JP2001000849A - Premixer - Google Patents

Premixer

Info

Publication number
JP2001000849A
JP2001000849A JP11176035A JP17603599A JP2001000849A JP 2001000849 A JP2001000849 A JP 2001000849A JP 11176035 A JP11176035 A JP 11176035A JP 17603599 A JP17603599 A JP 17603599A JP 2001000849 A JP2001000849 A JP 2001000849A
Authority
JP
Japan
Prior art keywords
mixing
fuel gas
supply duct
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11176035A
Other languages
Japanese (ja)
Other versions
JP3884596B2 (en
Inventor
Koichi Matsui
孝一 松井
Yatsudachi Nakano
八立 仲埜
Isao Kuwagaki
功 桑垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP17603599A priority Critical patent/JP3884596B2/en
Publication of JP2001000849A publication Critical patent/JP2001000849A/en
Application granted granted Critical
Publication of JP3884596B2 publication Critical patent/JP3884596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a premixer for performing secondary mixing for the purpose of micro mixing to primary mixed gas that fuel gas and combustion air are macro mixed to reduce NOx production on combustion and to prevent backfire. SOLUTION: This premixer is, in a premixer for premixing fuel gas and combustion air before the fuel gas is burned, constituted of a feeding duct 2 for blowing and feeding air, a fuel gas feeding means 6 for jetting the fuel gas to an air flow in the feeding duct 2 in an orthogonal state to primarily mix the two, and a mixing promoting body 10 for secondary mixing arranged in a position on the downstream side from the primary mixing point. The mixing promoting body 10 consists of an upstream side conic body 12 having an apex 12a in the upstream direction, a cylindrical body 14 provided successively to the upstream side conic body 12 and installed almost parallel to the feeding duct 2, and a downstream side conic body 16 provided successively to the cylindrical body 14 and having an apex 16a in the downstream direction. In an annular clearance part 18 formed between the cylindrical body 14 and the feeding duct 2, micro uniform secondary mixed air is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温水ボイラや煙管
式ボイラ、サイクロン式灰溶融装置等の燃焼装置に用い
られるものであり、ガス燃料と燃焼用空気とを予め混合
させる予混合装置に関し、更に詳細には、ガス燃料と燃
焼用空気とをミクロな領域にまで均一に混合する予混合
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a premixing apparatus for use in a combustion apparatus such as a hot-water boiler, a flue-tube boiler, a cyclone-type ash melting apparatus, etc., which premixes gaseous fuel and combustion air. More specifically, the present invention relates to a premixing device for uniformly mixing gas fuel and combustion air into a micro region.

【0002】[0002]

【従来の技術】一般に、燃料ガスと燃焼用空気を別々に
供給して燃焼用バーナで混合させる先混合燃焼方式で
は、燃料ガスと燃焼用空気が拡散しながら混合する結
果、両者の均一な混合が得にくかった。従って、濃混合
気と淡混合気が形成されながら燃焼するため、局所的に
燃焼温度の高い所ができる。NOxの中でも特にサーマ
ルNOxは温度に大きく影響されるため、局所的に高温
部が存在すると、燃焼中でのNOx生成率が高くなる。
2. Description of the Related Art In general, in a premixed combustion system in which fuel gas and combustion air are separately supplied and mixed by a combustion burner, the fuel gas and combustion air are mixed while diffusing, resulting in uniform mixing of the two. Was difficult to obtain. Therefore, since the mixture is burned while the rich mixture and the lean mixture are formed, a locally high combustion temperature is formed. Among thermal NOx, thermal NOx is greatly affected by temperature. Therefore, if a high-temperature portion exists locally, the NOx generation rate during combustion increases.

【0003】そこで、温水ボイラや煙管式ボイラ、サイ
クロン式灰溶融装置等の燃焼装置では、燃焼前に燃料ガ
スと燃焼用空気とを予め混合させる予混合方式が採用さ
れてきた。この予混合方式では、燃料ガスと燃焼用空気
とが予め均一に混合されているので、燃焼の最高温度も
低く、生成するNOxも低く押えることができる。
[0003] Therefore, in a combustion apparatus such as a hot water boiler, a flue-tube boiler, and a cyclone ash melting apparatus, a premixing method in which fuel gas and combustion air are mixed before combustion has been adopted. In this premixing method, since the fuel gas and the combustion air are uniformly mixed in advance, the maximum combustion temperature is low, and the generated NOx can be kept low.

【0004】ところが、従来の予混合装置では、燃料ガ
スと燃焼用空気とをマクロに均一混合することはできて
いるが、ミクロな領域レベルまで均一化することは困難
であった。その結果、燃焼温度が安定せず、燃焼領域に
おける局部的な高温部の発生がNOxの低減化の限界と
なっていた。
[0004] However, in the conventional premixing device, the fuel gas and the combustion air can be macroscopically and uniformly mixed, but it has been difficult to homogenize to a micro level. As a result, the combustion temperature is not stable, and the occurrence of a local high-temperature portion in the combustion region has been the limit of NOx reduction.

【0005】例えば、図17は特開平8−86417号
公報に開示の予混合燃焼装置である。送風機80により
供給される燃焼用空気82に対し、直交状に燃料ガス8
4が燃料ガス供給管86より噴出される。この流体衝突
により燃焼用空気82と燃料ガス84がマクロに1次混
合され、矢印方向に流送後、1次混合気88の燃焼が行
なわれる。この装置では流体衝突によるマクロな混合は
行なわれても、燃焼用空気と燃料ガスとの分子レベルで
のミクロ混合は行なわれず、NOx低減化の限界となっ
ていた。また、混合の不均一性の残留が逆火、即ち、火
炎が燃焼ノズルの中に逆流してくる現象の原因にもなっ
ていた。
For example, FIG. 17 shows a premix combustion device disclosed in Japanese Patent Application Laid-Open No. 8-86417. The fuel gas 8 is orthogonal to the combustion air 82 supplied by the blower 80.
4 is ejected from the fuel gas supply pipe 86. By this fluid collision, the combustion air 82 and the fuel gas 84 are macro-primarily mixed, and after flowing in the direction of the arrow, the primary air-fuel mixture 88 is burned. In this device, even though macro-mixing is performed by fluid collision, micro-mixing of combustion air and fuel gas at the molecular level is not performed, which is a limit of NOx reduction. Also, the remaining non-uniformity of the mixing causes a flashback, that is, a phenomenon in which the flame flows back into the combustion nozzle.

【0006】図18は特開平6−74423号公報開示
の予混合装置である。送風機80により供給される燃焼
用空気82は旋回流形成手段81により旋回流となり、
この旋回流に対し燃料ガス供給管86の噴出孔90から
燃料ガスが直交状に噴出される。この噴出でマクロ混合
された1次混合気88は大径部92に到達する。
FIG. 18 shows a premixing device disclosed in JP-A-6-74423. The combustion air 82 supplied by the blower 80 is swirled by the swirling flow forming means 81,
Fuel gas is ejected orthogonally to the swirling flow from the ejection hole 90 of the fuel gas supply pipe 86. The primary mixture 88 macro-mixed by this ejection reaches the large-diameter portion 92.

【0007】しかし、この大径部92では、周辺部で図
示の如き渦流によるマクロ混合が行なわれるが、ミクロ
混合は行なわれていない。つまり、1次混合気88の形
成時点でマクロ混合は既に行なわれているのであり、次
に行うべきは、流体各所における局部的ミクロ混合であ
る。このミクロ混合が行なわれていない点で、この従来
技術はまだ不十分であると云わざるを得ない。
However, in the large-diameter portion 92, the macro mixing by the vortex as shown in the figure is performed in the peripheral portion, but the micro mixing is not performed. In other words, macro-mixing has already been performed at the time of formation of the primary air-fuel mixture 88, and what should be performed next is local micro-mixing at various points in the fluid. It must be said that this prior art is still insufficient in that this micro-mixing has not been performed.

【0008】図19は特開平5−231615号公報開
示の予混合燃焼装置である。燃料ガスと燃焼用空気が既
に混合された1次混合気が管路94を通して導入口95
から流入する。1次混合気は立設された平板状の乱流発
生部材96に衝突し、図示のように上下端縁からカルマ
ン渦97が発生し、乱流領域98を形成する。この乱流
混合気をイグナイタ99で燃焼させる。
FIG. 19 shows a premixed combustion apparatus disclosed in Japanese Patent Laid-Open No. Hei 5-231615. A primary air-fuel mixture in which fuel gas and combustion air are already mixed is introduced through a pipe 94 through an inlet 95.
Inflows from. The primary air-fuel mixture collides with the turbulent flow generating member 96 in the form of a flat plate, and a Karman vortex 97 is generated from the upper and lower edges as shown in FIG. The turbulent mixture is burned by the igniter 99.

