JP2000348783A - Manufacture of pigment-sensitized type solar cell - Google Patents

Manufacture of pigment-sensitized type solar cell

Info

Publication number
JP2000348783A
JP2000348783A JP11153154A JP15315499A JP2000348783A JP 2000348783 A JP2000348783 A JP 2000348783A JP 11153154 A JP11153154 A JP 11153154A JP 15315499 A JP15315499 A JP 15315499A JP 2000348783 A JP2000348783 A JP 2000348783A
Authority
JP
Japan
Prior art keywords
solar cell
dye
semiconductor
sensitized solar
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11153154A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishizawa
均 石沢
Tatsushi Nomura
達士 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11153154A priority Critical patent/JP2000348783A/en
Publication of JP2000348783A publication Critical patent/JP2000348783A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a pigment-sensitized type solar cell capable of stably filling an electrolyte in its inside over a long period without degrading a sensitizing pigment and not degrading conversion efficiency. SOLUTION: After the circumference of a space formed by catching a semiconductor electrode 8 and an opposite electrode 9 is sealed by perfectly setting a glass fritt sealant 6 by heat-treating it at 450 deg.C, a sensitizing pigment solution is injected into the space between the semiconductor electrode 8 and the opposite electrode 9 so that the sensitizing pigment is stuck to a semiconductor film 4, and thereafter, an electrolyte 3 is filled in the space and an injection hole is finally sealed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光エネルギーを電気
エネルギーに直接変換する色素増感型太陽電池の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a dye-sensitized solar cell which directly converts light energy into electric energy.

【0002】[0002]

【従来の技術】太陽電池は、太陽光の光エネルギーを吸
収して発電し、電気エネルギーに変換する光電変換素子
である。この太陽電池にはいくつかの種類があるが、シ
リコン単結晶型太陽電池に代表されるシリコン半導体の
p-n接合を用いたシリコン系太陽電池が広く使用されて
いる。しかし、1991年にグレッツェルらが発表した色素
増感型太陽電池は、前記シリコン系太陽電池とは異なる
メカニズムによって作動し、変換効率が高くしかも製造
コストが安いという利点があり注目されている。
2. Description of the Related Art A solar cell is a photoelectric conversion element that absorbs light energy of sunlight, generates electric power, and converts it into electric energy. There are several types of solar cells, and silicon semiconductors represented by silicon single crystal solar cells
Silicon-based solar cells using pn junctions are widely used. However, the dye-sensitized solar cell published by Gretzel et al. In 1991 has been attracting attention because it operates by a mechanism different from that of the silicon-based solar cell, has a high conversion efficiency, and has a low manufacturing cost.

【0003】この色素増感型太陽電池は、対電極と、半
導体電極と、これら電極間に狭持された電解質層と、該
電解質層を封止しているシール剤とから主に構成されて
いる。前記対電極には、一般的にはガラス基板の表面に
透明導電膜をコ−ティングしたものが用いられるが、対
電極は透明である必要はないので金属基板を用いること
もできる。また、前記半導体電極には、前記対電極と同
じく透明基板に透明導電膜をコーティングし、その上に
半導体被膜を形成して、さらに該半導体被膜に太陽光を
効率的に吸収することのできる増感色素を吸着させたも
のが用いられる。
[0003] This dye-sensitized solar cell mainly comprises a counter electrode, a semiconductor electrode, an electrolyte layer sandwiched between these electrodes, and a sealant sealing the electrolyte layer. I have. The counter electrode generally has a surface on a glass substrate.
The one coated with a transparent conductive film is used.
Use a metal substrate because the electrodes do not need to be transparent
Can also. In addition, the semiconductor electrode is coated with a transparent conductive film on a transparent substrate in the same manner as the counter electrode, and a semiconductor film is formed thereon, so that the semiconductor film can efficiently absorb sunlight. What adsorbed the sensitizing dye is used.

【0004】この色素増感型太陽電池に光を照射する
と、半導体電極に吸着された増感色素が光を吸収して励
起し電子を発生する。該電子は、半導体電極を移動し、
さらに対電極に移動する。対電極に移動した電子は、
解質層中を移動して半導体電極にもどり、光エネルギー
を連続して電気エネルギーとして取り出すことができ
る。
When the dye-sensitized solar cell is irradiated with light, the sensitizing dye adsorbed on the semiconductor electrode absorbs the light to excite it to generate electrons. The electrons move through the semiconductor electrode,
Further, it moves to the counter electrode. Electrons, electric moved to the counter electrode
Light energy can be continuously taken out as electric energy by moving through the degrading layer and returning to the semiconductor electrode.

【0005】従来からの上記色素増感型太陽電池の製造
方法は、半導体被膜に増感色素を吸着させて半導体電極
を作製し、対電極と重ね合わせてその周辺を有機物系樹
脂などのシ−ル剤を用いて封止し、電極基板に設けられ
た穴から両電極間の空間に電解液を注入して充填し、最
後にこの注入口を封止するといった方法が一般的であっ
た。
In the conventional method for producing a dye-sensitized solar cell, a sensitizing dye is adsorbed on a semiconductor film to form a semiconductor electrode, which is superposed on a counter electrode, and the periphery thereof is sealed with an organic resin or the like. In general, a method is used in which a sealing agent is used to fill the space between the two electrodes by filling the space between the electrodes through a hole provided in the electrode substrate, and finally the inlet is sealed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような色素増感型太陽電池の一般的な製造方法において
は、シール剤として有機物系樹脂を使って基板の周辺を
封止するので、樹脂を完全に硬化させるためには、熱硬
化型樹脂であれば少なくとも樹脂硬化温度で数時間の加
熱処理が必要であり、また、紫外線硬化型樹脂であれば
強力な紫外線照射処理を必要としていた。この樹脂硬化
工程における熱、または紫外線は、いずれも半導体電極
上に形成された半導体被膜に吸着している増感色素を劣
化させる原因となり、色素増感型太陽電池の変換効率を
低下させてしまうといった問題があった。
However, in the above-described general method of manufacturing a dye-sensitized solar cell, the periphery of the substrate is sealed by using an organic resin as a sealant. For complete curing, a heat-curable resin requires a heat treatment for at least several hours at the resin curing temperature, and an ultraviolet-curable resin requires a strong ultraviolet irradiation treatment. Both heat and ultraviolet rays in the resin curing step cause deterioration of the sensitizing dye adsorbed on the semiconductor film formed on the semiconductor electrode, and lower the conversion efficiency of the dye-sensitized solar cell. There was such a problem.

【0007】また、この色素増感型太陽電池の電解液
は、電池内部に半年以上の長期間にわたり封入されてい
るために、電解液の溶媒であるアセトニトリルなどの有
機溶媒に対して、長期間にわたり化学的に安定な樹脂を
上記シール剤として選定せねばならなかった。本来、化
学的に安定なシ−ル剤としては、有機物系樹脂よりもガ
ラスやセラミックスなどの無機物系が適しているが、該
無機物系シール剤を硬化させるには、400〜600℃
という高温での熱処理が必要であり、前記増感色素は、
たとえ短時間であっても前記高温には耐えられないた
め、ガラスフリットなど無機物シール剤を使用すること
は不可能であった。
Further, since the electrolyte solution of the dye-sensitized solar cell is sealed in the battery for a long period of more than half a year, it cannot be used for a long time with respect to an organic solvent such as acetonitrile which is a solvent of the electrolyte solution. For this reason, a chemically stable resin had to be selected as the sealant. Originally, as a chemically stable sealant, an inorganic material such as glass or ceramic is more suitable than an organic resin, but in order to cure the inorganic sealant, 400 to 600 ° C.
Heat treatment at a high temperature is required, and the sensitizing dye is
Even for a short period of time, it cannot withstand the high temperature, so that it was impossible to use an inorganic sealant such as a glass frit.

【0008】そこで、本発明では、増感色素を劣化させ
ず、電解液を内部に長期間安定に封入することができ、
なおかつ変換効率を低下させない色素増感型太陽電池の
製造方法を提供することを目的とする。
Therefore, according to the present invention, the electrolyte solution can be stably encapsulated for a long period of time without deteriorating the sensitizing dye.
It is another object of the present invention to provide a method for producing a dye-sensitized solar cell that does not reduce conversion efficiency.

