JP2000357544A - Coloring matter sensitizing type solar battery - Google Patents

Coloring matter sensitizing type solar battery

Info

Publication number
JP2000357544A
JP2000357544A JP2000113351A JP2000113351A JP2000357544A JP 2000357544 A JP2000357544 A JP 2000357544A JP 2000113351 A JP2000113351 A JP 2000113351A JP 2000113351 A JP2000113351 A JP 2000113351A JP 2000357544 A JP2000357544 A JP 2000357544A
Authority
JP
Japan
Prior art keywords
solar cell
dye
electrolyte
electrode
solid material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000113351A
Other languages
Japanese (ja)
Inventor
Hiroyuki Endo
博之 遠藤
Masatoshi Shibata
雅敏 柴田
Satoshi Hachiya
聡 蜂屋
Takashi Arakane
崇士 荒金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000113351A priority Critical patent/JP2000357544A/en
Publication of JP2000357544A publication Critical patent/JP2000357544A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coloring matter sensitizing type solar battery with high photoelectric transfer efficiency and stable performance for a long time. SOLUTION: In a coloring matter sensitizing type solar battery having an electrolyte layer between a coloring matter sensitizing type semiconductor electrode and a counter electrode, a solid material for holding an electrolyte solution is arranged in the electrolyte layer between the semiconductor electrode and the counter electrode, the solid material is a fibrous material, the presence ratio of the solid material is 25-98% based on the volume of the electrolyte layer, and the presence ratio of the solid electrolyte is increased with approaching the semiconductor electrode and decreased with approaching the the semiconductor electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光エネルギーを電気
エネルギーに変換する太陽電池、特に色素増感型太陽電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell for converting light energy into electric energy, and more particularly to a dye-sensitized solar cell.

【0002】[0002]

【従来の技術】近年、地球温暖化に代表されるように地
球環境問題が顕在化してきている。そのような中で温暖
化の原因とされるCO2 ガスを排出しない、あるいは排
出が少ない、いわゆるクリーンエネルギーに対するニー
ズが高まっている。クリーンエネルギーとして最も期待
が高い太陽電池についてみると、現在、商品化されてい
るものは主に結晶(単結晶型、多結晶型)シリコンのp
n接合を利用したものである。この太陽電池に使用され
るシリコンは非常に高純度である必要があり、不純物を
取り除くための精製工程に多大なエネルギーと複雑な工
程を要するため、製造にコストがかかることなどの問題
があり、結果的に太陽電池システム全体としては非常に
高価なものになっている。そのため、既存の商用電源か
らの電力に比べて太陽光発電システムでは発電コストが
高くなり、広く普及するためには問題があった。また、
アモルファスシリコンの太陽電池も実用化はされている
が、耐久性の点などから電卓などには好適であるが電力
源としては不向きとされている。
2. Description of the Related Art In recent years, global environmental problems have become apparent as represented by global warming. Such does not emit CO 2 gas which is the cause of global warming in such, or less emissions, there has been a growing demand for so-called clean energy. Looking at solar cells, which are the most promising as clean energy, the ones that are currently commercialized are mainly made of crystalline (single-crystal, polycrystalline) silicon p.
This uses an n-junction. The silicon used for this solar cell needs to be very high purity, and the purification process for removing impurities requires a great deal of energy and a complicated process. As a result, the solar cell system as a whole is very expensive. Therefore, the power generation cost is higher in the photovoltaic power generation system than in the electric power from the existing commercial power supply, and there is a problem for widespread use. Also,
Although amorphous silicon solar cells have been put to practical use, they are suitable for calculators and the like in terms of durability and the like, but are not suitable as a power source.

【0003】一方、シリコン系以外の太陽電池の開発も
行われており、グレッツエルらは表面積を大きくした多
孔質酸化チタン膜にルテニウム錯体系の有機色素を吸着
させ、光電極とした色素増感型の太陽電池を考案し、変
換効率もシリコン系太陽電池なみに大きくなることを示
した(J.Am.Chem.Soc.第115巻、 63
82〜6390頁、 1993年)。この色素増感型太陽
電池では使用する材料が安価であること、簡単なプロセ
スで製造できることなどから低コストの太陽電池ができ
ると期待されている。
On the other hand, solar cells other than silicon-based ones are also being developed, and Gretzwell et al. Adsorb a ruthenium complex-based organic dye on a porous titanium oxide film having a large surface area to form a dye-sensitized type as a photoelectrode. And the conversion efficiency was shown to be as high as silicon-based solar cells (J. Am. Chem. Soc. Vol. 115, 63).
82-6390, 1993). This dye-sensitized solar cell is expected to be a low-cost solar cell because the materials used are inexpensive and can be manufactured by a simple process.

【0004】このグレッツエル型と言われる太陽電池で
は表面積の非常に大きい多孔質膜の上に色素を吸着して
いるので発電に寄与する色素の量が多くなり、従来の色
素増感型の太陽電池に比べて変換効率が向上すると考え
られている(従来1%以下であったものが数%になった
と報告されている。)。グレッツエル型太陽電池の構造
は金属酸化物半導体の多孔質膜を一方の電極とし、対向
電極との間に電解質溶液が充填されている。太陽電池の
周囲は前記電解質溶液が漏れないようにシール材でシー
ルされている。しかしながら、この太陽電池は色素を吸
着させた酸化チタン膜と対向電極の間に電解質溶液を封
入した湿式太陽電池であるため、液漏れによる劣化の問
題があった。特に使用環境下での電池の温度変化による
電解質溶液の膨張、収縮、気化などによって電池の構成
部品の変形やシール部分の破壊などが起こる場合があり
長期安定性にたいしてはまだ問題があった。
In such a solar cell of the Gretzell type, a dye is adsorbed on a porous film having a very large surface area, so that the amount of the dye contributing to power generation increases, and a conventional dye-sensitized solar cell is used. It is considered that the conversion efficiency is improved as compared with that of the prior art. The structure of the Gretzell-type solar cell uses a porous film of a metal oxide semiconductor as one electrode, and an electrolyte solution is filled between the electrode and the counter electrode. The periphery of the solar cell is sealed with a sealing material so that the electrolyte solution does not leak. However, since this solar cell is a wet type solar cell in which an electrolyte solution is sealed between a titanium oxide film on which a dye is adsorbed and a counter electrode, there is a problem of deterioration due to liquid leakage. In particular, the electrolyte solution may expand, shrink, evaporate, etc. due to a change in the temperature of the battery under the usage environment, which may cause deformation of the components of the battery or breakage of the sealing portion, so that there is still a problem with the long-term stability.

