JP2001012920A - Shape detector - Google Patents

Shape detector

Info

Publication number
JP2001012920A
JP2001012920A JP11187758A JP18775899A JP2001012920A JP 2001012920 A JP2001012920 A JP 2001012920A JP 11187758 A JP11187758 A JP 11187758A JP 18775899 A JP18775899 A JP 18775899A JP 2001012920 A JP2001012920 A JP 2001012920A
Authority
JP
Japan
Prior art keywords
shape
light
measured
intensity
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11187758A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11187758A priority Critical patent/JP2001012920A/en
Publication of JP2001012920A publication Critical patent/JP2001012920A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To extract the edge position and a desired detecting point on a material to be measured accurately by storing the shape of measured projection light in correspondence with the receiving intensity of projection light at each position. SOLUTION: A laser projector 4 projects slit-like light 6 onto a material 1 to be measured and a two-dimensional CCD camera 5 picks up an image 7 where only the part 8 of the slit light is bright. An image processor 9 takes in and processes that image 7. More specifically, a one frame image is stored in an image memory 10, a binarization operating unit 11 extracts only such pixels as exceeding a threshold brightness level and a fine line processor 12 converts an obtained slit light image 13 into fine lines 14 of 1 pixel width. A pixel position extractor 15 extracts the coordinate position of each pixel, a brightness level extractor 16 extracts the brightness level of each pixel from the original image in the image memory 10 and a memory 17 stores the brightness level in correspondence with the coordinate position which are then fetched in an edge position processor 20 in order to extract the edge position of the shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鋼板等の形状を計測
する形状検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape detecting device for measuring the shape of a steel plate or the like.

【0002】[0002]

【従来技術】鋼板における形状計測技術は、板幅計測装
置などに利用されている。広く利用されているものに、
エッジ位置検出技術がある。これは、鋼板をはさんで下
方に光源を、上方に受光強度を計測しうる素子を板幅方
向に直線状に多数配列した受光素子を配置して、鋼板が
遮光する最エッジ部を検出する技術で、板幅の両端部の
最エッジ部を検出することによって板幅を計測するもの
である。また、特開昭62−16415号公報には、レ
ーザー光線を当て、被計測材からの反射光の強度を用い
てエッジ位置を検出する方法が記載されている。
2. Description of the Related Art A shape measuring technique for a steel sheet is used in a sheet width measuring device and the like. For those widely used,
There is an edge position detection technology. In this method, a light source is arranged below a steel plate, and a light-receiving element having a large number of elements capable of measuring the received light intensity arranged linearly in the width direction of the plate is arranged above the steel plate to detect the most edge portion where the steel plate blocks light. The technique measures the board width by detecting the most edge portions at both ends of the board width. Japanese Patent Application Laid-Open No. Sho 62-16415 describes a method of irradiating a laser beam and detecting an edge position using the intensity of light reflected from a material to be measured.

【0003】あるいは、熱延鋼板の形状を計測するため
の技術として、特開平3−53650号公報に記載の技
術がある。これは熱延鋼板の形状を測定するために投光
器からの光に対する被計測材からの反射光の強度を用い
て側縁部の形状不良部分を検出している。
[0003] Alternatively, as a technique for measuring the shape of a hot-rolled steel sheet, there is a technique described in JP-A-3-53650. In this method, in order to measure the shape of the hot-rolled steel sheet, the shape defect of the side edge is detected by using the intensity of the reflected light from the material to be measured with respect to the light from the light projector.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、エッジ
部で幅方向に膨らんでいる厚い鋼板の場合、幅計測装置
において、前記従来の方法では最も膨らんでいる最エッ
ジ部(以下、最端のエッジ位置とも称する。)を検出し
てしまうため、実際に板厚が一定の部分の幅、つまり表
面の幅に対して、膨らみ分だけ余分に計測してしまう欠
点があった。この膨らみの大きさは板厚によってばらつ
きも大きく、板厚が一定の部分の板幅の計測は困難であ
った。
However, in the case of a thick steel plate bulging in the width direction at the edge portion, in the width measuring device, the most bulging edge portion (hereinafter referred to as the outermost edge position) in the above-mentioned conventional method. ) Is detected, so that there is a disadvantage that the width of the portion where the plate thickness is constant, that is, the width of the surface is measured by an extra amount corresponding to the bulge. The size of the bulge varies greatly depending on the thickness of the plate, and it is difficult to measure the width of the portion where the thickness is constant.

【0005】また、形状不良部分の検出の技術において
は、熱延鋼板表面の粗度、付着物による反射強度のばら
つきや、鋼板の傾きによって側縁部の反射強度分布は変
化するため、インライン等では使いづらい等の問題点が
あった。
In the technique of detecting a defective shape portion, the reflection intensity distribution at the side edge portion varies depending on the roughness of the surface of the hot-rolled steel sheet, the variation in the reflection intensity due to the adhered substance, and the inclination of the steel sheet. Then, there was a problem that it was difficult to use.

【0006】[0006]

【課題を解決するための手段】本発明はかかる課題に対
し、被計測材上のエッジ位置や所望の検出点を正確に抽
出することができる形状検出装置を提供するものであ
る。つまり、本発明は以下の手段を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a shape detecting apparatus capable of accurately extracting an edge position on a material to be measured and a desired detection point. That is, the present invention provides the following means.