【0009】[0009]

【課題を解決するための手段】上記課題を解決し目標を
達成するために、本発明者は、色素増感型太陽電池の製
造方法において、電極を重ね合わせて周辺を有機物系樹
脂などのシ−ル剤を用いて封止する工程で、前記増感色
素が加熱や紫外線照射により劣化することに着目し、吸
着した増感色素を劣化させない製造方法を考え出した。
Means for Solving the Problems In order to solve the above-mentioned problems and achieve the object, the present inventor has proposed a method of manufacturing a dye-sensitized solar cell, in which electrodes are overlapped and the periphery thereof is made of organic resin or the like. Focusing on the fact that the sensitizing dye is degraded by heating or irradiation with ultraviolet light in the step of sealing with a sealing agent, a production method that does not deteriorate the adsorbed sensitizing dye was devised.

【0010】すなわち、請求項1に記載の発明に係わる
色素増感型太陽電池の製造方法では、導電性を有する対
電極と、透明基板上に透明導電膜、半導体被膜がこの順
に形成されるかあるいは導電性基板上に半導体被膜が形
成された半導体電極を、前記対電極上の透明導電膜と前
記半導体電極上の半導体被膜が対向するように両電極を
狭持してできる空間の周辺を注入口と排出口とを残して
シ−ル剤で封止する第1の工程と、前記空間に前記注入
口から増感色素溶液を注入した後、前記排出口から前記
増感色素溶液を排出させることにより、前記半導体電極
に形成された半導体被膜に増感色素を吸着させる第2の
工程と、前記空間に前記注入口より電解液を充填する第
3の工程と、前記注入口および排出口を封止する第4の
工程とを有することを特徴としている。
That is, in the method for manufacturing a dye-sensitized solar cell according to the first aspect of the present invention, a method for manufacturing a dye having conductivity is described .
An electrode, a transparent conductive film on a transparent substrate, and a semiconductor electrode in which a semiconductor film is formed in this order or a semiconductor film formed on a conductive substrate, a transparent conductive film on the counter electrode and a semiconductor film on the semiconductor electrode. A first step of sealing the periphery of the space formed by sandwiching the two electrodes so that the semiconductor films face each other with a sealant leaving an inlet and an outlet, and increasing the space from the inlet to the space; A second step of injecting the sensitizing dye solution into the semiconductor film formed on the semiconductor electrode by discharging the sensitizing dye solution from the outlet after injecting the sensitizing dye solution; The method is characterized by including a third step of filling the electrolyte from the inlet and a fourth step of sealing the inlet and the outlet.

【0011】請求項2に記載の発明に係わる色素増感型
太陽電池の製造方法では、請求項1に記載の色素増感型
太陽電池製造方法の第1の工程において、前記シール剤
による封止を行う前に、前記空間と外部とを繋ぐ注入管
および排出管を前記空間の周辺部の一部にそれぞれ配置
し、その後前記注入管および排出管の空間側開口部と繋
がる空洞を、前記空間の周辺とシ−ル剤による封止層と
の中間に形成して、さらに後工程において前記注入管を
用いて増感色素溶液および電解液の注入を行うことを特
徴としている。
In the method for manufacturing a dye-sensitized solar cell according to the second aspect of the present invention, in the first step of the method for manufacturing a dye-sensitized solar cell according to the first aspect, the sealing with the sealant is performed. Before performing, the injection pipe and the discharge pipe connecting the space and the outside are respectively arranged in a part of the peripheral part of the space, and then the cavity connected to the space-side opening of the injection pipe and the discharge pipe is formed in the space. Is formed between the periphery of the above and the sealing layer made of the sealing agent, and further, the sensitizing dye solution and the electrolytic solution are injected in the subsequent step using the injection tube.

【0012】請求項3に記載の発明に係わる色素増感型
太陽電池の製造方法では、請求項2に記載の色素増感型
太陽電池の製造方法において、前記空間の周辺とシ−ル
剤による封止層との中間に空洞を形成する方法が、封止
前に前記空間の周辺にロウを塗り、その上にシール剤を
塗って該シール剤を熱処理することにより、該シール剤
を硬化させると同時に前記ロウを蒸発させて空洞を形成
するロストワックス法であることを特徴としている。
According to a third aspect of the present invention, there is provided a method of manufacturing a dye-sensitized solar cell according to the second aspect, wherein the periphery of the space and the sealant are used. A method of forming a cavity in the middle of the sealing layer is to apply a wax around the space before sealing, apply a sealant thereon, and heat-treat the sealant, thereby curing the sealant. At the same time, it is a lost wax method in which the wax is evaporated to form a cavity.

【0013】また、請求項4に記載の発明に係わる色素
増感型太陽電池の製造方法では、導電性を有する対電極
と、透明基板上に透明導電膜、半導体被膜がこの順に形
成されるかあるいは導電性基板上に半導体被膜が形成さ
れた半導体電極のいずれか一方に注入口および排出口を
設置しておくか、または前記対電極と前記半導体電極の
双方に一つずつ注入口あるいは排出口を設置しておき、
前記対電極上の透明導電膜と前記半導体電極上の半導体
被膜が対向するように両電極を狭持してできる空間の周
辺をシ−ル剤で封止する第1の工程と、前記空間に前記
注入口から増感色素溶液を注入した後、前記排出口から
前記増感色素溶液を排出させることにより、前記半導体
電極に形成された半導体被膜に増感色素を吸着させる第
2の工程と、前記空間に前記注入口より電解液を充填す
る第3の工程と、前記注入口および排出口を封止する第
4の工程とを有することを特徴としている。
Further, in the method for manufacturing a dye-sensitized solar cell according to the present invention, a counter electrode having conductivity is provided .
And, whether a transparent conductive film on a transparent substrate, a semiconductor film is formed in this order, or an inlet and an outlet are provided in one of the semiconductor electrodes on which the semiconductor film is formed on the conductive substrate, Alternatively, an inlet or outlet is provided for each of both the counter electrode and the semiconductor electrode,
A first step of sealing the periphery of a space formed by sandwiching both electrodes such that the transparent conductive film on the counter electrode and the semiconductor film on the semiconductor electrode face each other with a sealant; After injecting the sensitizing dye solution from the inlet, by discharging the sensitizing dye solution from the outlet, a second step of adsorbing the sensitizing dye to the semiconductor film formed on the semiconductor electrode, The method is characterized by including a third step of filling the space with the electrolyte from the inlet, and a fourth step of sealing the inlet and the outlet.

【0014】請求項5に記載の発明に係わる色素増感型
太陽電池の製造方法では、請求項1から請求項4のいず
れかに記載の色素増感型太陽電池の製造方法において、
前記空間が形成されるように対電極と半導体電極を狭持
する手段として、粒子状または薄い板状の無機物または
耐熱有機物系樹脂からなる絶縁物質をスペーサーとして
用いることを特徴としている。
According to a fifth aspect of the invention, there is provided a method of manufacturing a dye-sensitized solar cell according to any one of the first to fourth aspects.
As means for sandwiching the counter electrode and the semiconductor electrode so that the space is formed, an insulating material made of a particulate or thin plate-like inorganic or heat-resistant organic resin is used as a spacer.

【0015】請求項6に記載の発明に係わる色素増感型
太陽電池の製造方法では、請求項1から請求項5のいず
れかに記載の色素増感型太陽電池の製造方法において、
ガラスまたはセラミックスを主成分とするシール剤を用
いることを特徴としている。請求項7に記載の発明に係
わる色素増感型太陽電池の製造方法では、請求項1から
請求項6のいずれかに記載の色素増感型太陽電池製造方
法の第1の工程において、シール剤の使用に替えて対電
極あるいは半導体電極の一部を高温で溶解させ接合する
ことにより封止することを特徴としている。
According to a sixth aspect of the present invention, in the method of manufacturing a dye-sensitized solar cell according to any one of the first to fifth aspects,
It is characterized by using a sealant containing glass or ceramics as a main component. In the method for manufacturing a dye-sensitized solar cell according to the invention according to claim 7, in the first step of the method for manufacturing a dye-sensitized solar cell according to any one of claims 1 to 6, the sealant is used. Is characterized in that a counter electrode or a part of a semiconductor electrode is melted at a high temperature and joined by sealing in place of the above.

