JP2001040366A - Cooling method for mixed gas - Google Patents

Cooling method for mixed gas

Info

Publication number
JP2001040366A
JP2001040366A JP2000157056A JP2000157056A JP2001040366A JP 2001040366 A JP2001040366 A JP 2001040366A JP 2000157056 A JP2000157056 A JP 2000157056A JP 2000157056 A JP2000157056 A JP 2000157056A JP 2001040366 A JP2001040366 A JP 2001040366A
Authority
JP
Japan
Prior art keywords
heat exchanger
mixed gas
cooling
hydrocarbon
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000157056A
Other languages
Japanese (ja)
Inventor
Heigo Sato
平吾 佐藤
Isao Yamamoto
功 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000157056A priority Critical patent/JP2001040366A/en
Publication of JP2001040366A publication Critical patent/JP2001040366A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make long continuous operation possible while preventing the accumulation of a heavy hydrocarbon component in a heat exchanger by cooling with a vertical heat exchanger in a temperature range wherein a heavy hydrocarbon component contained in a mixed hydrocarbon gas condensates. SOLUTION: Preferably, the cooling of the mixed gas in a high-temperature range is conducted with a horizontal heat exchanger E-1 and then the mixed gas is cooled with a vertical heat exchanger E-2 having heat exchange planes installed in the vertical direction. For example, a hydrogen-containing mixed hydrocarbon gas at 650-750 deg.C obtained by the heating and hydrodealkylation in a benzene plant and supplied from a reactor R-2, is cooled to 350-570 deg.C, preferably with a horizontal heat exchanger E-1, and then cooled to 90-250 deg.C with a vertical heat exchanger E-2. A heavy component condensed in the vertical heat exchanger E-2 is separated by distillation from products, such as benzene, and light gas distillates at the downstream-side refining steps. Preferably, the vertical heat exchanger E-2 is a shell-and-tube heat exchanger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、混合ガスの冷却方
法に関し、詳しくは炭化水素重質分を含む炭化水素混合
ガスを冷却する方法に関する。
The present invention relates to a method for cooling a mixed gas, and more particularly to a method for cooling a hydrocarbon mixed gas containing heavy hydrocarbons.

【0002】[0002]

【従来の技術】エチレンプラントより製出する分解ガソ
リンを蒸留し、水添脱硫し、水素化脱アルキル化してな
る水素含有炭化水素混合ガスを冷却し、精製し、製品で
あるベンゼンを得るプロセスにおいて、水素化脱アルキ
ル化工程を経た混合ガスを横型熱交換器を通して700
℃程度から250℃程度まで冷却する方法が知られてい
る。
2. Description of the Related Art In a process in which a cracked gasoline produced from an ethylene plant is distilled, hydrodesulfurized, and hydrodealkylated, a hydrogen-containing hydrocarbon mixed gas is cooled, refined, and a product, benzene, is obtained. , The mixed gas passed through the hydrodealkylation step is passed through a horizontal heat exchanger for 700
A method of cooling from about ℃ to about 250 ℃ is known.

【0003】この方法は、エチレンプラントより製出す
る分解ガソリンを蒸留し、水添脱硫して得た水素含有炭
化水素混合ガスを加熱炉において加熱し、反応器に導
き、反応器において水素含有炭化水素混合ガス中のアル
キル芳香族成分を水素化脱アルキル化反応してベンゼン
とし、非芳香族成分をメタン、エタンに水素化熱分解し
た反応生成物すなわち混合ガスを、横型熱交換器で70
0℃程度から250℃程度まで冷却するものである。
[0003] In this method, a cracked gasoline produced from an ethylene plant is distilled, and a hydrogen-containing hydrocarbon mixed gas obtained by hydrodesulfurization is heated in a heating furnace, led to a reactor, and the hydrogen-containing hydrocarbon gas is reacted in the reactor. A hydrogen-dealkylation reaction of the alkyl aromatic component in the hydrogen mixed gas to form benzene, and a non-aromatic component hydrogenated and pyrolyzed to methane and ethane, ie, a mixed gas, are mixed in a horizontal heat exchanger at 70 ° C.
It cools from about 0 ° C to about 250 ° C.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
方法において反応器で芳香族炭化水素は重合して炭化水
素重質分となり、つまり冷却工程に送られる混合ガスが
沸点の高い炭化水素重質分を含有するため、冷却の過程
で炭化水素重質分が凝縮して横型熱交換器内壁に付着、
蓄積し、熱交換効率が低下して運転障害をもたらすとい
う問題があった。従って蓄積した炭化水素重質分を除去
するため一定の頻度で熱交換器を開放、清掃する必要が
生じ、1年以上の連続運転は困難であった。
However, in the above-described method, aromatic hydrocarbons are polymerized in the reactor into hydrocarbon heavy components, that is, the mixed gas sent to the cooling step has a high boiling point in the hydrocarbon heavy components. , Heavy hydrocarbons condense during the cooling process and adhere to the inner wall of the horizontal heat exchanger,
There is a problem in that the heat accumulates and the heat exchange efficiency is reduced to cause an operation failure. Therefore, it is necessary to open and clean the heat exchanger at a certain frequency in order to remove the accumulated heavy hydrocarbons, and it has been difficult to continuously operate the heat exchanger for one year or more.

