JP2001025464A - Method for analyzing individual facial expression deformation process - Google Patents

Method for analyzing individual facial expression deformation process

Info

Publication number
JP2001025464A
JP2001025464A JP2000136163A JP2000136163A JP2001025464A JP 2001025464 A JP2001025464 A JP 2001025464A JP 2000136163 A JP2000136163 A JP 2000136163A JP 2000136163 A JP2000136163 A JP 2000136163A JP 2001025464 A JP2001025464 A JP 2001025464A
Authority
JP
Japan
Prior art keywords
muscle
finite element
model
finite
facial expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136163A
Other languages
Japanese (ja)
Inventor
Norio Tsuta
紀夫 蔦
Takeshi Iwamoto
剛 岩本
Tomohiro Fujimura
朋宏 藤村
Nobuyuki Tozaki
暢行 戸崎
Osamu Kaneko
治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2000136163A priority Critical patent/JP2001025464A/en
Publication of JP2001025464A publication Critical patent/JP2001025464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Processing Or Creating Images (AREA)
  • Complex Calculations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply and automatically analyzing a facial expression deformation process of the face of an optional model with a computer on an individual basis. SOLUTION: By constituting a sample of a finite element model by dividing a representative structure of facial muscles and skin into finite elements, automatically measuring and incorporating shape measurements of a face of an individual person as typical point data by an artificial visual device, and giving the coordinates of a plurality of representative points 31 to 43 thus obtained to the sample of the finite element model, an individual finite element model is generated. By giving time series data of the contraction percentage β of muscles at the time of facial expression deformation to a generated finite element model, and by applying these to a computer system equipped with the function of analyzing achievement of the muscles and skin combining the function of analyzing finite elements based on an active and passive incremental constitutive equation of the facial muscles and the function of analyzing finite elements of a superelastic finite deformed body for computation facial expression deformation is reproduced by an FEM model.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、顔の表情変形、表
情応力過程を個人別に解析する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing facial expression deformation and facial stress processes for each individual.

【0002】[0002]

【従来の技術】人間の表情は表情筋の収縮によりそれを
覆うヒフの変形となって顔表面に現れる。表情筋は約3
0前後あり、その筋収縮の選択的組み合わせによりその
上に層を成すスキン−皮下組織系を変形させて喜怒哀楽
の種々の表情を形成している。“李美成他、日本機械学
会第10回バイオエンジニアリング講演会講演論文集、
98−1、p160〜161”には、有限要素法の手法
に従って、表情筋の収縮にともなうヒフの表情変形をコ
ンピュータによりシミュレートする、表情筋−ヒフ軟組
織系の超弾性有限変形体有限要素解析システムHYEL
−MUSCLシステムが記載されている。
2. Description of the Related Art Human facial expressions appear on the face as contractions of facial muscles due to contraction of facial muscles. Facial muscles are about 3
There are around zero, and the selective combination of muscle contractions transforms the underlying skin-subcutaneous tissue system to form various expressions of emotions. "Minari Lee et al., Proceedings of the 10th Bioengineering Conference of the Japan Society of Mechanical Engineers,
98-1, p160-161 ", a finite element analysis of a hyperelastic finite deformation body of the facial muscle-Hiff soft tissue system, which simulates the facial expression deformation of the Hiff accompanying the contraction of the facial muscles by a computer according to the finite element method System HYEL
-A MUSCL system is described.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
のシステムを用いて、任意のモデルの顔の表情変形過程
を個人別に簡便に、自動的にコンピュータ解析する方法
を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for easily and automatically analyzing a facial expression deformation process of an arbitrary model individually for each individual using the above-mentioned system. .