【0009】この乱流発生部材96では図示のような大
きなカルマン渦が発生し、1次混合気を分子レベルでミ
クロ混合することは不可能に近い。乱流を利用して再
度、混合攪拌する点は前進しているが、ミクロ混合の水
準に到達していない。
The turbulence generating member 96 generates a large Karman vortex as shown in the drawing, and it is almost impossible to micromix the primary air-fuel mixture at the molecular level. The point of mixing and stirring again using turbulence is moving forward, but has not reached the level of micromixing.

【0010】図20は同じく上記特開平5−23161
5号公報開示の他の予混合燃焼装置である。図19と異
なる点は、乱流発生部材96として円錐体が用いられて
いることである。ところが、このように大きな円錐体で
は、周縁により大きなカルマン渦列が生起し、マクロ混
合ができてもミクロ混合が無理な点は図19と同様であ
る。
FIG. 20 is a view similar to that of JP-A-5-23161.
Fig. 5 is another premixed combustion device disclosed in Japanese Patent Publication No. 5 (JP-A-5) The difference from FIG. 19 is that a cone is used as the turbulence generating member 96. However, in the case of such a large cone, a large Karman vortex street is generated at the periphery, and micro mixing is impossible even if macro mixing can be performed as in FIG.

【0011】[0011]

【発明が解決しようとする課題】上述したように、燃焼
用空気流に燃料ガスを直交状に噴出衝突させて両者をマ
クロ的に混合させる技術はほぼ確立してきた。ところ
が、この1次混合気ではマクロな混合攪拌は行なわれて
いるが、空気とガスを分子レベルで攪拌するミクロ混合
は行なわれていない。
As described above, a technique has been almost established in which a fuel gas is ejected and collided orthogonally with a combustion air flow so as to macroscopically mix the two. However, in this primary gas mixture, macro mixing and stirring are performed, but micro mixing for stirring air and gas at a molecular level is not performed.

【0012】また、この1次混合気を更に混合攪拌して
2次混合気を得る技術が開発されてきた。しかし、2次
混合する手段が大渦や大カルマン渦を生成することを目
的としているため、ミクロ混合することはできなかっ
た。ミクロ混合化するために流速を大きくすることも試
みられたが、圧力損失が急速に増大し、ミクロ混合を十
分に行うことができなかった。流速の増大化については
送風機の限界もあった。
Further, a technique has been developed in which the primary air-fuel mixture is further mixed and stirred to obtain a secondary air-fuel mixture. However, micro-mixing was not possible because the secondary mixing means was intended to generate large vortices or large Karman vortices. Attempts were made to increase the flow rate for micromixing, but the pressure drop increased rapidly and micromixing could not be performed satisfactorily. There was also a limitation of the blower for increasing the flow velocity.

【0013】従って、この発明の目的はマクロ混合した
1次混合気を均一にミクロ混合する予混合装置を提供す
ることである。このことにより、2次混合気の燃焼温度
を下げてNOxの生成量を低減させ、また燃焼炎が燃焼
装置内に逆流してくる逆火を防止できる予混合装置を提
供することである。
Accordingly, it is an object of the present invention to provide a premixing apparatus for uniformly and micromixing a primary mixture which has been macromixed. Accordingly, it is an object of the present invention to provide a premixing device capable of lowering the combustion temperature of the secondary air-fuel mixture to reduce the amount of NOx generated, and preventing flashback in which the combustion flame flows back into the combustion device.

【0014】[0014]

【課題を解決するための手段】本発明に係る第1の予混
合装置は、空気を送風供給する供給ダクトと、この供給
ダクト内の空気流に対し燃料ガスを直交状に噴出して両
者を1次混合させる燃料ガス供給手段と、この1次混合
点より下流位置に配置された2次混合用の混合促進体か
ら構成され、この混合促進体は上流方向に頂点を有した
上流側錐体と、この上流側錐体に連接して前記供給ダク
トに略平行に設けられた筒体と、この筒体に連接して下
流方向に頂点を有した下流側錐体とからなり、前記筒体
と供給ダクトの間に形成される環状の間隙部にてミクロ
均一な2次混合気を形成することを特徴としている。
A first premixing device according to the present invention comprises a supply duct for supplying air and a fuel gas which is blown at right angles to the air flow in the supply duct to form a mixture. It is composed of a fuel gas supply means for primary mixing, and a mixing promoting body for secondary mixing disposed downstream of the primary mixing point, and the mixing promoting body is an upstream cone having an apex in an upstream direction. A cylindrical body connected to the upstream cone and provided substantially parallel to the supply duct, and a downstream cone connected to the cylindrical body and having an apex in a downstream direction. Is characterized in that a micro-uniform secondary air-fuel mixture is formed in an annular gap formed between the air and the supply duct.

【0015】また、第2の予混合装置は、空気を送風供
給する供給ダクトと、この供給ダクト内の空気流に対し
燃料ガスを直交状に噴出して両者を1次混合させる燃料
ガス供給手段と、この1次混合点より下流位置に配置さ
れ左右両端を前記供給ダクトに密接させた2次混合用の
混合促進体から構成され、この混合促進体は上流方向に
頂線を有した上流側三角柱部と、この上流側三角柱部に
連接して前記供給ダクトに略平行に設けられた直方体部
と、この直方体部に連接して下流方向に頂線を有した下
流側三角柱部からなり、直方体部と前記供給ダクトの間
に形成される上下一対の矩形状の間隙部にてミクロ均一
な2次混合気を形成することを特徴としている。
Further, the second premixing device includes a supply duct for blowing air, and a fuel gas supply means for ejecting the fuel gas orthogonally to the air flow in the supply duct to firstly mix the two. And a mixing promoting body for secondary mixing disposed at a position downstream from the primary mixing point and having both right and left ends close to the supply duct, and the mixing promoting body is an upstream side having a top line in the upstream direction. A triangular prism portion, a rectangular parallelepiped portion connected to the upstream triangular prism portion and provided substantially parallel to the supply duct, and a downstream triangular prism portion connected to the rectangular parallelepiped portion and having a top line in the downstream direction, A micro-uniform secondary air-fuel mixture is formed in a pair of upper and lower rectangular gaps formed between the section and the supply duct.

【0016】前記第1および第2の予混合装置におい
て、間隙部に整流体を配置した予混合装置を提案する。
In the first and second premixing devices, a premixing device in which a rectifier is disposed in the gap is proposed.

【0017】第3の予混合装置は、空気を送風供給する
供給ダクトと、この供給ダクト内の空気流に対し燃料ガ
スを直交状に噴出して両者を1次混合させる燃料ガス供
給手段と、この1次混合点より下流位置で1次混合気に
対して直交状に配置された略等間隔の複数本の混合促進
体から構成され、この混合促進体は2枚の形片を断面略
V字状に配置したアングルからなり、この混合促進体の
頂線を上流側に向けて、両形片によりミクロ均一な2次
混合気を形成することを特徴とする。
The third premixing device includes a supply duct for supplying air, a fuel gas supply means for injecting a fuel gas at right angles to the air flow in the supply duct, and primary mixing the two, At a position downstream of the primary mixing point, there are a plurality of substantially equally spaced mixing accelerators arranged orthogonally to the primary air-fuel mixture. It consists of angles arranged in a character shape, characterized in that a micro-uniform secondary air-fuel mixture is formed by both shaped pieces with the top line of the mixing promoting body facing upstream.

【0018】前記第3の予混合装置において、前記混合
促進体の形片の端縁にジグザグ状の刻みを入れて複数の
切込片を形成した予混合装置を提案する。
In the third premixing device, there is proposed a premixing device in which a plurality of cut pieces are formed by making zigzag-shaped notches in the edge of the shape piece of the mixing promoting body.

【0019】前記予混合装置において、前記燃料ガス供
給手段は、供給ダクトの周方向に穿設された多数のガス
噴出孔とこれらのガス噴出孔を気密に蔽うガス環状体か
らなり、このガス環状体内にガスを供給してガス噴出孔
からガス噴出する予混合装置を提案する。
In the premixing device, the fuel gas supply means includes a plurality of gas ejection holes formed in a circumferential direction of the supply duct and a gas annular body which hermetically covers these gas ejection holes. We propose a premixing device that supplies gas into the body and ejects gas from gas ejection holes.

【0020】前記予混合装置において、前記燃料ガス供
給手段は、供給ダクトの直径方向に内設されたガス供給
筒と、このガス供給筒の側面で軸方向に多数穿設された
ガス噴出孔からなり、ガス噴出方向が空気流に直交する
ようにガス噴出孔を配置した予混合装置を提案する。
In the premixing device, the fuel gas supply means includes a gas supply cylinder provided in a diameter direction of the supply duct and a plurality of gas ejection holes formed in a side surface of the gas supply cylinder in an axial direction. In other words, we propose a premixing device in which gas ejection holes are arranged so that the gas ejection direction is orthogonal to the air flow.