【0016】さらに、請求項8に記載の発明に係わる色
素増感型太陽電池の製造方法では、請求項5に記載の色
素増感型太陽電池の製造方法において、スペーサーの材
料として、ガラスを用いることを特徴としている。請求
項9に記載の発明に係わる色素増感型太陽電池の製造方
法では、請求項5に記載の色素増感型太陽電池の製造方
法において、スペーサーの材料として、ポリイミド樹脂
を用いることを特徴としている。
Further, in the method of manufacturing a dye-sensitized solar cell according to the invention described in claim 8, in the method of manufacturing the dye-sensitized solar cell described in claim 5, glass is used as a material of the spacer. It is characterized by: In the method for manufacturing a dye-sensitized solar cell according to the ninth aspect, in the method for manufacturing a dye-sensitized solar cell according to the fifth aspect, a polyimide resin is used as a material of the spacer. I have.

【0017】[0017]

【発明の実施の形態】本発明の色素増感型太陽電池の製
造方法においては、対電極と、半導体電極を、それぞれ
の電極に形成された、透明導電膜と半導体薄膜が対向す
るように狭持させてできた空間の周辺を、あらかじめシ
−ル剤で封止した後に、狭持された電極間の空間に増感
色素溶液を注入して半導体被膜に増感色素を吸着させ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a method for manufacturing a dye-sensitized solar cell according to the present invention, a counter electrode and a semiconductor electrode are narrowed so that a transparent conductive film and a semiconductor thin film formed on each electrode face each other. After the periphery of the space formed by the holding is sealed in advance with a sealant, a sensitizing dye solution is injected into the space between the held electrodes to adsorb the sensitizing dye on the semiconductor film.

【0018】本発明の実施の形態では、対電極の基板材
料に透明なガラス基板を用いて、その上に酸化スズやI
TOなどの透明導電膜を形成し、さらに前記対電極と電
解液との間で電子の授受をスムーズに行わせるために、
前記透明導電膜上に白金を薄くコ−ティングした。ま
た、前記半導体電極の基板としては、表面に酸化スズや
ITO透明導電膜が形成されたガラス基板や、チタンな
どの金属基板が用いられ、その上に0.1〜50μm程
度の厚さの半導体被膜が形成されている。該半導体とし
ては光電変換材料として用いられるものであれば特に限
定されるものではないが、酸化チタン、酸化ジルコニウ
ム、酸化タングステン、酸化亜鉛、酸化ニオブ、酸化タ
ンタル、チタン酸亜鉛、チタン酸ストロンチウム、硫化
カドミニウムなどの公知の半導体材料の一種類または、
二種類以上を用いることができる。なかでも酸化チタン
が好ましい。また、該半導体被膜を形成する方法には、
公知のさまざまな手法を用いることができる。たとえ
ば、基板上に酸化チタンなどの半導体微粒子を含有した
懸濁液を塗布して成膜するゾル−ゲル法や、所望の半導
体成分を含有した固体ターゲットを使用したPVD法
や、所望の半導体成分を含有した原料ガスを用いたCV
D法、金属基板の表面を電気化学的に酸化させる陽極酸
化法などを用いることができる。
In the embodiment of the present invention, a transparent glass substrate is used as a substrate material of a counter electrode, and tin oxide or I
To form a transparent conductive film such as TO, and to smoothly transfer electrons between the counter electrode and the electrolyte,
Platinum was thinly coated on the transparent conductive film. Further, as a substrate of the semiconductor electrode, a glass substrate having a surface on which tin oxide or an ITO transparent conductive film is formed, or a metal substrate such as titanium is used, and a semiconductor having a thickness of about 0.1 to 50 μm is further formed thereon. A coating is formed. The semiconductor is not particularly limited as long as it is used as a photoelectric conversion material, but titanium oxide, zirconium oxide, tungsten oxide, zinc oxide, niobium oxide, tantalum oxide, zinc titanate, strontium titanate, sulfide One kind of a known semiconductor material such as cadmium or
Two or more types can be used. Among them, titanium oxide is preferable. Further, the method of forming the semiconductor film includes:
Various known techniques can be used. For example, a sol-gel method in which a suspension containing semiconductor fine particles such as titanium oxide is coated on a substrate to form a film, a PVD method using a solid target containing a desired semiconductor component, a desired semiconductor component, Using raw material gas containing carbon
Method D, anodic acid that electrochemically oxidizes the surface of the metal substrate
A chemical conversion method can be used.

【0019】上記対電極と半導体電極とが直接接触して
導通してしまわないように、これらの電極の間にスペー
サーとして絶縁物質を介在させる。該スペーサーとして
は、液晶基板の作製にも使われている直径が20μm
下で、好ましくは5〜10μmのSiO2球や、厚さが
10〜1000μmで、好ましくは20〜200μm
薄いガラス板などの無機物が好ましい。また、有機物系
樹脂でも耐熱性の高いポリイミドのフィルムなどを用い
ることもできる。スペ−サ−は厚すぎると電界質層を電
荷が移動する距離が長くなるため変換効率が低下する欠
点があり、薄すぎるとガラスなどの切断が困難になった
り、ショ−トする危険性が高くなるなどの欠点がある。
An insulating material is interposed between these electrodes as a spacer so that the counter electrode and the semiconductor electrode do not come into direct contact with each other and become conductive. As the spacer, the diameter used for the production of the liquid crystal substrate is 20 μm or less.
Below, preferably 5-10 μm SiO 2 spheres,
In 10~1000 μm, preferably 20~200 μm
Inorganic substances such as thin glass plates are preferred. Also, organic matter
Use polyimide film with high heat resistance even for resin
You can also. If the spacer is too thick, the electrolyte layer will be charged.
The conversion efficiency decreases because the distance over which the load moves increases.
If it is too thin, it will be difficult to cut glass etc.
Disadvantages such as increased risk of short-circuiting.

【0020】上述のようにしてスペーサーを介在させる
ことによってできた空間の周辺を、熱硬化型または光硬
化型の有機物系樹脂や、ガラスフリットのペ−ストなど
の無機系のシール剤により封止する。この時、前記空間
の周辺にあらかじめロウを塗っておけば、その上からシ
−ル剤を塗り熱処理硬化させることにより、シ−ル剤が
硬化するとともにロウが蒸発して空洞が形成される。こ
のいわゆるロストワックス法を用いて、まえもって前記
空間の周辺にガラス管を設置しておけば、前記空洞と前
記ガラス管を介して前記空間と外部が繋がれて、後工程
の増感色素溶液や電解液の注入がスムーズに行われる。
さらに、前記ロストワックス法において、ロウの上に高
融点のセラミックス粉末またはガラスフリットのシ−ル
剤を塗り、さらにその上から融点の低いガラスフリット
を塗って空洞を形成することが好ましい。なぜならば、
ロウの上に低融点のガラスフリットだけを塗布して熱処
理をすると、600℃近辺の温度でガラスフリットが軟
化して、形成しておいた空洞がつぶれてしまうことがあ
り、600℃以下の比較的低い温度範囲では軟化しな
い、セラミックス粉末またはガラスフリットからなる高
融点のシ−ル剤をロウの上に塗っておくことにより、硬
化温度が高温に達しても空洞がつぶれることがなくなる
からである。しかし、高融点のシ−ル剤は100〜60
0℃の温度では強固には固まらないため、さらにその上
に低融点のガラスフリットを塗り熱処理を施すことによ
って、内部に空洞を形成しつつ電極を完全に封止するこ
とができる。
The periphery of the space formed by interposing the spacer as described above is sealed with a thermosetting or photocuring organic resin or an inorganic sealing agent such as a paste of glass frit. I do. At this time, if a wax is applied to the periphery of the space in advance, a sealant is applied from above and heat-cured, whereby the sealant is hardened and the wax evaporates to form a cavity. By using this so-called lost wax method, if a glass tube is previously installed around the space, the space and the outside are connected via the cavity and the glass tube, and a sensitizing dye solution in a subsequent process can be used. The electrolyte is smoothly injected.
Further, in the lost wax method, it is preferable to coat a high melting point ceramic powder or a glass frit sealing agent on the wax, and further apply a low melting point glass frit thereon to form a cavity. because,
When only a low melting point glass frit is applied on a wax and heat-treated, the glass frit softens at a temperature around 600 ° C., and the formed cavity may be crushed. By applying a high melting point sealant made of ceramic powder or glass frit, which does not soften in a very low temperature range, onto the wax, the cavity will not be crushed even when the curing temperature reaches a high temperature. . However, the high melting point sealant is 100 to 60.
Since it does not harden at a temperature of 0 ° C., a low melting point glass frit is further applied thereon and heat-treated, whereby the electrodes can be completely sealed while forming a cavity inside.