【0004】[0004]

【課題を解決するための手段】本発明によれば、顔の筋
およびヒフの代表的な構造を有限要素に分割して有限要
素モデルのひな形を構築し、個々の人間の顔の形状測定
により得られた複数の代表点の座標を該有限要素モデル
のひな形に与えて個人別の顔の有限要素モデルを生成
し、生成された個人別有限要素モデルに、表情変形に伴
う代表点の座標の変化からの筋の収縮率が求まるように
して、これらを筋の増分型剛性方程式およびヒフの増分
型剛性方程式を組合せた筋−ヒフ連成有限要素解析シス
テムにこれを適用して表情変形過程の顔面各点の筋やヒ
フの変位、ひずみや応力を計算するステップを具備する
個人別表情変形過程の解析方法が提供される。
According to the present invention, a representative structure of a finite element model is constructed by dividing a representative structure of facial muscles and hifu into finite elements, and the shape of an individual human face is measured. The coordinates of the plurality of representative points obtained by the above are given to the model of the finite element model to generate an individual face finite element model, and the generated individual finite element model The contraction rate of the muscle from the change in coordinates is determined, and these are applied to a muscle-Hiff coupled finite element analysis system combining the incremental stiffness equation of the muscle and the incremental stiffness equation of the Hiff to transform the facial expression. There is provided an analysis method of an individual facial expression deformation process including a step of calculating displacement, strain and stress of a muscle or a hifu at each point of the face in the process.

【0005】[0005]

【発明の実施の形態】図1は眼の周囲にある各種の筋肉
を示す。図1において、10は眼輪筋、12は前頭筋、
14は皺眉筋、15は鼻根筋、16は上唇鼻翼挙筋、1
8は上唇挙筋、20は口角挙筋、22は小頬骨筋、24
は大頬骨筋である。眼の周囲には、図1に示すような、
各種筋肉が、眼を囲むように存在し、これらの筋肉の選
択的収縮により、眼の開閉を始めとする、複雑な表情の
形成を可能にしている。
FIG. 1 shows various muscles around the eye. In FIG. 1, 10 is the orbital muscle, 12 is the frontal muscle,
14 is the wrinkle muscle, 15 is the root muscle, 16 is the upper lip levator ridge, 1
8 is the upper lip muscle, 20 is the levator ani muscle, 22 is the small zygomatic muscle, 24
Is the large cheekbone muscle. Around the eyes, as shown in FIG.
Various muscles are present so as to surround the eyes, and selective contraction of these muscles enables formation of complex facial expressions including opening and closing of the eyes.

【0006】前述の筋−ヒフ連成系の超弾性有限変形体
有限要素解析プログラムHYEL−MUSCLに使用す
る、眼縁系の有限要素モデルを自動生成するプログラム
について説明する。これまで、口縁フルモデル、また眼
縁系については、眼輪筋1/4対象モデルや、眼輪筋フ
ルモデルの有限要素モデルを生成し、それを用いて表情
解析をしてきたが、これらのモデルでは眼や口の周りの
複雑な表情変形の解析を行うことが困難であり、さら
に、個人別の表情解析も出来なかった。また、眼開閉口
過程においても、眼輪筋だけでなく、眼輪筋を取り巻く
各種放射筋(前頭筋など8種類)の影響も大きく、眼縁
系の表情のシミュレーションのためには、これらの各種
放射筋も考慮しなければならない。そこで、本発明の一
実施形態では、眼輪筋フルモデルの有限要素モデルに各
種放射筋を付着させた、眼縁系表情筋−ヒフのFEM自
動メッシュ生成システムが構築される。プログラムの概
要は以下の通りである。
A description will now be given of a program for automatically generating a finite element model of the eye marginal system, which is used in the above-described muscle-Hiff coupled hyperelastic finite deformation finite element analysis program HYEL-MUSCL. Until now, for the full-mouth model and the limbus system, a finite element model of the orbicularis 筋 target model and the orbicularis full model have been generated, and facial expression analysis has been performed using these models. With this model, it was difficult to analyze complicated facial expression deformation around the eyes and mouth, and it was not possible to analyze facial expressions for individuals. In addition, in the process of opening and closing the eye, not only the orbicularis muscle but also various radiation muscles surrounding the orbicularis muscle (eight types including frontal muscles) are greatly affected. Various radiation sources must also be considered. Therefore, in one embodiment of the present invention, an FEM automatic mesh generation system for the limbus facial expression muscle-Hiff, in which various radiation muscles are attached to the finite element model of the orbicularis muscle full model, is constructed. The outline of the program is as follows.