【0021】[0021]

【発明の実施の形態】以下に、本発明の実施の形態を図
1〜図16に基づいて具体的に詳述する。図1〜図3は
本発明に係る予混合装置の第1実施形態を示し、特に図
1はその縦断面図および図3は図1のA−A線断面図で
ある。断面円形の供給ダクト2を通して図示しない送風
機から燃焼用空気が矢印a方向に供給される。供給ダク
ト2の周方向には多数のガス噴出孔4が穿設され、これ
らのガス噴出孔4を外部から気密に蔽うガス環状体6が
設けられている。燃料ガスはガス管8から矢印b方向に
供給され、ガス環状体6がガス溜りとなってガス噴出孔
4を介して矢印c方向に吹き出す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to FIGS. 1 to 3 show a first embodiment of a premixing device according to the present invention. In particular, FIG. 1 is a longitudinal sectional view thereof, and FIG. 3 is a sectional view taken along line AA of FIG. Combustion air is supplied in a direction indicated by an arrow a from a blower (not shown) through a supply duct 2 having a circular cross section. A number of gas ejection holes 4 are formed in the circumferential direction of the supply duct 2, and a gas annular body 6 that airtightly covers the gas ejection holes 4 from the outside is provided. The fuel gas is supplied from the gas pipe 8 in the direction of arrow b, and the gas annular body 6 becomes a gas reservoir and blows out in the direction of arrow c through the gas ejection hole 4.

【0022】供給ダクト2の軸心位置には混合促進体1
0が配置されている。この混合促進体10は、その斜視
図である図2からも明らかなように、上流方向に頂点1
2aを有した上流側錐体12と、この上流側錐体12に
連接して供給ダクト2に略平行な筒体14と、この筒体
14に連接して下流方向に頂点16aを有した下流側錐
体16とから構成されている。この実施形態では、筒体
14は円筒体であり、錐体12、16は円錐体に形成さ
れている。
At the axial position of the supply duct 2, the mixing promoting body 1
0 is arranged. As is clear from FIG. 2 which is a perspective view of the mixing promoting body 10, the mixing promoting body 10 has a vertex 1 in the upstream direction.
An upstream cone 12 having a top 2a; a cylinder 14 connected to the upstream cone 12 and substantially parallel to the supply duct 2; and a downstream having an apex 16a in the downstream direction connected to the cylinder 14. And the side pyramid 16. In this embodiment, the cylinder 14 is a cylinder, and the cones 12 and 16 are formed as cones.

【0023】前記混合促進体10の配置位置は、上流側
錐体12の頂点12aがガス噴出口4より下流側にある
ことが望ましい。1次混合が行なわれた後、錐体12に
より放射分散されるように設定する。また、筒体14と
供給ダクト2の間には環状の間隙部18が形成され、こ
の環状の間隙部18には整流体20が嵌合されて、混合
促進体10を供給ダクト2内に固定している。
It is desirable that the mixing accelerator 10 be disposed such that the vertex 12 a of the upstream cone 12 is located downstream of the gas outlet 4. After the primary mixing, the setting is made such that the radiation is dispersed by the cones 12. An annular gap 18 is formed between the cylindrical body 14 and the supply duct 2, and a rectifier 20 is fitted into the annular gap 18 to fix the mixing promoting body 10 in the supply duct 2. are doing.

【0024】上流側錐体12の頂角θ1 は1次混合を助
長するために80°〜150°の大角度に設定され、望
ましくは90°〜120°に設定される。環状の間隙部
18は1次混合気のミクロ混合を行なわせる領域であ
り、その厚みTはできるだけ薄く、その長さLはできる
だけ長くとることが望ましい。従って、筒体長Lは筒体
直径Dより長く設定する。この薄くて長い間隙部18を
走行するうちに、燃料ガス分子と燃焼用空気分子のミク
ロ混合・ミクロ攪拌が行なわれる。
The apex angle θ 1 of the upstream cone 12 is set to a large angle of 80 ° to 150 °, preferably 90 ° to 120 °, in order to promote primary mixing. The annular gap 18 is a region in which the primary air-fuel mixture is micro-mixed, and its thickness T is desirably as small as possible, and its length L is desirably as long as possible. Therefore, the cylinder length L is set longer than the cylinder diameter D. While traveling through the thin and long gap 18, micro-mixing and micro-stirring of fuel gas molecules and combustion air molecules are performed.

【0025】前記の間隙部18に整流体20を嵌合すれ
ば、間隙部18のミクロ混合作用を更に強制的に助勢で
きる。整流体20としては、例えば網体やハニカム構造
体等から構成すればよい。また、前記の2次混合、即ち
ミクロ混合を効果的に行うためには、間隙部18を流通
する混合気の流速は10m/s以上の高速であることが
望ましい。
If the rectifier 20 is fitted into the gap 18, the micromixing action of the gap 18 can be further forcibly assisted. The rectifier 20 may be formed of, for example, a net or a honeycomb structure. Further, in order to effectively perform the secondary mixing, that is, the micro mixing, it is desirable that the flow rate of the air-fuel mixture flowing through the gap 18 is as high as 10 m / s or more.

【0026】下流側錐体16の頂角θO はミクロ混合さ
れた1次混合気、即ち2次混合気の層流状態を極力、維
持するために60°〜90°の小角度に設定されること
が望ましく、小角度になる程、混合促進体10の全長が
長くなる。
The apex angle θ O of the downstream cone 16 is set to a small angle of 60 ° to 90 ° in order to keep the laminar flow state of the micro-mixed primary mixture, ie, the secondary mixture, as much as possible. Preferably, the smaller the angle, the longer the total length of the mixing promoting body 10.

【0027】次に、第1実施形態の作用について説明す
る。矢印b方向に供給される燃料ガスはガス環状体6の
全体に充満したあと、多数のガス噴出孔から一勢に矢印
c方向に噴出する。矢印a方向に供給される燃焼用空気
に対し、燃料ガスは直交状に流体衝突し、大きな乱流状
態で1次混合されながら、頂点12aを中心に上流側錐
体12の斜面を矢印d方向にかけ上ってゆく。この大角
度斜面でも1次混合気に対する乱流攪拌が助長される。
Next, the operation of the first embodiment will be described. After the fuel gas supplied in the direction of the arrow b fills the entire gas annular body 6, it is ejected from the many gas ejection holes in the direction of the arrow c. The fuel gas collides with the combustion air supplied in the direction of the arrow a in a direction orthogonal to the fluid, and while being primarily mixed in a large turbulent state, the slope of the upstream cone 12 around the apex 12a in the direction of the arrow d. Going up. Turbulent agitation of the primary air-fuel mixture is promoted even on this large-angled slope.

【0028】環状の間隙部18に達した1次混合気は、
その比較的薄い間隙部で相互に内部流体摩擦を起し、同
時に供給ダクト2および筒体14の表面からも流体摩擦
を受ける。これらの流体摩擦により1次混合気の各所で
はミクロ混合が行なわれる。更に、整流体20の整流作
用によりミクロ混合が加速され、これらの2次混合を通
して極めて一様に均一な2次混合気が形成される。
The primary air-fuel mixture that has reached the annular gap 18 is
In the relatively thin gap, internal fluid friction occurs with each other, and at the same time, fluid friction also occurs from the surfaces of the supply duct 2 and the cylindrical body 14. Micro-mixing is performed at various points in the primary air-fuel mixture by these fluid frictions. Further, the rectifying action of the rectifier 20 accelerates the micro-mixing, and a very uniformly uniform secondary air-fuel mixture is formed through the secondary mixing.

【0029】均一な2次混合気は下流側錐体16により
矢印c方向に末広がりしながら供給ダクト2内を流通
し、図示しない下流側の燃焼部へと送られる。頂角θO
は小角度に設定されているから、2次混合気は渦流を形
成することなく、層流状態で燃焼部へ送られる。
The uniform secondary air-fuel mixture flows through the supply duct 2 while diverging in the direction of arrow c by the downstream cone 16 and is sent to a downstream combustion section (not shown). Apex angle θ O
Is set to a small angle, the secondary air-fuel mixture is sent to the combustion section in a laminar state without forming a vortex.