【0005】特開平9-27352号公報には電解質溶液層に
高分子固体電解質を用い、さらに多孔質の金属酸化物半
導体の細孔内にも高分子固体電解質を存在させることに
より長期安定性を有し、信頼性の高い電池ができること
が述べられている。しかしながら、この電池では高分子
固体電解質を用いており、細孔内も同物質で満たされた
状態であるので高分子固体電解質の性能から考えてイオ
ン伝導性が充分でなく、変換効率も低いものとなる。
Japanese Patent Application Laid-Open No. 9-27352 discloses that long-term stability is achieved by using a solid polymer electrolyte in an electrolyte solution layer and by allowing a solid polymer electrolyte to be present in pores of a porous metal oxide semiconductor. It is described that a battery having high reliability can be obtained. However, this battery uses a polymer solid electrolyte, and the pores are filled with the same substance. Therefore, considering the performance of the polymer solid electrolyte, the ion conductivity is not sufficient and the conversion efficiency is low. Becomes

【0006】[0006]

【発明が解決しようとする課題】本発明は高性能でかつ
安定した性能を長期間維持できる色素増感型太陽電池の
提供を目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dye-sensitized solar cell capable of maintaining high performance and stable performance for a long period of time.

【0007】[0007]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、色素増感型光半導体電極と対向電極との間に電解
質層を配置してなる色素増感型太陽電池において、半導
体電極と対向電極との間の電解質層に繊維状物質などの
固体材料を配置しこれに電解質溶液を保持させた構造の
色素増感型太陽電池が電解質の膨張、収縮などが少なく
長期間にわたって高い電池性能を維持できることを見出
し本発明を完成したものである。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a dye-sensitized solar cell having an electrolyte layer disposed between a dye-sensitized optical semiconductor electrode and a counter electrode has a semiconductor electrode. A dye-sensitized solar cell with a structure in which a solid material such as a fibrous substance is placed in the electrolyte layer between the electrode and the counter electrode, and the electrolyte solution is held in this, is a battery that has a small amount of electrolyte expansion and contraction and has a long life. It has been found that the performance can be maintained, and the present invention has been completed.

【0008】すなわち、本発明の要旨は以下の通りであ
る。 (1) 色素増感型光半導体電極と対向電極との間に電
解質層を配置してなる色素増感型太陽電池において、半
導体電極と対向電極との間の電解質層に電解質溶液を保
持する固体材料を配置したことを特徴とする色素増感型
太陽電池。 (2) 前記固体材料が繊維状物質である(1)記載の
色素増感型太陽電池。 (3) 固体材料の存在割合が電解質層の体積の25〜
98%の範囲にある(1)または(2)記載の色素増感
型太陽電池。 (4) 固体材料の存在割合が対向電極に近いほど高
く、半導体電極に近いほど低い(1)〜(3)のいずれ
かに記載の色素増感型太陽電池。
That is, the gist of the present invention is as follows. (1) In a dye-sensitized solar cell having an electrolyte layer disposed between a dye-sensitized optical semiconductor electrode and a counter electrode, a solid holding an electrolyte solution in the electrolyte layer between the semiconductor electrode and the counter electrode A dye-sensitized solar cell comprising a material disposed thereon. (2) The dye-sensitized solar cell according to (1), wherein the solid material is a fibrous substance. (3) The proportion of the solid material is 25 to 25% of the volume of the electrolyte layer.
The dye-sensitized solar cell according to (1) or (2), which has a range of 98%. (4) The dye-sensitized solar cell according to any one of (1) to (3), wherein the proportion of the solid material is higher as being closer to the counter electrode and lower as being closer to the semiconductor electrode.

【0009】[0009]

【発明の実施の形態】以下に、本発明の実施の形態を説
明する。まず、典型的な色素増感型太陽電池(グレッツ
ェル型太陽電池)について簡単に説明する。〔図1〕は
グレッツエルらが考案した色素増感型太陽電池の構成の
一例を示すものである。光電極の部分は透明電極付きガ
ラス基板上に金属酸化物半導体(酸化チタン)の多孔質
膜(半導体電極)を形成させ、四塩化チタン水溶液等で
酸化チタン多孔質膜を処理し、その表面に増感色素を付
着させたものである。これを一方の電極とし、対向電極
との間に電解質溶液を配置する。太陽電池の周囲は前記
電解質溶液が漏れないようにシール材でシールしたもの
が典型的なグレッツェル型太陽電池である。この太陽電
池は色素を吸着させた酸化チタン膜と対向電極の間に電
解質溶液を封入する湿式の太陽電池であり、電池の使用
状態(温度、圧力など)や保管状態によっては使用する
電解質溶液が漏れだしたり、変形したりすることがあ
る。このようになれば発電性能(変換効率)の低下が起
こり、電池として使用できなくなることもある。すなわ
ちグレッツエル型太陽電池では現状では長期安定性が問
題となる。
Embodiments of the present invention will be described below. First, a typical dye-sensitized solar cell (Gretzel solar cell) will be briefly described. FIG. 1 shows an example of the configuration of a dye-sensitized solar cell invented by Gretzell et al. For the photoelectrode portion, a metal oxide semiconductor (titanium oxide) porous film (semiconductor electrode) is formed on a glass substrate with a transparent electrode, and the titanium oxide porous film is treated with a titanium tetrachloride aqueous solution or the like. A sensitizing dye is attached. This is used as one electrode, and an electrolyte solution is arranged between the electrode and the counter electrode. A typical Gretzel-type solar cell is sealed around the solar cell with a sealing material so that the electrolyte solution does not leak. This solar cell is a wet type solar cell in which an electrolyte solution is sealed between a titanium oxide film on which a dye is adsorbed and a counter electrode. The electrolyte solution used depends on the use state (temperature, pressure, etc.) and storage state of the battery. May leak or deform. In this case, the power generation performance (conversion efficiency) is reduced, and the battery may not be used. In other words, long-term stability poses a problem for the Gretz-type solar cell at present.

