一態様例にお
いては、前記平行光束を前記所定面積のマスクに通過さ
せて前記被検査物に照射する。
In one embodiment of the transparent material inspection apparatus according to the present invention, the parallel light beam passes through the mask having the predetermined area to irradiate the inspection object.

【0010】本発明の透明材の検査装置の一態様例にお
いては、前記平行光束を前記被検査物の表面に対して所
定角度傾いた方向から照射し、前記被検査物を介して前
記平行光束の照射源と対向した位置で前記被検査物の前
記透過光像を前記撮像素子へ投影するようにしている。
In one embodiment of the transparent material inspection apparatus of the present invention, the parallel light beam is irradiated from a direction inclined at a predetermined angle to the surface of the inspection object, and the parallel light beam is irradiated through the inspection object. The transmitted light image of the object to be inspected is projected onto the image sensor at a position facing the irradiation source.

【0011】本発明の透明材の検査装置の一態様例にお
いては、前記反射光像を前記平行光束の光軸に対する正
反射光軸に沿った位置で前記撮像素子へ投影するように
している。
In one embodiment of the transparent material inspection apparatus according to the present invention, the reflected light image is projected onto the image pickup device at a position along a regular reflection optical axis with respect to the optical axis of the parallel light flux.

【0012】本発明の透明材の検査装置の一態様例にお
いては、表面形状変化の無い基準品の前記透過光像及び
反射光像の光電変換信号を予め記憶し、前記基準品の前
記光電変換信号と前記被検査物の前記光電変換信号とを
比較し、比較の結果が所定の規格値を外れた場合に前記
被検査物の表面状態に異常が有ると判断する。
In one embodiment of the transparent material inspection apparatus of the present invention, photoelectric conversion signals of the transmitted light image and the reflected light image of a reference product having no change in surface shape are stored in advance, and the photoelectric conversion signals of the reference product are stored. The signal is compared with the photoelectric conversion signal of the object to be inspected, and if the comparison result deviates from a predetermined standard value, it is determined that the surface state of the object to be inspected is abnormal.

【0013】本発明の透明材の検査装置は、透明材の表
面状態を検査する装置であって、被検査物の表面に実質
的に均等な強度を有する所定面積の平行光束を照射する
照射手段と、前記平行光束の前記被検査物の透過光像と
反射光像をマスクを介して各々独立に投影する投影手段
と、前記投影手段により投影された投影画像を光電変換
する撮像手段とを備え、各々の撮像手段における光電変
換信号を基に前記被検査物の検査を行う。
[0013] The transparent material inspection apparatus of the present invention is an apparatus for inspecting the surface condition of a transparent material, and irradiating means for irradiating the surface of the inspection object with a parallel light beam of a predetermined area having substantially uniform intensity. Projection means for independently projecting a transmitted light image and a reflected light image of the inspection object of the parallel light beam through a mask, and an imaging means for photoelectrically converting a projection image projected by the projection means. The inspection of the inspection object is performed based on the photoelectric conversion signal in each imaging unit.

【0014】本発明の透明材の検査方法は、透明材の表
面状態を検査する方法であって、被検査物の表面に略均
等な強度を有する所定面積の平行光束を照射し、照射さ
れた前記平行光束による前記被検査物の透過光像と反射
光像を各々独立の光学系にて各々所定の撮像素子に投影
し、前記撮像素子にて光電変換された前記透過光像及び
反射光像の光電変換信号を基に、前記被検査物の表面状
態を検査する。
The method for inspecting a transparent material according to the present invention is a method for inspecting the surface condition of a transparent material, wherein the surface of an object to be inspected is irradiated with a parallel light beam of a predetermined area having substantially uniform intensity. The transmitted light image and the reflected light image of the object to be inspected by the parallel light beam are respectively projected onto predetermined image sensors by independent optical systems, and the transmitted light image and the reflected light image photoelectrically converted by the image sensors. The surface condition of the inspection object is inspected based on the photoelectric conversion signal.

【0015】本発明の透明材の検査方法の一態様例にお
いては、前記平行光束を前記所定面積のマスクに通過さ
せて前記被検査物に照射する。
In one embodiment of the method for inspecting a transparent material according to the present invention, the parallel light beam is passed through the mask having the predetermined area to irradiate the inspection object.

【0016】本発明の透明材の検査方法の一態様例にお
いては、前記平行光束を前記被検査物の表面に対して所
定角度傾いた方向から照射し、前記被検査物を介して前
記平行光束の照射源と対向した位置で前記被検査物の前
記透過光像を前記撮像素子へ投影するようにしている。
In one embodiment of the method for inspecting a transparent material according to the present invention, the parallel light beam is irradiated from a direction inclined at a predetermined angle to the surface of the object to be inspected, and the parallel light beam is passed through the object to be inspected. The transmitted light image of the object to be inspected is projected onto the image sensor at a position facing the irradiation source.

【0017】本発明の透明材の検査方法の一態様例にお
いては、前記反射光像を前記平行光束の光軸に対する正
反射光軸に沿った位置で前記撮像素子へ投影するように
している。
In one embodiment of the method for inspecting a transparent material according to the present invention, the reflected light image is projected onto the image pickup device at a position along a regular reflection optical axis with respect to the optical axis of the parallel light flux.

【0018】本発明の透明材の検査方法の一態様例にお
いては、表面形状変化の無い基準品の前記透過光像及び
反射光像の光電変換信号を予め記憶し、前記基準品の前
記光電変換信号と前記被検査物の前記光電変換信号とを
比較し、比較の結果が所定の規格値を外れた場合に前記
被検査物の表面状態に異常が有ると判断する。
In one embodiment of the method for inspecting a transparent material according to the present invention, photoelectric conversion signals of the transmitted light image and the reflected light image of a reference product having no change in surface shape are stored in advance, and the photoelectric conversion signal of the reference product is stored. The signal is compared with the photoelectric conversion signal of the object to be inspected, and if the comparison result deviates from a predetermined standard value, it is determined that the surface state of the object to be inspected is abnormal.

【0019】本発明の記憶媒体は、上記透明材の検査装
置の各手段としてコンピュータを機能させるためのプロ
グラムを記憶したコンピュータ読み取り可能な記憶媒体
である。
The storage medium of the present invention is a computer-readable storage medium storing a program for causing a computer to function as each unit of the transparent material inspection apparatus.

【0020】本発明の記憶媒体は、上記透明材の検査方
法の手順をコンピュータに実行させるためのプログラム
を記憶したコンピュータ読み取り可能な記憶媒体であ
る。
The storage medium of the present invention is a computer-readable storage medium storing a program for causing a computer to execute the procedure of the above-described transparent material inspection method.

【0021】[0021]

【作用】本発明は上記技術手段より成るので、平行光束
が被検査物表面に照射されることで被検査物を通った透
過光の出射角は表裏形状、および内部の素材状態に起因
して定められ、透過光像の光強度分布に差として現れ、
その光電変換信号レベル差から欠陥を検出することが可
能となる。また、被検査物表面に照射されたその正反射
光は表面形状に反射角が起因し、正反射光像の光強度分
布に差として現れ、その光電変換信号レベル差から欠陥
を検出することができる。
Since the present invention comprises the above-mentioned technical means, the parallel light beam is applied to the surface of the object to be inspected, so that the exit angle of the transmitted light passing through the object depends on the shape of the front and back surfaces and the state of the material inside. Defined and appear as a difference in the light intensity distribution of the transmitted light image,
Defects can be detected from the photoelectric conversion signal level difference. Also, the specularly reflected light applied to the surface of the inspection object has a reflection angle due to the surface shape, appears as a difference in the light intensity distribution of the specularly reflected light image, and a defect can be detected from the difference in the photoelectric conversion signal level. it can.