【0007】(a)筋、ヒフについて、それぞれ2次元
8節点四辺形アイソパラメトリック要素を用いる。 (b)眼の中心に原点を取り、眼の長径方向にx軸、短
径方向にy軸、ヒフの厚み方向にz軸を取る。 (c)眼の長さ・各種筋肉の付着位置・計算領域につい
て、人工視覚装置AV−DAVISで取り込んだ個人別
顔面代表点の三次元座標データ(図2)とひな形メッシ
ュデータとを組み合わせることにより、個人別の筋とヒ
フのメッシュデータを生成する。
(A) Two-dimensional 8-node quadrilateral isoparametric elements are used for muscles and hifu. (B) The origin is taken at the center of the eye, the x-axis is taken in the major axis direction of the eye, the y-axis is taken in the minor axis direction, and the z-axis is taken in the thickness direction of the eye. (C) Combining the three-dimensional coordinate data (FIG. 2) of individual facial representative points captured by the artificial vision device AV-DAVIS with the model mesh data for the eye length, the attachment positions of various muscles, and the calculation area. Generates mesh data of muscles and hifu for each individual.

【0008】(d)筋・ヒフの要素分割数を自由に設定
できる。 (e)入力データにより、筋・ヒフの分割数、目尻・目
頭付近の要素の大きさを自由に設定できる。 (f)このモデルでは、眼輪筋・前頭筋・皺眉筋・鼻根
筋の存在する領域では、筋肉とヒフは独立要素を構成し
ているが、節点を共有している。
(D) The number of element divisions of streaks and hifu can be freely set. (E) It is possible to freely set the number of divisions of a line / hiff and the size of an element near the outer or outer corner of the eye by input data. (F) In this model, in the region where the orbicularis muscle, the frontalis muscle, the creased eyebrows muscle, and the rhinopsalis muscle exist, the muscle and the hifu constitute independent elements, but share a node.

【0009】(g)複数の筋束が重なり合うような領域
では、それぞれ独立の要素を構成しているが、節点を共
有している。 (h)筋束の方向は、筋要素のそれぞれについて定めら
れる。 (i)このFEM自動メッシュ生成システムは個人別の
表情解析を目的としている。そこで、個人々々によって
異なる眼の大きさ、筋付着位置などは、人工視覚装置A
V−DAVIS、US超音波計測などから個人別の入力
データを作成し、それを基に個人別のFEM(有限要素
法)メッシュデータを作成できる。
(G) In a region where a plurality of muscle bundles overlap each other, they constitute independent elements but share a node. (H) The direction of the muscle bundle is determined for each muscle element. (I) The FEM automatic mesh generation system is aimed at analyzing facial expressions for each individual. Therefore, the size of the eye, the position of the muscle attachment, and the like that vary depending on the individual are determined by the artificial vision device A
Individual input data is created from V-DAVIS, US ultrasonic measurement, etc., and individual FEM (finite element method) mesh data can be created based on the input data.

【0010】例えば、図2において、代表点31,3
4,42,43の座標によりシミュレーション領域が決
定される。代表点35,36,37,38の座標により
右眼位置が決定される。代表点32,33の座標により
鼻根筋15(図1)の付着位置が決定される。代表点3
9,40,41の座標により皺眉筋14の付着位置が決
定される。
For example, referring to FIG.
The simulation area is determined by the coordinates of 4, 42 and 43. The right eye position is determined based on the coordinates of the representative points 35, 36, 37, and 38. The attachment position of the rhinopsalis muscle 15 (FIG. 1) is determined based on the coordinates of the representative points 32 and 33. Representative point 3
The attachment position of the wrinkle line 14 is determined by the coordinates of 9, 40, and 41.

【0011】(j)眼輪筋については、眼開口中心から
見た第一象限〜第四象限それぞれについて、代表点入力
データより、楕円で近似し、ヒフと共通の節点を持た
せ、要素分割する。 (k)鼻根筋、皺眉筋については、代表点入力データに
よりヒフ要素上に近似的に付着させ、ヒフ要素と共通の
節点を持たせる。 (l)前頭筋については、ひな形メッシュデータから眼
輪筋の最外要素との付着位置を定め、ヒフ要素上に近似
的に付着させ、ヒフ要素と共通の節点を持たせる。
(J) Regarding the orbicularis muscle, each of the first to fourth quadrants as viewed from the center of the eye opening is approximated by an ellipse from the representative point input data, and has a node common to the hyph, and is divided into elements. I do. (K) The root of the nose and the line of the wrinkles are approximately attached to the Hiff element based on the representative point input data, and have a node common to the Hiff element. (L) For the frontal muscle, the position of attachment to the outermost element of the orbicularis muscle is determined from the template mesh data, and is approximately attached to the Hiff element to have a common node with the Hiff element.