【0010】そこで、本発明の太陽電池は電解質層を繊
維状の高分子物質(不織布)等の固体材料に電解質溶液
をしみ込ませ膨潤させたものとすることにより、電解質
溶液の膨張、収縮、気化を抑え電解質層のシール破壊を
生じにくくし長寿命化を図った(図2参照)。以上が本
発明の色素増感型太陽電池の概略であるが、電解質層中
に電解質溶液を含浸させた固体材料を配置する以外は従
来のグレッツェル型太陽電池の構造と同じでよく、同じ
部分は通常の構成の色素増感型太陽電池の構成、製造方
法をとれば良い。
Therefore, the solar cell of the present invention has a structure in which the electrolyte layer is impregnated with a solid material such as a fibrous polymer substance (nonwoven fabric) by swelling the electrolyte solution, thereby expanding, contracting, and vaporizing the electrolyte solution. And the service life of the electrolyte layer is made longer (see FIG. 2). The above is an outline of the dye-sensitized solar cell of the present invention, except that a solid material impregnated with an electrolyte solution is disposed in the electrolyte layer, and may be the same as the structure of a conventional Gretzel solar cell. What is necessary is just to take the structure and manufacturing method of the dye-sensitized solar cell of a normal structure.

【0011】以下にそれらを含めて本発明の色素増感型
太陽電池の構成、材料、製造方法等について順次説明す
る。 [透明基板(通称ガラス基板)]シリコン太陽電池、液
晶パネル等に用いられる透明基板を用いればよい。具体
的には透明なガラス基板、ガラス基板表面を適当に荒ら
すなどして光の反射を防止したもの、すりガラス状の半
透明のガラス基板など光を透過するものが透明基板材料
として挙げられる。なお、光を透過するものであれば材
質はガラスでなくてもよく、透明プラスチック板、透明
プラスチック膜、無機物透明結晶体などでもよい。
The structure, material, manufacturing method, and the like of the dye-sensitized solar cell of the present invention will be described sequentially, including these. [Transparent substrate (commonly called glass substrate)] A transparent substrate used for a silicon solar cell, a liquid crystal panel or the like may be used. Specific examples of the transparent substrate material include a transparent glass substrate, a substrate in which light reflection is prevented by appropriately roughening the surface of the glass substrate, and a substrate that transmits light such as a frosted glass-like translucent glass substrate. The material may not be glass as long as it transmits light, and may be a transparent plastic plate, a transparent plastic film, an inorganic transparent crystal, or the like.

【0012】[透明電極]シリコン太陽電池、液晶パネ
ル等に用いられる透明電極を用いればよい。たとえば、
透明基板上に付着させた酸化すず、インジウム・ すず酸
化物(ITO)などの金属酸化物が好適な透明電極とな
る。また、メッシュ状、ストライプ状など光が透過でき
る構造にした金属電極を前記ガラス基板上に設けたもの
でもよい。
[Transparent electrode] A transparent electrode used for a silicon solar cell, a liquid crystal panel or the like may be used. For example,
Metal oxides such as tin oxide and indium tin oxide (ITO) deposited on a transparent substrate are suitable transparent electrodes. Further, a metal electrode having a structure such as a mesh shape or a stripe shape which can transmit light may be provided on the glass substrate.

【0013】[半導体電極]金属酸化物半導体、たとえ
ばチタン、ニオブ、亜鉛、すず、インジウム、ジルコニ
ウム、イットリウム、ランタン、タンタルなどの酸化物
やSrTiO3 やCaTiO3 などのペロブスカイト系
酸化物の半導体が好適に使用される。前記半導体を薄膜
状にしたものが好適である。特に酸化チタン膜が好まし
い半導体電極となる。
[Semiconductor electrode] Metal oxide semiconductors, for example, oxides such as titanium, niobium, zinc, tin, indium, zirconium, yttrium, lanthanum, tantalum, and semiconductors of perovskite-based oxides such as SrTiO 3 and CaTiO 3 are preferable. Used for It is preferable that the semiconductor is formed into a thin film. In particular, a titanium oxide film is a preferable semiconductor electrode.

【0014】[半導体電極(多孔質膜)の形成]前記金
属酸化物半導体(酸化チタンなど)の微粒子(粒子サイ
ズ[ 平均粒径]は1〜1000nm程度、好ましくは1
〜100nm)を分散させた分散液を調製する。分散液
の溶媒は水、有機溶媒、または両者の混合溶媒など前記
微粒子を分散できるものなら特に限定しない。また、分
散液中には必要に応じて界面活性剤、粘度調節剤を加え
てもよい。次に、前記分散液を透明電極付きガラス基板
上に塗布、乾燥する。塗布法としてはバーコーター法、
印刷法などを用いることができる。これを空気中あるい
は不活性ガス、窒素中で加熱、焼成して金属酸化物半導
体膜(多孔質膜)を形成する。焼成温度は300〜80
0℃が適している。焼成温度が上記より低いと金属酸化
物半導体の微粒子間の固着、基板への付着力が弱くなり
十分な強度がでなくなる。焼成温度が高すぎると微粒子
間の固着が進み、多孔質膜の表面積が小さくなる。膜厚
は 0.1〜100 μm、好ましくは1〜50μmが適してい
る。これより薄いと表面に吸着させる色素の量が少なく
なり、光の吸収が少なくなる。これより厚いと膜の電気
抵抗が大きくなり出来上がった太陽電池の性能が悪化す
る。
[Formation of semiconductor electrode (porous film)] Fine particles (particle size [average particle size]) of the metal oxide semiconductor (titanium oxide or the like) are about 1 to 1000 nm, preferably 1 to 1000 nm.
-100 nm) is prepared. The solvent of the dispersion is not particularly limited as long as it can disperse the fine particles, such as water, an organic solvent, or a mixed solvent of both. Further, a surfactant and a viscosity modifier may be added to the dispersion as needed. Next, the dispersion is applied to a glass substrate with a transparent electrode and dried. As a coating method, a bar coater method,
A printing method or the like can be used. This is heated and fired in air or in an inert gas or nitrogen to form a metal oxide semiconductor film (porous film). Firing temperature is 300-80
0 ° C. is suitable. If the sintering temperature is lower than the above, adhesion between the metal oxide semiconductor particles and the adhesion to the substrate are weakened, resulting in insufficient strength. If the firing temperature is too high, the adhesion between the fine particles proceeds, and the surface area of the porous film becomes small. The film thickness is suitably from 0.1 to 100 μm, preferably from 1 to 50 μm. If the thickness is thinner, the amount of the dye adsorbed on the surface decreases, and the light absorption decreases. If the thickness is larger than this, the electrical resistance of the film increases, and the performance of the solar cell thus produced deteriorates.