【0007】第1の形状検出装置は、被計測材の形状を
検出する形状検出装置であって、光を被計測材表面に投
影する手段と、該投影光の形状を計測する手段と、該計
測された投影光の各位置での光の受光強度を計測する手
段と、前記計測された投影光の形状とその各位置におけ
る投影光の受光強度とを対応させて記憶する手段とを具
備することを特徴とするものである。
The first shape detecting device is a shape detecting device for detecting the shape of the material to be measured, and includes means for projecting light onto the surface of the material to be measured, means for measuring the shape of the projected light, The apparatus includes means for measuring the intensity of the received light at each position of the measured projection light, and means for storing the measured shape of the projection light and the intensity of the projection light at each position in association with each other. It is characterized by the following.

【0008】第2の形状検出装置は、被計測材の形状を
検出する形状検出装置であって、光を被計測材表面に投
影する手段と、該投影光の形状を計測する手段と、該計
測された投影光の各位置での光の受光強度を計測する手
段と、該計測された投影光の形状から被計測材の表面形
状を演算する手段と、前記演算された表面形状とその各
位置における投影光の受光強度とを対応させて記憶する
手段とを具備することを特徴とするものである。
The second shape detecting device is a shape detecting device for detecting the shape of the material to be measured, and includes means for projecting light onto the surface of the material to be measured, means for measuring the shape of the projected light, Means for measuring the received light intensity of light at each position of the measured projection light, means for calculating the surface shape of the material to be measured from the shape of the measured projection light, and the calculated surface shape and each Means for storing the received light intensity of the projection light at the position in association with the received light intensity.

【0009】第3の形状検出装置は、第1又は第2の形
状検出装置において、前記投影される光がスリット形状
の光であることを特徴とするものである。
[0009] A third shape detecting device is characterized in that, in the first or second shape detecting device, the projected light is slit-shaped light.

【0010】第4の形状検出装置は、第2又は第3の形
状検出装置において、前記計測された投影光の形状から
被計測材の表面形状を演算する方法が光切断方式である
ことを特徴とするものである。
The fourth shape detecting device is characterized in that, in the second or third shape detecting device, a method of calculating the surface shape of the material to be measured from the measured shape of the projection light is a light cutting method. It is assumed that.

【0011】第5の形状検出装置は、第1、第2,第3
又は第4の形状検出装置において、前記投影光の形状あ
るいは演算された被計測材の表面形状と、それぞれの形
状の各位置における投影光の受光強度の情報を元にエッ
ジ部の位置または形状を抽出する信号処理装置を具備す
ることを特徴とするものである。
The fifth shape detecting device includes first, second, third
Alternatively, in the fourth shape detection device, the position or shape of the edge portion is determined based on the shape of the projection light or the calculated surface shape of the material to be measured and the information on the intensity of the received light of the projection light at each position of the shape. It is characterized by comprising a signal processing device for extracting.

【0012】第6の形状検出装置は、第5の形状検出装
置の信号処理装置が、前記投影光の形状あるいは演算さ
れた被計測材表面の形状の情報を元に形状変化点の候補
を複数点抽出する手段と、前記形状変化点の候補の中か
ら受光強度の情報を基にエッジ位置を検出する手段とを
具備することを特徴とするものである。
A sixth shape detecting device is characterized in that the signal processing device of the fifth shape detecting device includes a plurality of shape change point candidates based on the shape of the projection light or the calculated shape of the surface of the material to be measured. It is characterized by comprising a means for extracting points and a means for detecting an edge position based on information on the intensity of received light from among the candidates for the shape change point.

【0013】第7の形状検出装置は、第5の形状検出装
置の信号処理装置が、前記受光強度の情報を元に形状変
化点の候補を複数点抽出する手段と、前記形状変化点の
候補の中から前記投影光の形状あるいは演算された被計
測材表面の形状の情報を基にエッジ位置を検出する手段
とを具備することを特徴とするものである。
A seventh shape detection device is a signal processing device of the fifth shape detection device, wherein the signal processing device extracts a plurality of shape change point candidates based on the received light intensity information, and the shape change point candidate And means for detecting an edge position based on the information on the shape of the projection light or the calculated shape of the surface of the material to be measured.

【0014】第8の形状検出装置は、第1の形状検出装
置において、前記計測された投影光の形状の情報に基づ
いて被計測材上の形状変化点となりうる複数の候補点を
抽出する手段と、前記複数の候補点の中から前記受光強
度の情報に基づいて前記形状変化点を抽出する手段とを
具備することを特徴とするものである。
The eighth shape detecting device is a means for extracting a plurality of candidate points that can be shape changing points on the material to be measured based on the information on the shape of the measured projection light in the first shape detecting device. And means for extracting the shape change point from the plurality of candidate points based on the information on the received light intensity.

【0015】第9の形状検出装置は、第1の形状検出装
置において、前記受光強度の情報に基づいて被計測材上
の受光強度変化点となりうる複数の候補点を抽出する手
段と、前記複数の候補点の中から前記計測された投影光
の形状の情報に基づいて前記受光強度変化点を抽出する
手段とを具備することを特徴とするものである。
The ninth shape detecting device is a means for extracting a plurality of candidate points which can be light receiving intensity change points on the material to be measured based on the received light intensity information in the first shape detecting device, Means for extracting the light receiving intensity change point based on the information on the shape of the measured projection light from the candidate points.

【0016】第10の形状検出装置は、第2の形状検出
装置において、前記演算された被計測材の表面形状の情
報に基づいて被計測材上の形状変化点となりうる複数の
候補点を抽出する手段と、前記複数の候補点の中から前
記受光強度の情報に基づいて前記形状変化点を抽出する
手段とを具備することを特徴とするものである。
A tenth shape detecting device according to the second shape detecting device, extracts a plurality of candidate points that can be shape change points on the measured material based on the calculated information on the surface shape of the measured material. And a means for extracting the shape change point from the plurality of candidate points based on the information on the received light intensity.