【0012】(m)大頬骨筋、小頬骨筋、口角挙筋、上
唇挙筋、上唇鼻翼挙筋については、ひな形メッシュデー
タから眼輪筋の最外要素との付着位置、筋束方向を定
め、この眼輪筋の最外要素と共通の節点を持たせる。図
3は上記のプログラムにより自動生成された個人別FE
Mデータの一例を示す。また、図4には、FEMモデル
における前頭筋12、皺眉筋14、鼻根筋15、上唇鼻
翼挙筋16、口角挙筋20、上唇挙筋18、小頬骨筋2
2及び大頬骨筋24の領域を太線で示す。
(M) For the large zygomatic muscle, the small zygomatic muscle, the levator ani muscle, the upper lip muscle, and the upper lip pterygoid muscle, the position of attachment to the outermost element of the orbicularis muscle and the direction of the muscle bundle are determined from the template mesh data. And have a common node with the outermost element of the orbicularis muscle. FIG. 3 shows an individual FE automatically generated by the above program.
An example of M data is shown. Also, FIG. 4 shows the frontal muscle 12, wrinkle muscle 14, nasal root muscle 15, upper lip pterygoid muscle 16, orbital levator muscle 20, upper lip muscle 18 and small cheekbone muscle 2 in the FEM model.
2 and the area of the large zygomatic muscle 24 are indicated by thick lines.

【0013】次に、前述の筋−ヒフ連成系の超弾性有限
変形体有限要素プログラムHYEL−MUSCLにおい
て使用される増分型剛性方程式の一例について説明する
(詳細については、蔦紀夫他、広島大学研究報告、
、p59−71参照)。筋の部分の有限要素に対して
適用される筋の増分型剛性方程式は例えば次の(1)式
により与えられる。
Next, an example of the incremental stiffness equation used in the above-described hyperelastic finite deformation finite element program HYEL-MUSCL of the muscle-Hiff coupling system will be described (for details, see Norio Tsuta et al., Hiroshima University). Research Report, 4
6 , p59-71). The incremental stiffness equation of the muscle applied to the finite element of the muscle portion is given by, for example, the following equation (1).

【0014】また、ヒフの部分の有限要素に対して適用
される増分型剛性方程式は、例えば次の式(3)により
与えられる。式(1)と式(3)を顔面対象部の筋とヒ
フについて求めて、これらを実際の結合状態に合わせて
連成させれば、特定の表情筋の収縮により、筋やヒフに
生じる増分変位が求まる。この結果を式(2)−1と式
(2)−2に用いれば、筋の増分ひずみや増分能動応
力、増分受動応力が求められ、また式(2)−1にヒフ
の増分変位を与え式(4)に用いればヒフの増分ひずみ
や増分応力が求められる。
Further, an incremental stiffness equation applied to the finite element of the part of the stiff part is given by the following equation (3), for example. Equations (1) and (3) are obtained for the muscles and the hiff of the face target part, and these are coupled according to the actual connection state. The displacement is determined. When the results are used in Equations (2) -1 and (2) -2, the incremental strain of the muscle, the incremental active stress, and the incremental passive stress are obtained, and the incremental displacement of the Hiff is given to Equation (2) -1. Using the equation (4), the incremental strain and the incremental stress of the Hiff can be obtained.

【数1】 (Equation 1)

【数2】 (Equation 2)

【0015】ヒフの部分の増分型剛性方程式は、次の
(3)式で与えられる。
The incremental stiffness equation for the part of the hiff is given by the following equation (3).