【0005】本発明は上記実状に鑑みなされたものであ
り、その目的は熱交換器内の炭化水素重質分の蓄積を妨
げ、熱交換効率の低下を抑制し、長期連続運転を達成す
る方法を提供することにある。
The present invention has been made in view of the above circumstances, and has as its object a method for preventing accumulation of heavy hydrocarbons in a heat exchanger, suppressing a decrease in heat exchange efficiency, and achieving long-term continuous operation. Is to provide.

【0006】[0006]

【課題を解決するための手段】かかる従来技術の課題を
解決すべく鋭意検討した結果、本発明者等は、従来混合
ガスを冷却する際に設置及びメンテナンス等で負荷の小
さい横型熱交換器を使用したところ、混合ガス中の炭化
水素重質分が凝縮する温度域で縦型熱交換器を用いるこ
とで、熱交換器内壁への炭化水素重質分の付着を軽減
し、熱交換器内部の汚染を防いで熱交換器の連続運転を
可能にし、また、熱交換効率の低下を抑制して加熱炉の
燃料削減に寄与する等、予想外の効果を得られることを
見出し、本発明に到達した。
As a result of intensive studies to solve the problems of the prior art, the present inventors have found that a conventional horizontal heat exchanger having a small load due to installation and maintenance when cooling a mixed gas. By using the vertical heat exchanger in the temperature range where the heavy hydrocarbons in the mixed gas condense when used, the adhesion of heavy hydrocarbons to the inner wall of the heat exchanger is reduced, and the inside of the heat exchanger is reduced. It has been found that unexpected effects can be obtained, such as preventing the contamination of the heat exchanger and enabling the continuous operation of the heat exchanger, and suppressing the decrease in the heat exchange efficiency to contribute to the reduction of the fuel consumption of the heating furnace. Reached.

【0007】すなわち本発明は、炭化水素重質分を含む
炭化水素混合ガスを熱交換器により冷却する方法であっ
て、混合ガスに含まれる炭化水素重質分が凝縮する温度
域では縦型熱交換器を用いて冷却することを特徴とする
混合ガスの冷却方法に存する。
That is, the present invention relates to a method for cooling a hydrocarbon mixed gas containing a heavy hydrocarbon by a heat exchanger, wherein the vertical mixed heat is used in a temperature range in which the heavy hydrocarbon contained in the mixed gas is condensed. The present invention relates to a method for cooling a mixed gas, characterized by cooling using an exchanger.

【0008】[0008]

【発明の実施の形態】本発明は炭化水素重質分を含む炭
化水素混合ガス、広くは高沸点物質を含む混合ガスに適
用できる。混合ガスの温度は通常400〜750℃であ
る。例えば本発明の好ましい態様である前述のエチレン
プラントより製出する分解ガソリンを蒸留し水添脱硫し
た、水素含有炭化水素混合ガスを加熱炉において加熱
し、反応器に導き、反応器において水素含有炭化水素混
合ガス中のアルキル芳香族成分を水素化脱アルキル化反
応してベンゼンとし、非芳香族成分をメタン、エタンに
水素化熱分解するプロセスであれば、通常650〜75
0℃、好ましくは700〜730℃である。
DETAILED DESCRIPTION OF THE INVENTION The present invention can be applied to a hydrocarbon mixed gas containing a heavy hydrocarbon component, and more generally to a mixed gas containing a high-boiling substance. The temperature of the mixed gas is usually 400 to 750 ° C. For example, a cracked gasoline produced from the above-described ethylene plant, which is a preferred embodiment of the present invention, is distilled and hydrodesulfurized. A hydrogen-containing hydrocarbon mixed gas is heated in a heating furnace, guided to a reactor, and hydrogenated carbonized in the reactor. A process in which the alkyl aromatic component in the hydrogen mixed gas is subjected to a hydrodealkylation reaction to form benzene and the non-aromatic component is subjected to hydropyrolysis into methane and ethane is usually 650 to 75.
0 ° C., preferably 700-730 ° C.

