JP2000341885A - Noncontact power transmission device and manufacture thereof - Google Patents

Noncontact power transmission device and manufacture thereof

Info

Publication number
JP2000341885A
JP2000341885A JP11146741A JP14674199A JP2000341885A JP 2000341885 A JP2000341885 A JP 2000341885A JP 11146741 A JP11146741 A JP 11146741A JP 14674199 A JP14674199 A JP 14674199A JP 2000341885 A JP2000341885 A JP 2000341885A
Authority
JP
Japan
Prior art keywords
coil
power transmission
transmission device
contact
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11146741A
Other languages
Japanese (ja)
Inventor
Yoshiki Katsura
嘉志記 桂
Hideki Tamura
秀樹 田村
Toyokatsu Okamoto
豊勝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP11146741A priority Critical patent/JP2000341885A/en
Publication of JP2000341885A publication Critical patent/JP2000341885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact transmission device which can reduce the gap between a primary coil and a secondary coil and increase the power transmitted from the primary coil to the secondary coil. SOLUTION: In a noncontact power transmission device, a primary coil 3 is placed on a power supply device 1 side, a secondary coil 4 is placed on a load apparatus 2 side, and a power is transmitted from the primary coil 3 to the secondary coil 4 through electromagnetic induction. The primary coil 3 or the secondary coil 4 is formed into a flat coil 5, which is attached to the contact wall 1c(2c) of the mutual connection part 1a(2a) of the power supply device 1 or the load apparatus 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非接触電力伝達装
置、及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact power transmission device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図9は従来の非接触電力伝達装置の電力
伝達部を示すものである。この装置の電力伝達部の主要
部は、電力供給装置1の相互接続部1a内に配設される
一次側コイル3と、負荷機器2の相互接続部2a内に配
設される二次側コイル4とで構成され、一次側コイル3
から二次側コイル4への電磁誘導により非接触で電力伝
達を行うものである(図中Bは磁束を表す)。尚、一次
側コイル3は、電力供給装置1の相互接続部1aのハウ
ジング1bの接触壁1cの内面1eに、二次側コイル4
は、負荷機器2の相互接続部2aのハウジング2bの接
触壁2cの内面2eに、夫々密着して配設してある。
2. Description of the Related Art FIG. 9 shows a power transmission section of a conventional wireless power transmission device. The main part of the power transmission unit of this device is composed of a primary coil 3 disposed in the interconnection 1a of the power supply device 1 and a secondary coil disposed in the interconnection 2a of the load device 2. 4 and the primary side coil 3
The power is transmitted in a non-contact manner by electromagnetic induction from the coil to the secondary coil 4 (B represents a magnetic flux in the figure). The primary coil 3 is provided on the inner surface 1e of the contact wall 1c of the housing 1b of the interconnecting portion 1a of the power supply device 1,
Are disposed in close contact with the inner surface 2e of the contact wall 2c of the housing 2b of the interconnection 2a of the load device 2, respectively.

【0003】ところで、一次側コイル3から二次側コイ
ル4へ伝達される電力を増加させる方法としては、一次
側コイル3又は二次側コイル4のインダクタを増やす、
或いはコア挿入によって伝達効率を向上させる等が考え
られる。まず一次側コイル3又は二次側コイル4のイン
ダクタを増やす方法の場合、インダクタを増大させるた
めに、コイルの巻数を増やすので、コイルが大きくな
り、装置の小型化を妨げる。またコア挿入によって伝達
効率を向上させる方法の場合も、先の方法と同じく、コ
ア挿入によって装置の小型化を妨げることになる他、コ
ストアップにもつながる。
Meanwhile, as a method of increasing the power transmitted from the primary coil 3 to the secondary coil 4, the inductor of the primary coil 3 or the secondary coil 4 is increased.
Alternatively, the transmission efficiency may be improved by inserting a core. First, in the case of the method of increasing the inductor of the primary coil 3 or the secondary coil 4, the number of turns of the coil is increased in order to increase the inductor, so that the coil becomes large, which hinders miniaturization of the device. Also, in the case of the method of improving the transmission efficiency by inserting the core, similarly to the above method, the insertion of the core prevents the downsizing of the device and also leads to an increase in cost.