【0030】従って、均一にミクロ混合された2次混合
気が燃焼部にて燃焼されるから、燃焼温度が極めて一様
に均一であり、総体的に燃焼温度が低下することによっ
てNOxの生成を確実に低減化できる。このことは逆火
の防止にもつながる。また、この装置では構造的に構造
的にミクロ混合ができるから、混合気の流速を低下させ
てもミクロ混合を実現できる。流速の低下は圧力損失の
低減の効果もある。
Therefore, since the secondary air-fuel mixture uniformly micro-mixed is combusted in the combustion section, the combustion temperature is extremely uniform and uniform, and the combustion temperature is lowered as a whole to generate NOx. The reduction can be achieved reliably. This leads to prevention of flashback. Further, since micro mixing can be performed structurally and structurally with this apparatus, micro mixing can be realized even if the flow rate of the air-fuel mixture is reduced. The reduction in the flow velocity also has the effect of reducing the pressure loss.

【0031】環状の間隙部18での混合流の軸対称性を
増すために、前記混合促進体10は円錐体と円筒体を結
合して形成していたが、2次混合におけるミクロ混合性
が満たされる限りでは、混合促進体10を多角錐体や多
角形筒体で形成してもよい。
In order to increase the axial symmetry of the mixed flow in the annular gap 18, the mixing promoting body 10 is formed by combining a conical body and a cylindrical body. As long as it is satisfied, the mixing promoting body 10 may be formed by a polygonal pyramid or a polygonal cylinder.

【0032】図4〜図6は本発明に係る予混合装置の第
2実施形態を示している。図4は縦断面図、図5は混合
促進体の斜視図および図6は図4のB−B線断面図であ
る。この第2実施形態を説明するに当って、第1実施形
態と同一部分には同一符号を付してその説明を簡略に
し、異なる部分を詳説する。
FIGS. 4 to 6 show a second embodiment of the premixing device according to the present invention. 4 is a longitudinal sectional view, FIG. 5 is a perspective view of a mixing promoting body, and FIG. 6 is a sectional view taken along line BB of FIG. In the description of the second embodiment, the same portions as those of the first embodiment are denoted by the same reference numerals, the description thereof will be simplified, and different portions will be described in detail.

【0033】供給ダクト2の断面は矩形であり、矩形の
ガス環状体6がその周囲を囲って付設されている。混合
促進体10は、上流方向に頂線22aを有した上流側三
角柱部22と、この上流側三角柱部22に連接して供給
ダクト2に略平行に設けられた直方体部24と、この直
方体部24に連接して下流方向に頂線26aを有した下
流側三角柱部26から形成されている。
The cross section of the supply duct 2 is rectangular, and a rectangular gas ring 6 is provided surrounding the periphery thereof. The mixing promoting body 10 includes an upstream triangular prism portion 22 having a top line 22 a in the upstream direction, a rectangular parallelepiped portion 24 connected to the upstream triangular prism portion 22 and provided substantially parallel to the supply duct 2, 24, a downstream triangular prism portion 26 having a top line 26a in the downstream direction.

【0034】この混合促進体10の左右両端は前記供給
ダクト2の左右内面に密接している。従って、直方体部
24と供給ダクト2の間に形成される空間は上下に一対
の断面矩形の間隙部18、18となる。これらの間隙部
18、18には各々整流体20、20が装着される。ま
た、ガス噴出口4も供給ダクト2の左右壁面には形成さ
れず、図示の如く上下壁面にのみ穿設されている。
The left and right ends of the mixing accelerator 10 are in close contact with the left and right inner surfaces of the supply duct 2. Therefore, the space formed between the rectangular parallelepiped portion 24 and the supply duct 2 is a pair of vertically spaced gap portions 18 having a rectangular cross section. Rectifiers 20, 20 are mounted in these gaps 18, 18, respectively. Further, the gas ejection ports 4 are not formed on the left and right wall surfaces of the supply duct 2, but are formed only on the upper and lower wall surfaces as shown in the figure.

【0035】頂線22aの配置位置、頂角θ1 ・θO
範囲、直方体部24の厚みDの関係は第1実施形態と同
様であるから省略する。但し、直方体部長Lは供給ダク
ト2の横幅W以上にすることが望ましい。
The relationship between the arrangement position of the apex line 22a, the range of the apex angles θ 1 and θ O , and the thickness D of the rectangular parallelepiped portion 24 is the same as that of the first embodiment, and will not be described. However, it is desirable that the rectangular parallelepiped portion length L be equal to or larger than the width W of the supply duct 2.

【0036】第2実施形態の作用について簡単に説明す
る。矢印c方向に噴出する燃料ガスは矢印a方向に流通
する燃焼用空気と流体衝突して1次混合し、大きな渦乱
流が形成される。この乱流は上流側三角柱部22の急斜
面を上下に分流して登り、この過程で1次混合が完了す
る。
The operation of the second embodiment will be briefly described. The fuel gas ejected in the direction of the arrow c collides fluidly with the combustion air flowing in the direction of the arrow a and undergoes primary mixing to form a large turbulent flow. This turbulent flow splits up and down the steep slope of the upstream triangular prism portion 22, and the primary mixing is completed in this process.

【0037】上下に分流した1次混合気は上下の間隙部
18、18に入り、壁面による摩擦や境界層の成長によ
りミクロ混合が生起する。整流体20、20の作用によ
りミクロ混合やミクロ攪拌が助長され、整流体20、2
0の出口付近で2次混合が終了し、一様に均一な2次混
合が終了する。この上下の2次混合気は下流側三角柱部
26の緩斜面により渦流を形成しないように合流し、後
方の燃焼部に送られる。その効果は第1実施形態と同様
であるのでその説明を省略する。
The primary air-fuel mixture which has flowed up and down enters the upper and lower gaps 18 and 18, and micro-mixing occurs due to friction caused by the wall surface and growth of the boundary layer. Micro-mixing and micro-stirring are promoted by the action of the rectifiers 20, 20, and the rectifiers 20, 2
Secondary mixing ends near the exit of 0, and uniform secondary mixing ends. The upper and lower secondary air-fuel mixtures are joined by the gentle slope of the downstream triangular prism portion 26 so as not to form a vortex, and sent to the rear combustion portion. Since the effect is the same as that of the first embodiment, the description is omitted.

【0038】図7〜図9は本発明に係る予混合装置の第
3実施形態を示している。図7は縦断面図、図8は混合
促進体の斜視図および図9は図7のC−C線断面図であ
る。この第3実施形態を説明するに当って、第1実施形
態と同一部分には同一符号を付してその説明を省略し、
異なる部分を詳説する。
FIGS. 7 to 9 show a third embodiment of the premixing device according to the present invention. 7 is a longitudinal sectional view, FIG. 8 is a perspective view of a mixing promoting body, and FIG. 9 is a sectional view taken along line CC of FIG. In describing the third embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
Explain the different parts in detail.

【0039】第3実施形態が第1実施形態と異なるのは
混合促進体10の形状である。図8から分るように、混
合促進体10は2枚の形片28、28がアングル角度θ
で開いたアングルであり、アングル角度θは60°〜1
00°、望ましくは80°〜100°である。形片28
の幅L1 は30mm以下で、望ましくは10〜20mm
である。
The third embodiment is different from the first embodiment in the shape of the mixing promoting body 10. As can be seen from FIG. 8, the mixing promoting body 10 has two shape pieces 28, 28 at an angle angle θ.
And the angle θ is 60 ° to 1
00 °, preferably 80 ° to 100 °. Shape piece 28
Width L 1 of 30mm or less, preferably 10~20mm
It is.

【0040】このアングル状の混合促進体10は、その
頂線30が上流を向くように、供給ダクト2の断面部全
長に亘って複数本が等間隔に並べられる。間隔L3 はア
ングル幅をL2 とすると、0.5L2 <L3 <2L2
設定される。また、L2 を小さくして混合促進体10を
できるだけ多数本配置するとミクロ混合の効率が上昇す
る。
A plurality of the angle-shaped mixing promoters 10 are arranged at equal intervals over the entire length of the cross-section of the supply duct 2 so that the top line 30 faces upstream. If the interval L 3 is the angle width L 2, it is set to 0.5L 2 <L 3 <2L 2 . In addition, if L 2 is reduced and as many mixing promoters 10 as possible are arranged, the efficiency of micro mixing increases.

【0041】ガス噴出孔4と混合促進体10までの距離
0 はできるだけ長い方がよいが、円形の供給ダクトの
直径D0 と比較すると、L0 >0.5D0 とすることが
望まれる。また、2次混合(ミクロ混合)を確実に行う
ために、混合促進体28位置での混合気の流速は10m
/s以上に設定することが望まれる。この流速が速いと
きには、前記間隔L3 を大きくとると、2次混合が効果
的である。
The distance L 0 between the gas ejection hole 4 and the mixing promoting body 10 is preferably as long as possible, but it is desirable that L 0 > 0.5D 0 as compared with the diameter D 0 of the circular supply duct. . In order to ensure the secondary mixing (micro mixing), the flow rate of the air-fuel mixture at the position of the mixing accelerator 28 is 10 m.
/ S or more is desired. When the flow rate is high, when a large the distance L 3, 2-order mixing is effective.