【0015】[増感色素]本発明における増感色素と
は、可視光領域および/または赤外光領域に吸収を持つ
色素であればよい。以下に本発明の増感色素として好適
なものにつき具体的に説明する。増感色素としては金属
錯体や有機色素を用いることができる。金属錯体として
は銅フタロシアニン、チタニルフタロシアニン等の金属
フタロシアニン、クロロフィルまたはその誘導体、ヘミ
ン、特開平1−220380号公報や特表平5−504
023号公報に記載のルテニウム、オスミウム、鉄及び
亜鉛の錯体(例えばシス−ジシアネート−ビス(2、
2’−ビピリジル−4、4’−ジカルボキシレート)ル
テニウム(II))があげられる。有機色素としては、
メタルフリーフタロシアニン、シアニン系色素、メタロ
シアニン系色素、キサンテン系色素、トリフェニルメタ
ン系色素等を用いることができる。
[Sensitizing Dye] The sensitizing dye in the present invention may be a dye having absorption in a visible light region and / or an infrared light region. Hereinafter, preferred sensitizing dyes of the present invention will be specifically described. As the sensitizing dye, a metal complex or an organic dye can be used. Examples of the metal complex include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll or derivatives thereof, hemin, JP-A-1-220380 and JP-A-5-504.
No. 023, a complex of ruthenium, osmium, iron and zinc (for example, cis-dicyanate-bis (2,
2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II)). As organic dyes,
Metal-free phthalocyanine, cyanine dyes, metalocyanine dyes, xanthene dyes, triphenylmethane dyes, and the like can be used.

【0016】増感色素は前記金属酸化物半導体の多孔質
膜の表面に付着(化学吸着、物理吸着など、または堆積
などどのような形態の付着でもよい。)させればよい。
付着方法は例えば色素を含む溶液中に前記多孔質膜を浸
漬するなどの方法を用いることができる。この際、溶液
を加熱し還流させるなどして増感色素の付着を促進する
ことができる。
The sensitizing dye may be attached to the surface of the porous film of the metal oxide semiconductor (in any form such as chemical adsorption, physical adsorption, or deposition).
For example, a method such as immersing the porous film in a solution containing a dye can be used as the method of attachment. At this time, the adhesion of the sensitizing dye can be promoted by heating and refluxing the solution.

【0017】[電解質溶液]I/I3 系、Br/Br3
系、キノン/ハイドロキノン系などのレドックス電解質
をアセトニトリル、炭酸プロピレン、エチレンカーボネ
ートなどの電気化学的に不活性な溶媒(およびこれらの
混合溶媒)に溶かしたものが使用できる。具体的には、
例えば、I/I3 系の電解質はヨウ素のアンモニウム塩
あるいはヨウ化リチウムとヨウ素を混合したものを用い
て得ることができる。電解質溶液としては、通常は後述
の固体材料への溶解性や反応性のないまたは小さいもの
を選ぶことが好ましい。ただし、固体材料への溶解や反
応が起こることにより、電解質としての性能が向上した
り、化学的、物理的に安定になったりする場合は別であ
る。たとえば、温度による体積変化が小さくなる場合な
どはむしろ好ましいものである。
[Electrolyte solution] I / I 3 system, Br / Br 3
And a redox electrolyte such as a quinone / hydroquinone-based solvent dissolved in an electrochemically inert solvent (and a mixed solvent thereof) such as acetonitrile, propylene carbonate, and ethylene carbonate. In particular,
For example, I / I 3 based electrolyte can be obtained using a mixture of ammonium salt or lithium iodide and iodine iodine. As the electrolyte solution, it is usually preferable to select a solution having no or little solubility or reactivity with a solid material described below. However, this is not the case where the performance as an electrolyte is improved or the stability is chemically and physically stable due to dissolution or reaction in a solid material. For example, it is rather preferable that the change in volume due to temperature is small.

【0018】[対向電極]シリコン太陽電池、液晶パネ
ル等に用いられる対向電極と同じものを用いればよい。
すなわち、前記「透明電極」と同じもの、前記「透明電
極」に白金を少量付着させたもの、白金などの金属薄
膜、炭素などの導電性膜などが使用できる。 [固体材料]電解質溶液を保持する固体材料の素材とし
ては、通常、電解質溶液と溶解性や反応性のないまたは
小さいものを選ぶことが好ましい。ただし、固体材料へ
の電解質溶液の溶解や反応が起こることにより、電解質
としての性能が向上したり、化学的、物理的に安定にな
ったりする場合は別である。たとえば、温度による体積
変化が小さくなる場合などはむしろ好ましいものであ
る。さらに、固体材料は非導電性のものである必要があ
る。導電性であると半導体電極と対向電極を電解質で隔
てている意味がなくなってしまう。また、電解質溶液を
保持する固体材料の形態としては、電解質を保持し易
く、電解質層がその役目を果たし易い、すなわち、半導
体電極と対向電極の間を電解質をとおしてイオンの移動
がし易いように(イオン伝導性がよい)電解質層を保持
するようになっていなければならない。
[Counter electrode] The same electrode as that used for a silicon solar cell, a liquid crystal panel or the like may be used.
That is, the same material as the “transparent electrode”, a material obtained by attaching a small amount of platinum to the “transparent electrode”, a metal thin film such as platinum, a conductive film such as carbon, and the like can be used. [Solid Material] As the material of the solid material holding the electrolyte solution, it is usually preferable to select a material having no or little solubility or reactivity with the electrolyte solution. However, this is not the case where the performance of the electrolyte is improved or the electrolyte is chemically and physically stable due to the dissolution or reaction of the electrolyte solution in the solid material. For example, it is rather preferable that the change in volume due to temperature is small. Further, the solid material must be non-conductive. If it is conductive, there is no point in separating the semiconductor electrode and the counter electrode with an electrolyte. In addition, as a form of the solid material that holds the electrolyte solution, it is easy to hold the electrolyte, and the electrolyte layer easily plays its role, that is, ions move easily between the semiconductor electrode and the counter electrode through the electrolyte. The electrolyte layer must have a good (ion-conductive) electrolyte layer.