【0004】そこで、上記以外の方法として、一次側コ
イル3と二次側コイル4間のギャップをできるだけ小さ
くする方法が考えられる。即ち、これは、一次側コイル
3が配設される電力供給装置1の相互接続部1aのハウ
ジング1bの接触壁1cの肉厚と、二次側コイル4が配
設される負荷機器2の相互接続部2aのハウジング2b
の接触壁2cの肉厚をできるだけ薄くして、一次側コイ
ル3と二次側コイル4間の距離を可能な限り小さくする
方法である。しかし、この方法では、ハウジング強度、
ハウジング成型条件、及び絶縁距離等の制限により、ハ
ウジング1b、及びハウジング2bの接触壁1c,2c
の肉厚を薄くするにも限界がある。また、この方法の場
合、図10に示すように商品のデザインによっては、曲
面部14に一次側コイル3、及び二次側コイル4を配設
しなければならないこともある。この場合、一次側コイ
ル3と二次側コイル4間のギャップが大きくなってしま
い、一次側コイル3から二次側コイル4へ伝達される電
力を確保するのが困難になる。
Therefore, as a method other than the above, a method of minimizing the gap between the primary coil 3 and the secondary coil 4 is considered. That is, this depends on the thickness of the contact wall 1c of the housing 1b of the interconnecting part 1a of the power supply device 1 in which the primary coil 3 is disposed, and the mutual thickness of the load device 2 in which the secondary coil 4 is disposed. Housing 2b of connection part 2a
In this method, the thickness of the contact wall 2c is made as thin as possible, and the distance between the primary coil 3 and the secondary coil 4 is made as small as possible. However, in this method, housing strength,
The contact walls 1c and 2c of the housing 1b and the housing 2b may vary depending on housing molding conditions and restrictions such as an insulation distance.
There is also a limit in reducing the thickness of the wall. In addition, in the case of this method, as shown in FIG. 10, depending on the design of the product, the primary side coil 3 and the secondary side coil 4 may need to be disposed on the curved surface portion 14. In this case, the gap between the primary side coil 3 and the secondary side coil 4 becomes large, and it becomes difficult to secure the power transmitted from the primary side coil 3 to the secondary side coil 4.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の点に鑑
みて為されたものであり、一次側コイルと二次側コイル
間のギャップを極端に小さくすることができ、一次側コ
イルから二次側コイルへ伝達される電力を増大させるこ
とができる非接触電力伝達装置を提供することを目的と
している。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is possible to extremely reduce a gap between a primary coil and a secondary coil. It is an object of the present invention to provide a non-contact power transmission device capable of increasing the power transmitted to a secondary coil.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
非接触電力伝達装置は、電力供給装置1側に一次側コイ
ル3を、負荷機器2側に二次側コイル4を配設し、一次
側コイル3から二次側コイル4への電磁誘導により電力
伝達する非接触電力伝達装置において、一次側コイル3
又は二次側コイル4を平面コイル5に形成し、該平面コ
イル5を電力供給装置1又は負荷機器2の相互接続部1
a(2a)の接触壁1c(2c)に配設することを特徴
とするものである。
According to a first aspect of the present invention, there is provided a non-contact power transmission device in which a primary coil 3 is disposed on a power supply device 1 side and a secondary coil 4 is disposed on a load device 2 side. A non-contact power transmission device for transmitting power by electromagnetic induction from a primary coil 3 to a secondary coil 4;
Alternatively, the secondary coil 4 is formed on the plane coil 5, and the plane coil 5 is connected to the interconnection 1 of the power supply device 1 or the load device 2.
a (2a) is disposed on the contact wall 1c (2c).

【0007】また本発明の請求項2に係る非接触電力伝
達装置は、請求項1の構成に加えて、平面コイル5に形
成した一次側コイル3又は二次側コイル4のいずれかを
電力供給装置1又は負荷機器2の相互接続部1a(2
a)の接触壁1c(2c)の外面1d(2d)に配設す
ることを特徴とするものである。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the non-contact power transmission device supplies power to either the primary side coil 3 or the secondary side coil 4 formed on the planar coil 5. Interconnection unit 1a (2
It is characterized in that it is disposed on the outer surface 1d (2d) of the contact wall 1c (2c) in a).