【0042】次に、第3実施形態の作用について説明す
る。図7および図9から分るように、燃料ガスはガス環
状体6を介して噴出口4から矢印c方向に噴出する。矢
印a方向の燃焼用空気は直交状に流体衝突する燃料ガス
と大乱流状態で1次混合する。1次混合気は大乱流状態
から次第に安定した流れになり、この過程をマクロ混合
という。
Next, the operation of the third embodiment will be described. As can be seen from FIGS. 7 and 9, the fuel gas is ejected from the ejection port 4 through the gas ring 6 in the direction of arrow c. The combustion air in the direction of arrow a is primarily mixed in a large turbulent state with the fuel gas which collides with the fluid orthogonally. The primary air-fuel mixture gradually becomes a stable flow from a large turbulent state, and this process is called macro mixing.

【0043】矢印fで示すように、この1次混合気は混
合促進体10の頂線30から左右に分流し、形片28を
上りながら、その端縁28a、28aで微小なカルマン
渦を形成する。このカルマン渦は微小であるため、下流
への流動過程の中で次第に安定し、一様に均一な2次混
合流gとなる。混合促進体10より後の混合がミクロ混
合で、混合促進体10のアングル幅L2 をより小さく
し、配列本数をより多くすると、ミクロ混合がよりキメ
細かく行なわれる。
As shown by the arrow f, this primary air-fuel mixture diverges right and left from the top line 30 of the mixing promoting body 10, and forms a minute Karman vortex at its edges 28a, 28a while climbing the shape piece 28. I do. Since this Karman vortex is minute, it gradually becomes stable in the downstream flow process and becomes a uniformly uniform secondary mixed flow g. Mixing after the mixing promotion body 10 with micromixing, the angle width L 2 of the mixing promotion body 10 and smaller when more sequences number, micromixing is performed more finely.

【0044】図10〜図13は本発明に係る予混合装置
の第4実施形態を示している。図10は縦断面図、図1
1は混合促進体の斜視図、図12は他の混合促進体の斜
視図および図13は図10のE−E線断面図である。こ
の第4実施形態を説明するに当って、第3実施形態と同
一部分には同一符号を付してその説明を省略し、異なる
部分を説明する。
FIGS. 10 to 13 show a fourth embodiment of the premixing device according to the present invention. FIG. 10 is a longitudinal sectional view, FIG.
1 is a perspective view of a mixing promoting body, FIG. 12 is a perspective view of another mixing promoting body, and FIG. 13 is a sectional view taken along line EE of FIG. In the description of the fourth embodiment, the same parts as those of the third embodiment will be denoted by the same reference numerals, and the description thereof will be omitted, and different parts will be described.

【0045】第4実施形態が第3実施形態と異なるの
は、供給ダクト2の断面が矩形であること、およびアン
グル状の混合促進体10形状がやや異なることの2点で
ある。供給ダクト2の断面が矩形である点は第2実施形
態と同一であるからその説明を省略する。
The fourth embodiment differs from the third embodiment in that the cross section of the supply duct 2 is rectangular and that the angle of the mixing promoting body 10 is slightly different. The point that the cross section of the supply duct 2 is rectangular is the same as that of the second embodiment, and a description thereof will be omitted.

【0046】図11に示す混合促進体10は、端縁28
aにジグザグ状の刻みを入れることにより多数の切込片
32を形成している。この切込片32の両端はエッジ3
2aとなっており、結局、切込片32の2倍の数のエッ
ジ32aが1つの形片28に形成されることになる。こ
の例では、切込片32に端縁28aを残しているから、
エッジ32aの数は少ない。
The mixing accelerator 10 shown in FIG.
A large number of cut pieces 32 are formed by making zigzag notches in a. Both ends of the cut piece 32 are edges 3
2a, so that twice as many edges 32a as the cut pieces 32 are formed on one shape piece 28. In this example, since the edge 28a is left in the cut piece 32,
The number of edges 32a is small.

【0047】図12に示す混合促進体10では、端縁2
8aを完全に失くすまで刻みを入れているので、極めて
多数の切込片32が形成でき、その結果エッジ32aの
個数が急増できる。
In the mixing promoting body 10 shown in FIG.
Since the cut is made until the 8a is completely lost, an extremely large number of cut pieces 32 can be formed, and as a result, the number of edges 32a can be increased rapidly.

【0048】図11又は図12で示す混合促進体10に
1次混合気がやってくると、矢印fに示されるように、
形片28、28でまず上上に分流し、各々の分流が切込
片32のエッジ32a、32aにより更に左右に分流し
て微小なカルマン渦を形成する。多数の切込片32があ
ると、極めて微小なカルマン渦が多数形成されるため、
少し流下した段階では一様で均一な2次混合流gが形成
されることになる。
When the primary air-fuel mixture comes to the mixing accelerator 10 shown in FIG. 11 or FIG. 12, as shown by the arrow f,
First, the shunts are diverted upward and downward by the shape pieces 28, 28, and the respective shunts are further diverted to the left and right by the edges 32 a, 32 a of the cut pieces 32 to form minute Karman vortices. If there are many cut pieces 32, a large number of extremely small Karman vortices are formed,
At a stage where the flow has slightly flowed down, a uniform and uniform secondary mixed flow g is formed.

【0049】図14〜図16は本発明に係る予混合装置
の第5実施形態を示している。図14は縦断面図、図1
5は図14のF−F線断面図および図16は図14のG
−G線断面図である。この第5実施形態を説明するに当
って、第4実施形態と同一部分には同一符号を付してそ
の説明を省略し、異なる部分を説明する。
FIGS. 14 to 16 show a fifth embodiment of the premixing device according to the present invention. FIG. 14 is a longitudinal sectional view, FIG.
5 is a sectional view taken along line FF of FIG. 14 and FIG.
It is a G line sectional view. In describing the fifth embodiment, the same parts as those of the fourth embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Different parts will be described.

【0050】この第5実施形態は、燃料ガス供給手段の
他の実施例を示しており、ガス環状体6とは異なって、
供給ダクト2の直径方向にガス供給筒7を内設して構成
する。このガス供給筒7の側面で空気供給方向aと直交
する位置には、多数のガス噴出孔4がその軸方向に穿設
され、燃料ガスを矢印c方向に噴出する。
This fifth embodiment shows another embodiment of the fuel gas supply means.
The gas supply tube 7 is provided in the diameter direction of the supply duct 2 so as to be internally provided. At a position orthogonal to the air supply direction a on the side surface of the gas supply cylinder 7, a number of gas ejection holes 4 are formed in the axial direction thereof, and eject fuel gas in the direction of arrow c.

【0051】この実施形態では、ガス供給筒7が供給ダ
クト2内の中央に位置するから、燃焼用空気の流れが乱
される面を有するが、燃料ガスとの1次混合はガス供給
筒7の両サイドで行なわれる。両サイドの1次混合流も
少し流下すると相互に融合し、混合促進体10による2
次混合の後は、第4実施形態とほぼ同一の作用効果を奏
するので、その説明を省略する。
In this embodiment, since the gas supply cylinder 7 is located at the center in the supply duct 2, the gas supply cylinder 7 has a surface in which the flow of combustion air is disturbed. Will be held on both sides. When the primary mixed flows on both sides also slightly flow down, they fuse with each other, and
After the next mixing, the same operation and effect as those of the fourth embodiment are obtained, and the description thereof is omitted.

【0052】本発明は上記実施例に限定されるものでは
なく、本発明の技術的思想を逸脱しない範囲における種
々の変形例、設計変更等をその技術的範囲内に包含する
ものである。
The present invention is not limited to the above-described embodiment, but includes various modifications and design changes within the technical scope thereof without departing from the technical concept of the present invention.

【0053】[0053]

【発明の効果】請求項1の発明によれば、例えば断面円
筒状の供給ダクトを用いて、燃料ガスと燃焼用空気をマ
クロに1次混合した後、この1次混合気をミクロに2次
混合できるから一様で均一な混合気を生成できる。従っ
て、この混合気を燃焼しても燃焼温度のムラが無くな
り、NOxを減少できると同時に逆火を防止することが
でき、低圧力損失での均一混合が可能となる。
According to the first aspect of the present invention, the fuel gas and the combustion air are firstly mixed macroscopically using, for example, a supply duct having a cylindrical cross section, and then this primary air-fuel mixture is microscopically mixed. Since they can be mixed, a uniform and uniform mixture can be generated. Therefore, even if this air-fuel mixture is burned, there is no unevenness in the combustion temperature, NOx can be reduced, flashback can be prevented, and uniform mixing with low pressure loss is possible.