【0019】具体的な電解質溶液を保持する固体材料と
しては、下記の材料が好適に用いられる。固体材料の形
態としては網目構造を形成できるもの、繊維状物質、連
続した細孔を持つ多孔質物質、連続気泡を持つスポンジ
状のものなどが好適である。例えば、不織布,繊維,ス
ポンジ状の高分子物質などがある。その材質としては、
例えば、有機材料としてはレーヨン、アセテート、ナイ
ロン、ポリエステル、ポリプロピレン、ポリスチレン、
ポリテトラフルオロエチレン、ポリビニリデンジフロラ
イド、綿などが挙げられる。無機材料で出来ているもの
としてはガラスウール、石綿、岩綿、多孔質アルミナな
どの無機物などがある。
The following materials are preferably used as a solid material for holding a specific electrolyte solution. As a form of the solid material, a material capable of forming a network structure, a fibrous material, a porous material having continuous pores, a sponge-like material having open cells, and the like are preferable. For example, there are a nonwoven fabric, a fiber, a sponge-like polymer substance, and the like. As its material,
For example, organic materials include rayon, acetate, nylon, polyester, polypropylene, polystyrene,
Examples thereof include polytetrafluoroethylene, polyvinylidene difluoride, and cotton. Materials made of inorganic materials include inorganic materials such as glass wool, asbestos, rock wool, and porous alumina.

【0020】電解質層中における固体材料の存在割合は
電解質層の体積の25〜98%、さらには50〜98%
の範囲にあることが好ましい。また、固体材料の存在割
合は対向電極に近いほど高く、半導体電極に近いほど低
い構造となっていると好適である。電解質の熱膨張等の
面からは固体材料の存在割合は高い方がよいが、電解質
溶液の存在割合が低くなりすぎるとイオンの移動がし難
くなり電解質の機能が妨げられる。特に、半導体電極付
近では半導体電極(特に増感色素)付近へのイオンの移
動が容易であるためにはこの付近の電解質溶液の存在割
合は高いことが好ましい。
The proportion of the solid material present in the electrolyte layer is 25 to 98%, more preferably 50 to 98% of the volume of the electrolyte layer.
Is preferably within the range. It is preferable that the proportion of the solid material be higher as the position is closer to the counter electrode and lower as the position is closer to the semiconductor electrode. From the viewpoint of the thermal expansion of the electrolyte, the higher the proportion of the solid material, the better. However, if the proportion of the electrolyte solution is too low, the movement of ions becomes difficult and the function of the electrolyte is hindered. In particular, in order to facilitate the movement of ions near the semiconductor electrode (especially the sensitizing dye) near the semiconductor electrode, it is preferable that the proportion of the electrolyte solution present near the semiconductor electrode is high.

【0021】〔電池の組立〕本発明の太陽電池では多孔
質の金属酸化物半導体電極と対向電極の間に電解質層が
配置された構造である。半導体電極と対向電極の間に固
体材料を重ねて配置し、必要に応じて固体材料の端部に
スペーサー材を設置してセルを組み、エポキシ等のシー
ル材により周囲をシールする。セル周囲をシールする際
電解質溶液の注入口を残しておき、電解質溶液を注入し
たのち、注入口をエポキシ等の封止材で封止し太陽電池
を完成させる。別の方法としては、まず上記固体材料に
上記電解質溶液を含浸等することによりこれを保持した
状態にする。これを電解質層として事前に作製してお
く。前記色素増感型光半導体電極と対向電極とをこの電
解質溶液を保持させた固体材料からなる電解質層を介し
て(必要に応じてその端部にスペーサー材を配置して)
重ねセルを組み、エポキシ等のシール材により周囲をシ
ールする。電解質層中にガスなどが残らないようにする
ため等、必要な場合は、セル周囲をシールする際電解質
溶液の注入口を残しておき、電解質溶液をさらに注入し
たのち、注入口をエポキシ等の封止材で封止し太陽電池
を組み立てればよい。
[Assembly of Battery] The solar battery of the present invention has a structure in which an electrolyte layer is disposed between a porous metal oxide semiconductor electrode and a counter electrode. A solid material is superposed between the semiconductor electrode and the counter electrode, and a spacer material is provided at the end of the solid material as necessary, a cell is assembled, and the periphery is sealed with a sealing material such as epoxy. When sealing around the cell, the inlet for the electrolyte solution is left, and after the electrolyte solution is injected, the inlet is sealed with a sealing material such as epoxy to complete the solar cell. As another method, first, the solid material is impregnated with the electrolyte solution or the like to be kept in a state of being held. This is prepared in advance as an electrolyte layer. The dye-sensitized optical semiconductor electrode and the counter electrode are interposed via an electrolyte layer made of a solid material holding this electrolyte solution (a spacer material is arranged at the end as necessary).
A stacked cell is assembled, and the periphery is sealed with a sealing material such as epoxy. If necessary, such as to prevent gas from remaining in the electrolyte layer, leave the electrolyte solution injection port when sealing around the cell, and after further injecting the electrolyte solution, fill the injection port with epoxy or the like. What is necessary is just to seal with a sealing material and to assemble a solar cell.

【0022】上記のようにして作製された太陽電池は環
境温度の変化に対してセルの形状が安定化するためにセ
ルの機械的強度や安定性が改善された本発明の色素増感
型太陽電池となる。この太陽電池では多孔質の細孔内は
実質的に電解質溶液(液体)のみの状態であり、対向電
極とのギャップ部分が高分子と電解質溶液の複合体とな
っているのでイオン伝導性も充分であり、高性能かつ長
期安定性、信頼性の高い電池となる。
The solar cell manufactured as described above is a dye-sensitized solar cell according to the present invention in which the mechanical strength and stability of the cell are improved because the cell shape is stabilized against changes in environmental temperature. It becomes a battery. In this solar cell, the porous pores are substantially in the state of only the electrolyte solution (liquid), and the gap between the counter electrode and the counter electrode is a complex of the polymer and the electrolyte solution, so that the ionic conductivity is sufficient. Thus, the battery has high performance, long-term stability, and high reliability.