【0017】第11の形状検出装置は、第2の形状検出
装置において、前記受光強度の情報に基づいて被計測材
上の受光強度変化点となりうる複数の候補点を抽出する
手段と、前記複数の候補点の中から前記演算された被計
測材の表面形状の情報に基づいて前記受光強度変化点を
抽出する手段とを具備することを特徴とするものであ
る。
An eleventh shape detecting device according to the second shape detecting device, means for extracting a plurality of candidate points which can be light receiving intensity change points on the material to be measured, based on the received light intensity information, Means for extracting the light receiving intensity change point based on the calculated information on the surface shape of the material to be measured from among the candidate points described above.

【0018】本発明における被計測材上の形状変化点と
は、投影光の形状が変化する部分の境目の点をいい、板
厚が一定の部分のエッジ位置や最端のエッジ位置を含む
概念である。
In the present invention, the shape change point on the material to be measured refers to a boundary point of a portion where the shape of the projection light changes, and includes a concept including an edge position of a portion having a constant plate thickness and an edge position of the extreme end. It is.

【0019】本発明における被計測材上の受光強度変化
点とは、被計測材からの反射光の強度が変化する部分、
例えば形状の変化部分や色の変化部分等の境目の点をい
い、板厚が一定の部分のエッジ位置や最端のエッジ位置
を含む概念である。
In the present invention, the point of change in the received light intensity on the material to be measured is a portion where the intensity of the reflected light from the material to be measured changes,
For example, it refers to a boundary point between a shape change portion, a color change portion, and the like, and is a concept including an edge position of a portion having a constant thickness and an edge position of an endmost portion.

【0020】[0020]

【発明の実施の形態】以下に本発明の一実施形態につい
て、図面を参照して説明する。図1は、本実施形態であ
る形状検出装置の全体構成を示す図である。図1におい
て、1は被計測材であって、被計測材の幅方向をy座
標、厚み方向をz座標とする。本実施形態の形状検出装
置2は被計測材のエッジ部の位置及び形状を検出するも
のである。形状検出装置2には光を投影する手段として
レーザープロジェクタ4が、また、その投影光の形状を
計測する手段として2次元CCDカメラ5が設置されて
いる。レーザープロジェクタ4の先端にはシリンドリカ
ルレンズが設置されており、スリット状の光6を被計測
材上に投影する。投影角はθである。2次元CCDカメ
ラ5は碁盤目状に微細な画素が配列され、各画素ごとに
光の強弱を検出可能となっており、計測された投影光の
各位置での光の受光強度を計測可能であり、被計測材1
の表面に対し正対して配設されている。2次元CCDカ
メラ5によって得られる画像は7に示すようにスリット
光の部分8が明るく、他は暗い画像となっており、この
画像を画像処理装置9が取り込み、演算を行う。画像処
理装置9においては、まず1フレームの画像が画像メモ
リ10に記録され、その後、各画素の輝度レベルに対し
てあるしきい値以上の画素のみを抽出する2値化演算処
理を行う2値化演算器11が処理を行う。続いて細線化
処理演算器12は2値化演算器11の結果得られる画像
13に対して、画面の縦方向の中心画素を求め、スリッ
ト光の画像を幅1画素の細線14に変換する。次に画素
位置抽出演算器15は細線化処理演算器12の結果得ら
れた各画素のカメラ平面での座標位置を抽出する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating an overall configuration of a shape detection device according to the present embodiment. In FIG. 1, reference numeral 1 denotes a material to be measured, and the width direction of the material to be measured is a y coordinate, and the thickness direction is a z coordinate. The shape detection device 2 of the present embodiment detects the position and shape of an edge portion of a material to be measured. The shape detecting device 2 is provided with a laser projector 4 as means for projecting light, and a two-dimensional CCD camera 5 as means for measuring the shape of the projected light. A cylindrical lens is provided at the tip of the laser projector 4, and projects the slit-shaped light 6 on the material to be measured. The projection angle is θ. In the two-dimensional CCD camera 5, fine pixels are arranged in a grid pattern, and the intensity of light can be detected for each pixel, and the light receiving intensity of the measured projection light at each position can be measured. Yes, measured material 1
Is disposed directly opposite to the surface of the. As shown in FIG. 7, the image obtained by the two-dimensional CCD camera 5 has a bright portion 8 of the slit light, and the other portions are dark images. The image processing device 9 captures this image and performs an operation. In the image processing device 9, first, an image of one frame is recorded in the image memory 10, and thereafter, a binary arithmetic operation for extracting only pixels having a certain threshold or more with respect to the luminance level of each pixel is performed. The processing unit 11 performs the processing. Subsequently, the thinning processing operation unit 12 obtains the center pixel in the vertical direction of the screen for the image 13 obtained as a result of the binarization operation unit 11, and converts the slit light image into a thin line 14 having a width of 1 pixel. Next, the pixel position extraction calculator 15 extracts the coordinate position on the camera plane of each pixel obtained as a result of the thinning processing calculator 12.