【0016】[0016]

【数3】 (Equation 3)

【0017】筋−ヒフ連成系の有限要素解析は式(1)
と式(3)で与えられる筋とヒフそれぞれの全体系の増
分型有限要素方程式を連成させて解く事により筋とヒフ
それぞれの、各節点の増分変位が求められ、これより筋
とヒフそれぞれの増分ひずみや増分応力が求められる。
なお、解析モデルの全体剛性マトリックスは、筋要素と
スキン要素の成分が重なるところは共通節点に関する要
素剛性マトリックスを組み立てるようにする。筋の物性
値としては“岩本剛他、計算工学講演論文集、3−1
p259−262”の方法により求めた図5に示す値を
使用することができる。ヒフの物性値としては、“藤村
朋宏他、計算工学講演論文集、3−1、p287−29
0”の方法により求めた図6に示す値を使用することが
できる。(2)式中のβは筋活性率または収縮率であ
り、積分筋電位(EMG)と一定の関係がある(岩本剛
他、計算工学講演論文集、3−1、p259−26
2)。そこで、“喜”、“怒”などの表情をつくったと
きの各筋の積分EMGを測定し、別途測定した積分EM
Gと収縮率との関係により収縮率に変換することによ
り、或る表情をつくったときの各筋の収縮率βの時系列
データが得られる。これをHYEL−MUSCLシステ
ムに入力することにより、“喜”、“怒”などの表情変
化をFEMモデルで再現することができる。或は前出の
代表点データを用いてこれを代りに用いる事もできる。
The finite element analysis of the coupled muscle-Hiff system is expressed by the following equation (1).
By solving the incremental finite element equations of the whole system of the muscle and the Hiff given by Equation (3) and the equation, the incremental displacement of each node of the muscle and the Hiff can be obtained, and the muscle and the Hiff can be obtained from this. The incremental strain and incremental stress of are calculated.
In addition, as for the entire rigidity matrix of the analysis model, when the components of the muscle element and the skin element overlap, an element rigidity matrix relating to a common node is assembled. The physical properties of muscles are described in “Takeshi Iwamoto et al., Proceedings of Computational Engineering Sciences, 3-1 .
The values shown in Fig. 5 obtained by the method of "p259-262" can be used. As the physical property values of Hiff, "Tomohiro Fujimura et al., Proceedings of Computational Engineering Lectures, 3-1" , p287-29
The value shown in FIG. 6 obtained by the method of “0” can be used. Β in the equation (2) is a muscle activity rate or a contraction rate, and has a certain relationship with the integrated myoelectric potential (EMG) (Iwamoto) Tsuyoshi et al., Proceedings of the Computer Engineering Lectures, 3-1, p259-26
2). Therefore, the integral EMG of each muscle when an expression such as “happy” or “angry” was created was measured, and the integral EM measured separately was measured.
By converting the contraction rate into a contraction rate based on the relationship between G and the contraction rate, time-series data of the contraction rate β of each muscle when a certain expression is created can be obtained. By inputting this into the HYEL-MUSCL system, changes in facial expressions such as "happy" and "angry" can be reproduced by the FEM model. Alternatively, the above representative point data can be used instead.

【0018】図7は図8に示す“喜”の表情変化を再現
するために眼輪筋と大頬骨筋にβ値を与えたときの計算
結果を示す。図9は図10に示す“怒”の表情変化を再
現するために鼻根筋と皺眉筋にβ値を与えたときの計算
結果を示す。
FIG. 7 shows the calculation results when β values are given to the orbicularis oculi muscle and the large zygomatic muscle to reproduce the facial expression change of “pleasure” shown in FIG. FIG. 9 shows a calculation result when β values are given to the root of the nose and the line of the wrinkles of the eyebrows in order to reproduce the facial expression change of “anger” shown in FIG.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、任
意のモデルの顔の表情変形過程を人工視覚装置から取込
んだ代表点データの入力により有限要素法のはん雑な手
続きを経ることなくほぼ自動的に個人別の表情を解析す
ることが可能になる。
As described above, according to the present invention, the facial expression deformation process of an arbitrary model is subjected to complicated procedures of the finite element method by inputting representative point data taken in from an artificial vision device. It becomes possible to analyze the expression of each individual almost automatically without any.

【図面の簡単な説明】[Brief description of the drawings]

【図1】眼の周囲の各種筋肉を示す図である。FIG. 1 is a diagram showing various muscles around an eye.

【図2】代表点を説明する図である。FIG. 2 is a diagram illustrating representative points.