【0009】次いで混合ガスは熱交換器による冷却工程
に供されるが、初期の冷却、すなわち高温領域での冷却
は通常の熱交換器で行われる。熱交換器としては通常横
型が使われる。この冷却は混合ガスに含まれる炭化水素
重質分が凝縮を始める温度の近傍まで行われる。
Next, the mixed gas is subjected to a cooling step using a heat exchanger. The initial cooling, that is, cooling in a high-temperature region, is performed by a normal heat exchanger. A horizontal type is usually used as a heat exchanger. This cooling is performed to a temperature near the temperature at which the heavy hydrocarbon components contained in the mixed gas start to condense.

【0010】従来炭化水素重質分が凝縮温度で凝縮して
熱交換器内壁に蓄積し、熱交換器を閉塞させていた。そ
こで本発明において、混合ガスを冷却する工程で混合ガ
スに含まれる炭化水素重質分が凝縮を始める温度の近傍
から凝縮を終える温度の近傍、すなわち凝縮する温度域
の冷却に縦型熱交換器を採用することで、凝縮液が重力
で落下し、さらに液体が冷えることにより軽質分の凝縮
を促し凝縮した重質分を洗い流す効果が表れ、凝縮液の
蓄積による汚れが発生せず、熱交換器の連続運転を可能
とし、しかも伝熱効率が低下しないために加熱炉での燃
料削減に寄与する。重質分が凝縮する温度は通常200
〜480℃、好ましくは280〜450℃である。
[0010] Conventionally, heavy hydrocarbons are condensed at the condensing temperature and accumulate on the inner wall of the heat exchanger to block the heat exchanger. Therefore, in the present invention, in the step of cooling the mixed gas, from the vicinity of the temperature at which the heavy hydrocarbons contained in the mixed gas begins to condense to the vicinity of the temperature at which condensation is completed, that is, the vertical heat exchanger is used to cool the condensing temperature range. By adopting, the condensate drops by gravity, and the liquid cools further, condensing the light components and washing away the condensed heavy components. It enables continuous operation of the heater and contributes to fuel reduction in the heating furnace because the heat transfer efficiency does not decrease. The temperature at which heavy components condense is typically 200
To 480 ° C, preferably 280 to 450 ° C.

【0011】ここでいう縦型熱交換器とは、実質的な熱
交換を行う熱交換面が鉛直方向に設置されており、液体
状の汚れ成分が落下するものであればよい。その型式は
多管式、平板式、二重管式、螺旋式、渦巻き式等が挙げ
られるが、本発明の実施にあたり縦型熱交換器は汚れ成
分が落下した結果熱交換器の出口方向に向かう型式であ
ればよく、熱交換器の種類は問わない。
The vertical heat exchanger referred to here may be any as long as a heat exchange surface for performing substantial heat exchange is provided in a vertical direction, and a liquid dirt component falls. Examples of the type include a multi-tube type, a flat-plate type, a double-tube type, a spiral type, a spiral type, and the like. Any type of heat exchanger may be used, regardless of the type of heat exchanger.

【0012】縦型熱交換器における冷却温度は通常出口
温度で250〜90℃程度である。この熱交換工程の
後、必要により更に熱交換に供する。この冷却は前述の
高温域から炭化水素重質分の凝縮する温度の近傍まで行
われる熱交換と同様に行われ、熱交換器としては通常横
型が使われる。
The cooling temperature in the vertical heat exchanger is usually about 250 to 90 ° C. at the outlet temperature. After this heat exchange step, it is further subjected to heat exchange if necessary. This cooling is performed in the same manner as the heat exchange performed from the high temperature region to the vicinity of the temperature at which the heavy hydrocarbons condense, and a horizontal heat exchanger is usually used.