【0021】ここで、上述のシ−ル剤を硬化させる段階
では、従来の色素増感型太陽電池の製造方法とは異な
り、半導体電極の半導体被膜には増感色素が吸着されて
いないので、シール剤の硬化工程における熱や紫外線に
より増感色素が劣化するおそれはまったくない。さら
に、硬化工程で熱処理を施す場合であれば、加熱温度が
ガラス基板の軟化温度以下であれば何度でも施すことが
でき、紫外線も全面に何回も照射してもなんら問題な
い。また、シ−ル剤を完全に硬化させることが可能にな
ったため、従来シ−ル剤としては用いることのできなか
った、化学的に非常に安定なガラスフリットなどの無機
系のシ−ル剤を用いることができる。該無機系シール剤
は、屋外における長期間の使用によってもほとんど劣化
しないので、電解液を長期間安定して封止することがで
きる。また、ガラス基板の周辺部を溶接して封止すれ
ば、さらに電解液が漏れ出す危険性は少なくなる。
In the step of curing the sealant, unlike the conventional method of manufacturing a dye-sensitized solar cell, the sensitizing dye is not adsorbed on the semiconductor film of the semiconductor electrode. There is no possibility that the sensitizing dye is deteriorated by heat or ultraviolet rays in the curing step of the sealant. Furthermore, when heat treatment is performed in the curing step, the heat treatment can be performed any number of times as long as the heating temperature is equal to or lower than the softening temperature of the glass substrate, and there is no problem even if the entire surface is irradiated with ultraviolet rays many times. In addition, since it has become possible to completely cure the sealant, an inorganic sealant such as a glass frit which is extremely chemically stable and could not be used as a conventional sealant. Can be used. Since the inorganic sealant hardly deteriorates even when used outdoors for a long period of time, the electrolyte can be stably sealed for a long period of time. Further, if the peripheral portion of the glass substrate is sealed by welding, the risk of leakage of the electrolytic solution is further reduced.

【0022】上述のように電極の周囲を封止した後に、
増感色素を半導体電極上に形成されている半導体被膜に
吸着させる。ここで、太陽光を効率的に吸収する増感色
素として適当なものは、ルテニウムやオスミウムの金属
錯体やフタロシアニン、シアニドなどの有機色素があ
り、なかでもルテニウムの金属錯体が好ましい。また、
前記増感色素を溶解するための液体として、適当なもの
は、使用する増感色素を溶解するものであれば、水、ア
ルコール、アセトン、アセトニトリル、トルエン、塩化
メチレンなどの公知の溶媒の一種類または、二種類以上
を用いることができる。
After sealing the periphery of the electrode as described above,
The sensitizing dye is adsorbed on the semiconductor film formed on the semiconductor electrode. Here, suitable sensitizing dyes for efficiently absorbing sunlight include ruthenium and osmium metal complexes and organic dyes such as phthalocyanine and cyanide, and among them, ruthenium metal complexes are preferable. Also,
As a liquid for dissolving the sensitizing dye, a suitable one is a known solvent such as water, alcohol, acetone, acetonitrile, toluene, and methylene chloride as long as it dissolves the sensitizing dye to be used. Alternatively, two or more types can be used.

【0023】この吸着工程は、室温においては、6時間
以上増感色素溶液を循環させて、前記増感色素を半導体
被膜に十分吸着させることが好ましい。半導体被膜に増
感色素を吸着させた後、乾燥窒素または乾燥空気等を流
して乾燥させる。さらに、その後必要であれば、4-ター
シャル-ブチルピリジンなどで、色素増感された半導体
被膜の表面を処理してもかまわない。
In the adsorption step, it is preferable that the sensitizing dye solution is circulated at room temperature for at least 6 hours to sufficiently adsorb the sensitizing dye to the semiconductor film. After the sensitizing dye is adsorbed on the semiconductor film, the semiconductor film is dried by flowing dry nitrogen or dry air. Further, if necessary, the surface of the dye-sensitized semiconductor film may be treated with 4-tert-butylpyridine or the like.

【0024】次に電解液を注入し、該電解液が空間に満
たされたら注入口を閉じる。前記電解液としては一般に
湿式電池に用いられる電解液であれば特に限定されない
が、ヨウ素を主成分とする電解液が好ましい。また、注
入口の封止には、エポキシ樹脂やガラス板を併用しても
良いし、ガラスの溶接など既知の方法を用いることがで
きる。
Next, an electrolyte is injected, and when the electrolyte is filled in the space, the injection port is closed. The electrolytic solution is not particularly limited as long as it is an electrolytic solution generally used for a wet battery, but an electrolytic solution containing iodine as a main component is preferable. For sealing the injection port, an epoxy resin or a glass plate may be used in combination, or a known method such as welding of glass may be used.

【0025】以上のようにして、色素増感型太陽電池が
製造される。以下に本発明の好適な実施の形態を、図を
用いて詳細に説明する。 (第1の実施の形態)図1は、第1の実施形態で作製さ
れた色素増感型太陽電池の概略断面図であり、図2は、
その平面図である。
Thus, a dye-sensitized solar cell is manufactured. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. (First Embodiment) FIG. 1 is a schematic sectional view of a dye-sensitized solar cell manufactured in the first embodiment, and FIG.
It is the top view.

【0026】本発明の実施形態では、ガラス基板1の表
面に酸化スズ透明導電膜2を形成し、さらにその上にス
パッタ法により白金を薄く約50nmの厚さ(不図示)
にコ−ティングした対電極9と、該対電極9と同様にガ
ラス基板1上に形成された酸化スズ透明導電膜2の上
に、さらに酸化チタンの微粒子が懸濁したコロイド溶液
を塗布し、500℃で30分の熱処理を行って酸化チタ
ン半導体被膜4が形成された半導体電極8を用意した。
そして、図1および図2に示すように、対電極9にあら
かじめ直径1.2mmの穴を二ヶ所開け、その穴に直径
1.2mm、長さ7mmの短いガラス管7およびガラス
管7´を差し込み、ガラスフリット(不図示)により固
定した。 さらに、スペ−サ−として直径10μmのS
iO2球5((株)トクヤマ製 商品名スペーサーシリ
カHタイプ)をイソプロピルアルコ−ルに分散させ、こ
の分散溶液を対電極の表面に均一にスプレー塗布してS
iO 2球5を散布した。
In the embodiment of the present invention, the glass substrate 1
A tin oxide transparent conductive film 2 is formed on the surface, and
Platinum thin by the putter method, thickness of about 50nm (not shown)
The counter electrode 9 coated on the
On the tin oxide transparent conductive film 2 formed on the glass substrate 1
And a colloidal solution in which fine particles of titanium oxide are suspended
And heat-treated at 500 ° C for 30 minutes to remove titanium oxide.
A semiconductor electrode 8 on which a semiconductor coating 4 was formed was prepared.
Then, as shown in FIG. 1 and FIG.
Pre-drilled two holes with a diameter of 1.2mm,
1.2 mm, 7 mm long short glass tube 7 and glass
Insert the tube 7 'and fix it with a glass frit (not shown).
Specified. Further, as a spacer, a 10 μm diameter S
iOTwoBall 5 (Tokuyama Co., Ltd.)
(H type) is dispersed in isopropyl alcohol.
Spray the dispersion solution of the above on the surface of the counter electrode evenly and apply S
iO TwoBall 5 was sprayed.