【0022】また、平行光束を被検査物面に対し臨界角
を除く所定角度傾いた方向から照射し、より望ましくは
所定角度として被検査物面に対し鋭角にすることで、緩
やかな形状変化表面と良品な表面とで、透過光像の光強
度分布に差が明確に現れ、凹凸変化の小さい形状変化を
検出することができる。
Further, by irradiating the parallel light beam with respect to the surface of the object to be inspected from a direction inclined by a predetermined angle excluding the critical angle, and more preferably by making the predetermined angle a sharp angle with respect to the surface of the object to be inspected, The difference in the light intensity distribution of the transmitted light image clearly appears between the non-defective surface and the non-defective surface, and it is possible to detect a shape change with a small unevenness change.

【0023】更に、照射手段により平行光束が被検査物
面に対し臨界角を除く所定角度傾いた方向から照射する
ことで、より望ましくは所定角度として被検査物面に対
し鋭角にすることで、緩やかな形状変化表面と良品な表
面とで、正反射光像の光強度分布に差が明確に現れ、凹
凸変化の小さい形状変化を検出することができる。
Further, by irradiating the parallel light beam with respect to the surface of the inspection object from a direction inclined by a predetermined angle excluding the critical angle by the irradiation means, more desirably, the predetermined angle is made an acute angle with respect to the surface of the inspection object. A difference clearly appears in the light intensity distribution of the regular reflection light image between the gentle shape change surface and the non-defective surface, and a shape change with a small unevenness change can be detected.

【0024】また、事前に同種被検査物で表面形状変化
の無い良品の各々の撮像映像信号を処理装置に記憶し、
この記憶映像信号と検査によって被検査物から検出した
映像信号とを比較することで緩やかな形状変化表面と良
品表面との信号差が検出でき、この比較結果を基に規格
値と比較することで表面形状不良の判断が確実に行え
る。また、透過光像と反射光像を撮像した各々の撮像映
像信号に対して規格値と比較することから緩やかな表面
形状変化不良や内部の不良を確実に不良と判断すること
が可能となる。
In addition, beforehand, the image pickup video signal of each non-defective product having the same kind of inspected object and having no surface shape change is stored in the processing device,
By comparing the stored video signal with the video signal detected from the inspection object by inspection, the signal difference between the gently changing surface and the non-defective surface can be detected. Judgment of surface shape defect can be reliably performed. In addition, since each of the image signals obtained by capturing the transmitted light image and the reflected light image is compared with a standard value, it is possible to reliably determine a gradual surface shape change defect and an internal defect.

【0025】[0025]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。図1は本発明の一実施形態に係る
透明材の検査装置の全体構成を示す模式図である。同図
において、1は光源であるところのHe−Neレーザ、
2はレーザ1の出力光を拡大し、かつ、平行光束とする
ためのビームエキスパンダー、3は被検査物表面に検査
光として照射する平行光束の原形状を定めるためのマス
ク板、4は被検査物であって透明シート材から成る複写
機用のクリーニングブレードである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an overall configuration of a transparent material inspection apparatus according to one embodiment of the present invention. In the figure, 1 is a He-Ne laser as a light source,
Reference numeral 2 denotes a beam expander for expanding the output light of the laser 1 and forming a parallel light beam. Reference numeral 3 denotes a mask plate for determining the original shape of the parallel light beam to be irradiated as inspection light on the surface of the inspection object. Reference numeral 4 denotes an inspection target. This is a cleaning blade for a copying machine which is made of a transparent sheet material.

【0026】また、5AはHe−Neレーザ1からの検
査光照射により被検査物を透過した透過光像を投影する
平凸型シリンドリカル投影レンズ、6Aは平凸シリンド
リカル投影レンズ5Aによる投影像の受光範囲を定める
受光マスク板、7Aは受光マスク板6Aによって定めら
れて通過してきた表面の投影像を受光し、その像を電気
信号に変換するCCDラインセンサーである。
Reference numeral 5A denotes a plano-convex cylindrical projection lens for projecting a transmitted light image transmitted through the inspection object by irradiation of the test light from the He-Ne laser 1, and 6A denotes the reception of a projected image by the plano-convex cylindrical projection lens 5A. A light-receiving mask plate 7A that defines the range is a CCD line sensor that receives a projected image of the surface that has been defined and passed by the light-receiving mask plate 6A, and converts the image into an electric signal.

【0027】また、5BはHe−Neレーザ1からの検
査光照射により被検査物表面の反射光像を投影する平凸
型シリンドリカル投影レンズ、6Bは平凸シリンドリカ
ル投影レンズ5Bによる投影像の受光範囲を定める受光
マスク板、7Bは受光マスク板6Bによって定められて
通過してきた表面の反射光像を受光し、その像を電気信
号に変換するCCDラインセンサー、8はCCDライン
センサー7Aにより撮像した映像出力信号及びCCDラ
インセンサー7Bにより撮像した映像出力信号を処理す
るところの処理装置である。
Reference numeral 5B denotes a plano-convex cylindrical projection lens for projecting a reflected light image of the surface of the inspection object by irradiating the test light from the He-Ne laser 1, and 6B denotes a light receiving range of the projected image by the plano-convex cylindrical projection lens 5B. 7B is a CCD line sensor that receives the reflected light image of the surface that has passed and is determined by the light receiving mask plate 6B, and converts the image into an electric signal. 8 is an image captured by the CCD line sensor 7A. This is a processing device for processing an output signal and a video output signal captured by the CCD line sensor 7B.

【0028】なお、上記構成の検査装置において、He
−Neレーザ1、ビームエキスパンダー2、マスク板
3、クリーニングブレード4、平凸型シリンドリカル投
影レンズ5A,5B、受光マスク板6A,6B及びCC
Dラインセンサ7A,7Bは、外光を遮断する不図示の
遮光板にてカバーされており、暗所に配置されている。
In the inspection apparatus having the above configuration, He
-Ne laser 1, beam expander 2, mask plate 3, cleaning blade 4, plano-convex cylindrical projection lenses 5A and 5B, light receiving mask plates 6A and 6B and CC
The D-line sensors 7A and 7B are covered by a light-shielding plate (not shown) that blocks external light, and are arranged in a dark place.

【0029】この検査装置において、検査光光源である
He−Ne(波長632.8nm)レーザ1の出力ビー
ム光1aは同光軸に配置されたビームエキスパンダー2
に入射される。入射されたビーム光径(出力ビーム光1
aの光径)は、マスク板3の原形状の大きさより十分大
きく、光強度分布が均一なビーム光径に拡大され、また
平行光とされて出射光束2aに変換される。
In this inspection apparatus, an output beam 1a of a He-Ne (wavelength 632.8 nm) laser 1 as an inspection light source is a beam expander 2 arranged on the same optical axis.
Is incident on. Incident beam diameter (output beam 1
a) is sufficiently larger than the size of the original shape of the mask plate 3, the light intensity distribution is expanded to a uniform beam light diameter, and the light is converted into parallel light and converted into the outgoing light flux 2a.