【図3】個人別FEMモデルの一例を示す図である。FIG. 3 is a diagram showing an example of an individual FEM model.

【図4】FEMモデルにおける各筋肉の領域を太線で示
す図である。
FIG. 4 is a diagram showing regions of each muscle in the FEM model by thick lines.

【図5】筋の物性値の一例を示す図である。FIG. 5 is a diagram showing an example of a physical property value of a muscle.

【図6】ヒフの物性値の一例を示す図である。FIG. 6 is a diagram illustrating an example of a physical property value of a hifu.

【図7】“喜”の表情を再現するFEMモデルの計算結
果を示す図である。
FIG. 7 is a diagram showing a calculation result of an FEM model that reproduces the expression of “pleasure”;

【図8】“喜”の表情の例を示す写真である。FIG. 8 is a photograph showing an example of an expression of “pleasure”.

【図9】“怒”の表情を再現するFEMモデルの計算結
果を示す図である。
FIG. 9 is a diagram illustrating a calculation result of an FEM model that reproduces an expression of “anger”.

【図10】“怒”の表情の例を示す写真である。FIG. 10 is a photograph showing an example of an expression of “anger”.

【符号の説明】[Explanation of symbols]

10…眼輪筋 12…前頭筋 14…皺眉筋 15…鼻根筋 16…上唇鼻翼挙筋 18…上唇挙筋 20…口角挙筋 22…小頬骨筋 24…大頬骨筋 31,34,42,43…シミュレーション領域を決め
る代表点 35,36,37,38…右眼位置を決める代表点 32,33…鼻根筋付着位置を決める代表点 39,40,41…皺眉筋付着位置を決める代表点
Reference Signs List 10: orbicularis muscle 12 ... frontal muscle 14 ... wrinkle muscle 15 ... nose ridge muscle 16 ... upper lip levator ani muscle 18 ... upper lip levator muscle 20 ... levator ani muscle 22 ... small cheekbone muscle 24 ... large zygomatic muscle 31, 34, 42, 43 ... Representative points that determine the simulation area 35,36,37,38 ... Representative points that determine the right eye position 32,33 ... Representative points that determine the attachment position of the nose ridge muscle 39,40,41 ... Representative points that determine the attachment position of the wrinkle muscle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤村 朋宏 広島県東広島市鏡山一丁目四番一号 広島 大学工学部内 (72)発明者 戸崎 暢行 広島県東広島市鏡山一丁目四番一号 広島 大学工学部内 (72)発明者 金子 治 東京都品川区西五反田3−9−1 株式会 社資生堂ビューティーサイエンス研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tomohiro Fujimura 1-4-1 Kagamiyama, Higashihiroshima-shi, Hiroshima Hiroshima University Faculty of Engineering (72) Inventor Nobuyuki Tozaki 1-4-1-1 Kagamiyama, Higashihiroshima-shi, Hiroshima Hiroshima Within the Faculty of Engineering (72) Inventor Osamu Kaneko 3-9-1 Nishi Gotanda, Shinagawa-ku, Tokyo Shiseido Beauty Science Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 顔の筋およびヒフの代表的な構造を有限
要素に分割して有限要素モデルのひな形を構築し、 個々の人間の顔の形状測定により得られた複数の代表点
の座標および変形過程のそれらの座標値の変化を該有限
要素モデルのひな形に与えて個人別の顔の有限要素モデ
ルを生成すると共に、 上記代表点の時刻歴データから表情変形の際の刻々の筋
の収縮率が与えられるようにした上で、これらを生成さ
れた個人別有限要素モデルに与える事によって、表情筋
の能動型・受動型増分構成方程式に基づく有限要素解析
を具備する機能と、ヒフの超弾性有限変形体の有限要素
解析機能を併せた筋とヒフの達成解析機能を具備するコ
ンピュータ・システムにこれを適用して表情変形過程の
変形やひずみ、応力を計算するステップを具備する個人
別筋とヒフの表情変形および表情応力過程の解析方法。
1. A representative structure of facial muscles and hifu is divided into finite elements to form a model of a finite element model, and coordinates of a plurality of representative points obtained by measuring the shape of each human face And the change in their coordinate values during the transformation process is given to the model of the finite element model to generate a finite element model of the face for each individual, and the instantaneous line at the time of the facial expression deformation from the time history data of the representative points. By providing these to the generated individual finite element model after giving the contraction rate of the physician, the function with finite element analysis based on the active / passive incremental constitutive equation of the facial muscles, An individual who has a step of calculating the deformation, strain, and stress in the facial expression deformation process by applying this to a computer system having a muscle and Hiff achievement analysis function combined with the finite element analysis function of the hyperelastic finite deformation body Analysis method of the muscle and skin of facial expression variations and expression stress process.
JP2000136163A 1999-05-13 2000-05-09 Method for analyzing individual facial expression deformation process Pending JP2001025464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136163A JP2001025464A (en) 1999-05-13 2000-05-09 Method for analyzing individual facial expression deformation process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13292299 1999-05-13
JP11-132922 1999-05-13
JP2000136163A JP2001025464A (en) 1999-05-13 2000-05-09 Method for analyzing individual facial expression deformation process