【0027】このように作製した対電極9を半導体電極
8と張り合わせ、両電極間に形成された空間の周辺に沿
ってガラスフリット6のペ−ストを塗布し、450℃で
熱処理して硬化させた。次に前記ガラス管7にチュ−ブ
を差しこみ、ロ−ラ−ポンプを用いて一方のガラス管7
から増感色素 (2,2′ビピリジン-4,4′-ジカルボキシ
ル)2ルテニウム(NCS)2のエタノ−ル溶液を注入し、もう
一方のガラス管7´より溶液を出して室温において15
時間循環させ、酸化チタン微粒子の表面に増感色素を化
学的に吸着させた。ここで、前記増感色素溶液を抜き出
し、前記ガラス管7から乾燥窒素を流し、さらに、太陽
電池全体を減圧することにより溶媒のエタノ−ルを除去
し増感色素を吸着させた酸化チタン半導体被膜4を乾燥
させた。
The counter electrode 9 thus prepared is bonded to the semiconductor electrode 8, a paste of glass frit 6 is applied along the periphery of the space formed between the electrodes, and the paste is cured by heat treatment at 450 ° C. Was. Next, a tube is inserted into the glass tube 7, and one of the glass tubes 7 is used by using a roller pump.
A sensitizing dye (2,2 'bipyridine-4,4'-dicarboxyl) 2 ruthenium (NCS) 2 in ethanol solution was injected from the flask, and the solution was discharged from the other glass tube 7' and left at room temperature for 15 minutes.
The mixture was circulated for a time to chemically adsorb the sensitizing dye on the surface of the titanium oxide fine particles. Here, the sensitizing dye solution was withdrawn, dry nitrogen was flown from the glass tube 7, and the entire solar cell was depressurized to remove ethanol as a solvent and to adsorb the sensitizing dye onto the titanium oxide semiconductor film. 4 was dried.

【0028】次に、前記ガラス管7からヨウ素電解液3
を流し込み、前記空間に電解液が満たされてからチュ−
ブをはずし、最後に、ガラス管7および7´の先端にシ
リコンゴムを詰め、さらにエポキシ樹脂を塗って硬化さ
せて封止し、色素増感型太陽電池を作製した。この色素
増感型太陽電池にソーラシュミレーターで100mW/
cm2の光を照射して起電力を測定したところ、1cm2
あたりの短絡電流は約15mA、開放電圧は0.7Vで
あり、変換効率は7%であった。色素増感型太陽電池を
作製してから6ヶ月後に確認したところ、外観上電解液
の漏れなどは全く見られず完全に封入されており、変換
効率も7%と劣化はみられなかった。 (第2の実施の形態)図3は、第2の実施形態で作製さ
れた色素増感型太陽電池の概略断面図であり、図4は、
その平面図である。また、図5は第2の実施形態で作製
された色素増感型太陽電池の側面図である。
Next, the iodine electrolyte 3
And after the space is filled with the electrolyte solution,
Finally, silicon rubber was filled in the tips of the glass tubes 7 and 7 ', and further, an epoxy resin was applied, cured and sealed to produce a dye-sensitized solar cell. This dye-sensitized solar cell was supplied with a solar simulator at 100 mW /
It was measured electromotive force by irradiating the light of cm 2, 1 cm 2
The short circuit current per unit was about 15 mA, the open circuit voltage was 0.7 V, and the conversion efficiency was 7%. It was confirmed six months after the preparation of the dye-sensitized solar cell. As a result, no leakage of the electrolyte solution was observed at all, and the cell was completely sealed. The conversion efficiency was 7%, and no deterioration was observed. (Second Embodiment) FIG. 3 is a schematic sectional view of a dye-sensitized solar cell manufactured in the second embodiment, and FIG.
It is the top view. FIG. 5 is a side view of the dye-sensitized solar cell manufactured in the second embodiment.

【0029】第1の実施の形態と同様に作製した、対電
極9と半導体電極8とを重ね合わせ、図5に示す一組の
向かい合う2辺の周辺部に厚さ30μm、幅3mmの箔
状のガラス板12(Schott製)、または厚さ150μm、
幅3mmのカバ−ガラス12(マツナミガラス製)を2
枚挟んでスペーサーとした。さらに、図4および図5に
示すように、注入口として直径1.2mm、長さ1cm
のガラス管7およびガラス管7´を前記2辺とは異な
る、他のもう一組の向かい合う2辺の開口部に沿って取
り付け、前記ガラス管7および7´を残して該ガラス管
7および7´を取りつけた一組の向かい合う2辺の開口
部に沿ってロウを塗り、ロウの上には、前述の通り、熱
処理によって空洞がつぶれないように、融点の高いSi
2とAl23を主成分とするセラミックスシ−ル剤1
0を塗って、120℃で乾燥させた。するとロウは蒸発
してセラミックスシ−ル剤10の内部に空洞11が形成
された。前記セラミックスシール剤10の上にさらに酸
化鉛を主成分とするガラスフリットのペ−スト状シール
剤6を基板の周辺の全周にわたって塗り、450℃で熱
処理をしたところ、ガラスフリットのシール剤6は溶け
て緻密に固まった。
The counter electrode 9 and the semiconductor electrode 8, which are produced in the same manner as in the first embodiment, are superposed on each other, and a foil having a thickness of 30 μm and a width of 3 mm is formed around a pair of two opposite sides shown in FIG. Glass plate 12 (Schott), or 150 μm thick,
Cover glass 12 (made of Matsunami glass) having a width of 3 mm
A spacer was sandwiched between them. Further, as shown in FIG. 4 and FIG. 5, the injection port has a diameter of 1.2 mm and a length of 1 cm.
A glass tube 7 and a glass tube 7 ′ are mounted along another opening of another pair of opposite sides different from the two sides, and the glass tubes 7 and 7 ′ are left except the glass tubes 7 and 7 ′. A wax is applied along a pair of openings on two opposite sides to which the 'is attached, and a high melting point Si is applied on the wax to prevent the cavity from being collapsed by the heat treatment as described above.
Ceramic sealant 1 containing O 2 and Al 2 O 3 as main components 1
0 and dried at 120 ° C. Then, the wax was evaporated and a cavity 11 was formed inside the ceramic sealant 10. On the ceramic sealant 10, a paste sealant 6 of glass frit containing lead oxide as a main component was further applied over the entire periphery of the substrate and heat-treated at 450 ° C. Melted and solidified.

【0030】上記のように、電極の周囲をガラスフリッ
ト6で封止した後、第1の実施形態と同様に、ロ−ラ−
ポンプ(不図示)を用いて空洞11と外部を繋いでいる
ガラス管7の注入口からルテニウム増感色素のエタノ−
ル溶液を注入し、もう一方のガラス管7´から溶液を出
して室温で15時間循環させ、半導体被膜4の酸化チタ
ン微粒子の表面に増感色素を化学的に吸着させた。さら
に、前記増感色素溶液を抜き出し、前記ガラス管7から
乾燥窒素を流し、太陽電池全体を減圧することにより溶
媒のエタノ−ルを除去し増感色素を吸着させた酸化チタ
ン半導体被膜4を乾燥させた。
After the periphery of the electrode is sealed with the glass frit 6 as described above, the roller is sealed in the same manner as in the first embodiment.
Using a pump (not shown), the ruthenium sensitizing dye ethanol was injected from the inlet of the glass tube 7 connecting the cavity 11 to the outside.
The sensitizing dye was chemically adsorbed on the surface of the titanium oxide fine particles of the semiconductor coating 4 by pouring the solution into the glass tube 7 ′ and circulating the solution at room temperature for 15 hours. Further, the sensitizing dye solution was withdrawn, and dry nitrogen was flowed from the glass tube 7 to reduce the pressure of the entire solar cell, thereby removing ethanol as a solvent and drying the titanium oxide semiconductor film 4 having the sensitizing dye adsorbed thereon. I let it.