【0023】[0023]

〔実施例1〕[Example 1]

1.チタニア基板の作製 日本エアロゾル製超微粒子チタニア(P−25)1質量
部を界面活性剤(和光純薬Triton X- 100)を0.
5質量%含む水20質量部に分散させた。この分散液を
フッ素をドープした酸化スズ透明電極付きガラス基板
(50×50mm)にバーコーターで塗布し、100℃
で1時間乾燥させた後450℃で1時間焼成した。これ
に上記と同じ塗布、乾燥、焼成をもう一度繰り返し厚さ
10μmの多孔質の基板とした。さらに、この基板を濃
度1質量%の四塩化チタン水溶液に一晩浸漬し、その後
水洗して100℃で1時間乾燥させた後450℃で1時
間焼成し、多孔質チタニア基板を作製した。
1. Preparation of Titania Substrate One part by mass of ultra-fine titania (P-25) manufactured by Nippon Aerosol Co., Ltd. was added to a surfactant (Wako Pure Chemicals Triton X-100) at 0.
It was dispersed in 20 parts by mass of water containing 5% by mass. This dispersion was applied to a glass substrate (50 × 50 mm) with a tin oxide transparent electrode doped with fluorine using a bar coater,
And baked at 450 ° C. for 1 hour. The same application, drying and baking as described above were repeated once again to obtain a porous substrate having a thickness of 10 μm. Further, this substrate was immersed in a 1% by mass aqueous solution of titanium tetrachloride overnight, washed with water, dried at 100 ° C. for 1 hour, and baked at 450 ° C. for 1 hour to produce a porous titania substrate.

【0024】2.増感色素の付着 増感色素(シス−ジシアネート−ビス(2,2’−ビピ
リジル−4,4’−ジカルボキシレート)ルテニウム
(II))を0.3mmol含むエタノール溶液に上記
チタニア基板を浸漬し、溶液の沸点まで加熱して2時間
還流条件で色素を付着させ増感色素付きチタニア基板を
得た。
2. Attachment of sensitizing dye The titania substrate was immersed in an ethanol solution containing 0.3 mmol of a sensitizing dye (cis-dicyanate-bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II)). The solution was heated to the boiling point of the solution, and the dye was adhered under reflux conditions for 2 hours to obtain a titania substrate with a sensitizing dye.

【0025】3.太陽電池の作製 上記表面被覆処理した色素付きチタニア基板を一方の電
極とし、対向電極としてドープした酸化スズ透明電極付
きガラス基板に白金をスパッタによりコートしたものを
用いた。電極間に固体材料としてポリプロピレン製の不
織布(( 株) クレシア製)を厚さ15〜20μmに加工
したものを重ね、さらにその周囲にスぺーサーとして幅
約3mm、厚さ20μmのテフロン(登録商標)シート
をはさみ、注入口2個所を残し、周りをエポキシ系の接
着剤でシールした。注入口より電解質溶液を大気圧下で
注入し、注入後注入口をエポキシ系の接着剤で封止し
た。電解質層の不織布の占める体積割合は72%となっ
た。この後電極にリード線を取り付けて太陽電池を作製
した。なお、前記の電解質溶液は体積比が1:4である
メトキシプロピオニトリル/エチレンカーボネートの混
合溶媒にヨウ化テトラプロピルアンモニウムとヨウ素と
をそれぞれの濃度が0.46mol/L、0.06mo
l/Lとなるように溶解したものを用いた。
3. Preparation of Solar Cell The titania substrate with a dye that had been subjected to the above surface coating treatment was used as one electrode, and a glass substrate with a doped tin oxide transparent electrode coated as a counter electrode with platinum by sputtering was used. A non-woven fabric made of polypropylene (manufactured by Crecia Co., Ltd.) processed to a thickness of 15 to 20 μm as a solid material is stacked between the electrodes, and a Teflon (registered trademark) having a width of about 3 mm and a thickness of 20 μm is further surrounded as a spacer. 2.) The sheet was sandwiched, and the periphery was sealed with an epoxy adhesive, leaving two injection ports. An electrolyte solution was injected from the injection port under atmospheric pressure, and after the injection, the injection port was sealed with an epoxy adhesive. The volume ratio of the nonwoven fabric in the electrolyte layer was 72%. Thereafter, a lead wire was attached to the electrode to produce a solar cell. The electrolyte solution was prepared by mixing tetrapropylammonium iodide and iodine in a mixed solvent of methoxypropionitrile / ethylene carbonate having a volume ratio of 1: 4 at a concentration of 0.46 mol / L and 0.06 mol, respectively.
What was dissolved so that it might become 1 / L was used.

【0026】4.太陽電池セルの発電性能および寿命試
験 キセノンランプを光源としUVカットフィルターとAM
1.5フィルターを通して500W/m2 の強度の疑似
太陽光を上記太陽電池セルに当てることで発電性能の測
定を行った。また、寿命試験としてセルを0℃で4時
間、80℃で4時間放置するサイクルを50サイクル繰
り返した後の発電性能を測定し、放置前の性能と比較し
た。
4. Power generation performance and life test of photovoltaic cells UV cut filter and AM using xenon lamp as light source
The power generation performance was measured by applying 500 W / m 2 of simulated sunlight to the solar cell through a 1.5 filter. Further, as a life test, the power generation performance after repeating 50 cycles of leaving the cell at 0 ° C. for 4 hours and 80 ° C. for 4 hours was measured and compared with the performance before leaving.