【0054】請求項2の発明によれば、例えば断面矩形
状の供給ダクトを用いて請求項1の発明と同様の効果を
奏することができる。
According to the second aspect of the present invention, the same effect as that of the first aspect of the invention can be obtained by using a supply duct having a rectangular cross section, for example.

【0055】請求項3の発明によれば、断面環状又は断
面矩形状の間隙部に整流体を配置するから、ミクロ混合
である2次混合を助長又は加速することができ、NOx
減少、逆火防止および低圧力損失混合をより効率化でき
る。
According to the third aspect of the present invention, since the rectifier is disposed in the gap having an annular cross section or a rectangular cross section, secondary mixing, which is micro mixing, can be promoted or accelerated.
Reduction, flashback prevention and low pressure loss mixing can be made more efficient.

【0056】請求項4の発明によれば、任意の断面形状
を有する供給ダクトにおいて、1次混合気に対してミク
ロな2次混合を行うことができるから、広範囲の燃焼装
置にNOx減少、逆火防止および低圧力損失混合の効果
を付与することができる。
According to the fourth aspect of the present invention, in a supply duct having an arbitrary cross-sectional shape, micro-secondary mixing can be performed on a primary air-fuel mixture. The effect of fire prevention and low pressure loss mixing can be provided.

【0057】請求項5の発明によれば、請求項4の発明
をより高効率化することができる。
According to the fifth aspect of the invention, the efficiency of the fourth aspect of the invention can be further improved.

【0058】請求項6の発明によれば、燃料ガス供給手
段が供給ダクト内にないので、燃料ガスと燃焼用空気と
の1次混合が広い場所で行え、しかも機械的な擾乱を受
けることがないので、1次混合の高効率化を達成でき
る。
According to the sixth aspect of the present invention, since the fuel gas supply means is not provided in the supply duct, the primary mixing of the fuel gas and the combustion air can be performed in a wide place, and there is no possibility of mechanical disturbance. Since there is no primary mixing, higher efficiency of the primary mixing can be achieved.

【0059】請求項7の発明によれば、燃料ガス供給手
段の構造がシンプルで製作が容易である。また、ガス噴
出部付近の空気流速が速いから、燃料ガスの供給圧が低
くても、1次混合と2次混合を確実に行うことができ
る。
According to the seventh aspect of the present invention, the structure of the fuel gas supply means is simple and easy to manufacture. Further, since the air flow velocity near the gas ejection part is high, the primary mixing and the secondary mixing can be reliably performed even when the supply pressure of the fuel gas is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る予混合装置の縦断
面図である。
FIG. 1 is a longitudinal sectional view of a premixing device according to a first embodiment of the present invention.

【図2】第1実施形態の混合促進体の斜視図である。FIG. 2 is a perspective view of a mixing promoting body of the first embodiment.

【図3】図1のA−A線断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 1;

【図4】本発明の第2実施形態に係る予混合装置の縦断
面図である。
FIG. 4 is a longitudinal sectional view of a premixing device according to a second embodiment of the present invention.

【図5】第2実施形態の混合促進体の斜視図である。FIG. 5 is a perspective view of a mixing promoting body according to a second embodiment.

【図6】図4のB−B線断面図である。FIG. 6 is a sectional view taken along line BB of FIG. 4;

【図7】本発明の第3実施形態に係る予混合装置の縦断
面図である。
FIG. 7 is a longitudinal sectional view of a premixing device according to a third embodiment of the present invention.

【図8】第3実施形態の混合促進体の斜視図である。FIG. 8 is a perspective view of a mixing promoting body of a third embodiment.

【図9】図7のC−C線断面図である。FIG. 9 is a sectional view taken along the line CC of FIG. 7;

【図10】本発明の第4実施形態に係る予混合装置の縦
断面図である。
FIG. 10 is a longitudinal sectional view of a premixing device according to a fourth embodiment of the present invention.

【図11】第4実施形態の混合促進体の斜視図である。FIG. 11 is a perspective view of a mixing promoting body according to a fourth embodiment.

【図12】第4実施形態の他の混合促進体の斜視図であ
る。
FIG. 12 is a perspective view of another mixing promoting body of the fourth embodiment.

【図13】図10のE−E線断面図である。FIG. 13 is a sectional view taken along line EE of FIG. 10;

【図14】本発明の第5実施形態に係る予混合装置の縦
断面図である。
FIG. 14 is a longitudinal sectional view of a premixing device according to a fifth embodiment of the present invention.

【図15】図14のF−F線断面図である。FIG. 15 is a sectional view taken along line FF of FIG. 14;

【図16】図14のG−G線断面図である。FIG. 16 is a sectional view taken along line GG of FIG. 14;

【図17】予混合燃焼装置の第1従来例の斜視図であ
る。
FIG. 17 is a perspective view of a first conventional example of a premixed combustion device.

【図18】予混合装置の第2従来例の要部断面図であ
る。
FIG. 18 is a sectional view of a main part of a second conventional example of a premixing device.

【図19】予混合燃焼装置の第3従来例の断面図であ
る。
FIG. 19 is a sectional view of a third conventional example of a premixed combustion device.

【図20】予混合燃焼装置の第4従来例の断面図であ
る。
FIG. 20 is a sectional view of a fourth conventional example of a premixed combustion device.

【符号の説明】[Explanation of symbols]

2は供給ダクト、4はガス噴出孔、6はガス環状体、8
はガス管、10は混合促進体、12は上流側錐体、12
aは頂点、14は筒体、16は下流側錐体、16aは頂
点、18は間隙部、20は整流体、22は上流側三角柱
部、22aは頂線、24は直方体部、26は下流側三角
柱部、26aは頂線、28は形片、28aは端縁、30
は頂線、32は切込片、32aはエッジ、80は送風
機、82は燃焼用空気、84は燃料ガス、86は燃料ガ
ス供給管、88は1次混合気、90は噴出孔、92は大
径部、94は管路、95は導入口、96は乱流発生部
材、97はカルマン渦、98は乱流領域、99はイグナ
イタ。
2 is a supply duct, 4 is a gas outlet, 6 is a gas ring, 8
Is a gas pipe, 10 is a mixing promoter, 12 is an upstream cone, 12
a is a vertex, 14 is a cylinder, 16 is a downstream cone, 16a is a vertex, 18 is a gap, 20 is a rectifier, 22 is an upstream triangular prism, 22a is a top line, 24 is a rectangular parallelepiped, and 26 is downstream. Side triangular prism portion, 26a is top line, 28 is shape piece, 28a is edge, 30
Is a top line, 32 is a cut piece, 32a is an edge, 80 is a blower, 82 is combustion air, 84 is a fuel gas, 86 is a fuel gas supply pipe, 88 is a primary air-fuel mixture, 90 is an ejection hole, and 92 is an ejection hole. A large diameter portion, 94 is a conduit, 95 is an inlet, 96 is a turbulence generating member, 97 is a Karman vortex, 98 is a turbulent region, and 99 is an igniter.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年7月13日(2000.7.1
3)
[Submission Date] July 13, 2000 (2007.1)
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】均一な2次混合気は下流側錐体16により
矢印e方向に末広がりしながら供給ダクト2内を流通
し、図示しない下流側の燃焼部へと送られる。頂角θ0
は小角度に設定されているから、2次混合気は渦流を形
成することなく、層流状態で燃焼部へ送られる。
A uniform secondary mixture is produced by the downstream cone 16.
The air flows in the supply duct 2 while spreading in the direction of the arrow e , and is sent to a downstream combustion section (not shown). Apex angle θ 0
Is set to a small angle, the secondary air-fuel mixture is sent to the combustion section in a laminar state without forming a vortex.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】従って、均一にミクロ混合された2次混合
気が燃焼部にて燃焼されるから、燃焼温度が極めて一様
に均一であり、総体的に燃焼温度が低下することによっ
てNOxの生成を確実に低減化できる。このことは逆火
の防止にもつながる。また、この装置では構造的にミク
ロ混合ができるから、混合気の流速を低下させてもミク
ロ混合を実現できる。流速の低下は圧力損失の低減の効
果もある。
Therefore, since the secondary air-fuel mixture uniformly micro-mixed is combusted in the combustion section, the combustion temperature is extremely uniform and uniform, and the combustion temperature is lowered as a whole to generate NOx. The reduction can be achieved reliably. This leads to prevention of flashback. Further, since micro mixing can be performed structurally with this apparatus, micro mixing can be realized even when the flow rate of the air-fuel mixture is reduced. The reduction in the flow velocity also has the effect of reducing the pressure loss.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0048】図11又は図12で示す混合促進体10に
1次混合気がやってくると、矢印fに示されるように、
形片28、28でまず上下に分流し、各々の分流が切込
片32のエッジ32a、32aにより更に左右に分流し
て微小なカルマン渦を形成する。多数の切込片32があ
ると、極めて微小なカルマン渦が多数形成されるため、
少し流下した段階では一様で均一な2次混合流gが形成
されることになる。
When the primary air-fuel mixture comes to the mixing accelerator 10 shown in FIG. 11 or FIG. 12, as shown by the arrow f,
First, the flow is divided up and down by the shape pieces 28, 28, and each of the divided flows is further divided right and left by the edges 32 a, 32 a of the cut pieces 32 to form minute Karman vortices. If there are many cut pieces 32, a large number of extremely small Karman vortices are formed,
At a stage where the flow has slightly flowed down, a uniform and uniform secondary mixed flow g is formed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑垣 功 京都府京都市南区久世殿城町600番地の1 株式会社タクマ京都工場内 Fターム(参考) 3K017 CA05 CB08 CD02 CE03 4G035 AB02 AC01 AC19 AC55 AE13 4G036 AC65  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Isao Kuwagaki, Inventor 600-1, Kuzedonojo-cho, Minami-ku, Kyoto-shi, Kyoto Prefecture F-term (reference) 3K017 CA05 CB08 CD02 CE03 4G035 AB02 AC01 AC19 AC55 AE13 4G036 AC65