【0013】本発明の冷却方法の好ましい適用であるベ
ンゼンプラントの水素化脱アルキル化反応器前後の工程
につき添付図面に基づいて説明する。図1は本発明の好
ましい態様の一例を示すプロセスフローダイアグラムで
ある。本プロセスは主として加熱炉(F-1)、第一段反
応器(R-1)、第二段反応器(R-2)、横型熱交換器(E-
1)縦型熱交換器(E-2)より構成されている。
The steps before and after the hydrodealkylation reactor of the benzene plant, which is a preferred application of the cooling method of the present invention, will be described with reference to the accompanying drawings. FIG. 1 is a process flow diagram illustrating an example of a preferred embodiment of the present invention. This process mainly consists of heating furnace (F-1), first stage reactor (R-1), second stage reactor (R-2), horizontal heat exchanger (E-
1) Consists of a vertical heat exchanger (E-2).

【0014】原料ガスとして、少なくとも水素、メタ
ン、エタン、およびトルエン、キシレン等の炭素数6〜
8の炭化水素を含む水素含有炭化水素混合ガスが使用さ
れる。
As the raw material gas, at least hydrogen, methane, ethane, and C6 to C6 such as toluene and xylene are used.
A hydrogen-containing hydrocarbon mixed gas containing 8 hydrocarbons is used.

【0015】上記原料ガスは縦型熱交換器(E-2)管側
で300〜350℃、横型熱交換器(E-1)胴側で50
0〜580℃に順次加熱され、次に加熱炉(F-1)で5
80〜630℃まで加熱される。加熱された原料ガスは
第一段反応器(R-1)、第二段反応器(R-2)に順次導か
れ、原料ガス中のアルキル芳香族成分を水素化脱アルキ
ル化反応しベンゼンにすると同時に、非芳香族成分をメ
タン、エタンに水素化熱分解してベンゼンとの蒸留分離
を容易にする。また、副反応としてベンゼン環の縮合反
応が起こり高沸点の炭化水素重質分が生成される。
The raw material gas is supplied at 300 to 350 ° C. on the tube side of the vertical heat exchanger (E-2) and at 50 ° C. on the body side of the horizontal heat exchanger (E-1).
0 to 580 ° C, and then in a heating furnace (F-1).
Heat to 80-630 ° C. The heated raw material gas is successively led to the first-stage reactor (R-1) and the second-stage reactor (R-2), and hydrogen-dealkylation-reacts the alkyl aromatic components in the raw material gas to benzene. At the same time, the non-aromatic components are hydrothermally decomposed into methane and ethane to facilitate the separation by distillation from benzene. In addition, a condensation reaction of a benzene ring occurs as a side reaction, and heavy hydrocarbons having a high boiling point are generated.

【0016】反応生成物、即ち炭化水素重質分を含む炭
化水素混合ガスの組成は、通常水素を45〜60mol
%、好ましくは49〜54mol%、メタンを25〜35m
ol%、好ましくは27〜29mol%、エタンを1〜15m
ol%、好ましくは3〜12mol%、ベンゼンを5〜20m
ol%、好ましくは8〜14mol%、トルエンを0.2〜
2mol%、好ましくは0.4〜1.2mol%、炭化水素重
質分を0.02〜0.3mol%、好ましくは0.1〜
0.2mol%含む混合ガスである。ここで炭化水素重質
分とは沸点範囲が280〜450℃、炭素数がおよそ1
2〜30の炭化水素を意味する。
The composition of the reaction product, that is, the hydrocarbon mixture gas containing the heavy hydrocarbon component is usually 45 to 60 mol of hydrogen.
%, Preferably 49 to 54 mol%, methane is 25 to 35 m
ol%, preferably 27-29 mol%, ethane 1-15 m
ol%, preferably 3 to 12 mol%, benzene is 5 to 20 m
ol%, preferably 8 to 14 mol%, toluene
2 mol%, preferably 0.4 to 1.2 mol%, and hydrocarbon heavy content of 0.02 to 0.3 mol%, preferably 0.1 to
It is a mixed gas containing 0.2 mol%. Here, the hydrocarbon heavy fraction has a boiling range of 280 to 450 ° C. and a carbon number of about 1
Means 2 to 30 hydrocarbons.