【0031】そして、最後にヨウ素電解液を充填し、注
入口であるガラス管7および排出口であるガラス管7´
の先端をガスバ−ナ−で溶かして電解液を封止した。こ
の色素増感型太陽電池にソーラシュミレーターにより1
00mW/cm2の光を照射して起電力を測定したとこ
ろ、1cm2あたりの短絡電流は約15mA、開放電圧
は0.7Vであり、変換効率は7%であった。本色素増
感型太陽電池を作製してから6ヶ月後に確認したとこ
ろ、外観上電解液の漏れなどは全く見られず完全に封入
されており、変換効率も7%と劣化はみられなかった。
Finally, an iodine electrolyte is filled, and a glass tube 7 serving as an inlet and a glass tube 7 'serving as an outlet are provided.
Was melted with a gas burner to seal the electrolyte. This dye-sensitized solar cell was charged with a solar simulator for 1 hour.
When the electromotive force was measured by irradiating light of 00 mW / cm 2 , the short-circuit current per cm 2 was about 15 mA, the open voltage was 0.7 V, and the conversion efficiency was 7%. Six months after the preparation of this dye-sensitized solar cell, it was confirmed that no leakage of the electrolytic solution was observed at all, and the cell was completely sealed, and the conversion efficiency was 7%, showing no deterioration. .

【0032】[0032]

【発明の効果】以上説明した通り本発明によれば、対電
極と半導体電極に狭持された空間の周辺を、あらかじめ
シ−ル剤で封止した後に、半導体被膜に増感色素を吸着
させたので、増感色素の劣化がなく、電解液が完全に封
入され、長期間安定に機能する色素増感型太陽電池が作
製された。
As described above, according to the present invention, the periphery of the space sandwiched between the counter electrode and the semiconductor electrode is sealed with a sealant in advance, and then the sensitizing dye is adsorbed on the semiconductor film. Therefore, a dye-sensitized solar cell in which the electrolyte was completely sealed without deterioration of the sensitizing dye and stably functioning for a long time was produced.

【0033】さらに長期間にわたり、変換効率が低下し
ない色素増感型太陽電池が作製された。
A dye-sensitized solar cell in which the conversion efficiency did not decrease over a long period of time was produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係わる色素増感型
太陽電池の概略断面図である。
FIG. 1 is a schematic sectional view of a dye-sensitized solar cell according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態に係わる色素増感型
太陽電池の平面図である。
FIG. 2 is a plan view of the dye-sensitized solar cell according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態に係わる色素増感型
太陽電池の概略断面図である。
FIG. 3 is a schematic sectional view of a dye-sensitized solar cell according to a second embodiment of the present invention.

【図4】本発明の第1の実施の形態に係わる色素増感型
太陽電池の平面図である。
FIG. 4 is a plan view of the dye-sensitized solar cell according to the first embodiment of the present invention.

【図5】本発明の第1の実施の形態に係わる色素増感型
太陽電池の側面図である。
FIG. 5 is a side view of the dye-sensitized solar cell according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・ガラス基板 2・・・透明導電膜 3・・・電解液層 4・・・増感色素が吸着した半導体被膜 5・・・SiO2球 6・・・シ−ル剤(ガラスフリット) 7・・・注入口(ガラス管) 7´・・・排出口(ガラス管) 8・・・半導体電極 9・・・対電極 10・・・高融点シ−ル剤(セラミックスフリット) 11・・・空洞 12・・・箔状ガラス板1 ... glass substrate 2 ... transparent conductive film 3 ... electrolyte layer 4 semiconductor film ... sensitizing dye is adsorbed 5 ... SiO 2 spheres 6 ... sheet - Le agent (glass frit 7 ... Injection port (glass tube) 7 '... Exhaust port (glass tube) 8 ... Semiconductor electrode 9 ... Counter electrode 10 ... High melting point sealant (ceramic frit) 11. ..Cavity 12 ・ ・ ・ Foil glass plate

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有する対電極と、透明基板上に
透明導電膜、半導体被膜がこの順に形成されるかあるい
は導電性基板上に半導体被膜が形成された半導体電極
を、前記対電極と前記半導体電極上の半導体被膜が対向
するように両電極を狭持してできる空間の周辺を注入口
と排出口とを残してシ−ル剤で封止する第1の工程と、
前記空間に前記注入口から増感色素溶液を注入した後、
前記排出口から前記増感色素溶液を排出させることによ
り、前記半導体電極に形成された半導体被膜に増感色素
を吸着させる第2の工程と、前記空間に前記注入口より
電解液を充填する第3の工程と、前記注入口および排出
口を封止する第4の工程とを有することを特徴とする色
素増感型太陽電池の製造方法。
1. A counter electrode having conductivity and a transparent substrate
Whether a transparent conductive film and a semiconductor film are formed in this order
Is a semiconductor electrode with a semiconductor film formed on a conductive substrate
, Said counter electrode and said leaving semiconductor film on the semiconductor electrode and a peripheral inlet and outlet of the space in which to hold the both electrodes so as to face sheet - first sealing with Le agent Process and
After injecting the sensitizing dye solution from the inlet into the space,
Discharging the sensitizing dye solution from the outlet to adsorb the sensitizing dye to the semiconductor film formed on the semiconductor electrode; and filling the space with an electrolyte from the inlet through the inlet. 3. A method for producing a dye-sensitized solar cell, comprising: a third step; and a fourth step of sealing the inlet and the outlet.
【請求項2】 請求項1に記載の色素増感型太陽電池製
造方法の第1の工程において、前記シール剤による封止
を行う前に、前記空間と外部とを繋ぐ注入管および排出
管を前記空間の周辺部の一部にそれぞれ配置し、その後
前記注入管および排出管の空間側開口部と繋がる空洞
を、前記空間の周辺とシ−ル剤による封止層との中間に
形成して、さらに後工程において前記注入管を用いて増
感色素溶液および電解液の注入を行うことを特徴とする
色素増感型太陽電池の製造方法。
2. In the first step of the method for producing a dye-sensitized solar cell according to claim 1, before performing sealing with the sealant, an injection pipe and a discharge pipe connecting the space and the outside are formed. A cavity connected to a space-side opening of the injection pipe and the discharge pipe is formed at a part between the periphery of the space and the sealing layer made of the sealing agent. And a sensitizing dye solution and an electrolytic solution are injected in the subsequent step using the injection tube.
【請求項3】 請求項2に記載の色素増感型太陽電池の
製造方法において、前記空間の周辺とシ−ル剤による封
止層との中間に空洞を形成する方法が、封止前に前記空
間の周辺にロウを塗り、その上にシール剤を塗って該シ
ール剤を熱処理することにより、該シール剤を硬化させ
ると同時に前記ロウを蒸発させて空洞を形成するロスト
ワックス法であることを特徴とする色素増感型太陽電池
の製造方法。
3. The method for producing a dye-sensitized solar cell according to claim 2, wherein the method of forming a cavity between the periphery of the space and a sealing layer formed of a sealing agent is performed before sealing. A lost wax method in which a wax is applied to the periphery of the space, a sealant is applied thereon, and the sealant is heat-treated, thereby curing the sealant and evaporating the wax while forming a cavity. A method for producing a dye-sensitized solar cell, comprising:
【請求項4】 導電性を有する対電極と、透明基板上に
透明導電膜、半導体被膜がこの順に形成されるかあるい
は導電性基板上に半導体被膜が形成された半導体電極の
いずれか一方に注入口および排出口を設置しておくか、
または前記対電極と前記半導体電極の双方に一つずつ注
入口あるいは排出口を設置しておき、前記対電極と前記
半導体電極上の半導体被膜が対向するように両電極を狭
持してできる空間の周辺をシ−ル剤で封止する第1の工
程と、前記空間に前記注入口から増感色素溶液を注入し
た後、前記排出口から前記増感色素溶液を排出させるこ
とにより、前記半導体電極に形成された半導体被膜に増
感色素を吸着させる第2の工程と、前記空間に前記注入
口より電解液を充填する第3の工程と、前記注入口およ
び排出口を封止する第4の工程とを有することを特徴と
する色素増感型太陽電池の製造方法。
4. A counter electrode having conductivity and a transparent electrode
Whether the transparent conductive film, the semiconductor film is formed in this order, or an inlet and an outlet are provided in one of the semiconductor electrodes in which the semiconductor film is formed on the conductive substrate,
Alternatively, an inlet or an outlet is provided for each of the counter electrode and the semiconductor electrode, and a space formed by sandwiching both electrodes such that the counter electrode and the semiconductor film on the semiconductor electrode face each other. A first step of sealing the periphery of the semiconductor with a sealant, and injecting the sensitizing dye solution into the space from the inlet, and then discharging the sensitizing dye solution from the outlet, thereby forming the semiconductor. A second step of adsorbing the sensitizing dye on the semiconductor film formed on the electrode, a third step of filling the space with the electrolyte from the inlet, and a fourth step of sealing the inlet and the outlet. And a method for producing a dye-sensitized solar cell.
【請求項5】 請求項1から請求項4のいずれかに記載
の色素増感型太陽電池の製造方法において、前記空間が
形成されるように対電極と半導体電極を狭持する手段と
して、粒子状または薄い板状の無機物または耐熱有機物
系樹脂からなる絶縁物質をスペーサーとして用いること
を特徴とする色素増感型太陽電池の製造方法。
5. The method for producing a dye-sensitized solar cell according to claim 1, wherein the means for sandwiching the counter electrode and the semiconductor electrode so as to form the space includes particles. A method for producing a dye-sensitized solar cell, comprising using an insulating material made of an inorganic or heat-resistant organic resin in the shape of a plate or a thin plate as a spacer.
【請求項6】 請求項1から請求項5のいずれかに記載
の色素増感型太陽電池の製造方法において、ガラスまた
はセラミックスを主成分とするシール剤を用いることを
特徴とする色素増感型太陽電池の製造方法。
6. The method for producing a dye-sensitized solar cell according to claim 1, wherein a sealant containing glass or ceramic as a main component is used. Solar cell manufacturing method.
【請求項7】 請求項1から請求項6のいずれかに記載
の色素増感型太陽電池製造方法の第1の工程において、
シール剤の使用に替えて対電極あるいは半導体電極の一
部を高温で溶解させ接合することにより封止することを
特徴とする色素増感型太陽電池の製造方法。
7. In the first step of the method for producing a dye-sensitized solar cell according to any one of claims 1 to 6,
A method for producing a dye-sensitized solar cell, wherein a part of a counter electrode or a semiconductor electrode is melted at a high temperature and joined by sealing instead of using a sealant.
【請求項8】 請求項5に記載の色素増感型太陽電池の
製造方法において、スペーサーの材料として、ガラス
用いることを特徴とする色素増感型太陽電池の製造方
法。
8. The method for producing a dye-sensitized solar cell according to claim 5, wherein glass is used as a material of the spacer.
【請求項9】 請求項5に記載の色素増感型太陽電池の
製造方法において、スペーサーの材料として、ポリイミ
ド樹脂を用いることを特徴とする色素増感型太陽電池の
製造方法。
9. The method for producing a dye-sensitized solar cell according to claim 5, wherein a polyimide resin is used as a material of the spacer.
JP11153154A 1999-06-01 1999-06-01 Manufacture of pigment-sensitized type solar cell Pending JP2000348783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11153154A JP2000348783A (en) 1999-06-01 1999-06-01 Manufacture of pigment-sensitized type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153154A JP2000348783A (en) 1999-06-01 1999-06-01 Manufacture of pigment-sensitized type solar cell