Publications (1)

Publication Number Publication Date
JP2001025464A true JP2001025464A (en) 2001-01-30

Family

ID=26467386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136163A Pending JP2001025464A (en) 1999-05-13 2000-05-09 Method for analyzing individual facial expression deformation process

Country Status (1)

Country Link
JP (1) JP2001025464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502407A (en) * 2001-09-07 2005-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for measuring geometric variables of structures contained in images
KR100755446B1 (en) * 2006-06-28 2007-09-04 중앙대학교 산학협력단 Apparatus for deforming nurbs surface using modified fem and method thereof
JP2010054283A (en) * 2008-08-27 2010-03-11 Sumitomo Heavy Ind Ltd Device and method for measuring shape change
JP2012000228A (en) * 2010-06-16 2012-01-05 Sony Corp Muscle-activity diagnosis apparatus, method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502407A (en) * 2001-09-07 2005-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for measuring geometric variables of structures contained in images
KR100755446B1 (en) * 2006-06-28 2007-09-04 중앙대학교 산학협력단 Apparatus for deforming nurbs surface using modified fem and method thereof
JP2010054283A (en) * 2008-08-27 2010-03-11 Sumitomo Heavy Ind Ltd Device and method for measuring shape change
JP2012000228A (en) * 2010-06-16 2012-01-05 Sony Corp Muscle-activity diagnosis apparatus, method, and program

Similar Documents

Publication Publication Date Title
Ichim et al. Phace: Physics-based face modeling and animation
Keeve et al. Anatomy-based facial tissue modeling using the finite element method
Nazari et al. Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation
Lee et al. Realistic modeling for facial animation
Lei et al. Headform and N95 filtering facepiece respirator interaction: contact pressure simulation and validation
Beldie et al. Finite element modelling of maxillofacial surgery and facial expressions—a preliminary study
JP2003044873A (en) Method for generating and deforming three-dimensional model of face
CN109829451A (en) Organism action identification method, device, server and storage medium
Wu et al. Using reinforcement learning to estimate human joint moments from electromyography or joint kinematics: An alternative solution to musculoskeletal-based biomechanics
US20220375621A1 (en) Digital twin
Murai et al. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics
CN114630738A (en) System and method for simulating sensing data and creating perception
CN111046451A (en) Periodontal ligament stress analysis method and device
Yang et al. Physics-based deformable tongue visualization
JP2001025464A (en) Method for analyzing individual facial expression deformation process
Yi et al. Design of a surface EMG based human-machine interface for an intelligent wheelchair
Cheng Human digital twin with applications
JP5500683B2 (en) Method, program and system for generating a numerical object model having an internal tissue structure of an individual
Cheng et al. Facial morphology prediction after complete denture restoration based on principal component analysis
Ma et al. Animating visible speech and facial expressions
Wu A computational framework for modelling the biomechanics of human facial expressions
Jiang et al. Modeling a realistic 3D physiological tongue for visual speech synthesis
Aoki et al. Physical facial model based on 3d-ct data for facial image analysis and synthesis
Yoshitomi et al. Improvement of mesh free deforming analysis for maxillofacial palpation on a virtual training system
Okamoto et al. Development of a user-friendly EEG analyzing system specialized for the equivalent dipole method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070410

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070502