【0021】一方、輝度レベル抽出演算器16は上記得
られた各画素の輝度レベルを画像メモリ10に記録され
ている原画像から抽出する。あるいは、より信頼性を確
保するため、2値化演算器11によって抽出された画素
のうち、画素位置抽出演算器の結果得られた画素の近傍
の数点の平均輝度を求めても良い。メモリ装置17は画
素位置抽出演算器15および輝度レベル抽出演算器16
により得られたカメラ平面での座標位置および輝度レベ
ルを同じ画素から得られたものを対応付けて記憶する。
すなわち、計測された投影光の形状とその各位置におけ
る投影光の強度分布とを対応させて記憶する。
On the other hand, the luminance level extraction calculator 16 extracts the luminance level of each pixel obtained from the original image recorded in the image memory 10. Alternatively, in order to further secure the reliability, among the pixels extracted by the binarization arithmetic unit 11, the average luminance of several points near the pixel obtained as a result of the pixel position extraction arithmetic unit may be obtained. The memory device 17 includes a pixel position extraction operation unit 15 and a luminance level extraction operation unit 16
The coordinate position and the brightness level on the camera plane obtained by the above are stored in association with those obtained from the same pixel.
That is, the measured shape of the projection light and the intensity distribution of the projection light at each position thereof are stored in association with each other.

【0022】さらに、座標演算器18は投影光の形状か
ら被計測材の表面形状を演算する装置であり、光切断法
(光投影法)を用いて、メモリ装置17に記憶されてい
る各画素のカメラ平面での座標を三角測量の原理式に従
って被計測材のyz座標系の座標に変換し、メモリ装置
19はその結果を元の対応する輝度レベルと対応付させ
て記憶する。
Further, the coordinate calculator 18 is a device for calculating the surface shape of the material to be measured from the shape of the projection light, and each pixel stored in the memory device 17 is obtained by using a light cutting method (light projection method). Are converted into coordinates in the yz coordinate system of the material to be measured according to the principle formula of triangulation, and the memory device 19 stores the result in association with the original corresponding luminance level.

【0023】以上の処理から、スリット光投射部分の座
標(y,z)と、この点での反射光強度pが得られ、こ
れら位置情報(y、z)、強度情報(p)はエッジ部の
位置または形状を抽出する信号処理装置であるエッジ位
置演算処理装置20に取り込まれる。あるいは、正確な
(y,z)が不要な場合、直接メモリ装置17に記憶さ
れているカメラ平面上の座標を(y、z)に代えて使用
しても良い。図中ではこの場合の機器の接続状況をメモ
リ装置17をエッジ位置演算処理装置とをつなぐ点線で
示した。この計測点P1(y1,z1,p1)〜PN(yN,zN,pN)を
グラフ上にプロットすると、被計測材のエッジ部の形状
およびその位置での反射強度が図2に示す曲線21、2
2のごとく計測される。ただし、曲線21は横軸に被計
測材のy方向の位置、縦軸にz方向の位置、曲線22は
縦軸に受光強度を示したものであり、P(y,z,p)
はPZ(y,z)とPP(y,p)に分割して表示して
いる。
From the above processing, the coordinates (y, z) of the slit light projection portion and the reflected light intensity p at this point are obtained, and the position information (y, z) and the intensity information (p) are obtained at the edge portion. Is taken into an edge position calculation processing device 20 which is a signal processing device for extracting the position or the shape of. Alternatively, when accurate (y, z) is not required, the coordinates on the camera plane directly stored in the memory device 17 may be used instead of (y, z). In the drawing, the connection status of the devices in this case is indicated by a dotted line connecting the memory device 17 to the edge position calculation processing device. When the measurement points P 1 (y 1 , z 1 , p 1 ) to P N (y N , z N , p N ) are plotted on a graph, the shape of the edge of the material to be measured and the reflection intensity at that position Are the curves 21 and 2 shown in FIG.
It is measured as 2. Here, the curve 21 shows the position of the material to be measured in the y direction on the horizontal axis, the position in the z direction on the vertical axis, and the curve 22 shows the received light intensity on the vertical axis, and P (y, z, p).
Is divided into PZ (y, z) and PP (y, p) for display.

【0024】なめらかな金属表面におけるスリット光の
反射光を、強度を長さとするベクトルであらわすと、正
反射方向を最大とする楕円状の強度分布となる。すなわ
ち図3において、平面部の位置Aでは楕円Aのごとくと
なり、エッジ部の位置Bでは楕円Bの如くとなる。従っ
て、鋼板中央部(位置A)ではカメラレンズ23を通じ
てCCD受光素子24には比較的多くの光量が届くが、
エッジ部においては、反射光の大部分はセンサが受光不
可能な方向へ拡散するため、カメラレンズ23に到達す
る光量は少なく、CCD受光素子24で観測される受光
強度は位置Aに対して小さくなる。また、エッジ部と反
対側(図の左側)にレーザーがカメラレンズ23直下か
らはなれていった場合も同様にしてカメラレンズ23に
到達する光量が減少する。つまり、鋼板全面で観測され
る反射光の強度は被計測材のy方向各位置に対し、曲線
22の通りとなる。エッジ位置演算処理装置20は曲線
21、22の波形をメモリし、この波形に対して演算処
理を行うことにより、エッジ位置3を検出する。
When the reflected light of the slit light on the smooth metal surface is represented by a vector whose intensity is a length, an elliptical intensity distribution having the maximum regular reflection direction is obtained. That is, in FIG. 3, at the position A of the plane portion, the shape becomes like an ellipse A, and at the position B of the edge portion, the shape becomes like an ellipse B. Accordingly, a relatively large amount of light reaches the CCD light receiving element 24 through the camera lens 23 at the central portion of the steel plate (position A).
At the edge portion, most of the reflected light is diffused in a direction in which the sensor cannot receive light, so that the amount of light reaching the camera lens 23 is small, and the light receiving intensity observed by the CCD light receiving element 24 is smaller than the position A. Become. Further, even when the laser beam is separated from directly below the camera lens 23 on the side opposite to the edge portion (left side in the figure), the amount of light reaching the camera lens 23 is similarly reduced. In other words, the intensity of the reflected light observed on the entire surface of the steel plate is as indicated by the curve 22 for each position in the y direction of the material to be measured. The edge position calculation processing device 20 stores the waveforms of the curves 21 and 22 and performs an arithmetic process on the waveform to detect the edge position 3.