Publications (1)

Publication Number Publication Date
JP2000348783A true JP2000348783A (en) 2000-12-15

Family

ID=15556216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153154A Pending JP2000348783A (en) 1999-06-01 1999-06-01 Manufacture of pigment-sensitized type solar cell

Country Status (1)

Country Link
JP (1) JP2000348783A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280085A (en) * 2001-03-19 2002-09-27 Sumitomo Osaka Cement Co Ltd Dye sensitized solar battery
JP2002324590A (en) * 2001-04-09 2002-11-08 Korea Electronics Telecommun Nano-particle oxide solar cell, manufacturing method therefor, solar cell module using it, and transparent cell window
NL1020748C2 (en) * 2002-06-04 2003-12-08 Stichting Energie Method and device for coloring a layer of a nanocrystalline material.
WO2004021503A1 (en) * 2002-08-30 2004-03-11 Three Bond Co., Ltd. Sealant composition for dye-sensitized solar cell
JP2005243557A (en) * 2004-02-27 2005-09-08 Hitachi Maxell Ltd Photoelectric conversion element and photoelectric conversion module
JP2005310716A (en) * 2004-04-26 2005-11-04 Sekisui Jushi Co Ltd Dye sensitization solar cell
JP2006210139A (en) * 2005-01-28 2006-08-10 Toyo Seikan Kaisha Ltd Solar cell and its manufacturing method
JP2007280849A (en) * 2006-04-10 2007-10-25 Fujikura Ltd Photoelectric conversion element
JP2007287484A (en) * 2006-04-17 2007-11-01 Fujikura Ltd Dye-sensitized solar cell
JP2007335417A (en) * 2007-08-24 2007-12-27 Aisin Seiki Co Ltd Dye-sensitized solar cell
JP2008171793A (en) * 2006-12-15 2008-07-24 Sumitomo Chemical Co Ltd Photo-electrochemical battery
DE112006002294T5 (en) 2005-09-02 2008-10-30 Kyocera Corp. A photoelectric conversion device and a method of manufacturing the same, and a photoelectric power generation device
JP2010042960A (en) * 2008-08-13 2010-02-25 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
WO2010098088A1 (en) * 2009-02-25 2010-09-02 東京エレクトロン株式会社 Method and device for dye adsorption for photosensitizing dye, process and apparatus for producing dye-sensitized solar cell, and dye-sensitized solar cell
JP2010219041A (en) * 2009-03-13 2010-09-30 Dms Co Ltd Method and device for manufacturing dye-sensitized solar cell
JP2010254540A (en) * 2009-01-15 2010-11-11 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
KR100995073B1 (en) 2004-04-23 2010-11-18 삼성에스디아이 주식회사 Module of dye-sensitized solar cell and fabrication method thereof
WO2010089263A3 (en) * 2009-02-06 2010-11-18 Bangor University Dye-sensitised solar cells
KR101011763B1 (en) 2009-03-25 2011-02-07 에프씨산업 주식회사 Dye-Sensitized Solar Cell and Device for Stuffing Electrolyte for the Same and Method for Stuffing Electrolyte for the Same
KR101054892B1 (en) 2004-11-22 2011-08-05 한양대학교 산학협력단 Dye-sensitized solar cell, manufacturing method thereof, electro-optical characteristic measuring system and measuring method thereof
GB2481035A (en) * 2010-06-09 2011-12-14 Univ Bangor Preparing dye sensitised solar cells (DSSC) with multiple dyes
WO2012070181A1 (en) * 2010-11-25 2012-05-31 東京エレクトロン株式会社 Dye adsorption device, dye adsorption method, and substrate treatment apparatus
WO2012070176A1 (en) * 2010-11-25 2012-05-31 東京エレクトロン株式会社 Dye adsorption apparatus and dye adsorption method
EP2369603A3 (en) * 2010-03-24 2012-09-26 Samsung SDI Co., Ltd. Dye-sensitized solar cell
JP2013110066A (en) * 2011-11-24 2013-06-06 Ulvac Japan Ltd Device and method of manufacturing dye-sensitized solar cell
WO2013118803A1 (en) * 2012-02-07 2013-08-15 東京エレクトロン株式会社 Dye adsorption device and dye adsorption method
KR101489596B1 (en) 2013-10-28 2015-02-04 박지훈 Rapid thermal processing device for solar cell
CN106158384A (en) * 2015-03-27 2016-11-23 凯惠科技发展(上海)有限公司 DSSC and preparation method thereof
WO2023189042A1 (en) * 2022-03-30 2023-10-05 シャープ株式会社 Manufacturing method for dye-sensitized solar cell