【0030】この様に変換された出射光束2aは、検査
光束として照射する原形状を定めるマスク板3を照射す
る。マスク板3は被検査物4に照射する検査光束の原形
状部のみが貫通孔とされており、他の領域は遮光板によ
り遮光された構造を成している。
The output light beam 2a thus converted irradiates the mask plate 3 which determines the original shape to be irradiated as the inspection light beam. The mask plate 3 has a structure in which only the original shape portion of the inspection light beam irradiating the inspection object 4 is formed as a through hole, and the other region is shielded from light by a light shielding plate.

【0031】また、マスク板3は出射光束2aの光軸と
垂直に配置され、貫通孔とされている検査光束の原形状
部の中心は出射光束2aの光軸と一致するように配置さ
れている。マスク板3の検査光束の原形状は、例えば図
1に示す短辺3x=5mm,長辺3y=14mmとされ
ている。出射光束2aがマスク板3へ照射されると、貫
通部である原形状部を通過した光束3aは、長方形の面
を成す平行な検査光束が形成され、被検査物4の表面に
照射される。ここで、検査光束3aの長方形の面を有す
る光束の一辺である短辺(3x=5mm)は例えば被検
査物4である透明シート材のクリーニングブレードの長
手方向に相当する長さであり、長辺(3y=14mm)
は幅方向に相当する長さである。なお、被検査物4表面
への検査光束3aの照射は光軸と被検査物面の法線から
成る入射角θ(60〜87°程度)にて斜めより照射す
る。
The mask plate 3 is arranged perpendicular to the optical axis of the emitted light beam 2a, and the center of the original shape portion of the inspection light beam, which is a through hole, is arranged so as to coincide with the optical axis of the emitted light beam 2a. I have. The original shape of the inspection light beam of the mask plate 3 is, for example, short side 3x = 5 mm and long side 3y = 14 mm shown in FIG. When the emitted light beam 2a is irradiated on the mask plate 3, the light beam 3a that has passed through the original shape portion, which is a penetrating portion, forms a parallel inspection light beam having a rectangular surface and is irradiated on the surface of the inspection object 4. . Here, a short side (3x = 5 mm), which is one side of a light beam having a rectangular surface of the inspection light beam 3a, is, for example, a length corresponding to a longitudinal direction of a cleaning blade of a transparent sheet material as the inspection object 4, and is long. Side (3y = 14mm)
Is the length corresponding to the width direction. The surface of the inspection object 4 is irradiated with the inspection light beam 3a obliquely at an incident angle θ (about 60 to 87 °) formed by the optical axis and the normal to the inspection object surface.

【0032】これにより、被検査物4であるクリーニン
グブレードの長手方向の検査光の照射長さ4xは、si
n(90−θ)=3x(短辺)/4x(照射長)の関係
式から求めることができ、例えば検査光束3aの長方形
の面を有する光束の一辺である3xを5mm、入射角で
あるθを80度とすると、検査光3aの光束は平行光で
あることから、照射長4xは上式から約29mmとな
り、マスク板3の通過後の長方形の面を有する検査光3
aの短辺(3x=5mm)に比べて、長い範囲を照射す
ることになる。
Thus, the irradiation length 4x of the inspection light in the longitudinal direction of the cleaning blade, which is the inspection object 4, is
n (90-θ) = 3x (short side) / 4x (irradiation length). For example, 3x, which is one side of a light beam having a rectangular surface of the inspection light beam 3a, is 5 mm and the incident angle is 5 mm. If θ is 80 degrees, the light beam of the inspection light 3a is a parallel light, so that the irradiation length 4x is about 29 mm from the above equation, and the inspection light 3 having a rectangular surface after passing through the mask plate 3
A longer range will be irradiated than the short side of a (3x = 5 mm).

【0033】なお、検査光3aの長方形の長編(3y=
14mm)は、被検査物4の幅より広い幅で照射されて
いる。このように被検査物4表面に入射角θにて照射さ
れた検査光束3aは、被検査物4による透過光像として
光軸上で被検査物4を介して対向した光軸に配置された
平凸型シリンドリカル投影レンズ5Aに入射される。
Incidentally, a rectangular feature of the inspection light 3a (3y =
14 mm) is irradiated with a width wider than the width of the inspection object 4. The inspection light beam 3a radiated to the surface of the inspection object 4 at the incident angle θ in this manner is disposed on the optical axis facing the inspection object 4 via the inspection object 4 as a transmitted light image by the inspection object 4. The light is incident on the plano-convex cylindrical projection lens 5A.

【0034】この様な透過光像4aの入射に対して、平
凸型シリンドリカル投影レンズ5Aは、検査光束3aの
短辺(3x=5mm)方向の透過光像4aに対してはレ
ンズ作用はなく、長辺(3y=14mm)方向の透過光
像4aに対してはレンズ作用が有るように構成、配置さ
れている。
In response to the incidence of the transmitted light image 4a, the plano-convex cylindrical projection lens 5A has no lens effect on the transmitted light image 4a in the short side (3x = 5 mm) direction of the inspection light beam 3a. Are configured and arranged to have a lens effect on the transmitted light image 4a in the long side (3y = 14 mm) direction.

【0035】なお、検査光束3aによる被検査物4表面
の照射位置と平凸型シリンドリカルレンズ5Aとの間隔
は、平凸型シリンドリカル投影レンズ5Aの焦点距離以
上の間隔となるように平凸型シリンドリカル投影レンズ
5Aが配置されている。
The distance between the irradiation position of the surface of the object 4 to be inspected by the inspection light beam 3a and the plano-convex cylindrical lens 5A is longer than the focal length of the plano-convex cylindrical projection lens 5A. The projection lens 5A is arranged.

【0036】また、被検査物4の表面に入射角θにて検
査光束3aを照射したことによるクリーニングブレード
表面の反射光像4bは、正反射光軸に配置された平凸型
シリンドリカル投影レンズ5Bに入射される。
The reflected light image 4b of the cleaning blade surface caused by irradiating the surface of the inspection object 4 with the inspection light beam 3a at an incident angle θ is a plano-convex cylindrical projection lens 5B disposed on the regular reflection optical axis. Is incident on.

【0037】この様な反射光像4bの入射に対して、平
凸型シリンドリカルレンズ5Bは、検査光束3aの短辺
(3x=5mm)方向の反射光像に対してはレンズ作用
はなく、長辺(3y=14mm)方向の反射光像に対し
てはレンズ作用が有る配置となっている。
In response to the incidence of such a reflected light image 4b, the plano-convex cylindrical lens 5B has no lens action on the reflected light image in the short side (3x = 5 mm) direction of the inspection light beam 3a, but has a long lens function. The arrangement has a lens function for the reflected light image in the side (3y = 14 mm) direction.

【0038】また、検査光束3aの被検査物4表面の照
射位置と平凸型シリンドリカルレンズ5Bとの間隔は、
平凸型シリンドリカル投影レンズ5Bの焦点距離以上の
間隔となるように平凸型シリンドリカル投影レンズ5B
が配置されている。
The distance between the irradiation position of the inspection light beam 3a on the surface of the inspection object 4 and the plano-convex cylindrical lens 5B is
The plano-convex cylindrical projection lens 5B is set so as to have an interval longer than the focal length of the plano-convex cylindrical projection lens 5B.
Is arranged.

【0039】これにより、各平凸型シリンドリカル投影
レンズ5A,5Bに入射された透過光像4a、反射光像
4bの光束3aの長辺(3y=14mm)方向に対する
レンズ出射光像は、各平凸型シリンドリカル投影レンズ
5A,5Bの焦点距離の位置で結像し、それより離れる
と180度反転し、距離及びレンズ倍率に依存して拡大
する反転像となる。
As a result, the transmitted light image 4a and the reflected light image 4b incident on each of the plano-convex cylindrical projection lenses 5A and 5B are projected out of the lens 3a with respect to the long side (3y = 14 mm). An image is formed at the position of the focal length of the convex cylindrical projection lenses 5A and 5B. When the image is separated therefrom, the image is inverted by 180 degrees and becomes an inverted image that expands depending on the distance and the lens magnification.

【0040】また、光束3aの3x方向に対するレンズ
出射光像は、レンズ作用が無く入射された光束の幅で出
射される。
Further, an image of the light beam 3a emitted from the lens in the 3x direction is emitted with the width of the incident light beam without lens action.

【0041】各平凸型シリンドリカル投影レンズ5A,
5Bを通過した被検査物4の透過光像5a、反射光像5
bの投影光像は、各光軸上に配置された受光マスクスリ
ットにより受光する範囲が定められている。
Each plano-convex cylindrical projection lens 5A,
5B, the transmitted light image 5a and the reflected light image 5 of the inspection object 4 that has passed
The range in which the projected light image b is received by the light receiving mask slits arranged on each optical axis is determined.

【0042】この様に各受光マスク板6A,6Bの受光
マスクスリットによって投影光像の受光範囲が定めら
れ、各スリットを通過した投影光像6a,6bは各光軸
上に配置されたCCDラインセンサー7A,7Bの受光
素子面に投影されCCDラインセンサー7A,7Bが受
光する。
As described above, the light receiving mask slits of the light receiving mask plates 6A and 6B determine the light receiving range of the projected light image, and the projected light images 6a and 6b passing through the slits are CCD lines arranged on each optical axis. The light is projected onto the light receiving element surfaces of the sensors 7A and 7B and received by the CCD line sensors 7A and 7B.

【0043】なお、各CCDラインセンサー7A,7B
は撮像レンズを有しておらず、各平凸型シリンドリカル
投影レンズ5A,5Bを通過した被検査物4の透過光像
5a、反射光像5bが各受光マスク板6A,6Bのスリ
ットを通過し、得られた投影光像6a,6bのみが各C
CDラインセンサー7A,7Bにて直接受光される。
Each CCD line sensor 7A, 7B
Has no imaging lens, and the transmitted light image 5a and the reflected light image 5b of the test object 4 that have passed through the plano-convex cylindrical projection lenses 5A and 5B pass through the slits of the light receiving mask plates 6A and 6B. , Only the obtained projected light images 6a and 6b
The light is directly received by the CD line sensors 7A and 7B.

【0044】また、各CCDラインセンサー7A,7B
の受光素子列は、被検査物4の幅方向(検査光3aの長
辺3y方向)に、各受光マスク板6A,6Bのスリット
同様に各光軸に対して垂直の方向に配置されている。
Each of the CCD line sensors 7A, 7B
Are arranged in the width direction of the inspection object 4 (the direction of the long side 3y of the inspection light 3a) in the direction perpendicular to the respective optical axes similarly to the slits of the respective light receiving mask plates 6A and 6B. .

【0045】また、各平凸型シリンドリカル投影レンズ
5A,5Bと各CCDラインセンサー7A,7Bの各間
隔は各CCDラインセンサー7A,7Bの受光素子列全
面に各平凸型シリンドリカル投影レンズ5A,5Bによ
り拡大された被検査物4の透過光像5aと反射光像5b
のそれぞれの垂直方向の像の範囲が照射される位置に設
定する。
The distance between each of the plano-convex cylindrical projection lenses 5A and 5B and each of the CCD line sensors 7A and 7B is such that the plane-convex cylindrical projection lenses 5A and 5B are provided over the entire light receiving element array of each of the CCD line sensors 7A and 7B. Transmitted light image 5a and reflected light image 5b of inspection object 4 enlarged by
Are set at positions where the respective vertical image ranges are illuminated.

【0046】また、平凸型シリンドリカル投影レンズ5
AとCCDラインセンサー7Aの間に配置された受光マ
スク板6A、及びそれに設けられたスリットは、CCD
ラインセンサー7Aの受光素子列全面のみに、被検査物
の透過光像5aの垂直方向の像の範囲が照射されるよう
に設けられている。
A plano-convex cylindrical projection lens 5
A and a light receiving mask plate 6A disposed between the CCD line sensor 7A and a slit provided therein
The light receiving element array of the line sensor 7A is provided so that only the entire surface of the light receiving element array is irradiated with the vertical image range of the transmitted light image 5a of the inspection object.

【0047】反射光像に関しても同様に、平凸型シリン
ドリカル投影レンズ5BとCCDラインセンサー7Bの
間に配置された受光マスク板6B、及びそれに設けられ
たスリットは、CCDラインセンサー7Bの受光素子列
全面のみに、被検査物の反射光像5bの垂直方向の像の
範囲が照射するように設けられている。
Similarly, with respect to the reflected light image, the light receiving mask plate 6B disposed between the plano-convex cylindrical projection lens 5B and the CCD line sensor 7B, and the slit provided therein are provided with the light receiving element array of the CCD line sensor 7B. The entire surface is provided so as to irradiate the range of the image in the vertical direction of the reflected light image 5b of the inspection object.

【0048】各CCDラインセンサー7A,7Bにより
受光された透過光像6a及び反射光像6bは各々電気信
号に変換され、映像信号7a,7bとして出力され、処
理装置8に入力され、処理装置8により被検査物4の良
不良の判断が行われる。
The transmitted light image 6a and the reflected light image 6b received by the CCD line sensors 7A and 7B are converted into electric signals, respectively, output as video signals 7a and 7b, input to the processing device 8, and input to the processing device 8. Thus, the quality of the inspection object 4 is determined.

【0049】なお、入力される映像信号7a,7bに対
し、透過光像6a、及び反射光像6bに対応する映像信
号部分のみを対象として、その映像信号レベルを事前に
記憶した被検査物であって表面形状変化の無い良品の検
出映像信号と比較する。すなわち、その結果が事前に設
定された透過光像及び反射光像の各相対する規格レベル
の上下限値と比較され、規格値を外れるとその箇所に表
面形状不良が存在すると判断される。また、規格値内の
場合は、その箇所の表面は良品と判断される。
It is to be noted that, with respect to the input video signals 7a and 7b, only the video signal portions corresponding to the transmitted light image 6a and the reflected light image 6b are targeted, and the video signal levels are stored in the inspection object in advance. It is compared with a non-defective detected video signal having no change in surface shape. That is, the result is compared with the upper and lower limits of the respective standard levels of the transmitted light image and the reflected light image which are set in advance, and if the standard values are not met, it is determined that a surface shape defect exists at that location. If the value is within the standard value, the surface at that location is determined to be good.

【0050】図2は、平行な検査光束3aが被検査物4
の表面に対し、入射角θで表面の或る範囲4xを照射
し、緩やかな表面形状変化の有無による透過光を示した
模式図である。
FIG. 2 shows that the parallel inspection light beam 3a is
FIG. 6 is a schematic diagram showing a transmitted light depending on the presence or absence of a gradual surface shape change by irradiating a certain range 4x of the surface with an incident angle θ to the surface.

【0051】図2において表裏面に緩やかな凹凸形状変
化がない面(範囲4x1,4x3)では、その表裏面と
被検査物の長手方向の基準軸10の平行が保たれること
から、被検査物4表面に照射された検査光束3aは被検
査物4の屈折率によって被検査物4内に入射し、透過し
た光束が被検査物から出射され透過光像(範囲4a1,
4a3)を成す。
In FIG. 2, on the surface (range 4 × 1, 4 × 3) in which the front and back surfaces do not have a gradual change in uneven shape, the front and back surfaces are kept parallel to the reference axis 10 in the longitudinal direction of the inspection object. The inspection light beam 3a applied to the surface of the object 4 enters the inspection object 4 due to the refractive index of the inspection object 4, and the transmitted light beam is emitted from the inspection object and transmitted light image (range 4a1,
4a3).

【0052】また、表面反射光は、反射角θBが入射角
θと同角度として反射され反射光像(4b1,4b3)
を成す。
The surface reflected light is reflected at a reflection angle θB equal to the incident angle θ, and the reflected light image (4b1, 4b3)
Make

【0053】次に、緩やかな凸形状表面(範囲4x2)
では、その表面は基準軸10と平行ではないため、基準
軸10に対し傾きxn度を生じることから、その表面に
対する各照射箇所の入射角θnはθ−xn度(=θn)
となり、表面形状変化の無い場合の表面への入射角θと
異なる入射角で検査光束が照射される。
Next, a gentle convex surface (range 4 × 2)
Then, since the surface is not parallel to the reference axis 10, the inclination xn is generated with respect to the reference axis 10. Therefore, the incident angle θn of each irradiation point with respect to the surface is θ-xn degrees (= θn).
The inspection light beam is emitted at an incident angle different from the incident angle θ on the surface when there is no change in the surface shape.

【0054】そして、凸形状表面(範囲4x2)に対
し、入射角θnで照射され、その表面で被検査物4の屈
折率によって屈折して被検査物4内に入射し、透過した
光束が被検査物4から出射され透過光像(範囲4a2)
を成す。
The convex surface (range 4 × 2) is irradiated at an incident angle θn, and the surface is refracted by the refractive index of the object 4 to be incident on the object 4 and transmitted therethrough. Transmitted light image emitted from inspection object 4 (range 4a2)
Make

【0055】このように、検査光束3aを照射した被検
査物4表面の範囲4xに対する入射角θ及び透過出射角
θAの透過光範囲4axにおいて、透過光の或る位置で
透過光と直角を成す直線4ac上での透過光強度分布
は、図2中に示す特性曲線4adの様に示され、被検査
物4の表面の凸形状による光強度の変化が変化部4a
2’として現れ、表面形状変化のない表面と透過光強度
の差が得られる。
As described above, in the transmitted light range 4ax of the incident angle θ and the transmitted and emitted angle θA with respect to the range 4x of the surface of the inspection object 4 irradiated with the inspection light beam 3a, the transmitted light forms a right angle with the transmitted light at a certain position. The transmitted light intensity distribution on the straight line 4ac is shown as a characteristic curve 4ad shown in FIG. 2, and the change in light intensity due to the convex shape of the surface of the inspection object 4 is a change portion 4a.
2 ′, a difference between the surface having no surface shape change and the transmitted light intensity is obtained.

【0056】また、表面反射光においては、凸形状表面
(範囲4x2)により表面と基準軸10との平行が無く
なり、凸形状表面への検査光束の照射入射角はθnと成
り、表面形状変化の無い場合の表面への入射角θと異な
る入射角で検査光束が照射される。
In the surface reflected light, the convex surface (range 4 × 2) eliminates the parallelism between the surface and the reference axis 10, and the incident angle of the inspection light beam on the convex surface becomes θn, and the change in the surface shape changes. The inspection light beam is irradiated at an incident angle different from the incident angle θ to the surface when there is no inspection light beam.

【0057】この様な照射入射角θnに対する反射光の
反射角θnBは入射角θnと同角度で反射され反射光像
(範囲4b2)を成す。さらに、反射光においては検査
光束3aを照射した被検査物4表面の範囲4xに対する
入射角θ及び反射角θBの反射光範囲4bxにおいて、
反射光の或る位置で反射光と直角を成す直線4bc上で
の反射光強度分布は、特性曲線4bdの様に示され、表
面の凸形状による光強度の変化が変化部4b2’として
現れ、表面形状変化のない表面と反射光強度の差が得ら
れる。
The reflection angle θnB of the reflected light with respect to the irradiation incident angle θn is reflected at the same angle as the incident angle θn to form a reflected light image (range 4b2). Further, in the reflected light, in the reflected light range 4bx of the incident angle θ and the reflection angle θB with respect to the range 4x of the surface of the inspection object 4 irradiated with the inspection light beam 3a,
The reflected light intensity distribution on a straight line 4bc that is perpendicular to the reflected light at a certain position of the reflected light is shown as a characteristic curve 4bd, and the change in light intensity due to the convex shape of the surface appears as a changing part 4b2 ′, The difference between the surface having no change in the surface shape and the reflected light intensity is obtained.

【0058】この様に得られた透過光像は平凸型シリン
ドリカル投影レンズ5A、及び受光マスク板6Aを通
し、CCDラインセンサー7Aで受光することで、光強
度の変化が電気信号の電圧レベル変化に変換される。さ
らに、変換された電気信号7aは処理装置8に入力され
る。
The transmitted light image thus obtained passes through a plano-convex cylindrical projection lens 5A and a light receiving mask plate 6A, and is received by a CCD line sensor 7A. Is converted to Further, the converted electric signal 7a is input to the processing device 8.

【0059】また、反射光像は平凸型シリンドリカル投
影レンズ5B、及び受光マスク板6Bを通し、CCDラ
インセンサー7Bで受光することで、光強度の変化を電
気信号の電圧レベル変化に変換される。さらに、変換さ
れた電気信号7bは処理装置8に入力される。
The reflected light image passes through a plano-convex cylindrical projection lens 5B and a light receiving mask plate 6B and is received by a CCD line sensor 7B, whereby a change in light intensity is converted into a voltage level change of an electric signal. . Further, the converted electric signal 7b is input to the processing device 8.

【0060】この様に処理装置8に透過光像及び反射光
像に対する変換電気信号7a,7bが入力された後に、
事前に記憶した良品の透過光像の映像信号と変換信号7
aがまた、良品の反射光像の映像信号と変換信号7bが
各々比較され、その後、事前に記憶した透過光像及び反
射光像の各々の規格レベルの上下限値と比較され表面に
形状変化不良が存在するか判断される。
After the converted electric signals 7a and 7b for the transmitted light image and the reflected light image are input to the processor 8,
Video signal and conversion signal 7 of a transmitted light image of a good product stored in advance
a is also compared with the video signal of the reflected light image of the non-defective product and the converted signal 7b, and then compared with the upper and lower limit values of the standard levels of the transmitted light image and the reflected light image stored in advance to change the shape on the surface. It is determined whether a defect exists.

【0061】図2の表面凸形状(範囲4x2)による透
過光強度は、特性曲線4adに示す電圧レベルの変化と
して変換され、規格レベルの上下限値を外れることから
形状変化が存在すると判断される。
The transmitted light intensity due to the surface convex shape (range 4 × 2) shown in FIG. 2 is converted as a change in the voltage level indicated by the characteristic curve 4ad, and is out of the upper and lower limits of the standard level. .

【0062】また、同様に反射光強度は特性曲線4bd
に示す電圧レベルの変化として変換され、同様に規格レ
ベルの下限値を外れることから形状変化が存在すると判
断される。なお、本実施形態の検査装置は、被検査物4
である透明シートの全面を同様に検査するために、被検
査物4の基準軸10方向の送り機構を備え(不図示)、
例えば、送り機能により被検査物4をある一定速度で基
準軸方向11に移動させ、被検査物4面に検査光束3a
を順次照射し、その時の被検査物4の透過光像及び反射
光像を平凸型シリンドリカルレンズ5A,5B及び受光
マスク板6A,6Bを通し、CCDラインセンサー7
A,7Bで受光することで、光強度の変化を電気信号の
電圧レベル変化に変換して、処理装置8に入力し全面検
査を行うことが可能となる。そして、表面形状変化不良
が1つでも存在すると、その被検査物は不良品と判断さ
れる。
Similarly, the intensity of the reflected light is represented by the characteristic curve 4bd.
Is converted as a change in the voltage level shown in FIG. 5, and similarly falls outside the lower limit of the standard level, so that it is determined that a shape change exists. In addition, the inspection device of the present embodiment includes the inspection object 4
In order to similarly inspect the entire surface of the transparent sheet, a feed mechanism for the inspection object 4 in the direction of the reference axis 10 is provided (not shown).
For example, the inspection object 4 is moved in the reference axis direction 11 at a certain constant speed by the feed function, and the inspection light beam 3a
Are sequentially irradiated, and the transmitted light image and the reflected light image of the inspection object 4 at that time are passed through the plano-convex cylindrical lenses 5A and 5B and the light receiving mask plates 6A and 6B, and the CCD line sensor 7
By receiving light at A and 7B, a change in light intensity is converted into a change in voltage level of an electric signal, and the converted signal is input to the processing device 8 and an entire inspection can be performed. If at least one surface shape change defect exists, the inspection object is determined to be defective.

【0063】以上説明したように、本実施形態によれ
ば、被検査物4である透明シート状のクリーニングブレ
ードを移動させながら、両面を高速で検査できることが
可能となり、更に被検査物4内部も検査することができ
る。
As described above, according to this embodiment, both sides can be inspected at high speed while moving the transparent sheet-like cleaning blade, which is the inspection object 4, and the inside of the inspection object 4 can be inspected. Can be inspected.

【0064】また、本実施形態によれば、平行照射光束
に対し被検査物4を斜めに透かして撮像することから被
検査物4表面の或一定の厚み変化の欠陥を含む凹凸状欠
陥及び被検査物4内部の異常に対し屈折変形が大きく撮
像でき、その光電変換信号の信号処理により欠陥を確実
に判定することができる。
Further, according to the present embodiment, since the object 4 is imaged obliquely with respect to the parallel irradiation light beam, the uneven surface defect including a defect of a certain thickness change on the surface of the object 4 and the object to be inspected are oblique. An image of the refraction deformation can be largely taken for the abnormality inside the inspection object 4, and the defect can be reliably determined by the signal processing of the photoelectric conversion signal.

【0065】また、撮像手段として1次元センサーであ
るCCDラインセンサー7A,7Bを透過光像と反射光
像の各々に用い、被検査物4の幅方向を1次元で撮像し
各々光電変換することで、被検査物4を連続的に送りな
がら検査が可能となり、検査の高速化が図れる。
Further, the CCD line sensors 7A and 7B, which are one-dimensional sensors, are used as imaging means for each of the transmitted light image and the reflected light image, and the width direction of the inspection object 4 is imaged one-dimensionally and photoelectrically converted. Thus, the inspection can be performed while continuously sending the inspection object 4, and the inspection can be speeded up.

【0066】従って、本実施形態に係る検査装置及び検
査方法により、クリーニングブレードの変形及び内部欠
陥等に起因する接触圧変化によるクリーニングのムラの
発生を抑止したクリーニングブレードを提供することが
できる。
Therefore, with the inspection apparatus and the inspection method according to the present embodiment, it is possible to provide a cleaning blade in which the occurrence of cleaning unevenness due to the contact pressure change due to the deformation and internal defects of the cleaning blade is suppressed.

【0067】また、上述した実施形態の機能を実現する
ように各種のデバイスを動作させるように、上記各種デ
バイスと接続された装置あるいはシステム内のコンピュ
ータに対し、上記実施形態の機能を実現するためのソフ
トウェアのプログラムコードを供給し、そのシステムあ
るいは装置のコンピュータ(CPUあるいはMPU)に
格納されたプログラムに従って上記各種デバイスを動作
させることによって実施したものも、本発明の範疇に含
まれる。
Further, in order to realize the functions of the above-described embodiment, a device connected to the above-mentioned various devices or a computer in a system is operated so that various devices are operated so as to realize the functions of the above-described embodiment. The present invention also includes programs implemented by supplying the program code of the software described above and operating the various devices according to programs stored in a computer (CPU or MPU) of the system or apparatus.

【0068】また、この場合、上記ソフトウェアのプロ
グラムコード自体が上述した実施形態の機能を実現する
ことになり、そのプログラムコード自体、およびそのプ
ログラムコードをコンピュータに供給するための手段、
例えばかかるプログラムコードを格納した記憶媒体は本
発明を構成する。かかるプログラムコードを記憶する記
憶媒体としては、例えばフロッピーディスク、ハードデ
ィスク、光ディスク、光磁気ディスク、CD−ROM、
磁気テープ、不揮発性のメモリカード、ROM等を用い
ることができる。
In this case, the program code of the software implements the functions of the above-described embodiment, and the program code itself and means for supplying the program code to a computer are provided.
For example, a storage medium storing such a program code constitutes the present invention. As a storage medium for storing such a program code, for example, a floppy disk, hard disk, optical disk, magneto-optical disk, CD-ROM,
A magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.

【0069】また、コンピュータが供給されたプログラ
ムコードを実行することにより、上述の実施形態の機能
が実現されるだけでなく、そのプログラムコードがコン
ピュータにおいて稼働しているOS(オペレーティング
システム)あるいは他のアプリケーションソフト等の共
同して上述の実施形態の機能が実現される場合にもかか
るプログラムコードは本発明の実施形態に含まれること
は言うまでもない。
When the computer executes the supplied program code, not only the functions of the above-described embodiment are realized, but also the OS (Operating System) or other operating system running on the computer. Needless to say, even when the functions of the above-described embodiments are realized in cooperation with application software or the like, such program codes are included in the embodiments of the present invention.

【0070】さらに、供給されたプログラムコードがコ
ンピュータの機能拡張ボードやコンピュータに接続され
た機能拡張ユニットに備わるメモリに格納された後、そ
のプログラムコードの指示に基づいてその機能拡張ボー
ドや機能拡張ユニットに備わるCPU等が実際の処理の
一部または全部を行い、その処理によって上述した実施
形態の機能が実現される場合にも本発明に含まれること
は言うまでもない。
Further, after the supplied program code is stored in a memory provided in a function expansion board of a computer or a function expansion unit connected to the computer, the function expansion board or the function expansion unit is specified based on the instruction of the program code. It is needless to say that the present invention also includes a case where the CPU or the like provided in the first embodiment performs part or all of the actual processing, and the processing realizes the functions of the above-described embodiments.

【0071】[0071]

【発明の効果】本発明によれば、透過光像及び反射光像
の光強度分布を撮像することで、透明材表面の凹凸状欠
陥を安定的且つ確実に検出し、良品か否かの判定を行う
ことが可能となる。また、透明材の両面及び内部を同時
に検査することができ、検査効率向上させて短時間に検
査を行うことが可能となる。
According to the present invention, by detecting the light intensity distributions of the transmitted light image and the reflected light image, irregular defects on the surface of the transparent material can be detected stably and reliably, and it is determined whether or not the product is good. Can be performed. In addition, both sides and the inside of the transparent material can be inspected at the same time, and the inspection efficiency can be improved and the inspection can be performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る透明材の検査装置の
全体構成を示す模式図である。
FIG. 1 is a schematic diagram showing an overall configuration of a transparent material inspection apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態に係る透明材の検査装置に
おいて、緩やかな表面形状変化の有無による透過光像及
び反射光像を示す模式図である。
FIG. 2 is a schematic diagram showing a transmitted light image and a reflected light image according to the presence or absence of a gradual surface shape change in the transparent material inspection apparatus according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 1a 出力ビーム光 2 ビームエキスパンダー 3 照射光マスク板 3a 検査光束 3x 短辺 3y 長辺 4 被検査物(クリーニングブレード) 4a,5a,6a 透過光像 4b,5b,6b 反射光像 5A,5B 平凸型シリンドリカル投影レンズ 6A,6B 受光マスク板 7A,7B CCDラインセンサー 7a,7b 映像信号 8 処理装置 Reference Signs List 1 light source 1a output beam light 2 beam expander 3 irradiation light mask plate 3a inspection light flux 3x short side 3y long side 4 inspection object (cleaning blade) 4a, 5a, 6a transmitted light image 4b, 5b, 6b reflected light image 5A, 5B Plano-convex cylindrical projection lens 6A, 6B Light receiving mask plate 7A, 7B CCD line sensor 7a, 7b Video signal 8 Processing device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA49 BB22 CC00 DD03 DD06 FF01 FF04 FF41 FF61 GG05 GG12 HH03 HH12 JJ02 JJ25 LL08 LL10 LL30 MM03 PP01 PP22 QQ25 SS04 2G051 AA41 AA42 AA84 AB20 BA10 CA03 CA04 CA07 CB01 CB02 EA14 EA16 EB01 EB02 ED01 ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 2F065 AA49 BB22 CC00 DD03 DD06 FF01 FF04 FF41 FF61 GG05 GG12 HH03 HH12 JJ02 JJ25 LL08 LL10 LL30 MM03 PP01 PP22 QQ25 SS04 2G051 AA41 AA42 CA14 CB01 BA02 CB01 EB02 ED01

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 透明材の表面状態を検査する装置であっ
て、 被検査物の表面に略均等な強度を有する所定面積の平行
光束を照射し、 照射された前記平行光束による前記被検査物の透過光像
と反射光像を各々独立の光学系にて各々所定の撮像素子
に投影し、 前記撮像素子にて光電変換された前記透過光像及び反射
光像の光電変換信号を基に、前記被検査物の表面状態を
検査することを特徴とする透明材の検査装置。
1. An apparatus for inspecting the surface condition of a transparent material, comprising: irradiating a parallel light beam of a predetermined area having substantially uniform intensity onto a surface of an inspected object; The transmitted light image and the reflected light image are each projected on a predetermined image sensor by an independent optical system, based on the photoelectric conversion signals of the transmitted light image and the reflected light image photoelectrically converted by the image sensor, An inspection apparatus for a transparent material, wherein an inspection is performed on a surface state of the inspection object.
【請求項2】 前記平行光束を前記所定面積のマスクに
通過させて前記被検査物に照射することを特徴とする請
求項1に記載の透明材の検査装置。
2. The transparent material inspection apparatus according to claim 1, wherein the parallel light beam passes through the mask having the predetermined area and irradiates the inspection object.
【請求項3】 前記平行光束を前記被検査物の表面に対
して所定角度傾いた方向から照射し、 前記被検査物を介して前記平行光束の照射源と対向した
位置で前記被検査物の前記透過光像を前記撮像素子へ投
影するようにしたことを特徴とする請求項1又は2に記
載の透明材の検査装置。
3. A method of irradiating the parallel light beam from a direction inclined at a predetermined angle with respect to the surface of the inspection object, and applying the parallel light beam to the surface of the inspection object at a position facing the irradiation source of the parallel light beam via the inspection object. The transparent material inspection apparatus according to claim 1, wherein the transmitted light image is projected onto the image sensor.
【請求項4】 前記反射光像を前記平行光束の光軸に対
する正反射光軸に沿った位置で前記撮像素子へ投影する
ようにしたことを特徴とする請求項3に記載の透明材の
検査装置。
4. The inspection of a transparent material according to claim 3, wherein the reflected light image is projected onto the image pickup device at a position along a regular reflection optical axis with respect to an optical axis of the parallel light flux. apparatus.
【請求項5】 表面形状変化の無い基準品の前記透過光
像及び反射光像の光電変換信号を予め記憶し、 前記基準品の前記光電変換信号と前記被検査物の前記光
電変換信号とを比較し、 比較の結果が所定の規格値を外れた場合に前記被検査物
の表面状態に異常が有ると判断することを特徴とする請
求項1〜4のいずれか1項に記載の透明材の検査装置。
5. A photoelectric conversion signal of the transmitted light image and the reflected light image of a reference product having no change in surface shape is stored in advance, and the photoelectric conversion signal of the reference product and the photoelectric conversion signal of the inspection object are stored. The transparent material according to any one of claims 1 to 4, wherein the transparent material is determined to have an abnormality in a surface state of the inspection object when the comparison result deviates from a predetermined standard value. Inspection equipment.
【請求項6】 透明材の表面状態を検査する装置であっ
て、 被検査物の表面に実質的に均等な強度を有する所定面積
の平行光束を照射する照射手段と、 前記平行光束の前記被検査物の透過光像と反射光像をマ
スクを介して各々独立に投影する投影手段と、 前記投影手段により投影された投影画像を光電変換する
撮像手段とを備え、 各々の撮像手段における光電変換信号を基に前記被検査
物の検査を行うことを特徴とする透明材の検査装置。
6. An apparatus for inspecting the surface condition of a transparent material, comprising: an irradiating means for irradiating a parallel light beam of a predetermined area having substantially uniform intensity onto a surface of an object to be inspected; A projection unit that independently projects a transmitted light image and a reflected light image of the inspection object via a mask; and an imaging unit that photoelectrically converts a projection image projected by the projection unit. An inspection apparatus for a transparent material, wherein the inspection object is inspected based on a signal.
【請求項7】 透明材の表面状態を検査する方法であっ
て、 被検査物の表面に略均等な強度を有する所定面積の平行
光束を照射し、 照射された前記平行光束による前記被検査物の透過光像
と反射光像を各々独立の光学系にて各々所定の撮像素子
に投影し、 前記撮像素子にて光電変換された前記透過光像及び反射
光像の光電変換信号を基に、前記被検査物の表面状態を
検査することを特徴とする透明材の検査方法。
7. A method for inspecting a surface state of a transparent material, comprising: irradiating a surface of an object with a parallel light beam having a predetermined area having substantially uniform intensity; The transmitted light image and the reflected light image are each projected on a predetermined image sensor by an independent optical system, based on the photoelectric conversion signals of the transmitted light image and the reflected light image photoelectrically converted by the image sensor, A method for inspecting a transparent material, comprising inspecting a surface state of the inspection object.
【請求項8】 前記平行光束を前記所定面積のマスクに
通過させて前記被検査物に照射することを特徴とする請
求項7に記載の透明材の検査方法。
8. The method for inspecting a transparent material according to claim 7, wherein the parallel light beam passes through the mask having the predetermined area to irradiate the inspection object.
【請求項9】 前記平行光束を前記被検査物の表面に対
して所定角度傾いた方向から照射し、 前記被検査物を介して前記平行光束の照射源と対向した
位置で前記被検査物の前記透過光像を前記撮像素子へ投
影するようにしたことを特徴とする請求項7又は8に記
載の透明材の検査方法。
9. A method of irradiating the parallel light beam with respect to the surface of the inspection object from a direction inclined at a predetermined angle to the surface of the inspection object, and applying the parallel light beam to the inspection object at a position facing the irradiation source of the parallel light beam through the inspection object. 9. The method according to claim 7, wherein the transmitted light image is projected onto the image sensor.
【請求項10】 前記反射光像を前記平行光束の光軸に
対する正反射光軸に沿った位置で前記撮像素子へ投影す
るようにしたことを特徴とする請求項9に記載の透明材
の検査方法。
10. The inspection of a transparent material according to claim 9, wherein the reflected light image is projected onto the image pickup device at a position along a regular reflection optical axis with respect to an optical axis of the parallel light flux. Method.
【請求項11】 表面形状変化の無い基準品の前記透過
光像及び反射光像の光電変換信号を予め記憶し、 前記基準品の前記光電変換信号と前記被検査物の前記光
電変換信号とを比較し、 比較の結果が所定の規格値を外れた場合に前記被検査物
の表面状態に異常が有ると判断することを特徴とする請
求項7〜10のいずれか1項に記載の透明材の検査方
法。
11. A photoelectric conversion signal of the transmitted light image and the reflected light image of a reference product having no change in surface shape is stored in advance, and the photoelectric conversion signal of the reference product and the photoelectric conversion signal of the inspection object are stored. The transparent material according to any one of claims 7 to 10, wherein when the comparison result is out of a predetermined standard value, it is determined that there is an abnormality in the surface condition of the inspection object. Inspection method.
【請求項12】 請求項6に記載の透明材の検査装置の
各手段としてコンピュータを機能させるためのプログラ
ムを記憶したコンピュータ読み取り可能な記憶媒体。
12. A computer-readable storage medium storing a program for causing a computer to function as each unit of the transparent material inspection apparatus according to claim 6.
【請求項13】 請求項7〜11のいずれか1項に記載
の透明材の検査方法の手順をコンピュータに実行させる
ためのプログラムを記憶したコンピュータ読み取り可能
な記憶媒体。
13. A computer-readable storage medium storing a program for causing a computer to execute the procedure of the method for inspecting a transparent material according to claim 7. Description:
JP11212545A 1999-07-27 1999-07-27 Inspection device and method of transparent material and storage medium Pending JP2001041719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11212545A JP2001041719A (en) 1999-07-27 1999-07-27 Inspection device and method of transparent material and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11212545A JP2001041719A (en) 1999-07-27 1999-07-27 Inspection device and method of transparent material and storage medium