【0025】次にエッジ位置演算処理装置20にて実行
されるエッジ位置検出の信号処理例を図4を用いて示
す。本信号処理はエッジ位置演算処理装置20において
実行されるソフトウェアとして実現した。まず、被計測
材1の表面の板厚が一定の部分のエッジ位置3を検出す
る場合について説明する。図4に示す●印、+印はそれ
ぞれ図2の曲線21、22と同じく横軸を被計測材のy
方向の座標、縦軸をそれぞれ、zおよび、受光強度pと
し、メモリ装置19に記憶される形状および受光強度の
計測値(N点)をプロットしたものである。y座標の値
の小さいものから順にPZ1(y1,z1)、PZ2(y2,z2)、…
PZn(yn,zn)、…PZN(yN,zN)及びPP1(y1,p1)、P
2(y2,p2)、…PPn(yn,pn)、…PPN(yN,pN)とする。
Next, an example of signal processing for edge position detection executed by the edge position arithmetic processing unit 20 will be described with reference to FIG. This signal processing is realized as software executed in the edge position calculation processing device 20. First, a case where the edge position 3 of a portion where the thickness of the surface of the workpiece 1 is constant is detected will be described. In FIG. 4, the ● marks and + marks indicate the y of the material to be measured, respectively, as in the curves 21 and 22 in FIG.
The coordinates of the direction and the vertical axis are z and the received light intensity p, respectively, and the shape stored in the memory device 19 and the measured value of the received light intensity (point N) are plotted. PZ 1 (y 1 , z 1 ), PZ 2 (y 2 , z 2 ), ...
PZ n (y n , z n ),... PZ N (y N , z N ) and PP 1 (y 1 , p 1 ), P
P 2 (y 2 , p 2 ),... PP n (y n , p n ),... PP N (y N , p N ).

【0026】まず、PZ1〜PZNについて2点間のz方
向の差分値dn=zn−zn+1を計算し、PDm(m=1〜
N−1)(yn、dn)を図4に、縦軸をd、横軸をyと
してプロットした。次に、d1〜dN-1の値の大きいもの
から順に5点を候補点としてとり、これをdm1、dm2
m3、dm4、dm5とする。図4の場合m1=N−1、m
2=N−2、m3=N−3、m4=N−20、m5=N
−29であった。
First, a difference value d n = z n −z n + 1 in the z direction between two points is calculated for PZ 1 to PZ N , and PD m (m = 1 to
N-1) (y n, the d n) in FIG. 4, plotted vertical axis d, a horizontal axis y. Next, five points are taken as candidate points in order from the one having the largest value of d 1 to d N−1 , and these are taken as d m1 , d m2 ,
d m3, and d m4, d m5. In the case of FIG. 4, m1 = N-1, m
2 = N-2, m3 = N-3, m4 = N-20, m5 = N
-29.

【0027】そして、PPm1、PPm2,PPm3、P
m4,PPm5、のp要素である、pm1、pm2、pm3、p
m4、pm5のうちの最大のものを選択すると、PPのプロ
ット結果よりpm3=pN-3が最大値である。このように
して抽出されたN-3番目の点の位置PZN-3(yN-3、z
N-3)を被計測材の板厚が一定の部分のエッジ位置とす
る。
Then, PP m1 , PP m2 , PP m3 , P
P m1 , p m2 , p m3 , p which are p elements of P m4 and PP m5
Selecting the largest of m4, p m5, p than plot the results of the PP m3 = p N-3 is the maximum value. The position of the N-3rd point PZ N-3 (y N-3 , z
N-3 ) is the edge position of the part where the thickness of the material to be measured is constant.

【0028】次に、被計測材の最端のエッジ位置を検出
する方法について説明する。例えば、被計測材の背後に
架台があり、その反射光がCCDカメラで受光されると
すると、一般にこれら架台からの反射は被計測材からの
反射強度よりもさらに低く、図4中のPP’、PZ’の
如くとなる。従って、図4のPPn(yn、pn)に対
し、輝度しきい値THを図の通り適当な値に設定する
と、PP’,PZ’の被計測材上にない計測点は除去で
き、残った点P1〜PNまでの中から、y方向の最大の位
置をとれば、被計測材の最端のエッジ位置の検出が可能
である。すなわち、まずしきい値を用いて受光強度情報
を処理することによって求めるべき形状変化点の候補を
複数点抽出し、しかる後、これら候補点の中から、形状
の情報を元に最端のエッジ位置(点PZN)の検出が可
能となる。
Next, a description will be given of a method for detecting the edge position of the end of the material to be measured. For example, assuming that there is a gantry behind the material to be measured and that the reflected light is received by the CCD camera, the reflection from these gantry is generally lower than the reflection intensity from the material to be measured, and PP ′ in FIG. , PZ '. Therefore, if the luminance threshold value TH is set to an appropriate value as shown in FIG. 4 for PP n (y n , p n ), measurement points PP ′ and PZ ′ that are not on the material to be measured can be removed. By taking the maximum position in the y direction from the remaining points P 1 to P N, it is possible to detect the end edge position of the material to be measured. That is, first, a plurality of shape change point candidates to be obtained are extracted by processing the received light intensity information using a threshold value, and then, from these candidate points, the end edge based on the shape information is extracted. The position (point PZ N ) can be detected.