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスと燃焼用空気を燃焼させる前に
予め混合する予混合装置において、空気を送風供給する
供給ダクトと、この供給ダクト内の空気流に対し燃料ガ
スを直交状に噴出して両者を1次混合させる燃料ガス供
給手段と、この1次混合点より下流位置に配置された2
次混合用の混合促進体から構成され、この混合促進体は
上流方向に頂点を有した上流側錐体と、この上流側錐体
に連接して前記供給ダクトに略平行に設けられた筒体
と、この筒体に連接して下流方向に頂点を有した下流側
錐体とからなり、前記筒体と供給ダクトの間に形成され
る環状の間隙部にてミクロ均一な2次混合気を形成する
ことを特徴とする予混合装置。
In a premixing device for mixing fuel gas and combustion air before burning, a supply duct for supplying air and a fuel gas are injected orthogonally to an air flow in the supply duct. Fuel gas supply means for primary mixing the two, and two fuel gas supply means disposed downstream of the primary mixing point.
The mixing promoting body is composed of a mixing promoting body for the next mixing, the mixing promoting body has an upstream cone having an apex in the upstream direction, and a cylindrical body connected to the upstream cone and provided substantially parallel to the supply duct. And a downstream cone connected to the cylindrical body and having a vertex in the downstream direction. A micro-uniform secondary air-fuel mixture is formed in an annular gap formed between the cylindrical body and the supply duct. A premixing device characterized by forming.
【請求項2】 燃料ガスと燃焼用空気を燃焼させる前に
予め混合する予混合装置において、空気を送風供給する
供給ダクトと、この供給ダクト内の空気流に対し燃料ガ
スを直交状に噴出して両者を1次混合させる燃料ガス供
給手段と、この1次混合点より下流位置に配置され左右
両端を前記供給ダクトに密接させた2次混合用の混合促
進体から構成され、この混合促進体は上流方向に頂線を
有した上流側三角柱部と、この上流側三角柱部に連接し
て前記供給ダクトに略平行に設けられた直方体部と、こ
の直方体部に連接して下流方向に頂線を有した下流側三
角柱部からなり、直方体部と前記供給ダクトの間に形成
される上下一対の断面矩形状の間隙部にてミクロ均一な
2次混合気を形成することを特徴とする予混合装置。
2. A premixing device for premixing fuel gas and combustion air prior to combustion, wherein a supply duct for blowing air is supplied, and the fuel gas is injected orthogonally to an air flow in the supply duct. A fuel gas supply means for primary mixing of the two, and a mixing accelerator for secondary mixing disposed downstream of the primary mixing point and having both left and right ends in close contact with the supply duct. Is an upstream triangular prism portion having a top line in the upstream direction, a rectangular parallelepiped portion connected to the upstream triangular prism portion and provided substantially parallel to the supply duct, and a top line in the downstream direction connected to the rectangular parallelepiped portion. A premixing comprising a downstream triangular prism portion having a micro-uniform secondary air-fuel mixture formed in a pair of upper and lower rectangular cross sections formed between the rectangular parallelepiped portion and the supply duct. apparatus.
【請求項3】 前記間隙部に整流体を配置した請求項1
又は2記載の予混合装置。
3. A rectifier is disposed in the gap.
Or the premixing device according to 2.
【請求項4】 燃料ガスと燃焼用空気を燃焼させる前に
予め混合する予混合装置において、空気を送風供給する
供給ダクトと、この供給ダクト内の空気流に対し燃料ガ
スを直交状に噴出して両者を1次混合させる燃料ガス供
給手段と、この1次混合点より下流位置で1次混合気流
に対して直交状に配置された略等間隔の複数本の混合促
進体から構成され、この混合促進体は2枚の形片を断面
略V字状に配置したアングルからなり、この混合促進体
の頂線を上流側に向けて、両形片によりミクロ均一な2
次混合気を形成することを特徴とする予混合装置。
4. A premixing device for premixing fuel gas and combustion air prior to combustion, wherein a supply duct for blowing air is supplied, and the fuel gas is injected orthogonally to an air flow in the supply duct. A fuel gas supply means for primary mixing the two, and a plurality of substantially equally spaced mixing promoters disposed at a position downstream of the primary mixing point and orthogonal to the primary mixed gas flow. The mixing promoting body is composed of an angle in which two pieces are arranged in a substantially V-shaped cross section.
A premixing device for forming a secondary air-fuel mixture.
【請求項5】 前記混合促進体の形片の端縁にジグザグ
状の刻みを入れて複数の切込片を形成した請求項4記載
の予混合装置。
5. The pre-mixing device according to claim 4, wherein a plurality of cut pieces are formed by making zigzag-shaped notches in an edge of the shape piece of the mixing promoting body.
【請求項6】 前記燃料ガス供給手段は、供給ダクトの
周方向に穿設された多数のガス噴出孔とこれらのガス噴
出孔を気密に蔽うガス環状体からなり、このガス環状体
内にガスを供給してガス噴出孔からガス供給する請求項
1ないし5記載の予混合装置。
6. The fuel gas supply means includes a plurality of gas ejection holes formed in a circumferential direction of a supply duct, and a gas annular body which hermetically covers these gas ejection holes, and supplies gas into the gas annular body. The premixing device according to claim 1, wherein the gas is supplied and supplied from a gas ejection hole.
【請求項7】 前記燃料ガス供給手段は、供給ダクトの
直径方向に内設されたガス供給筒と、このガス供給筒の
側面で軸方向に多数穿設されたガス噴出孔からなり、ガ
ス噴出方向が空気流に直交するように配置されている請
求項1ないし5記載の予混合装置。
7. The fuel gas supply means includes a gas supply cylinder provided in a diameter direction of a supply duct, and a large number of gas ejection holes formed in a side surface of the gas supply cylinder in an axial direction. 6. The premixing device according to claim 1, wherein the direction is orthogonal to the air flow.
JP17603599A 1999-06-22 1999-06-22 Premixing device Expired - Fee Related JP3884596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17603599A JP3884596B2 (en) 1999-06-22 1999-06-22 Premixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17603599A JP3884596B2 (en) 1999-06-22 1999-06-22 Premixing device

Publications (2)

Publication Number Publication Date
JP2001000849A true JP2001000849A (en) 2001-01-09
JP3884596B2 JP3884596B2 (en) 2007-02-21

Family

ID=16006596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17603599A Expired - Fee Related JP3884596B2 (en) 1999-06-22 1999-06-22 Premixing device

Country Status (1)