【0017】混合ガスの温度は反応熱のため通常650
〜750℃、好ましくは700〜730℃まで上昇す
る。反応器(R-2)からの反応生成物である混合ガスは
横型熱交換器(E-1)の管側で胴側の原料ガスと熱交換
し、通常350〜570℃まで冷却され、さらに縦型熱
交換器(E-2)の胴側で管側の原料ガスと熱交換し、通
常90〜250℃まで冷却される。ここで用いられる縦
型熱交換器の種類は多管式、平板式、二重管式、螺旋
式、渦巻き式熱交換器で、好ましくは多管式熱交換器で
ある。縦型熱交換器で凝縮した重質分は下流の精製工程
においてベンゼン等の製品、軽質ガス留分と蒸留分離さ
れる。
The temperature of the mixed gas is usually 650 due to the heat of reaction.
To 750 ° C, preferably 700 to 730 ° C. The mixed gas that is a reaction product from the reactor (R-2) exchanges heat with the raw material gas on the barrel side at the tube side of the horizontal heat exchanger (E-1), and is usually cooled to 350 to 570 ° C. The body side of the vertical heat exchanger (E-2) exchanges heat with the raw material gas on the tube side and is usually cooled to 90 to 250 ° C. The type of the vertical heat exchanger used here is a multi-tube, flat-plate, double-tube, spiral or spiral heat exchanger, preferably a multi-tube heat exchanger. The heavy fraction condensed in the vertical heat exchanger is separated by distillation from products such as benzene and a light gas fraction in a downstream purification step.

【0018】[0018]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を越えない限り、以下の実施
例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

【0019】実施例1 エチレンプラントより製出する分解ガソリンを蒸留し水
添脱硫した水素含有炭化水素混合ガスを水素化脱アルキ
ル化してなる炭化水素混合ガスであって、水素49.6
mol%、メタン27.8mol%、エタン10.6mol%、
ベンゼン11.4mol%、トルエン0.5mol%、炭化水
素重質分(凝縮温度:300℃前後)0.1mol%を含
有する炭化水素混合ガスを、720℃から500℃まで
横型熱交換器で冷却し、500℃から100℃まで縦型
熱交換器で冷却した。その結果、2年後の縦型熱交換器
の出口温度は100℃を維持し、伝熱係数の低下は見ら
れなかった。また、連続運転を2年間続けた後、開放し
たところ顕著な汚れは見られなかった。
Example 1 Hydrogen-dealkylated hydrocarbon-containing gas mixture obtained by distilling and hydrodesulfurizing cracked gasoline produced from an ethylene plant, and is a hydrocarbon mixed gas comprising 49.6 hydrogen
mol%, methane 27.8 mol%, ethane 10.6 mol%,
A hydrocarbon mixed gas containing 11.4 mol% of benzene, 0.5 mol% of toluene, and 0.1 mol% of hydrocarbon heavy components (condensation temperature: around 300 ° C.) is cooled from 720 ° C. to 500 ° C. by a horizontal heat exchanger. Then, it was cooled from 500 ° C. to 100 ° C. by a vertical heat exchanger. As a result, the outlet temperature of the vertical heat exchanger was maintained at 100 ° C. two years later, and no decrease in the heat transfer coefficient was observed. After continuous operation was continued for two years, when opened, no remarkable dirt was observed.

【0020】比較例1 横型熱交換器と縦型熱交換器を併用するかわりに一基の
横型熱交換器で実施例と同一のガスを720℃から20
0℃まで一気に冷却したところ、1年間後には横型熱交
換器出口温度は400℃程度まで上昇し、伝熱係数は約
40%低下し、運転を停止し、開放、清掃が必要となっ
た。
COMPARATIVE EXAMPLE 1 Instead of using both the horizontal heat exchanger and the vertical heat exchanger, the same gas as that of the embodiment was used in one horizontal heat exchanger at 720.degree.
After cooling to 0 ° C at a stretch, the temperature at the outlet of the horizontal heat exchanger rose to about 400 ° C after one year, the heat transfer coefficient decreased by about 40%, the operation was stopped, and opening and cleaning were required.

【0021】[0021]

【発明の効果】以上説明した本発明によれば従来法に比
較して熱交換器内の汚れが抑制されるため、運転の停
止、開放、清掃が不要になり長期間にわたる連続運転が
可能となる。また、熱交換器内の汚れが抑制されるため
に高い伝熱係数を維持でき、熱交換器の性能維持が可能
となって生産効率が向上する。
According to the present invention described above, contamination in the heat exchanger is suppressed as compared with the conventional method, so that it is not necessary to stop, open and clean the operation, and continuous operation can be performed for a long period of time. Become. In addition, since contamination in the heat exchanger is suppressed, a high heat transfer coefficient can be maintained, and performance of the heat exchanger can be maintained, thereby improving production efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好ましい態様の一例を示すプロセスフ
ローダイアグラム
FIG. 1 is a process flow diagram illustrating an example of a preferred embodiment of the present invention.