【0027】5.発電性能および寿命の評価結果 初期の開回路状態の電圧(VOC)は0.66V であ
り、短絡電流(ISC)は6.5mA/cm2 であり、
曲線因子(FF)は0.61であり、変換効率は5.2
%であって太陽電池として有用であることがわかった。
このセルの寿命試験の結果は、VOC、ISC、FFと
も変化せず、変換効率は5.2%のままだった。
5. Evaluation results of power generation performance and life The initial open circuit voltage (VOC) is 0.66 V, the short circuit current (ISC) is 6.5 mA / cm 2 ,
The fill factor (FF) is 0.61, and the conversion efficiency is 5.2.
%, Which proved to be useful as a solar cell.
As a result of the life test of this cell, VOC, ISC, and FF did not change, and the conversion efficiency was still 5.2%.

【0028】〔実施例2〕実施例1の太陽電池セルの作
製において、固体材料としてポリプロピレン製の不織布
(( 株) クレシア製)を厚さ15〜20μmに加工した
ものの代わりにポリビニリデンジフロライド製メンブレ
ンフィルター(ミリポア社製デュラポア、孔径(5μm
))を用い、さらにその周囲にスぺーサーとして幅約
3mm、厚さ20μmのテフロンシートの代わりに、幅
約3mm、厚さ50μmのテフロンシートをはさんだ以
外は実施例1と同様にしてセルを組み立てた。電解質層
の不織布の占める体積割合は31%となった。
Example 2 In the preparation of the solar battery cell of Example 1, polyvinylidene difluoride was used instead of a nonwoven fabric made of polypropylene (Crecia Co., Ltd.) processed to a thickness of 15 to 20 μm as a solid material. Membrane filter (Murapore Durapore, pore size (5 μm
)), And instead of a Teflon sheet having a width of about 3 mm and a thickness of 20 μm as a spacer, a Teflon sheet having a width of about 3 mm and a thickness of 50 μm is sandwiched therearound in the same manner as in Example 1. Was assembled. The volume ratio of the nonwoven fabric in the electrolyte layer was 31%.

【0029】このセルの初期性能を評価したところ、開
回路状態の電圧(VOC)は0.66V であり、短絡電
流(ISC)は6.5mA/cm2 であり、曲線因子
(FF)は0.61であり,変換効率は5.2%であっ
た。このセルの寿命試験の結果は、VOC、ISC、F
Fとも変化せず、変換効率は5.2%のままだった。 〔比較例〕実施例1の太陽電池セルの作製において、セ
ル作製の際に電極間にポリプロピレン製の不織布を使用
しなかった以外は実施例1と同様に太陽電池セルを作製
した。このセルの初期性能を評価したところ、開回路状
態の電圧(VOC)は0.66V であり、短絡電流(I
SC)は6.7mA/cm2 であり、曲線因子(FF)
は0.61であり、変換効率は5.4%であった。この
セルの寿命試験の結果、VOCは0.68V 、ISCは
2.0mA/cm2 、FFは0.55となり、変換効率
は1.5%に低下した。セルのシールの一部から電解液
の漏洩が認められた。
When the initial performance of this cell was evaluated, the open circuit voltage (VOC) was 0.66 V, the short circuit current (ISC) was 6.5 mA / cm 2 , and the fill factor (FF) was 0. .61, and the conversion efficiency was 5.2%. The results of the life test of this cell were VOC, ISC, F
F did not change and the conversion efficiency remained at 5.2%. Comparative Example A solar cell was produced in the same manner as in Example 1 except that a nonwoven fabric made of polypropylene was not used between the electrodes in producing the solar cell in Example 1. When the initial performance of this cell was evaluated, the open circuit voltage (VOC) was 0.66 V, and the short circuit current (I
SC) is 6.7 mA / cm 2 and fill factor (FF)
Was 0.61 and the conversion efficiency was 5.4%. As a result of a life test of this cell, VOC was 0.68 V, ISC was 2.0 mA / cm 2 , FF was 0.55, and the conversion efficiency was reduced to 1.5%. Leakage of the electrolyte was observed from a part of the cell seal.

【0030】[0030]

【発明の効果】本発明により製造した色素増感型太陽電
池は変換効率等が優れており、長期間安定した性能が持
続できる有効な色素増感型太陽電池を提供できることを
示している。
The dye-sensitized solar cell manufactured according to the present invention has excellent conversion efficiency and the like, indicating that an effective dye-sensitized solar cell capable of maintaining stable performance for a long time can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 グレッツェル型太陽電池の構成の概念図FIG. 1 is a conceptual diagram of a configuration of a Gretzell-type solar cell

【図2】 本発明の型太陽電池の構成(不織布を使用し
た場合)の概念図
FIG. 2 is a conceptual diagram of a configuration (when a nonwoven fabric is used) of a solar cell of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 色素増感型光半導体電極と対向電極との
間に電解質層を配置してなる色素増感型太陽電池におい
て、半導体電極と対向電極との間の電解質層に電解質溶
液を保持する固体材料を配置したことを特徴とする色素
増感型太陽電池。
1. A dye-sensitized solar cell having an electrolyte layer disposed between a dye-sensitized optical semiconductor electrode and a counter electrode, wherein an electrolyte solution is held in the electrolyte layer between the semiconductor electrode and the counter electrode. A dye-sensitized solar cell characterized by disposing a solid material.
【請求項2】 前記固体材料が繊維状物質である請求項
1記載の色素増感型太陽電池。
2. The dye-sensitized solar cell according to claim 1, wherein said solid material is a fibrous substance.
【請求項3】 固体材料の存在割合が電解質層の体積の
25〜98%の範囲にある請求項1または2記載の色素
増感型太陽電池。
3. The dye-sensitized solar cell according to claim 1, wherein the proportion of the solid material is in the range of 25 to 98% of the volume of the electrolyte layer.
【請求項4】 固体材料の存在割合が対向電極に近いほ
ど高く、半導体電極に近いほど低い請求項1〜3のいず
れかに記載の色素増感型太陽電池。
4. The dye-sensitized solar cell according to claim 1, wherein the proportion of the solid material is higher as being closer to the counter electrode and lower as being closer to the semiconductor electrode.
JP2000113351A 1999-04-16 2000-04-14 Coloring matter sensitizing type solar battery Pending JP2000357544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000113351A JP2000357544A (en) 1999-04-16 2000-04-14 Coloring matter sensitizing type solar battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-109567 1999-04-16
JP10956799 1999-04-16
JP2000113351A JP2000357544A (en) 1999-04-16 2000-04-14 Coloring matter sensitizing type solar battery