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280085A (en) * 2001-03-19 2002-09-27 Sumitomo Osaka Cement Co Ltd Dye sensitized solar battery
JP4609874B2 (en) * 2001-03-19 2011-01-12 住友大阪セメント株式会社 Dye-sensitized solar cell
JP2002324590A (en) * 2001-04-09 2002-11-08 Korea Electronics Telecommun Nano-particle oxide solar cell, manufacturing method therefor, solar cell module using it, and transparent cell window
NL1020748C2 (en) * 2002-06-04 2003-12-08 Stichting Energie Method and device for coloring a layer of a nanocrystalline material.
WO2003102985A1 (en) * 2002-06-04 2003-12-11 Stichting Energieonderzoek Centrum Nederland Method and apparatus for dyeing a layer of nanocrystalline material
US7709051B2 (en) 2002-06-04 2010-05-04 Stichting Energieonderzoek Centrum Nederland Method and apparatus for dyeing a layer of nanocrystalline material
AU2003238710B2 (en) * 2002-06-04 2008-04-03 Stichting Energieonderzoek Centrum Nederland Method and apparatus for dyeing a layer of nanocrystalline material
WO2004021503A1 (en) * 2002-08-30 2004-03-11 Three Bond Co., Ltd. Sealant composition for dye-sensitized solar cell
KR100876513B1 (en) 2002-08-30 2008-12-31 가부시끼가이샤 쓰리본드 Sealant composition for dye-sensitized solar cell
JP2005243557A (en) * 2004-02-27 2005-09-08 Hitachi Maxell Ltd Photoelectric conversion element and photoelectric conversion module
JP4635455B2 (en) * 2004-02-27 2011-02-23 パナソニック電工株式会社 Photoelectric conversion element and photoelectric conversion module
US8143516B2 (en) 2004-04-23 2012-03-27 Samsung Sdi Co., Ltd. Dye-sensitized solar cell module
KR100995073B1 (en) 2004-04-23 2010-11-18 삼성에스디아이 주식회사 Module of dye-sensitized solar cell and fabrication method thereof
JP2005310716A (en) * 2004-04-26 2005-11-04 Sekisui Jushi Co Ltd Dye sensitization solar cell
KR101054892B1 (en) 2004-11-22 2011-08-05 한양대학교 산학협력단 Dye-sensitized solar cell, manufacturing method thereof, electro-optical characteristic measuring system and measuring method thereof
JP2006210139A (en) * 2005-01-28 2006-08-10 Toyo Seikan Kaisha Ltd Solar cell and its manufacturing method
DE112006002294T5 (en) 2005-09-02 2008-10-30 Kyocera Corp. A photoelectric conversion device and a method of manufacturing the same, and a photoelectric power generation device
JP2007280849A (en) * 2006-04-10 2007-10-25 Fujikura Ltd Photoelectric conversion element
JP2007287484A (en) * 2006-04-17 2007-11-01 Fujikura Ltd Dye-sensitized solar cell
JP2008171793A (en) * 2006-12-15 2008-07-24 Sumitomo Chemical Co Ltd Photo-electrochemical battery
JP2007335417A (en) * 2007-08-24 2007-12-27 Aisin Seiki Co Ltd Dye-sensitized solar cell
JP4664951B2 (en) * 2007-08-24 2011-04-06 アイシン精機株式会社 Dye-sensitized solar cell
JP2010042960A (en) * 2008-08-13 2010-02-25 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
JP2010254540A (en) * 2009-01-15 2010-11-11 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
CN102365696A (en) * 2009-02-06 2012-02-29 班戈大学 Dye-sensitised solar cells
WO2010089263A3 (en) * 2009-02-06 2010-11-18 Bangor University Dye-sensitised solar cells
WO2010098088A1 (en) * 2009-02-25 2010-09-02 東京エレクトロン株式会社 Method and device for dye adsorption for photosensitizing dye, process and apparatus for producing dye-sensitized solar cell, and dye-sensitized solar cell
JP5338897B2 (en) * 2009-02-25 2013-11-13 東京エレクトロン株式会社 Dye adsorption method and adsorption apparatus for photosensitized dye, and method and apparatus for producing dye-sensitized solar cell
JP2010219041A (en) * 2009-03-13 2010-09-30 Dms Co Ltd Method and device for manufacturing dye-sensitized solar cell
KR101011763B1 (en) 2009-03-25 2011-02-07 에프씨산업 주식회사 Dye-Sensitized Solar Cell and Device for Stuffing Electrolyte for the Same and Method for Stuffing Electrolyte for the Same
EP2369603A3 (en) * 2010-03-24 2012-09-26 Samsung SDI Co., Ltd. Dye-sensitized solar cell
GB2481035A (en) * 2010-06-09 2011-12-14 Univ Bangor Preparing dye sensitised solar cells (DSSC) with multiple dyes
WO2012070176A1 (en) * 2010-11-25 2012-05-31 東京エレクトロン株式会社 Dye adsorption apparatus and dye adsorption method
JP2012129188A (en) * 2010-11-25 2012-07-05 Tokyo Electron Ltd Pigment adsorption device, pigment adsorption method, substrate processing apparatus, and substrate processing method
JP2012113981A (en) * 2010-11-25 2012-06-14 Tokyo Electron Ltd Dye absorption unit
CN103229349A (en) * 2010-11-25 2013-07-31 东京毅力科创株式会社 Dye adsorption device, dye adsorption method, and substrate treatment apparatus
WO2012070181A1 (en) * 2010-11-25 2012-05-31 東京エレクトロン株式会社 Dye adsorption device, dye adsorption method, and substrate treatment apparatus
JP2013110066A (en) * 2011-11-24 2013-06-06 Ulvac Japan Ltd Device and method of manufacturing dye-sensitized solar cell
WO2013118803A1 (en) * 2012-02-07 2013-08-15 東京エレクトロン株式会社 Dye adsorption device and dye adsorption method
KR101489596B1 (en) 2013-10-28 2015-02-04 박지훈 Rapid thermal processing device for solar cell
CN106158384A (en) * 2015-03-27 2016-11-23 凯惠科技发展(上海)有限公司 DSSC and preparation method thereof
CN106158384B (en) * 2015-03-27 2019-02-01 凯惠科技发展(上海)有限公司 Dye-sensitized solar cells and preparation method thereof
WO2023189042A1 (en) * 2022-03-30 2023-10-05 シャープ株式会社 Manufacturing method for dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
JP2000348783A (en) Manufacture of pigment-sensitized type solar cell
JP4414036B2 (en) Method for producing dye-sensitized solar cell
Wang et al. Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells
KR101400540B1 (en) Dye-sensitized photoelectric conversion device and method for manufacturing same
JP4579935B2 (en) Photoelectric conversion element and electronic device
JP5492433B2 (en) Method for producing dye-sensitized solar cell
EP2451005A1 (en) Wet type solar battery module
EP2211418A1 (en) Dye-sensitized solar cell module
JP2001093591A (en) Photoelectric conversion device
JP2007059181A (en) Optical device and manufacturing method therefor
JP5163849B2 (en) Method for manufacturing photoelectric conversion element, photoelectric conversion element and electronic device
CN102150322A (en) Photoelectric conversion element, method of manufacturing therefor, and electronic device
JP2007220608A (en) Method of manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
US20060185717A1 (en) Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
JP2007073273A (en) Photoelectric conversion element and its manufacturing method, photoelectric conversion element module, electronic equipment, movable body, power generation system, display, and its manufacturing method
JP2000231942A (en) Pigment sensitization solar battery
JP2001210390A (en) Dye-sensitization type solar battery which uses solid electrolyte and its preparation method
JPH11288745A (en) Flexible wet solar battery and its manufacture
US20060000505A1 (en) Photovoltaic cell and method for manufacturing the same
JP2000030767A (en) Manufacture of wet solar battery
JP2004335366A (en) Dye-sensitized solar cell
WO2005122321A1 (en) Dye sensitized solar cell and process for producing the same
JP2004319130A (en) Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP2004319131A (en) Manufacturing method of photoelectric transfer element, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of metal membrane and laminate structure
JP5636736B2 (en) Photoelectric conversion device and manufacturing method thereof