【符号の説明】[Explanation of symbols]

E-1:横型熱交換器 E-2:縦型熱交換器 F-1:加熱器 R-1:第一段反応器 R-2:第二段反応器 E-1: Horizontal heat exchanger E-2: Vertical heat exchanger F-1: Heater R-1: First stage reactor R-2: Second stage reactor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素重質分を含む炭化水素混合ガス
を熱交換器により冷却する方法であって、混合ガスに含
まれる炭化水素重質分が凝縮する温度域では縦型熱交換
器を用いて冷却することを特徴とする混合ガスの冷却方
法。
1. A method for cooling a hydrocarbon mixed gas containing a hydrocarbon heavy component by a heat exchanger, wherein a vertical heat exchanger is used in a temperature range where the hydrocarbon heavy component contained in the mixed gas condenses. A method for cooling a mixed gas, comprising cooling the mixture.
【請求項2】 縦型熱交換器による冷却の前または後に
横型熱交換器を併用することを特徴とする請求項1に記
載の冷却方法。
2. The cooling method according to claim 1, wherein a horizontal heat exchanger is used before or after cooling by the vertical heat exchanger.
【請求項3】 前記炭化水素混合ガスを熱交換器で炭化
水素重質分が凝縮する温度域より高い温度まで冷却した
後、縦型熱交換器で炭化水素重質分が凝縮する温度域よ
り低い温度まで冷却することを特徴とする請求項1また
は2に記載の冷却方法。
3. After cooling the hydrocarbon mixed gas in a heat exchanger to a temperature higher than a temperature range in which heavy hydrocarbons are condensed, the temperature is reduced from a temperature range in which heavy hydrocarbons are condensed in a vertical heat exchanger. The cooling method according to claim 1, wherein cooling is performed to a low temperature.
【請求項4】 前記炭化水素混合ガスを横型熱交換器で
350〜570℃まで冷却し、縦型熱交換器で90〜2
50℃まで冷却することを特徴とする請求項1〜3のい
ずれかに記載の冷却方法。
4. The hydrocarbon mixed gas is cooled to 350 to 570 ° C. by a horizontal heat exchanger, and is cooled to 90 to 2 ° C. by a vertical heat exchanger.
The cooling method according to any one of claims 1 to 3, wherein the cooling is performed to 50C.
【請求項5】 前記炭化水素混合ガスが、パラフィン系
炭化水素を熱分解してなる留分を水添脱硫し、水素化脱
アルキル化して得られる混合ガスであることを特徴とす
る請求項1〜4のいずれかに記載の冷却方法。
5. The hydrocarbon mixed gas is a mixed gas obtained by hydrodesulfurizing a fraction obtained by thermally decomposing a paraffinic hydrocarbon and hydrodealkylating the same. 5. The cooling method according to any one of items 1 to 4.
【請求項6】 前記炭化水素混合ガスに含まれる炭化水
素重質分の凝縮する温度域が200〜480℃であるこ
とを特徴とする請求項1〜5のいずれかに記載の冷却方
法。
6. The cooling method according to claim 1, wherein the temperature range in which the heavy hydrocarbons contained in the hydrocarbon mixed gas condense is 200 to 480 ° C.
JP2000157056A 1999-05-27 2000-05-26 Cooling method for mixed gas Pending JP2001040366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157056A JP2001040366A (en) 1999-05-27 2000-05-26 Cooling method for mixed gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14787399 1999-05-27
JP11-147873 1999-05-27
JP2000157056A JP2001040366A (en) 1999-05-27 2000-05-26 Cooling method for mixed gas

Publications (1)

Publication Number Publication Date
JP2001040366A true JP2001040366A (en) 2001-02-13

Family

ID=26478290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157056A Pending JP2001040366A (en) 1999-05-27 2000-05-26 Cooling method for mixed gas

Country Status (1)