Country Link
JP (1) JP3884596B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306939A (en) * 2001-04-12 2002-10-22 Kansai Electric Power Co Inc:The Fluid mixer
JP2004351414A (en) * 2003-05-08 2004-12-16 Sulzer Chemtech Ag Static mixer
JP2005021885A (en) * 2003-06-10 2005-01-27 Yoshiro Wakimura Stirring apparatus
JP2006524560A (en) * 2003-04-28 2006-11-02 インディゴ テクノロジーズ グループ プロプライアタリー リミテッド Fluid mixing method and apparatus for particle agglomeration
JP2006326571A (en) * 2005-04-28 2006-12-07 Hitachi Ltd Fluid mixing device
JP2007519204A (en) * 2004-02-17 2007-07-12 フュエルセル エナジー, インコーポレイテッド Mixer / eductor for high temperature fuel cells
JP2007292343A (en) * 2006-04-21 2007-11-08 Rinnai Corp Totally aerated combustion-type burner
JP2013522029A (en) * 2010-03-22 2013-06-13 スルザー ケムテック アクチェンゲゼルシャフト Mixing or dispersing member and method of performing static mixing or dispersion
US8715378B2 (en) 2008-09-05 2014-05-06 Turbulent Energy, Llc Fluid composite, device for producing thereof and system of use
KR101400468B1 (en) * 2010-06-22 2014-05-28 현대중공업 주식회사 Advanced guide vane for low-NOx burner
US8746965B2 (en) 2007-09-07 2014-06-10 Turbulent Energy, Llc Method of dynamic mixing of fluids
US8844495B2 (en) 2009-08-21 2014-09-30 Tubulent Energy, LLC Engine with integrated mixing technology
JP2014190594A (en) * 2013-03-27 2014-10-06 Jfe Engineering Corp Mixture gas blowing device, waste gasification melting furnace with the same, mixture gas blowing method, and waste gasification melting method using the same
US8871090B2 (en) 2007-09-25 2014-10-28 Turbulent Energy, Llc Foaming of liquids
KR101528807B1 (en) * 2014-05-07 2015-06-15 한국기계연구원 Super-low NOx eission combustion apparatus using coanda effect
US9144774B2 (en) 2009-09-22 2015-09-29 Turbulent Energy, Llc Fluid mixer with internal vortex
US9310076B2 (en) 2007-09-07 2016-04-12 Turbulent Energy Llc Emulsion, apparatus, system and method for dynamic preparation
WO2017049375A1 (en) * 2015-09-25 2017-03-30 Cylzer S.A. Mixing ring for dissolving a portion of solute in a portion of solvent, system and method for dissolve a portion of solute in a portion of solvent
US9708185B2 (en) 2007-09-07 2017-07-18 Turbulent Energy, Llc Device for producing a gaseous fuel composite and system of production thereof
CN107023829A (en) * 2017-05-22 2017-08-08 北京醇能科技有限公司 A kind of fuel gas mixing arrangement
CN111558807A (en) * 2019-02-14 2020-08-21 株式会社盐 Fluid supply device, internal structure, and method for manufacturing the same
JP2021058998A (en) * 2019-02-14 2021-04-15 株式会社塩 Fluid supply device and inner structure
JP2022017638A (en) * 2020-07-14 2022-01-26 株式会社塩 Gas-liquid mixture system, and production method of gas-liquid mixture fluid
KR20220073949A (en) * 2020-11-27 2022-06-03 후이 탕 류 Venturi tube

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580580B2 (en) * 2001-04-12 2010-11-17 関西電力株式会社 Fluid mixing device
JP2002306939A (en) * 2001-04-12 2002-10-22 Kansai Electric Power Co Inc:The Fluid mixer
JP2006524560A (en) * 2003-04-28 2006-11-02 インディゴ テクノロジーズ グループ プロプライアタリー リミテッド Fluid mixing method and apparatus for particle agglomeration
JP2004351414A (en) * 2003-05-08 2004-12-16 Sulzer Chemtech Ag Static mixer
JP2005021885A (en) * 2003-06-10 2005-01-27 Yoshiro Wakimura Stirring apparatus
JP2007519204A (en) * 2004-02-17 2007-07-12 フュエルセル エナジー, インコーポレイテッド Mixer / eductor for high temperature fuel cells
JP2006326571A (en) * 2005-04-28 2006-12-07 Hitachi Ltd Fluid mixing device
JP2007292343A (en) * 2006-04-21 2007-11-08 Rinnai Corp Totally aerated combustion-type burner
US9310076B2 (en) 2007-09-07 2016-04-12 Turbulent Energy Llc Emulsion, apparatus, system and method for dynamic preparation
US9708185B2 (en) 2007-09-07 2017-07-18 Turbulent Energy, Llc Device for producing a gaseous fuel composite and system of production thereof
US8746965B2 (en) 2007-09-07 2014-06-10 Turbulent Energy, Llc Method of dynamic mixing of fluids
US8871090B2 (en) 2007-09-25 2014-10-28 Turbulent Energy, Llc Foaming of liquids
US9399200B2 (en) 2007-09-25 2016-07-26 Turbulent Energy, Llc Foaming of liquids
US8715378B2 (en) 2008-09-05 2014-05-06 Turbulent Energy, Llc Fluid composite, device for producing thereof and system of use
US8844495B2 (en) 2009-08-21 2014-09-30 Tubulent Energy, LLC Engine with integrated mixing technology
US9556822B2 (en) 2009-08-21 2017-01-31 Turbulent Energy Llc Engine with integrated mixing technology
US9144774B2 (en) 2009-09-22 2015-09-29 Turbulent Energy, Llc Fluid mixer with internal vortex
JP2013522029A (en) * 2010-03-22 2013-06-13 スルザー ケムテック アクチェンゲゼルシャフト Mixing or dispersing member and method of performing static mixing or dispersion
KR101400468B1 (en) * 2010-06-22 2014-05-28 현대중공업 주식회사 Advanced guide vane for low-NOx burner
US9400107B2 (en) 2010-08-18 2016-07-26 Turbulent Energy, Llc Fluid composite, device for producing thereof and system of use
JP2014190594A (en) * 2013-03-27 2014-10-06 Jfe Engineering Corp Mixture gas blowing device, waste gasification melting furnace with the same, mixture gas blowing method, and waste gasification melting method using the same
KR101528807B1 (en) * 2014-05-07 2015-06-15 한국기계연구원 Super-low NOx eission combustion apparatus using coanda effect
JP2018534141A (en) * 2015-09-25 2018-11-22 シルツァー ソシエダ アノニマ Mixing ring for dissolving part of solute in part of solvent, apparatus and method for dissolving part of solute in part of solvent
WO2017049375A1 (en) * 2015-09-25 2017-03-30 Cylzer S.A. Mixing ring for dissolving a portion of solute in a portion of solvent, system and method for dissolve a portion of solute in a portion of solvent
US11273418B2 (en) 2015-09-25 2022-03-15 Cylzer S.A. Mixing ring for dissolving a portion of solute in a portion of solvent, system and method for dissolving a portion of solute in a portion of solvent
CN107023829A (en) * 2017-05-22 2017-08-08 北京醇能科技有限公司 A kind of fuel gas mixing arrangement
CN107023829B (en) * 2017-05-22 2023-11-03 北京醇能科技有限公司 Gaseous fuel mixing device
CN111558807A (en) * 2019-02-14 2020-08-21 株式会社盐 Fluid supply device, internal structure, and method for manufacturing the same
JP2021058998A (en) * 2019-02-14 2021-04-15 株式会社塩 Fluid supply device and inner structure
JP2022017638A (en) * 2020-07-14 2022-01-26 株式会社塩 Gas-liquid mixture system, and production method of gas-liquid mixture fluid
KR20220073949A (en) * 2020-11-27 2022-06-03 후이 탕 류 Venturi tube
KR102415743B1 (en) 2020-11-27 2022-06-30 후이 탕 류 Venturi tube

Also Published As

Publication number Publication date
JP3884596B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP2001000849A (en) Premixer
US5626017A (en) Combustion chamber for gas turbine engine
US7926282B2 (en) Pure air blast fuel injector
JP2597785B2 (en) Air-fuel mixer for gas turbine combustor
US5567141A (en) Oxy-liquid fuel combustion process and apparatus
JP3631802B2 (en) Self-igniting combustion chamber
US20060035183A1 (en) Mixer
US7997896B2 (en) Premix burner with staged liquid fuel supply and also method for operating a premix burner
JP2011058775A (en) Gas turbine combustor
WO2002101294A1 (en) Combustor
RU2571700C2 (en) Method and system for injection of emulsion into flame
JPH0712313A (en) Premixing burner
KR102281567B1 (en) Hydrogen gas burner for flashback prevention
JPH08270948A (en) Combustion chamber in which two-stage combustion is conducted
JP2004069061A (en) Vortex generator for controlling back wash
GB2288010A (en) Premixing burner
JPH08226649A (en) Combustor
EP2909533A1 (en) Improved aerodynamic radiant wall burner tip
JP2007146697A (en) Combustor and combustion air supply method of combustor
JPH08303776A (en) Axial air inflow type or radial air inflow type premixing type burner
JPH06341611A (en) Method and burner of minimally inhibiting quality of nox discharged from combustion
JP2019174016A (en) Premixing gas burner
JPH09119639A (en) Premixing main nozzle for low nox gas turbine combustor
JPH04126921A (en) Premix-type gas turbine combustor
KR102292891B1 (en) Hydrogen gas burner of diffusion combustion type with be able to induce premixing performance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041028

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees