JP2000342932A - Potting method for separation membrane - Google Patents

Potting method for separation membrane

Info

Publication number
JP2000342932A
JP2000342932A JP11157606A JP15760699A JP2000342932A JP 2000342932 A JP2000342932 A JP 2000342932A JP 11157606 A JP11157606 A JP 11157606A JP 15760699 A JP15760699 A JP 15760699A JP 2000342932 A JP2000342932 A JP 2000342932A
Authority
JP
Japan
Prior art keywords
potting
resin
potting resin
hollow fiber
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11157606A
Other languages
Japanese (ja)
Inventor
Kenji Watari
謙治 亘
Noriko Inoue
憲子 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11157606A priority Critical patent/JP2000342932A/en
Publication of JP2000342932A publication Critical patent/JP2000342932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable potting with high productivity by injecting a first potting resin in a container when at least one end of the separation membrane charged in the container is fixed by a resin and subsequently injecting a second potting resin therein to form a potting part to solidify the same. SOLUTION: As a potting resin constituting a separation membrane module used in the concn. of a liquid or the like, a thermosetting resin is mainly used and becomes a high hardness resin after curing in many cases. In the potting of a hollow-fiber yarn membrane by this thermosetting adhesive resin, a first potting resin is injected in a container and a second potting resin is next injected therein to form a potting part which is, in turn, solidified. If the second potting resin 2 is injected below the first potting resin, the surface of the separation membrane is coated with the first potting resin and subsequently potted by the second potting resin becoming a main component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体や気体の濾過
や分離、濃縮などに利用する分離膜モジュールを製造す
る際の分離膜のポッティング方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for potting a separation membrane when manufacturing a separation membrane module used for filtration, separation, concentration and the like of a liquid or gas.

【0002】[0002]

【従来の技術】近年、分離膜モジュールは、液体や気体
の濾過あるいは分離等に広く用いられているが、その用
途の広まりとともに、耐熱性、耐薬品性、機械的強度の
向上等が求められている。この様な分離膜モジュールに
は、その目的に応じた分離特性を有する分離膜が配設さ
れており、例えば平膜、中空糸膜等が用いられている。
2. Description of the Related Art In recent years, separation membrane modules have been widely used for filtration or separation of liquids and gases. However, as their applications have spread, improvement in heat resistance, chemical resistance, mechanical strength, and the like have been required. ing. Such a separation membrane module is provided with a separation membrane having separation characteristics according to its purpose, for example, a flat membrane, a hollow fiber membrane, or the like.

【0003】分離膜モジュールは、基本的に分離膜、モジュ
ールケース、ポッティング樹脂から構成されており、分
離膜モジュールを耐熱性あるいは耐薬品性の高いものと
するには、これら構成部材にそれぞれ耐熱性、耐薬品性
を付与すればよい。
[0003] The separation membrane module is basically composed of a separation membrane, a module case, and a potting resin. In order to make the separation membrane module high in heat resistance or chemical resistance, each of these constituent members has heat resistance. What is necessary is just to give chemical resistance.

【0004】[0004]

【発明が解決しようとする課題】分離膜モジュールを構
成する部材の内、ポッティング樹脂としては、熱硬化性
樹脂が主流であり、熱硬化性樹脂の内には高い耐熱性や
耐薬品性を有するものがあるが、このような熱硬化性樹
脂は、硬化後の機械的強度が非常に高く、特に硬化後に
高硬度となる樹脂が多い。
Among the members constituting the separation membrane module, thermosetting resins are mainly used as potting resins, and among the thermosetting resins, high heat resistance and chemical resistance are provided. However, such thermosetting resins have very high mechanical strength after curing, and in particular, many resins have high hardness after curing.

【0005】しかしながら、分離膜として例えば柔軟性の高
い中空糸膜を用いる場合、中空糸膜と硬化後のポッティ
ング樹脂の界面では、材料の硬度に段差が生じることに
なる。そして、中空糸膜モジュールを用いて濾過処理を
行う際、中空糸膜の外部あるいは内部より物理的な応力
が加わると、中空糸膜とポッティング樹脂の界面に応力
が集中し、中空糸膜の損傷を引き起こし、分離性能を大
きく損なうこととなる。
However, when a highly flexible hollow fiber membrane is used as the separation membrane, for example, a step occurs in the hardness of the material at the interface between the hollow fiber membrane and the cured potting resin. When performing a filtration treatment using the hollow fiber membrane module, if physical stress is applied from the outside or inside of the hollow fiber membrane, stress is concentrated on the interface between the hollow fiber membrane and the potting resin, and the hollow fiber membrane is damaged. And the separation performance is greatly impaired.

【0006】特に最近では、中空糸膜モジュールを濾過処理
に用いる際、被処理水中でエアーバブリングを行い、中
空糸膜を揺動させることによって目詰まり物質を剥離さ
せたり、中空糸膜内部へ間欠的に高圧の水を通水して中
空糸膜の外表面側を洗浄する操作が行われる。このよう
な操作を行うと、連続的あるいは断続的に中空糸膜とポ
ッティング材の境界部に機械的応力が加わるため、中空
糸膜が破損し、リークを引き起こすこととなる。
[0006] Particularly recently, when a hollow fiber membrane module is used for filtration, air clogging is performed in the water to be treated, and the hollow fiber membrane is shaken to remove clogging substances or to intermittently enter the inside of the hollow fiber membrane. The operation of washing the outer surface side of the hollow fiber membrane by passing high-pressure water through is performed. When such an operation is performed, mechanical stress is applied to the boundary between the hollow fiber membrane and the potting material continuously or intermittently, so that the hollow fiber membrane is broken and a leak is caused.

【0007】中空糸膜の損傷によるリークの発生を防止する
方法として、特開平5−269354号公報に、中空糸
膜の付け根に応力緩和層として柔軟な材質の保護層を設
ける中空糸膜モジュールの製造法が提案されている。し
かしながら、この方法においては、硬化を含むポッティ
ングの操作を2回に分けて行う必要があり、工程も煩雑
なものとなり生産性が劣るという不都合がある。また、
円筒型の中空糸膜モジュールを製造する際、容器の内径
が20mm以下であるような小型モジュールや、逆に容
器の内径が100mm以上の大型中空糸膜モジュールで
は、ポッティング部で2層構造を形成することができな
いといった不都合がある。
[0007] As a method for preventing the occurrence of leakage due to damage to the hollow fiber membrane, Japanese Patent Application Laid-Open No. 5-269354 discloses a hollow fiber membrane module in which a protective layer made of a flexible material is provided at the base of the hollow fiber membrane as a stress relaxation layer. Manufacturing methods have been proposed. However, in this method, it is necessary to perform the potting operation including curing in two steps, and the process becomes complicated, resulting in inferior productivity. Also,
When manufacturing a cylindrical hollow fiber membrane module, a two-layer structure is formed at the potting part in a small module having an inner diameter of the container of 20 mm or less or a large hollow fiber membrane module having an inner diameter of the container of 100 mm or more. There is an inconvenience that it cannot be done.

【0008】また、熱硬化性接着剤による中空糸膜のポッテ
ィングにおいては、注入された液状の接着剤が、集束し
た中空糸膜束の間を毛細管現象により、中空糸膜の長手
方向に沿うように流れていき、中空糸膜とポッティング
材の境界近傍では、ポッティング樹脂が中空糸膜に這い
上がった状態で硬化する。このような這い上がり樹脂
は、上述した物性の段差における応力集中をさらに高
め、中空糸膜損傷の原因となり易い。
[0008] In the potting of a hollow fiber membrane with a thermosetting adhesive, the injected liquid adhesive flows between the converged hollow fiber membrane bundles along the longitudinal direction of the hollow fiber membrane by capillary action. In the vicinity of the boundary between the hollow fiber membrane and the potting material, the potting resin hardens while crawling up on the hollow fiber membrane. Such a crawling resin further increases the stress concentration at the step of the above-described physical properties, and is likely to cause a hollow fiber membrane damage.

【0009】[0009]

【課題を解決するための手段】本発明の目的は、分離膜
モジュールを使用に供した際に、高い生産性でポッティ
ングを行うことができ、更には分離膜の損傷が起こりに
くい分離膜モジュールを、形状にあわせて製造すること
ができる分離膜のポッティング方法を提供することを目
的としてなされたものである。即ち、本発明の要旨は、
容器内に装填された分離膜の少なくとも一端側を樹脂固
定するに際し、容器内に、第1ポッティング樹脂を注入
した後、第2ポッティング樹脂を注入してポッティング
部を形成し、その後固化させることを特徴とする分離膜
のポッティング方法にある。第1ポッティング樹脂の下
方より第2ポッティング樹脂を注入すると、第1ポッテ
ィング樹脂で分離膜表面を被覆した後、主成分となる第
2ポッティング樹脂で分離膜をポッティングすることが
できる。好ましくは、第1ポッティング樹脂に、硬化後
の硬度が、第2ポッティング樹脂の硬化後の硬度よりも
低い樹脂を用いると、分離膜表面が硬度の低い第1ポッ
ティング樹脂で被覆されて硬化されるので、分離膜モジ
ュールを使用に供した際、ポッティング部と分離膜との
界面における分離膜の破損が起こりにくい。また、第1
ポッティング樹脂に、第2ポッティング樹脂よりも硬化
速度の早い樹脂を用いると、ポッティング樹脂の分離膜
へのはい上がりが抑制される。第2ポッティング樹脂
に、耐熱性の高い樹脂を用いると、耐熱性に優れるモジ
ュールを得ることができる。また、第1ポッティング樹
脂としてウレタン系接着剤、第2ポッティング樹脂とし
てエポキシ系接着剤を用いると、耐熱性、耐薬品性が高
く、リークの発生も少ない分離膜モジュールを得ること
ができる。この様なポッティング法は、特に分離膜が中
空糸膜である時に好適に用いられる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a separation membrane module which can be potted with high productivity when the separation membrane module is used, and furthermore, the separation membrane module is hardly damaged. It is an object of the present invention to provide a method of potting a separation membrane that can be manufactured according to a shape. That is, the gist of the present invention is:
In fixing at least one end side of the separation membrane loaded in the container with resin, after injecting the first potting resin into the container, injecting the second potting resin to form a potting portion, and then solidifying. The method is characterized by a potting method of a separation membrane. When the second potting resin is injected from below the first potting resin, the surface of the separation membrane can be covered with the first potting resin, and then the separation membrane can be potted with the second potting resin as a main component. Preferably, when a resin having a hardness after curing is lower than the hardness after curing of the second potting resin is used as the first potting resin, the separation membrane surface is coated with the first potting resin having low hardness and cured. Therefore, when the separation membrane module is used, breakage of the separation membrane at the interface between the potting portion and the separation membrane hardly occurs. Also, the first
When a resin having a faster curing speed than the second potting resin is used as the potting resin, the rising of the potting resin to the separation membrane is suppressed. When a resin having high heat resistance is used as the second potting resin, a module having excellent heat resistance can be obtained. When a urethane-based adhesive is used as the first potting resin and an epoxy-based adhesive is used as the second potting resin, it is possible to obtain a separation membrane module having high heat resistance, high chemical resistance, and low leakage. Such a potting method is suitably used particularly when the separation membrane is a hollow fiber membrane.

【0010】[0010]

【発明の実施の形態】以下本発明の分離膜のポッティン
グ方法を詳細に説明する。本発明の分離膜のポッティン
グ方法においては、容器内に分離膜膜を装填した後、ま
ず第1ポッティング樹脂を容器内に所定量注入する。第
1ポッティング樹脂の注入完了後、容器内に第2ポッテ
ィング樹脂を所定量注入し、その後ポッティング樹脂を
硬化させる。第2ポッティング樹脂は、実質的にポッテ
ィング樹脂の主成分となるものであり、得られる分離膜
モジュールの用途により、例えば高温下で膜モジュール
を使用する際は耐熱性の高い樹脂を、インク、薬品等薬
剤の分離処理に用いる場合には耐薬品性の高い樹脂を使
用する。なお、第2ポッティング樹脂中には予め、耐熱
性や耐薬品性を有する樹脂を混合しておいてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for potting a separation membrane according to the present invention will be described in detail. In the method for potting a separation membrane according to the present invention, after a separation membrane is loaded in a container, first, a predetermined amount of the first potting resin is injected into the container. After the injection of the first potting resin is completed, a predetermined amount of the second potting resin is injected into the container, and then the potting resin is cured. The second potting resin is substantially a main component of the potting resin. Depending on the use of the obtained separation membrane module, for example, when using a membrane module at a high temperature, a resin having high heat resistance may be used as an ink, a chemical, or the like. When used for the separation treatment of chemicals, a resin having high chemical resistance is used. Note that a resin having heat resistance and chemical resistance may be mixed in advance in the second potting resin.

【0011】この時、第2ポッティング樹脂は、第1ポッテ
ィング樹脂の下方より注入することが好ましい。そし
て、第1ポッティング樹脂には、後述する第2ポッティ
ング樹脂に較べ、硬化後の硬度が低硬度となる樹脂を用
いるのが好ましい。第1ポッティング樹脂を注入後、そ
の下方から第2ポッティング樹脂を注入するので、分離
膜にまず第1ポッティング樹脂が含浸する。そして第2
ポッティング樹脂の注入とともに、第1ポッティング樹
脂により分離膜の表面が被覆されながら、ポッティング
樹脂の液面が上昇する。分離膜は、ポッティング樹脂の
主成分となる第2ポッティング樹脂に較べて、硬化後の
硬度が低い第1ポッティング樹脂で、膜内が充填される
とともに、膜表面が被覆された状態で硬化されるので、
第2ポッティング樹脂のみでポッティングした場合と較
べ、膜モジュールを使用に協した際に、分離膜とポッテ
ィング樹脂界面での破損等を引き起こしにくくなる。
[0011] At this time, it is preferable that the second potting resin is injected from below the first potting resin. Then, it is preferable to use, as the first potting resin, a resin whose hardness after curing is lower than that of a second potting resin described later. After injecting the first potting resin, the second potting resin is injected from below the first potting resin, so that the first potting resin is first impregnated into the separation membrane. And the second
As the potting resin is injected, the liquid level of the potting resin rises while the surface of the separation membrane is covered with the first potting resin. The separation membrane is a first potting resin having a lower hardness after curing than the second potting resin that is a main component of the potting resin, and is cured while the inside of the membrane is filled and the membrane surface is covered. So
Compared to the case where potting is performed only with the second potting resin, when the membrane module is used together, breakage at the interface between the separation membrane and the potting resin is less likely to occur.

【0012】本発明のポッティング方法においては、第1ポ
ッティング樹脂として、初期粘度及び硬化中の粘度が、
第2ポッティング樹脂のそれよりも高い樹脂を用いるこ
とが好ましい。第1ポッティング樹脂として前述した樹
脂を用いると、分離膜とポッティング樹脂の境界部にお
いて、第2ポッティング樹脂の、毛細管現象による分離
膜上方への這い上がりを抑制することができ、平坦な境
界部が形成される。ポッティング部と分離膜の境界部が
平坦な程、応力が繰り返し集中することを避けることが
でき、モジュール使用中の分離膜の損傷を抑えることが
できる。これは、分離膜として中空糸を用いたときに特
に顕著となる。この方法は、耐熱性や耐薬品性は備わっ
ているものの、樹脂の硬化時間が遅かったり、硬化中粘
度の低い状態が長く樹脂を第2ポッティング樹脂として
用いる際特に有利である。
In the potting method of the present invention, the first potting resin has an initial viscosity and a viscosity during curing.
It is preferable to use a resin higher than that of the second potting resin. When the above-described resin is used as the first potting resin, it is possible to suppress the second potting resin from rising upward due to the capillary phenomenon at the boundary between the separation membrane and the potting resin. It is formed. The flatter the boundary between the potting portion and the separation membrane, the more the stress can be prevented from being concentrated repeatedly, and the more the damage to the separation membrane during use of the module can be suppressed. This is particularly noticeable when hollow fibers are used as the separation membrane. Although this method has heat resistance and chemical resistance, it is particularly advantageous when the resin is used as the second potting resin because the curing time of the resin is long or the viscosity during curing is low for a long time.

【0013】また、第2ポッティング樹脂には、耐熱性が高
い樹脂を用いることが好ましい。具体的には、硬化物の
ガラス転移温度(Tg)が50℃〜400℃の範囲内の
ものがよい。この様な樹脂を用いることで、耐熱性の高
いモジュールとすることができる。また、第2ポッティ
ング樹脂には、耐薬品性の高い樹脂を用いることが好ま
しい。具体的には、1N塩酸、1N水酸化ナトリウム水
溶液、メタノール、酢酸エチル、アセトン、トルエン、
テトラヒドロフラン、ジメチルホルムアミド、塩化メチ
レン等に、表面積が500〜2000mmの樹脂サン
プルを薬液に室温で1ヶ月間浸漬したときの重量変化が
−10%〜+10%の範囲内に入るような樹脂硬化物と
いうのが好ましい。この様な樹脂を用いることで耐薬品
性の高いモジュールとすることができる。
[0013] Further, it is preferable to use a resin having high heat resistance as the second potting resin. Specifically, it is preferable that the cured product has a glass transition temperature (Tg) in the range of 50 ° C to 400 ° C. By using such a resin, a module having high heat resistance can be obtained. Further, it is preferable to use a resin having high chemical resistance as the second potting resin. Specifically, 1N hydrochloric acid, 1N aqueous sodium hydroxide solution, methanol, ethyl acetate, acetone, toluene,
A cured resin product in which a resin sample having a surface area of 500 to 2000 mm 2 is immersed in a chemical solution at room temperature for one month in tetrahydrofuran, dimethylformamide, methylene chloride, or the like, within a range of -10% to + 10%. It is preferred that By using such a resin, a module having high chemical resistance can be obtained.

【0014】第1ポッティング樹脂の添加量は、ポッティン
グ樹脂全体(第1ポッティング樹脂量と第2ポッティン
グ樹脂量の和)の3〜30%とするのが好ましい。第1
ポッティング樹脂の添加量が3%未満となると、分離膜
とポッティング樹脂の境界面の物性改善が小さくなる傾
向にあり、30%を越えると、第2ポッティング樹脂の
有する耐熱性や耐薬品性を低下させる傾向にある。
[0014] The amount of the first potting resin added is preferably 3 to 30% of the entire potting resin (the sum of the first potting resin amount and the second potting resin amount). First
When the amount of the potting resin added is less than 3%, the improvement of the physical properties at the interface between the separation membrane and the potting resin tends to be small, and when it exceeds 30%, the heat resistance and chemical resistance of the second potting resin decrease. It tends to be.

【0015】本発明のポッティング法に用いる第1、第2ポ
ッティング樹脂としては、例えば、ウレタン系樹脂、エ
ポキシ系樹脂、不飽和ポリエステル系樹脂等を用いるこ
とができる。これら樹脂の内、同種の樹脂で硬化後の硬
度が異なる2種類の樹脂を用いてもよいし、異なる種類
の樹脂で硬化後の硬度が異なるものを用いもよい。好ま
しくは、第1ポッティング樹脂としては、ウレタン系接
着剤を、第2ポッティング樹脂として、耐熱性及び耐薬
品性に優れたエポキシ樹脂を用いると、耐熱、耐薬品性
が高く、更に分離膜の破損が少ない分離膜モジュールを
得ることができる。
As the first and second potting resins used in the potting method of the present invention, for example, urethane resins, epoxy resins, unsaturated polyester resins and the like can be used. Among these resins, two kinds of resins having the same hardness and different hardness after curing may be used, or different kinds of resins having different hardness after curing may be used. Preferably, when a urethane-based adhesive is used as the first potting resin and an epoxy resin having excellent heat resistance and chemical resistance is used as the second potting resin, heat resistance and chemical resistance are high, and the separation membrane is damaged. The separation membrane module with less number can be obtained.

【0016】なお、ポッティング樹脂の注入に際しては、均
一に樹脂を流し込むためには中空糸膜の最下端部よりポ
ッティング樹脂を導入することが好ましい。ポッティン
グ樹脂を容器内に流入させる推進力は、どのようなもの
であっても構わないが、樹脂自身の重さによって容器か
ら管を使って流し込む方法や、遠心力によって流し込む
方法、シリンジなどによって押し込む方法等が挙げられ
る。本発明の分離膜のポッティング方法は、平膜、中空
糸膜等種々の形態の分離膜に適用することができるが、
中空糸膜において前述した効果が顕著となる。
When the potting resin is injected, it is preferable to introduce the potting resin from the lowermost end of the hollow fiber membrane in order to uniformly inject the resin. The propulsion force that causes the potting resin to flow into the container may be anything, but it can be poured from the container using a tube depending on the weight of the resin itself, by a centrifugal force, by a syringe, etc. Method and the like. The potting method of the separation membrane of the present invention can be applied to various types of separation membranes such as a flat membrane and a hollow fiber membrane.
The effects described above are remarkable in the hollow fiber membrane.

【0017】分離膜として中空糸膜を用いた場合のポッティ
ング方法を更に詳細に説明する。まず最初に、第1ポッ
ティング樹脂を、円筒状の容器内に装填された中空糸膜
の下端部より注入する。第1ポッティング樹脂の注入完
了後、直ちに第2ポッティング樹脂を、第1ポッティン
グ樹脂の下方より注入する。第2ポッティング樹脂は、
先に注入されている第一ポッティング樹脂とその界面で
一部混ざり合いながらポッティング部に流れ込み、ポッ
ティング樹脂の液面が上方に移動する。第2ポッティン
グ樹脂注入完了後は、ポッティング部は見かけ上単一の
層の樹脂で構成されることになる。
[0017] The potting method when a hollow fiber membrane is used as the separation membrane will be described in more detail. First, the first potting resin is injected from the lower end of the hollow fiber membrane loaded in the cylindrical container. Immediately after the completion of the injection of the first potting resin, the second potting resin is injected from below the first potting resin. The second potting resin is
The liquid flows into the potting portion while being partially mixed at the interface with the first potting resin injected earlier, and the liquid level of the potting resin moves upward. After the completion of the second potting resin injection, the potting portion is apparently constituted by a single layer of resin.

【0018】第1ポッティング樹脂は、その下方から流入し
てくる第2ポッティング樹脂によって、一部混ざり合う
現象が起きているものの、上方へ上昇する樹脂の界面は
第1ポッティング樹脂で構成されており、第2ポッティ
ング樹脂の流入により、第1ポッティング樹脂が中空糸
膜の長手方向に押し上げられるように移動していく。こ
の時中空糸膜は、まず第1ポッティング樹脂と接触し、
中空糸膜表面には第1ポッティング樹脂がコーティング
されることになる。第2ポッティング樹脂が注入完了し
たとき、ポッティング樹脂として第1と第2の樹脂が混
在した形で存在するが、中空糸膜表面には第1ポッティ
ング樹脂がコーティングされた形となる。そしてポッテ
ィング部を硬化させた際、中空糸膜は柔軟な第1ポッテ
ィング樹脂で被覆されて固定されるので、中空糸膜損傷
を抑えることができる。
Although the first potting resin is partially mixed by the second potting resin flowing from below, the interface of the resin rising upward is made of the first potting resin. Due to the inflow of the second potting resin, the first potting resin moves so as to be pushed up in the longitudinal direction of the hollow fiber membrane. At this time, the hollow fiber membrane first contacts the first potting resin,
The surface of the hollow fiber membrane is coated with the first potting resin. When the injection of the second potting resin is completed, the first and second resins are present in a mixed form as the potting resin, but the surface of the hollow fiber membrane is coated with the first potting resin. Then, when the potting portion is cured, the hollow fiber membrane is covered with the flexible first potting resin and fixed, so that damage to the hollow fiber membrane can be suppressed.

【0019】本発明のポッティング方法に好適に用いられる
中空糸膜は、例えばポリエチレン、ポリプロピレン、ポ
リ(4−メチルペンテン−1)等のポリオレフィン、ポ
リスルホン、ポリアリールスルホン、ポリエーテルスル
ホン、ポリアミド製等種々のものを用いることができ
る。
The hollow fiber membrane suitably used in the potting method of the present invention includes, for example, polyethylene, polypropylene, polyolefins such as poly (4-methylpentene-1), polysulfone, polyarylsulfone, polyethersulfone, polyamide and the like. Can be used.

【0020】中空糸膜は、多孔質膜であっても非多孔質膜で
あってもよく、用途によって自由に選択できる。中空糸
膜の内、均質層の両側を多孔質層で挟み込んだ三層膜構
造の中空糸膜は、ポッティング樹脂が中空糸膜との境界
部において外層部のみに樹脂が含浸することがしばしば
起こり、中空糸膜の膜厚中心部付近において、含浸した
樹脂と中空糸膜の物性の段差が、中空糸膜の繊維軸方向
に走り、より応力集中に対して弱い状態となりやすいこ
とから、本発明のポッティング方法が特に有用に用いら
れる。
[0020] The hollow fiber membrane may be a porous membrane or a non-porous membrane, and can be freely selected depending on the application. Of hollow fiber membranes, hollow fiber membranes with a three-layer membrane structure in which both sides of a homogeneous layer are sandwiched between porous layers often have resin impregnated only in the outer layer at the boundary between the potting resin and the hollow fiber membrane. In the vicinity of the central portion of the thickness of the hollow fiber membrane, the step of the physical properties of the impregnated resin and the hollow fiber membrane runs in the fiber axis direction of the hollow fiber membrane and tends to be more vulnerable to stress concentration. The potting method is particularly useful.

【0021】用いられる三層膜構造の多孔質中空糸膜として
は、多孔質層がポリエチレン、ポリプロピレン、ポリ
(3−メチルブテン−1)、ポリ(4−メチルペンテン
−1)等のポリオレフィン系ポリマー、ポリフッ化ビニ
リデン、ポリテトラフルオロエチレン等のフッ素系ポリ
マー、ポリスチレン、ポリエーテルエーテルケトン、ポ
リエーテルケトン等の疎水性ポリマーから成り、均質層
がポリジメチルシロキサン、シリコンとポリカーボネー
トのコポリマー等のシリコンゴム系ポリマー、低密度ポ
リエチレン等のポリオレフィン系ポリマー、パーフルオ
ロアルキル系ポリマー等のフッ素含有ポリマー、エチル
セルロース等のセルロース系ポリマー、ポリフェニレン
オキサイド、ポリ(4−ビニルピリジン)、ウレタン系
ポリマー等のポリマーから成るものが挙げられる。
As the porous hollow fiber membrane having a three-layer membrane structure, the porous layer may be a polyolefin-based polymer such as polyethylene, polypropylene, poly (3-methylbutene-1), poly (4-methylpentene-1), or the like. It is composed of fluoropolymers such as polyvinylidene fluoride and polytetrafluoroethylene, and hydrophobic polymers such as polystyrene, polyetheretherketone and polyetherketone, and the homogeneous layer is a silicone rubber-based polymer such as polydimethylsiloxane and a copolymer of silicon and polycarbonate. , Low-density polyethylene and other polyolefin-based polymers, perfluoroalkyl-based polymers and other fluorine-containing polymers, ethylcellulose and other cellulose-based polymers, polyphenylene oxide, poly (4-vinylpyridine), urethane-based polymers and other polymers Which is composed of

【0022】本発明のポッティング法に用いる容器は、耐熱
性や耐溶剤性を有する材質のものを用いることが好まし
いく、金属製であってもよいが、加工性や価格の面から
樹脂製であることが好ましい。ポリカーボネート樹脂、
アクリル系樹脂、ポリオレフィン系樹脂、ポリスルホン
系樹脂、ポリフェニレンオキサイド樹脂、ポリアセター
ル樹脂は耐熱性が高く、容器の素材として好ましく用い
られる。また、溶剤濾過やパーベーパレーション等の用
途においては、ポリオレフィン系の材料が好ましい。
The container used in the potting method of the present invention is preferably made of a material having heat resistance and solvent resistance, and may be made of metal, but may be made of resin in view of workability and cost. Preferably, there is. Polycarbonate resin,
Acrylic resins, polyolefin resins, polysulfone resins, polyphenylene oxide resins, and polyacetal resins have high heat resistance and are preferably used as materials for containers. In applications such as solvent filtration and pervaporation, polyolefin-based materials are preferred.

【0023】また、容器は、ポッティング剤とモジュールケ
ースとの接着性を向上させるため、その内表面が表面処
理されたものを用いることが好ましい。例えばポリプロ
ピレン製モジュールケースであれば、その内表面にプラ
ズマ放電処理、コロナ放電処理、火炎処理、オゾン処
理、クロム混酸処理、n−ヘキサン処理、プライマー処
理、粗面化処理等を単独あるいは組み合わせて施すこと
で、ポッティング材との接着性が向上する。
Further, it is preferable to use a container whose inner surface is surface-treated in order to improve the adhesion between the potting agent and the module case. For example, in the case of a module case made of polypropylene, plasma discharge treatment, corona discharge treatment, flame treatment, ozone treatment, chromium mixed acid treatment, n-hexane treatment, primer treatment, surface roughening treatment, etc. are applied to the inner surface thereof alone or in combination. This improves the adhesiveness with the potting material.

【0024】[0024]

【実施例】以下、本発明を実施例により具体的に説明す
る。 (実施例1)分離膜として、ポリプロピレンを溶融中空
紡糸して得た平均孔径0.2μmの多孔質中空糸膜(外
径380μm、内径270μm)を用いた。長さ80c
mの多孔質中空糸膜3500本をU字状にし、その端部
を揃えて、円筒形の変性ポリフェニレンオキサイド樹脂
製容器内に挿入して、中空糸膜束端部に後述する第1ポ
ッティング樹脂を注入した後、その下方から第2ポッテ
ィング樹脂を注入した。
The present invention will be described below in more detail with reference to examples. (Example 1) As a separation membrane, a porous hollow fiber membrane (outer diameter 380 µm, inner diameter 270 µm) having an average pore diameter of 0.2 µm obtained by melt-spinning polypropylene was used. Length 80c
m, 3500 porous hollow fiber membranes are formed into a U-shape, the ends thereof are aligned, and inserted into a cylindrical modified polyphenylene oxide resin container. And then the second potting resin was injected from below.

【0025】第1ポッティング樹脂としては、エピコート8
28(油化シェル(株)製ビスフェノール型エポキシ樹
脂)47重量部、カードライトNC−513(Card
olite社製、可撓性付与剤)36重量部、 PAC
M(アンカーケミカル(株)製、硬化剤:ビス(4−ア
ミノシクロヘキシル)メタン)17重量部を混合した混
合樹脂を用いた。この混合樹脂の硬化挙動は、樹脂量1
00gの場合、室温で配合初期粘度が300mPa・
s、硬化開始後225分で10000mPa・sに達し
ゲル化した。また、混合物の硬化後の物性は、曲げ強度
が21.6MPa、曲げ弾性率が548.8MPa、硬
度(ASTM SHORE D)が72、ガラス転移温
度が54.7℃であった。
As the first potting resin, Epicoat 8
28 (bisphenol type epoxy resin manufactured by Yuka Shell Co., Ltd.) 47 parts by weight, Cardlight NC-513 (Card)
olite company, flexibility imparting agent) 36 parts by weight, PAC
A mixed resin obtained by mixing 17 parts by weight of M (manufactured by Anchor Chemical Co., Ltd., curing agent: bis (4-aminocyclohexyl) methane) was used. The curing behavior of this mixed resin is as follows.
In the case of 00g, the compounding initial viscosity at room temperature is 300 mPa ·
s, reached 20,000 mPa · s in 225 minutes after the start of curing, and gelled. The physical properties of the mixture after curing were such that the flexural strength was 21.6 MPa, the flexural modulus was 548.8 MPa, the hardness (ASTM SHORE D) was 72, and the glass transition temperature was 54.7 ° C.

【0026】第2ポッティング樹脂としては、エピクロンT
SR−243(大日本インキ(株)製;ウレタン変性エ
ポキシ樹脂)を40重量部、エピコート828を40重
量部、PACMを20重量部を混合した混合樹脂を用い
た。この混合樹脂の硬化挙動は、樹脂量100gの場
合、室温で配合初期粘度が1200mPa・s、硬化開
始後90分で10000mPa・sに達しゲル化した。
また、混合物の硬化後の物性は、曲げ強度が93.1M
Pa、曲げ弾性率が2185MPa、硬度(ASTM
SHORE D)が80、ガラス転移温度87℃であっ
た。
As the second potting resin, Epicron T
A mixed resin obtained by mixing 40 parts by weight of SR-243 (manufactured by Dainippon Ink and the like; urethane-modified epoxy resin), 40 parts by weight of Epicoat 828, and 20 parts by weight of PACM was used. With respect to the curing behavior of the mixed resin, when the amount of the resin was 100 g, the initial viscosity of the mixture reached 1200 mPa · s at room temperature, and reached 10,000 mPa · s 90 minutes after the start of curing, and gelled.
The physical properties of the mixture after curing were such that the flexural strength was 93.1M.
Pa, flexural modulus 2185 MPa, hardness (ASTM
SHORE D) was 80 and the glass transition temperature was 87 ° C.

【0027】なお、第1及び第2ポッティング樹脂の容器下
端からの注入はシリンジを用いて行い、注入量は、第1
ポッティング樹脂が15g、第2ポッティング樹脂が7
0gとした。容器内に第2ポッティング樹脂注入後、4
時間室温で放置後、80℃で8時間のキュアーを行って
ポッティング樹脂の硬化を行った。その後ポッティング
部に固定された多孔質中空糸膜のポッティング部分の端
面を容器ごと切断して、多孔質中空糸膜の端部を開口さ
せた。
The first and second potting resins are injected from the lower end of the container by using a syringe.
15 g potting resin, 7 second potting resin
0 g. After injecting the second potting resin into the container,
After leaving at room temperature for 8 hours, curing was performed at 80 ° C. for 8 hours to cure the potting resin. Thereafter, the end face of the potting portion of the porous hollow fiber membrane fixed to the potting section was cut together with the container to open the end of the porous hollow fiber membrane.

【0028】このようにして得られた中空糸膜モジュールを
エタノールで濡らした後、水で置換することにより親水
化処理し、60℃の水を膜間差圧100kPaで濾過通
水した。この濾過通水運転の中で、50分間に一度10
分間のエアーバブリングを行い、モジュールの膜面洗浄
を行った。この時のエアー量は30L/minで行っ
た。このような運転で、8ヶ月間中空糸膜の損傷による
リークの発生はなく、運転を継続することができた。
[0028] The thus obtained hollow fiber membrane module was wetted with ethanol, subjected to a hydrophilic treatment by replacing with water, and filtered at 60 ° C with a transmembrane pressure difference of 100 kPa. In this filtration water flow operation, once every 50 minutes
Air bubbling was performed for 1 minute to clean the membrane surface of the module. The air flow at this time was 30 L / min. With such an operation, there was no leakage due to damage to the hollow fiber membrane for 8 months, and the operation could be continued.

【0029】(比較例1)実施例1と同様の多孔質中空糸膜
を用い、ポッティング材以外は実施例1と同様の中空糸
膜モジュールを作製した。本比較例において、ポッティ
ング材は、実施例1における第2ポッティング樹脂であ
るエピクロンTSR−243を40重量部、エピコート
828を40重量部、PACMを20重量部を配合した
ものだけを用いた。ポッティング部に用いた樹脂量は8
0gで、実施例1と同様に中空糸膜最端部よりシリンジ
を用いて容器内に注入し、キュアー処理、端部の切断を
行い、多孔質中空糸膜の端部を開口部させた。
(Comparative Example 1) Using the same porous hollow fiber membrane as in Example 1, a hollow fiber membrane module similar to that of Example 1 was prepared except for a potting material. In this comparative example, only the potting material obtained by mixing 40 parts by weight of Epicron TSR-243, 40 parts by weight of Epicoat 828, and 20 parts by weight of PACM, which is the second potting resin in Example 1, was used. The amount of resin used in the potting section is 8
At 0 g, the end of the hollow fiber membrane was injected into the container using a syringe from the end of the hollow fiber membrane as in Example 1, cured, and the end was cut to open the end of the porous hollow fiber membrane.

【0030】このようにして得られた中空糸膜モジュールを
エタノールで濡らした後、水で置換することにより親水
化処理し、60℃の水を膜間差圧100kPaで濾過通
水した。この濾過通水運転の中で、50分間に一度10
分間のエアーバブリングを行い、モジュールの膜面洗浄
を行った。この時のエアー量は30L/minで行っ
た。このような運転において、5ヶ月後に中空糸膜の損
傷によるリークが確認された。リークの場所は、中空糸
膜とポッティング材の境界部において、3ヶ所の中空糸
膜でリークが確認された。
After the thus obtained hollow fiber membrane module was wetted with ethanol, it was subjected to a hydrophilization treatment by replacing with water, and water at 60 ° C. was filtered and passed at a transmembrane pressure difference of 100 kPa. In this filtration water flow operation, once every 50 minutes
Air bubbling was performed for 1 minute to clean the membrane surface of the module. The air flow at this time was 30 L / min. In such an operation, a leak due to damage to the hollow fiber membrane was confirmed 5 months later. As for the location of the leak, the leak was confirmed at three locations of the hollow fiber membrane at the boundary between the hollow fiber membrane and the potting material.

【0031】(実施例2)分離膜として、ポリエチレンを多
孔質層、セグメント化ポリウレタンを均質層とし、中空
紡糸して得た均質層の両面が多孔質層で挟まれた三層膜
構造を有する複合中空糸膜(外径280μm、内径20
0μm)を用いた。長さ約28cmの複合中空糸膜20
500本を束ね、それぞれ両端部を揃えて筒状の変性ポ
リフェニレンオキサイド樹脂製モジュールケース内に挿
入して配し、中空糸膜束両端部の開口端を熱融着により
目止めした後、中空糸膜束両端部にポッティング剤を注
入してをポッティングを行った。
(Example 2) As a separation membrane, a porous layer of polyethylene, a homogeneous layer of segmented polyurethane, and a three-layer membrane structure in which both sides of a homogeneous layer obtained by hollow spinning are sandwiched between porous layers. Composite hollow fiber membrane (outside diameter 280 μm, inside diameter 20
0 μm). Composite hollow fiber membrane 20 about 28 cm long
After bundling 500 pieces, aligning both ends thereof, inserting and disposing them in a cylindrical module case made of modified polyphenylene oxide resin, sealing the open ends of both ends of the hollow fiber membrane bundle by heat fusion, A potting agent was injected into both ends of the membrane bundle to perform potting.

【0032】第1ポッティング樹脂として、コロネート44
03(日本ポリウレタン(株)製;ウレタン系接着剤主
剤)62重量部、ニッポラン4276(日本ポリウレタ
ン(株)製;ウレタン系接着剤硬化剤)38重量を配合
したものを用いた。この配合樹脂の硬化挙動は、樹脂量
100gの場合、室温で配合初期粘度が1200mPa
・s、配合後100分で10000mPa・sに達しゲ
ル化した。また、硬化物の物性で、曲げ試験において
は、硬化物(板状サンプル)が柔らかすぎるため測定不
能であり、硬度(ASTM SHORE A)92、ガ
ラス転移温度10℃であった。
[0032] Coronate 44 is used as the first potting resin.
03 (manufactured by Nippon Polyurethane Co., Ltd .; urethane-based adhesive main agent) and 38 parts by weight of Nipporan 4276 (manufactured by Nippon Polyurethane Co., Ltd .; urethane-based adhesive curing agent) were used. The curing behavior of this compounded resin is such that when the amount of resin is 100 g, the compounded initial viscosity at room temperature is 1200 mPa.
In 100 minutes after blending, s reached 10,000 mPa · s and gelled. Further, in the physical properties of the cured product, in the bending test, the measurement was impossible because the cured product (plate-like sample) was too soft, and the hardness (ASTM SHORE A) was 92 and the glass transition temperature was 10 ° C.

【0033】第2ポッティング樹脂として、エピクロンTS
R−243を50重量部、エピコート828を30重量
部、PACMを20重量部を配合したものを用いた。こ
の樹脂の硬化に関する硬化挙動は、樹脂量100gの場
合、室温で配合初期粘度が1050mPa・s、配合後
150分で10000mPa・sに達しゲル化した。ま
た、硬化物の物性で、曲げ強度が63.7MPa、曲げ
弾性率が1764MPa、硬度(ASTM SHORE
D)が78、ガラス転移温度が79℃であった。
As the second potting resin, Epicron TS
A mixture of 50 parts by weight of R-243, 30 parts by weight of Epicoat 828, and 20 parts by weight of PACM was used. With respect to the curing behavior of the resin, when the amount of the resin was 100 g, the initial viscosity at the time of mixing reached 1050 mPa · s at room temperature, and reached 10,000 mPa · s 150 minutes after the compounding, resulting in gelation. In addition, according to the physical properties of the cured product, the flexural strength was 63.7 MPa, the flexural modulus was 1764 MPa, and the hardness (ASTM SHORE)
D) was 78 and the glass transition temperature was 79 ° C.

【0034】第1ポッティング樹脂を15g、第2ポッティ
ング樹脂を50g用い、図1に示す注入方法を利用し
て、第1ポッティング樹脂、続いて第2ポッティング樹
脂を注入し、中空糸膜をポッティングした。ポッティン
グ剤の注入はそれぞれ40℃の雰囲気下で、44Gの遠
心力作用下で3時間かけて行い、80℃で15時間のキ
ュアーを行った。その後ポッティング材により接着固定
された中空糸膜のポッティング部分を切断して、中空糸
膜の端部に開口部を形成した。
Using 15 g of the first potting resin and 50 g of the second potting resin, the first potting resin and then the second potting resin were injected using the injection method shown in FIG. 1, and the hollow fiber membrane was potted. . Injection of the potting agent was performed in an atmosphere of 40 ° C. under the action of a centrifugal force of 44 G for 3 hours, and curing was performed at 80 ° C. for 15 hours. Thereafter, the potting portion of the hollow fiber membrane bonded and fixed with a potting material was cut to form an opening at the end of the hollow fiber membrane.

【0035】このようにして得られた中空糸膜モジュールの
中空糸膜の内側に60℃の水を250kPaで通し、中
空糸膜の外側を1.33kPaに減圧して水の脱気処理
を行った。この脱気処理については定期的に停止する運
転を行い、1時間に一度、中空糸膜の外側の減圧状態を
大気圧に開放し、中空糸膜の内側の通水も止めるような
設定を行った。中空糸膜の外側が大気圧に開放されたら
直ちに通水と減圧を開始して、脱気処理を開始した。こ
のような運転で、連続6ヶ月間の水の脱気処理を行った
が、中空糸膜の損傷によるリークは認められず、脱気性
能の低下も無かった。
[0035] Water at 60 ° C is passed through the inside of the hollow fiber membrane of the hollow fiber membrane module thus obtained at 250 kPa, and the outside of the hollow fiber membrane is depressurized to 1.33 kPa to perform deaeration of water. Was. The deaeration process is periodically stopped, and once a hour, the depressurized state outside the hollow fiber membrane is released to the atmospheric pressure, and the water flow inside the hollow fiber membrane is stopped. Was. Immediately after the outside of the hollow fiber membrane was released to the atmospheric pressure, water flow and decompression were started, and deaeration was started. With such an operation, degassing treatment of water was performed for six consecutive months, but no leak due to damage to the hollow fiber membrane was observed, and there was no decrease in degassing performance.

【0036】(比較例2)実施例2と同様の複合中空糸膜を
用い、ポッティング材以外は実施例2と同様の中空糸膜
モジュールを作製した。この中空糸膜モジュールのポッ
ティング材は、実施例2における第2ポッティング樹脂
であるエピクロンTSR−243が50重量部、エピコ
ート828が30重量部、PACMが20重量部を配合
したものだけを用いた。ポッティング部に注入する樹脂
量は65gで、実施例2と同様の条件で遠心力作用下で
注入し、同様のキュアー処理、並びに端部の切断を行
い、中空糸膜の端部に開口部を形成した。
Comparative Example 2 Using the same composite hollow fiber membrane as in Example 2, a hollow fiber membrane module similar to that of Example 2 was prepared except for the potting material. As the potting material of this hollow fiber membrane module, only a material obtained by blending 50 parts by weight of Epicron TSR-243, 30 parts by weight of Epicoat 828, and 20 parts by weight of PACM as the second potting resin in Example 2 was used. The amount of resin to be injected into the potting portion is 65 g. The resin is injected under the same conditions as in Example 2 under the action of centrifugal force, and the same curing treatment and cutting of the end are performed. Formed.

【0037】このようにして得られた中空糸膜モジュールの
中空糸膜の内側に60℃の水を250kPaで通し、中
空糸膜の外側を1.33kPaに減圧して水の脱気処理
を行った。この脱気処理については定期的に停止する運
転を行い、1時間に一度、中空糸膜の外側の減圧状態を
大気圧に開放し、中空糸膜の内側の通水も止めるような
設定を行った。中空糸膜の外側が大気圧に開放されたら
直ちに通水と減圧を開始して、脱気処理を開始した。こ
のような運転で水の脱気処理を行ったが、2ヶ月後中空
糸の損傷によるリークが確認された。リーク箇所は、中
空糸膜とポッティング材の境界部において、ポッティン
グ材が中空糸膜にはい上がっている界面で発生してお
り、そのようなリーク箇所が2ヶ所確認された。
Water at 60 ° C. is passed at 250 kPa inside the hollow fiber membrane of the hollow fiber membrane module thus obtained, and the outside of the hollow fiber membrane is depressurized to 1.33 kPa to perform deaeration of water. Was. The deaeration process is periodically stopped, and once a hour, the depressurized state outside the hollow fiber membrane is released to the atmospheric pressure, and the water flow inside the hollow fiber membrane is stopped. Was. Immediately after the outside of the hollow fiber membrane was released to the atmospheric pressure, water flow and decompression were started, and deaeration was started. Water degassing was performed in such an operation, but after 2 months, leakage due to damage to the hollow fiber was confirmed. The leak points occurred at the interface between the hollow fiber membrane and the potting material at the interface between the potting material and the hollow fiber membrane, and two such leak points were confirmed.

【0038】[0038]

【発明の効果】本発明の中空糸膜モジュールは、容器内
に装填された分離膜の少なくとも一端側を樹脂固定する
に際し、容器内に、第1ポッティング樹脂を注入した
後、第2ポッティング樹脂を注入してポッティング部を
形成し、その後固化させるので、ポッティング樹脂を別
々させる硬化させる必要が無く、生産性に優れる。ま
た、第2ポッティング樹脂を第1ポッティング樹脂の下
方から注入すると、ポッティング材の耐熱性や耐薬品性
を維持したまま、中空糸膜とポッティング材境界部の物
性改善を達成できる。
According to the hollow fiber membrane module of the present invention, when at least one end of the separation membrane loaded in the container is fixed with the resin, the first potting resin is injected into the container, and then the second potting resin is injected into the container. Since the potting portion is formed by injection and then solidified, there is no need to separate and cure the potting resin, and the productivity is excellent. Further, when the second potting resin is injected from below the first potting resin, it is possible to improve the physical properties of the boundary between the hollow fiber membrane and the potting material while maintaining the heat resistance and the chemical resistance of the potting material.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA02 GA32 HA02 HA03 HA18 HA19 JA13C JA25C JB05 JB06 KA43 KE01Q KE06Q KE08Q KE16P KE28Q MA01 MA06 MA22 MA33 MC17 MC22 MC22X MC23X MC24 MC29 MC30 MC40 MC44 MC46 MC47 MC49 MC53X MC54 MC62 MC63 MC65 MC86 NA21 NA58 PB02  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4D006 GA02 GA32 HA02 HA03 HA18 HA19 JA13C JA25C JB05 JB06 KA43 KE01Q KE06Q KE08Q KE16P KE28Q MA01 MA06 MA22 MA33 MC17 MC22 MC22X MC23X MC24 MC29 MC30 MC40 MC44 MC63 MC47 MC49 MC49 MC86 NA21 NA58 PB02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 容器内に装填された分離膜の少なくとも
一端側を樹脂固定するに際し、容器内に、第1ポッティ
ング樹脂を注入した後、第2ポッティング樹脂を注入し
てポッティング部を形成し、その後固化させることを特
徴とする分離膜のポッティング方法。
When at least one end of a separation membrane loaded in a container is fixed with a resin, a first potting resin is injected into the container, and then a second potting resin is injected to form a potting portion. A method for potting a separation membrane, comprising solidifying thereafter.
【請求項2】 第1ポッティング樹脂の下方より第2ポ
ッティング樹脂を注入することを特徴とする請求項1記
載のポッティング方法。
2. The potting method according to claim 1, wherein the second potting resin is injected from below the first potting resin.
【請求項3】 第1ポッティング樹脂に、硬化後の硬度
が、第2ポッティング樹脂の硬化後の硬度よりも低い樹
脂を用いることを特徴とする請求項1又は2記載のポッ
ティング方法。
3. The potting method according to claim 1, wherein the first potting resin is a resin whose hardness after curing is lower than the hardness of the second potting resin after curing.
【請求項4】 第1ポッティング樹脂に、第2ポッティ
ング樹脂よりも硬化速度の早い樹脂を用いることを特徴
とする請求項1〜3の何れか1項記載のポッティング方
法。
4. The potting method according to claim 1, wherein a resin having a faster curing speed than the second potting resin is used as the first potting resin.
【請求項5】 第2ポッティング樹脂に、耐熱性の高い
樹脂を用いることを特徴とする請求項1〜4の何れか1
項記載のポッティング方法。
5. The method according to claim 1, wherein a resin having high heat resistance is used as the second potting resin.
The potting method described in the item.
【請求項6】 第1ポッティング樹脂としてウレタン系
接着剤、第2ポッティング樹脂としてエポキシ系接着剤
を用いることを特徴とする請求項1〜5記載のポッティ
ング方法。
6. The potting method according to claim 1, wherein a urethane-based adhesive is used as the first potting resin, and an epoxy-based adhesive is used as the second potting resin.
【請求項7】 分離膜が中空糸膜であることを特徴とす
る請求項1〜6の何れか1項記載のポッティング方法。
7. The potting method according to claim 1, wherein the separation membrane is a hollow fiber membrane.
JP11157606A 1999-06-04 1999-06-04 Potting method for separation membrane Pending JP2000342932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11157606A JP2000342932A (en) 1999-06-04 1999-06-04 Potting method for separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11157606A JP2000342932A (en) 1999-06-04 1999-06-04 Potting method for separation membrane

Publications (1)

Publication Number Publication Date
JP2000342932A true JP2000342932A (en) 2000-12-12

Family

ID=15653411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11157606A Pending JP2000342932A (en) 1999-06-04 1999-06-04 Potting method for separation membrane

Country Status (1)

Country Link
JP (1) JP2000342932A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081065A1 (en) * 2001-04-04 2002-10-17 U.S. Filter Wastewater Group, Inc. Potting method
JP2010036183A (en) * 2008-07-08 2010-02-18 Sumitomo Electric Fine Polymer Inc Separating membrane module for treating wastewater containing oil, and method and device for treating wastewater containing oil
US7718057B2 (en) 2005-10-05 2010-05-18 Siemens Water Technologies Corp. Wastewater treatment system
US7718065B2 (en) 2004-04-22 2010-05-18 Siemens Water Technologies Corp. Filtration method and apparatus
US7819956B2 (en) 2004-07-02 2010-10-26 Siemens Water Technologies Corp. Gas transfer membrane
US7862719B2 (en) 2004-08-20 2011-01-04 Siemens Water Technologies Corp. Square membrane manifold system
US7867417B2 (en) 2004-12-03 2011-01-11 Siemens Water Technologies Corp. Membrane post treatment
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US7988891B2 (en) 2005-07-14 2011-08-02 Siemens Industry, Inc. Monopersulfate treatment of membranes
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US20120103904A1 (en) * 2010-02-17 2012-05-03 Sumitomo Electric Fine Polymer, Inc. Separation membrane module for oil-containing wastewater treatment, oil-containing wastewater treatment method, and oil-containing wastewater treatment apparatus
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8372282B2 (en) 2002-12-05 2013-02-12 Siemens Industry, Inc. Mixing chamber
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
WO2013047775A1 (en) * 2011-09-28 2013-04-04 東レ株式会社 Method for hydrophilizing hollow-fiber membrane module
JP2013514508A (en) * 2009-12-17 2013-04-25 スリーエム イノベイティブ プロパティズ カンパニー Plastic pressure vessel and method for biopharmaceutics
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8524794B2 (en) 2004-07-05 2013-09-03 Siemens Industry, Inc. Hydrophilic membranes
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
JP2016175002A (en) * 2015-03-19 2016-10-06 Nok株式会社 Production method of hollow fiber membrane module
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
JP2017029885A (en) * 2015-07-29 2017-02-09 日機装株式会社 Hollow fiber membrane module
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
JP2017136548A (en) * 2016-02-03 2017-08-10 積水フーラー株式会社 Potting agent for hollow fiber membrane module
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
JP2020049469A (en) * 2018-09-28 2020-04-02 東レ株式会社 Carbon membrane module for fluid separation

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US7931463B2 (en) 2001-04-04 2011-04-26 Siemens Water Technologies Corp. Apparatus for potting membranes
CN1298413C (en) * 2001-04-04 2007-02-07 美国废水过滤集团公司 Potting method
KR100830315B1 (en) * 2001-04-04 2008-05-16 유.에스. 필터 웨이스트워터 그룹, 인크. Potting Method
WO2002081065A1 (en) * 2001-04-04 2002-10-17 U.S. Filter Wastewater Group, Inc. Potting method
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US8372282B2 (en) 2002-12-05 2013-02-12 Siemens Industry, Inc. Mixing chamber
US8262778B2 (en) 2003-07-08 2012-09-11 Siemens Industry, Inc. Membrane post treatment
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US7718065B2 (en) 2004-04-22 2010-05-18 Siemens Water Technologies Corp. Filtration method and apparatus
US7819956B2 (en) 2004-07-02 2010-10-26 Siemens Water Technologies Corp. Gas transfer membrane
US8524794B2 (en) 2004-07-05 2013-09-03 Siemens Industry, Inc. Hydrophilic membranes
US7862719B2 (en) 2004-08-20 2011-01-04 Siemens Water Technologies Corp. Square membrane manifold system
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US7867417B2 (en) 2004-12-03 2011-01-11 Siemens Water Technologies Corp. Membrane post treatment
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US7988891B2 (en) 2005-07-14 2011-08-02 Siemens Industry, Inc. Monopersulfate treatment of membranes
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US7718057B2 (en) 2005-10-05 2010-05-18 Siemens Water Technologies Corp. Wastewater treatment system
US7722769B2 (en) 2005-10-05 2010-05-25 Siemens Water Technologies Corp. Method for treating wastewater
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
JP2010036183A (en) * 2008-07-08 2010-02-18 Sumitomo Electric Fine Polymer Inc Separating membrane module for treating wastewater containing oil, and method and device for treating wastewater containing oil
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
JP2013514508A (en) * 2009-12-17 2013-04-25 スリーエム イノベイティブ プロパティズ カンパニー Plastic pressure vessel and method for biopharmaceutics
US20120103904A1 (en) * 2010-02-17 2012-05-03 Sumitomo Electric Fine Polymer, Inc. Separation membrane module for oil-containing wastewater treatment, oil-containing wastewater treatment method, and oil-containing wastewater treatment apparatus
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
KR101898956B1 (en) 2011-09-28 2018-09-14 도레이 카부시키가이샤 Method for hydrophilizing hollow-fiber membrane module
WO2013047775A1 (en) * 2011-09-28 2013-04-04 東レ株式会社 Method for hydrophilizing hollow-fiber membrane module
JPWO2013047775A1 (en) * 2011-09-28 2015-03-30 東レ株式会社 Method for hydrophilizing hollow fiber membrane module
KR20140084003A (en) * 2011-09-28 2014-07-04 도레이 카부시키가이샤 Method for hydrophilizing hollow-fiber membrane module
CN103842058A (en) * 2011-09-28 2014-06-04 东丽株式会社 Method for hydrophilizing hollow-fiber membrane module
US9308478B2 (en) 2011-09-28 2016-04-12 Toray Industries, Inc. Method for hydrophilizing hollow-fiber membrane module
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
JP2016175002A (en) * 2015-03-19 2016-10-06 Nok株式会社 Production method of hollow fiber membrane module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
JP2017029885A (en) * 2015-07-29 2017-02-09 日機装株式会社 Hollow fiber membrane module
JP2017136548A (en) * 2016-02-03 2017-08-10 積水フーラー株式会社 Potting agent for hollow fiber membrane module
JP2020049469A (en) * 2018-09-28 2020-04-02 東レ株式会社 Carbon membrane module for fluid separation
JP7151333B2 (en) 2018-09-28 2022-10-12 東レ株式会社 Carbon membrane module for fluid separation

Similar Documents

Publication Publication Date Title
JP2000342932A (en) Potting method for separation membrane
US8709253B2 (en) Separation membrane elements, separation membrane module, and process for producing separation membrane element
US6290756B1 (en) Hollow fiber membrane tubesheets of variable epoxy composition and hardness
US6270714B1 (en) Method for potting or casting inorganic hollow fiber membranes into tube sheets
EP2286900A1 (en) Hollow fiber membrane module with covered membrane outer periphery
JPWO2007077833A1 (en) Potting agent, hollow fiber module and manufacturing method thereof
WO2013146080A1 (en) Hollow fiber membrane module and production method therefor
JP5811738B2 (en) Method for repairing hollow fiber membrane module and hollow fiber membrane module
JP5935808B2 (en) Method for hydrophilizing hollow fiber membrane module
JP3250655B2 (en) Potting agent for hollow fiber membrane module, hollow fiber membrane module, and method for producing the same
KR102316308B1 (en) Spinning solution for flexible PPS porous hollow fiber having hydrophilicity, flexible PPS porous hollow fiber membrane having hydrophilicity and Manufacturing method thereof
JP2009018283A (en) Hollow fiber membrane module and manufacturing method thereof
JP4550214B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP2009165913A (en) Separation membrane element, separation membrane module, and manufacturing method of separation membrane element
JP2946628B2 (en) Method for producing hollow porous separation membrane element
JP2009202108A (en) Separation membrane element, separation membrane module, and manufacturing method of separation membrane element
KR102087507B1 (en) Composition of flexible PPS porous hollow fiber having symmetric structure, flexible PPS porous hollow fiber membrane having symmetric structure and Manufacturing method thereof
JP2000317275A (en) Production of hollow fiber membrane module
JP2011031174A (en) Separating membrane module and filter equipped with separating membrane module
KR20210144131A (en) Composition of Polyphenylene sulfide porous hollow fiber membrane having sponge like structure, PPS porous hollow fiber membrane containing the same and Manufacturing method thereof
JPH09187629A (en) Deaeration-membrane module for semiconductor developer and its production
JPH03106422A (en) Fluid separation module and its manufacture
JP5075772B2 (en) Method for producing hollow fiber membrane module
JP4497681B2 (en) Filtration module
JPS61220711A (en) Bonding method for bundled hollow yarn at end part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091022