Country Link
JP (1) JP2001040366A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007008396A2 (en) * 2005-07-08 2007-01-18 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
WO2007008397A1 (en) 2005-07-08 2007-01-18 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
WO2007008406A1 (en) 2005-07-08 2007-01-18 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
JP2007511634A (en) * 2003-11-14 2007-05-10 シェブロン ユー.エス.エー. インコーポレイテッド Method for improving the quality of Fischer-Tropsch products
US7674366B2 (en) 2005-07-08 2010-03-09 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7718049B2 (en) 2005-07-08 2010-05-18 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7763162B2 (en) 2005-07-08 2010-07-27 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
WO2012015494A2 (en) 2010-07-30 2012-02-02 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US8524070B2 (en) 2005-07-08 2013-09-03 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
CN105444524A (en) * 2015-01-30 2016-03-30 张登峰 Portable mixed hydrocarbon extraction equipment and extraction method
CN105536425A (en) * 2016-01-19 2016-05-04 北京优工科技有限公司 System and method for recovering mixed hydrocarbon from polyolefin exhaust torch gas
CN113617307A (en) * 2020-05-06 2021-11-09 山东友泉新材料有限公司 Continuous production system and production method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511634A (en) * 2003-11-14 2007-05-10 シェブロン ユー.エス.エー. インコーポレイテッド Method for improving the quality of Fischer-Tropsch products
US7780843B2 (en) 2005-07-08 2010-08-24 ExxonMobil Chemical Company Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7465388B2 (en) 2005-07-08 2008-12-16 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
EP2330175A2 (en) 2005-07-08 2011-06-08 ExxonMobil Chemical Patents Inc. Apparatus for processing hydrocarbon pyrolysis effluent
US7981374B2 (en) 2005-07-08 2011-07-19 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7972482B2 (en) 2005-07-08 2011-07-05 Exxonmobile Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7674366B2 (en) 2005-07-08 2010-03-09 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7718049B2 (en) 2005-07-08 2010-05-18 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7749372B2 (en) 2005-07-08 2010-07-06 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7763162B2 (en) 2005-07-08 2010-07-27 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
WO2007008396A2 (en) * 2005-07-08 2007-01-18 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
WO2007008396A3 (en) * 2005-07-08 2007-03-08 Exxonmobil Chem Patents Inc Method for processing hydrocarbon pyrolysis effluent
WO2007008406A1 (en) 2005-07-08 2007-01-18 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
WO2007008397A1 (en) 2005-07-08 2007-01-18 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US8074707B2 (en) 2005-07-08 2011-12-13 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US8092671B2 (en) 2005-07-08 2012-01-10 Exxonmobil Chemical Patents, Inc. Method for processing hydrocarbon pyrolysis effluent
US8524070B2 (en) 2005-07-08 2013-09-03 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
WO2012015494A2 (en) 2010-07-30 2012-02-02 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
CN105444524A (en) * 2015-01-30 2016-03-30 张登峰 Portable mixed hydrocarbon extraction equipment and extraction method
CN105536425A (en) * 2016-01-19 2016-05-04 北京优工科技有限公司 System and method for recovering mixed hydrocarbon from polyolefin exhaust torch gas
CN113617307A (en) * 2020-05-06 2021-11-09 山东友泉新材料有限公司 Continuous production system and production method
CN113617307B (en) * 2020-05-06 2023-02-17 山东友泉新材料有限公司 Continuous production system and production method

Similar Documents

Publication Publication Date Title
US7749372B2 (en) Method for processing hydrocarbon pyrolysis effluent
US8092671B2 (en) Method for processing hydrocarbon pyrolysis effluent
US7674366B2 (en) Method for processing hydrocarbon pyrolysis effluent
US7465388B2 (en) Method for processing hydrocarbon pyrolysis effluent
US8074707B2 (en) Method for processing hydrocarbon pyrolysis effluent
JPH02503693A (en) Prevention of coke formation during evaporation of heavy hydrocarbons
JP2001040366A (en) Cooling method for mixed gas
US20140221715A1 (en) Aromatics production process
JP2016527343A (en) Process for converting high boiling hydrocarbon feeds to lower boiling hydrocarbon products
JP7303258B2 (en) Crude oil heating method
US4420343A (en) Process for the thermal decoking of cracked gas coolers
CN109863230B (en) Method and system for generating hydrocarbon vapor
WO2006079287A1 (en) A method for removing petroleum acid from acid-containing hydrocarbon oil
JPS59117585A (en) Treatment of thermally cracked oil
CN115605561A (en) Hydrocarbon pyrolysis of sulfur-containing feeds
RU2099389C1 (en) Method of producing lower olefins from vacuum gas oil
EA040349B1 (en) METHOD AND SYSTEM FOR HYDROCARBON VAPOR PRODUCTION