Publications (1)

Publication Number Publication Date
JP2000357544A true JP2000357544A (en) 2000-12-26

Family

ID=26449305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113351A Pending JP2000357544A (en) 1999-04-16 2000-04-14 Coloring matter sensitizing type solar battery

Country Status (1)

Country Link
JP (1) JP2000357544A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345126A (en) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion device
US6878508B2 (en) 2001-07-13 2005-04-12 Shin-Etsu Chemical Co., Ltd. Resist patterning process
JP2005285756A (en) * 2004-03-03 2005-10-13 Canon Inc Electrolyte composition, dye-sensitized solar cell, and its manufacturing method
JP2006093002A (en) * 2004-09-27 2006-04-06 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2006269168A (en) * 2005-03-23 2006-10-05 Kyocera Corp Photoelectric conversion device, its manufacturing method, and optical power generation device
JP2006331791A (en) * 2005-05-25 2006-12-07 Bridgestone Corp Separator for dye-sensitized solar cell, and its utilization
JP2007200796A (en) * 2006-01-30 2007-08-09 Sony Corp Photoelectric converter and gelling agent
JP2008192520A (en) * 2007-02-07 2008-08-21 Kyushu Institute Of Technology Dye-sensitized solar battery and its manufacturing method
DE112006002294T5 (en) 2005-09-02 2008-10-30 Kyocera Corp. A photoelectric conversion device and a method of manufacturing the same, and a photoelectric power generation device
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2012501518A (en) * 2008-08-29 2012-01-19 ソルヴェイ(ソシエテ アノニム) Electrolyte-containing polymer produced by electrospinning process and highly efficient dye-sensitized solar cell using the electrolyte-containing polymer
KR20120084493A (en) * 2011-01-20 2012-07-30 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
KR20120086451A (en) * 2011-01-26 2012-08-03 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
WO2012117727A1 (en) * 2011-03-03 2012-09-07 東洋インキScホールディングス株式会社 Resin composition, sealing material for pigment-sensitized solar cell, electrode substrate, and pigment-sensitized solar cell
KR20120107251A (en) * 2011-03-21 2012-10-02 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345126A (en) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion device
US6878508B2 (en) 2001-07-13 2005-04-12 Shin-Etsu Chemical Co., Ltd. Resist patterning process
JP2005285756A (en) * 2004-03-03 2005-10-13 Canon Inc Electrolyte composition, dye-sensitized solar cell, and its manufacturing method
JP2006093002A (en) * 2004-09-27 2006-04-06 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2006269168A (en) * 2005-03-23 2006-10-05 Kyocera Corp Photoelectric conversion device, its manufacturing method, and optical power generation device
JP2006331791A (en) * 2005-05-25 2006-12-07 Bridgestone Corp Separator for dye-sensitized solar cell, and its utilization
DE112006002294T5 (en) 2005-09-02 2008-10-30 Kyocera Corp. A photoelectric conversion device and a method of manufacturing the same, and a photoelectric power generation device
JP2007200796A (en) * 2006-01-30 2007-08-09 Sony Corp Photoelectric converter and gelling agent
JP2008192520A (en) * 2007-02-07 2008-08-21 Kyushu Institute Of Technology Dye-sensitized solar battery and its manufacturing method
JP2012501518A (en) * 2008-08-29 2012-01-19 ソルヴェイ(ソシエテ アノニム) Electrolyte-containing polymer produced by electrospinning process and highly efficient dye-sensitized solar cell using the electrolyte-containing polymer
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
KR20120084493A (en) * 2011-01-20 2012-07-30 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
KR101710214B1 (en) * 2011-01-20 2017-02-24 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
KR20120086451A (en) * 2011-01-26 2012-08-03 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
KR101718548B1 (en) * 2011-01-26 2017-04-04 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
WO2012117727A1 (en) * 2011-03-03 2012-09-07 東洋インキScホールディングス株式会社 Resin composition, sealing material for pigment-sensitized solar cell, electrode substrate, and pigment-sensitized solar cell
KR20120107251A (en) * 2011-03-21 2012-10-02 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
KR101712212B1 (en) * 2011-03-21 2017-03-13 서울시립대학교 산학협력단 Dye sensitized solar cell and method of the manufacturing of the same
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
TWI380494B (en)
JP2000357544A (en) Coloring matter sensitizing type solar battery
TWI229457B (en) Dye sensitization electrooptic converter and fabrication method thereof
JP2001345125A (en) Photoelectric conversion element
KR20180083823A (en) Perovskite based solar cell and method of manufacturing the same
WO2009017298A1 (en) Method of forming porous layer, dye-sensitized solar cell using the same, and method of fabricating the dye-sensitized solar cell
Lan et al. Quasi-solid-state dye-sensitized solar cells based on a sol–gel organic–inorganic composite electrolyte containing an organic iodide salt
JP4730951B2 (en) Porphyrin dye having trimethylsilyl group, photoelectric conversion element using the same, and dye-sensitized solar cell
JP4310961B2 (en) Dye-sensitized solar cell
KR101627161B1 (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
JP2004235011A (en) Electrolyte liquid using iodine-cyclodextrin clathrate compound and photoelectric conversion device using same
JP4099988B2 (en) Dye-sensitized solar cell
JP2001307786A (en) Photoelectric transfer element, its production method and photoelectric transfer module
JP2000299138A (en) Pigment sensitized solar battery
JP2000294814A (en) Photochemically sensitized optical semiconductor and photochemically sensitized solar battery using the same
JP4341197B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2000331720A (en) Coloring matter sensitizing type solar battery and manufacture thereof
JP4155431B2 (en) Photoelectric conversion element
JP2001076774A (en) Dye-sensitized solar battery
JP2007200714A (en) Dye-sensitized solar cell and its manufacturing method
JP2005268107A (en) Dye-sensitized solar cell and its manufacturing method
JP2000021462A (en) Manufacture of oxide semiconductor electrode
JP2000323189A (en) Pigment-sensitized type solar cell
KR20120113107A (en) Dye-sensitized solar cells and manufacturing methods thereof
JP2004253333A (en) Dye-sensitized solar cell