【0029】上記の本実施形態によれば、スリット形状
の光を被計測材に投影し、その投影光の形状を計測し、
更に投影光の各位置における受光強度を計測して記憶
し、計測した投影光を細線化した画像の座標系あるいは
演算された被計測材の表面形状の座標系に基づいて、隣
合う2点について、被計測材の厚み方向における差分値
と、受光光度を用いることにより被計測材の板厚が一定
の部分のエッジ位置を確実に検出することができる。こ
れにより、エッジ部が幅方向に膨らんでいる厚い鋼板の
場合でも、板厚が一定部分の板幅を確実に計測すること
ができる。また、しきい値を用いて処理した受光強度の
情報と細線化した画像の座標系あるいは被計測材の表面
形状の座標系を用いることにより、最端のエッジ位置を
検出することができる。
According to the above embodiment, the slit-shaped light is projected onto the material to be measured, and the shape of the projected light is measured.
Further, the received light intensity at each position of the projected light is measured and stored. Based on the coordinate system of the image obtained by thinning the measured projected light or the calculated coordinate system of the surface shape of the material to be measured, two adjacent points are measured. By using the difference value in the thickness direction of the measurement target material and the received light intensity, the edge position of the portion where the thickness of the measurement target material is constant can be reliably detected. Thereby, even in the case of a thick steel plate whose edge portion is bulged in the width direction, it is possible to reliably measure the width of the portion where the thickness is constant. Further, by using the information of the received light intensity processed using the threshold value and the coordinate system of the thinned image or the coordinate system of the surface shape of the material to be measured, the end position of the edge can be detected.

【0030】更に、上記の本実施形態によれば、被計測
材の形状を正確に検出することができるので、鋼材等の
製品の形状不良部分を検出する場合、製造ラインに組み
込んで製品の検査を行うことが可能となる。
Further, according to the above-described embodiment, the shape of the material to be measured can be accurately detected. Therefore, when a defective shape of a product such as a steel material is detected, it is incorporated into a production line to inspect the product. Can be performed.

【0031】本発明は、上記の実施形態に限定されるも
のではなく、その要旨の範囲内において種々の変形が可
能である。例えば、上記の実施形態では、被計測材端部
のエッジ位置(一点)を検出する場合について説明した
が、本発明はこれに限定されるものではなく、検出した
エッジ位置に基づいてエッジ部の他の点を検出してもよ
いし、或いはエッジ部の形状を検出するようにしてもよ
い。さらに、上記の実施形態では、被計測材端部のエッ
ジ位置を検出する場合について説明したが、本発明はこ
れに限定されるものではなく、被計測材の段差部、突
部、凹部、先行材と後行材の溶接ならい部、或いは色が
異なる部分等を検出するようにしてもよい。色が異なる
部分を検出するときには、先ず受光強度に基づいて複数
の候補点を検出し、次に投影光の形状の情報に基づい
て、色が異なる部分の変化点を特定する。更に、メモリ
装置19とエッジ位置演算処理装置20は、パーソナル
コンピュータを用いて構成するようにしてもよい。
The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the invention. For example, in the above embodiment, the case where the edge position (one point) of the measured material end is detected has been described, but the present invention is not limited to this, and the edge part is detected based on the detected edge position. Another point may be detected, or the shape of the edge portion may be detected. Furthermore, in the above embodiment, the case where the edge position of the end of the measured material is detected has been described. However, the present invention is not limited to this, and the step, the protrusion, the concave portion, and the leading A welded portion of the material and the following material, or a portion having a different color may be detected. When detecting a portion having a different color, first, a plurality of candidate points are detected based on the received light intensity, and then a change point of the portion having a different color is specified based on information on the shape of the projection light. Further, the memory device 19 and the edge position processing device 20 may be configured using a personal computer.

【0032】また、上記の実施形態では、2点間の単純
な差分値を用いる場合について説明したが、本発明はこ
れに限られるものではなく、微分した値の差分値を用い
てもよいし、高次微分した値の差分値を用いるようにし
てもよい。
In the above embodiment, the case where a simple difference value between two points is used has been described. However, the present invention is not limited to this, and a difference value of a differentiated value may be used. Alternatively, a difference value of the higher-order differentiated value may be used.

【0033】[0033]

【発明の効果】本発明によれば、投影光の形状の情報と
あわせて受光強度の情報を使用することにより、従来よ
りも正確に被計測材のエッジ等の形状変化点や受光強度
変化点の検出が可能となる。
According to the present invention, by using the information of the received light intensity together with the information of the shape of the projection light, the shape change point such as the edge of the material to be measured and the light received intensity change point can be more accurately than before. Can be detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態である形状検出装置の全体
構成図である。
FIG. 1 is an overall configuration diagram of a shape detection device according to an embodiment of the present invention.

【図2】計測器により得られる計測結果を示す図であ
る。
FIG. 2 is a diagram showing a measurement result obtained by a measuring instrument.

【図3】鋼板計測時のスリット光の反射の様子を示す図
である。
FIG. 3 is a view showing a state of reflection of slit light at the time of steel plate measurement.

【図4】鋼板エッジ位置検出信号処理方法を説明するた
めの図である。
FIG. 4 is a diagram for explaining a steel plate edge position detection signal processing method.