Publications (1)

Publication Number Publication Date
JP2001041719A true JP2001041719A (en) 2001-02-16

Family

ID=16624467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11212545A Pending JP2001041719A (en) 1999-07-27 1999-07-27 Inspection device and method of transparent material and storage medium

Country Status (1)

Country Link
JP (1) JP2001041719A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334898A (en) * 2001-05-09 2002-11-22 Ibiden Co Ltd Method and equipment for inspecting bump height
JP2007033327A (en) * 2005-07-28 2007-02-08 Canon Chemicals Inc Flaw detecting method and flaw detector
JP2007192623A (en) * 2006-01-18 2007-08-02 Tani Electronics Corp Device and method for inspecting cream solder printed state of printed circuit board
EP1866625A2 (en) * 2005-04-06 2007-12-19 Corning Incorporated Glass inspection systems and methods for using same
JP2008170429A (en) * 2006-12-14 2008-07-24 Nippon Electric Glass Co Ltd Plate glass defect detector, plate glass manufacturing method, plate glass article, plate glass quality determination device, and plate glass inspection method
JP2008275474A (en) * 2007-04-27 2008-11-13 Kubota Matsushitadenko Exterior Works Ltd Method for detecting shape defect of molded article
JP2010043895A (en) * 2008-08-11 2010-02-25 Canon Chemicals Inc Device and method for flaw detection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334898A (en) * 2001-05-09 2002-11-22 Ibiden Co Ltd Method and equipment for inspecting bump height
JP4566445B2 (en) * 2001-05-09 2010-10-20 イビデン株式会社 Bump height inspection method and inspection apparatus
EP1866625A2 (en) * 2005-04-06 2007-12-19 Corning Incorporated Glass inspection systems and methods for using same
EP1866625A4 (en) * 2005-04-06 2010-12-29 Corning Inc Glass inspection systems and methods for using same
JP2007033327A (en) * 2005-07-28 2007-02-08 Canon Chemicals Inc Flaw detecting method and flaw detector
JP2007192623A (en) * 2006-01-18 2007-08-02 Tani Electronics Corp Device and method for inspecting cream solder printed state of printed circuit board
JP2008170429A (en) * 2006-12-14 2008-07-24 Nippon Electric Glass Co Ltd Plate glass defect detector, plate glass manufacturing method, plate glass article, plate glass quality determination device, and plate glass inspection method
JP2008275474A (en) * 2007-04-27 2008-11-13 Kubota Matsushitadenko Exterior Works Ltd Method for detecting shape defect of molded article
JP2010043895A (en) * 2008-08-11 2010-02-25 Canon Chemicals Inc Device and method for flaw detection

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US7907270B2 (en) Inspection apparatus and method, and production method for pattern substrates
JP5388543B2 (en) Appearance inspection device
JPH0915163A (en) Method and equipment for inspecting foreign substance
KR20010034323A (en) Optical inspection method and apparatus
JPH05332943A (en) Surface state inspection device
US8339568B2 (en) Foreign particle inspection apparatus, exposure apparatus, and method of manufacturing device
JP2001041719A (en) Inspection device and method of transparent material and storage medium
KR20170030706A (en) Substrate Inspection Apparatus
JP2003282675A (en) Wafer mapping device
JP2004163129A (en) Defect inspection method
JPH06281593A (en) Method and apparatus for inspecting surface
JP7170491B2 (en) Foreign matter detection device, exposure device, and article manufacturing method
JPH11183151A (en) Transparent sheet inspecting equipment
JP3336392B2 (en) Foreign matter inspection apparatus and method
JPH04169840A (en) Method and apparatus for inspecting flaw of circumferential surface
JP2962752B2 (en) Pattern inspection equipment
KR101087628B1 (en) Foreign particle inspection apparatus, exposure apparatus, and method of manufacturing device
JP2009222629A (en) Device for inspecting edge of object to be inspected
JP3218726B2 (en) Foreign matter inspection device
JP3788651B2 (en) Defect inspection method and apparatus
JP2006313107A (en) Inspection device, inspection method, and method of manufacturing pattern substrate using them
JPH0599639A (en) Inspection device for small unevenness of planar object
JPH11304640A (en) Inspection apparatus for optical element
JPH09145339A (en) Surface flaw inspection method