【符号の説明】[Explanation of symbols]

1:被計測材 2:センサ部 3:被計測材のエッジ位置 4:レーザープロジェクタ 5:2次元CCDカメラ 6:スリット状の光 7:2次元CCDカメラによって得られる画像 8:スリット光画像 9:画像処理装置 10:画像メモリ 11:2値化演算器 12:細線化処理演算器 13:2値化演算器によって得られる画像 14:2値化演算器によって得られるスリット光画像の
中心画素を抽出した幅1画素の細線 15:画素位置抽出演算器 16:輝度レベル抽出演算器 17:メモリ装置 18:座標演算器 19:メモリ装置 20:エッジ位置演算処理装置 21:被計測材形状曲線 22:被計測材表面反射光受光強度曲線 23:カメラレンズ 24:CCD受光素子
1: Material to be measured 2: Sensor part 3: Edge position of material to be measured 4: Laser projector 5: Two-dimensional CCD camera 6: Slit-like light 7: Image obtained by two-dimensional CCD camera 8: Slit light image 9: Image processing device 10: Image memory 11: Binarization operation unit 12: Thinning processing operation unit 13: Image obtained by binarization operation unit 14: Extract central pixel of slit light image obtained by binarization operation unit 1 pixel width thin line 15: Pixel position extraction calculator 16: Luminance level extraction calculator 17: Memory device 18: Coordinate calculator 19: Memory device 20: Edge position calculation processing device 21: Measurement target material shape curve 22: Measurement target Measurement material surface reflected light received light intensity curve 23: Camera lens 24: CCD light receiving element

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 被計測材の形状を検出する形状検出装置
であって、光を被計測材表面に投影する手段と、該投影
光の形状を計測する手段と、該計測された投影光の各位
置での光の受光強度を計測する手段と、前記計測された
投影光の形状とその各位置における投影光の受光強度と
を対応させて記憶する手段とを具備することを特徴とす
る形状検出装置。
1. A shape detecting device for detecting a shape of a material to be measured, means for projecting light onto a surface of the material to be measured, means for measuring the shape of the projected light, A shape comprising: means for measuring the light reception intensity of light at each position; and means for storing the measured shape of the projection light and the light reception intensity of the projection light at each position in association with each other. Detection device.
【請求項2】 被計測材の形状を検出する形状検出装置
であって、光を被計測材表面に投影する手段と、該投影
光の形状を計測する手段と、該計測された投影光の各位
置での光の受光強度を計測する手段と、該計測された投
影光の形状から被計測材の表面形状を演算する手段と、
前記演算された表面形状とその各位置における投影光の
受光強度とを対応させて記憶する手段とを具備すること
を特徴とする形状検出装置。
2. A shape detecting device for detecting a shape of a material to be measured, a means for projecting light onto a surface of the material to be measured, a means for measuring a shape of the projected light, Means for measuring the light reception intensity of light at each position, means for calculating the surface shape of the material to be measured from the shape of the measured projection light,
Means for storing the calculated surface shape and the received light intensity of the projection light at each position thereof in correspondence with each other.
【請求項3】 前記投影される光がスリット形状の光で
あることを特徴とする請求項1又は2記載の形状検出装
置。
3. The shape detecting device according to claim 1, wherein the projected light is slit-shaped light.
【請求項4】 前記計測された投影光の形状から被計測
材の表面形状を演算する方法が光切断方式であることを
特徴とする請求項2又は3記載の形状検出装置。
4. The shape detecting apparatus according to claim 2, wherein the method of calculating the surface shape of the material to be measured from the shape of the measured projection light is a light cutting method.
【請求項5】 前記投影光の形状あるいは演算された被
計測材の表面形状と、それぞれの形状の各位置における
投影光の受光強度の情報を元にエッジ部の位置または形
状を抽出する信号処理装置を具備することを特徴とする
請求項1、2,3又は4記載の形状検出装置。
5. A signal processing for extracting the position or shape of an edge portion based on the shape of the projection light or the calculated surface shape of the material to be measured and information on the intensity of light reception of the projection light at each position of the shape. 5. The shape detecting device according to claim 1, further comprising a device.
【請求項6】 前記信号処理装置が、前記投影光の形状
あるいは演算された被計測材表面の形状の情報を元に形
状変化点の候補を複数点抽出する手段と、前記形状変化
点の候補の中から受光強度の情報を基にエッジ位置を検
出する手段とを具備することを特徴とする請求項5記載
の形状検出装置。
6. A means for extracting a plurality of shape change point candidates based on information on the shape of the projection light or the calculated shape of the surface of the material to be measured, the signal processing device comprising: 6. The shape detecting apparatus according to claim 5, further comprising: means for detecting an edge position based on information on light receiving intensity from among the information.
【請求項7】 前記信号処理装置が、前記受光強度の情
報を元に形状変化点の候補を複数点抽出する手段と、前
記形状変化点の候補の中から前記投影光の形状あるいは
演算された被計測材表面の形状の情報を基にエッジ位置
を検出する手段とを具備することを特徴とする請求項5
記載の形状検出装置。
7. The means for extracting a plurality of shape change point candidates based on the received light intensity information, and the signal processing device calculates the shape of the projection light or calculates the shape of the projection light from the shape change point candidates. Means for detecting an edge position based on information on the shape of the surface of the material to be measured.
The shape detection device according to the above.
【請求項8】 前記計測された投影光の形状の情報に基
づいて被計測材上の形状変化点となりうる複数の候補点
を抽出する手段と、前記複数の候補点の中から前記受光
強度の情報に基づいて前記形状変化点を抽出する手段と
を具備することを特徴とする請求項1記載の形状検出装
置。
8. A means for extracting a plurality of candidate points which can be shape change points on a material to be measured based on information on the shape of the measured projection light, and a means for extracting the received light intensity from the plurality of candidate points. 2. A shape detecting apparatus according to claim 1, further comprising means for extracting the shape change point based on information.
【請求項9】 前記受光強度の情報に基づいて被計測材
上の受光強度変化点となりうる複数の候補点を抽出する
手段と、前記複数の候補点の中から前記計測された投影
光の形状の情報に基づいて前記受光強度変化点を抽出す
る手段とを具備することを特徴とする請求項1記載の形
状検出装置。
9. A means for extracting a plurality of candidate points that can be light-receiving intensity change points on a material to be measured based on the information on the received light intensity, and a shape of the measured projection light from among the plurality of candidate points. 2. A shape detecting apparatus according to claim 1, further comprising: means for extracting the light receiving intensity change point based on the information of (1).
【請求項10】 前記演算された被計測材の表面形状の
情報に基づいて被計測材上の形状変化点となりうる複数
の候補点を抽出する手段と、前記複数の候補点の中から
前記受光強度の情報に基づいて前記形状変化点を抽出す
る手段とを具備することを特徴とする請求項2記載の形
状検出装置。
10. A means for extracting a plurality of candidate points that can be shape change points on the measured material based on the calculated information on the surface shape of the measured material, and receiving the light from the plurality of candidate points. 3. The shape detecting apparatus according to claim 2, further comprising: means for extracting the shape change point based on intensity information.
【請求項11】 前記受光強度の情報に基づいて被計測
材上の受光強度変化点となりうる複数の候補点を抽出す
る手段と、前記複数の候補点の中から前記演算された被
計測材の表面形状の情報に基づいて前記受光強度変化点
を抽出する手段とを具備することを特徴とする請求項2
記載の形状検出装置。
11. A means for extracting a plurality of candidate points that can be light receiving intensity change points on a material to be measured based on the information on the light receiving intensity, and a method of extracting the calculated material to be measured from the plurality of candidate points. 3. A means for extracting the light receiving intensity change point based on surface shape information.
The shape detection device according to the above.
JP11187758A 1999-07-01 1999-07-01 Shape detector Withdrawn JP2001012920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11187758A JP2001012920A (en) 1999-07-01 1999-07-01 Shape detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11187758A JP2001012920A (en) 1999-07-01 1999-07-01 Shape detector

Publications (1)

Publication Number Publication Date
JP2001012920A true JP2001012920A (en) 2001-01-19

Family

ID=16211697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11187758A Withdrawn JP2001012920A (en) 1999-07-01 1999-07-01 Shape detector

Country Status (1)

Country Link
JP (1) JP2001012920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071224A1 (en) * 2002-02-21 2003-08-28 Kabushiki Kaisha Bridgestone Method of detecting object of detection and device therefor, and method of inspecting object of inspection and device therefor
US8244040B2 (en) 2009-08-05 2012-08-14 Mitsubishi Electric Corporation Object position recognition system, object positioning system, and system and method for adjoining objects
JP2013015361A (en) * 2011-07-01 2013-01-24 Toshiba Mitsubishi-Electric Industrial System Corp Width measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071224A1 (en) * 2002-02-21 2003-08-28 Kabushiki Kaisha Bridgestone Method of detecting object of detection and device therefor, and method of inspecting object of inspection and device therefor
US7421108B2 (en) 2002-02-21 2008-09-02 Kabushiki Kaisha Bridgestone Method and apparatus for detecting a workpiece, and method and apparatus for inspecting a workpiece
US8244040B2 (en) 2009-08-05 2012-08-14 Mitsubishi Electric Corporation Object position recognition system, object positioning system, and system and method for adjoining objects
JP2013015361A (en) * 2011-07-01 2013-01-24 Toshiba Mitsubishi-Electric Industrial System Corp Width measuring apparatus

Similar Documents

Publication Publication Date Title
JPH06103165B2 (en) How to measure the height of circuit elements on a board
US20030031356A1 (en) Pattern inspection apparatus and method
US9115983B2 (en) Position measurement apparatus and position measuring method
JP2000067247A (en) Image recognizing device
JPH11125514A (en) Bending angle detecting device
JP2001012920A (en) Shape detector
JP2002310618A (en) Size measurement device, size measurement method and inspection device for electronic component
US6757421B1 (en) Method and apparatus for detecting defects
JP2978866B2 (en) Dimension measurement circuit by image processing
JPH02194307A (en) Curvature shape measuring instrument for plate-like body
JP3427248B2 (en) Foreign object detection method
JP2961140B2 (en) Image processing method
JP2010243209A (en) Defect inspection method and defect detection device
JP2006226834A (en) Surface inspection device and surface inspection method
JP2001280939A (en) Method of evaluating abnormal condition of object surface
JP4029975B2 (en) Measuring method of shoulder arc radius of notch of semiconductor wafer
JPH08159712A (en) Pattern recognition method
JP2001033397A (en) Method and apparatus for detecting surface flaw of object
JP2012078143A (en) Foreign matter inspection device and alignment adjustment method
JPH07270125A (en) Detection apparatus of sheet width and meandering amount of sheet material
JPH0554127A (en) Visual recognizing device
JPH0643080A (en) Automatic measuring apparatus for vickers
JP2003281538A (en) Image processor, image inspecting method and printing failure detecting method
KR100190702B1 (en) Method for detecting bezel of monitor
JPH08114425A (en) Method for optically detecting shape of rolled plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905