【0008】また本発明の請求項3に係る非接触電力伝
達装置は、請求項1の構成に加えて、平面コイル5に形
成した一次側コイル3又は二次側コイル4のいずれかを
電力供給装置1又は負荷機器2の相互接続部1a(2
a)の接触壁1c(2c)の外面1d(2d)と内面1
e(2e)の両面に配設し、且つ外面1d(2d)と内
面1e(2e)の両面に配設した両コイル3,3(4,
4)を電気的に接続することを特徴とするものである。
According to a third aspect of the present invention, in addition to the configuration of the first aspect, in addition to the configuration of the first aspect, power is supplied to either the primary coil 3 or the secondary coil 4 formed on the planar coil 5. Interconnection unit 1a (2
The outer surface 1d (2d) and the inner surface 1 of the contact wall 1c (2c) in FIG.
e (2e), and both coils 3, 3 (4, 4) disposed on both outer surface 1d (2d) and inner surface 1e (2e).
4) is electrically connected.

【0009】また本発明の請求項4に係る非接触電力伝
達装置は、請求項2又は3のいずれかの構成に加えて、
平面コイル5を保護するための防護シール6で平面コイ
ル5の露出部5aを覆うことを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a non-contact power transmission device according to the second aspect.
The exposed portion 5a of the planar coil 5 is covered with a protective seal 6 for protecting the planar coil 5.

【0010】また本発明の請求項5に係る非接触電力伝
達装置は、請求項4の構成に加えて、前記防護シール6
の中心部に磁気部7を設けたことを特徴とするものであ
る。
According to a fifth aspect of the present invention, in addition to the configuration of the fourth aspect, the non-contact power transmission device further comprises the protective seal 6.
Is provided with a magnetic portion 7 at the center thereof.

【0011】また本発明の請求項6に係る非接触電力伝
達装置は、請求項1乃至4のいずれかの構成に加えて、
一次側コイル3から発生する磁束Bと交差する場所に二
次側コイル4を複数配設したことを特徴とするものであ
る。
According to a sixth aspect of the present invention, there is provided a non-contact power transmission device according to any one of the first to fourth aspects.
It is characterized in that a plurality of secondary coils 4 are arranged at locations where they intersect with a magnetic flux B generated from the primary coil 3.

【0012】また本発明の請求項7に係る非接触電力伝
達装置の製造方法は、上記平面コイル5をホットスタン
ピングによって電力供給装置1又は負荷機器2の相互接
続部1a(2a)の接触壁1c(2c)に配設すること
を特徴とするものである。
According to a seventh aspect of the present invention, in the method for manufacturing a non-contact power transmission device, the planar coil 5 is hot-stamped to contact the power supply device 1 or the contact wall 1c of the interconnecting portion 1a (2a) of the load device 2. (2c).

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を図1乃至図
8に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.

【0014】本発明の実施の形態の一例を図1乃至図3
に示す。図1は本発明の非接触電力伝達装置の電力伝達
部を示すものである。非接触電力伝達装置の電力伝達部
は、電力供給装置1の相互接続部1aと負荷機器2の相
互接続部2aから構成される。電力供給装置1の相互接
続部1aと、負荷機器2の相互接続部2aは夫々、有底
筒状のハウジング1bとハウジング2bで外殻が形成さ
れ、ハウジング1bの接触壁1cの内面1eには一次側
コイル3が、ハウジング2bの接触壁2cの内面2eに
は二次側コイル4が、夫々ハウジング1b、ハウジング
2bの中心軸にコイルの巻き軸が一致するように配設さ
れる。尚、この例では、一次側コイル3には一般に使用
される筒状コイルを用い、一方の二次側コイル4には図
2に示すような銅箔を渦巻き状に形成した平面コイル5
を用いる。またこの平面コイル5の形成、並びにハウジ
ング2bの接触壁2cの内面2eへの配設はホットスタ
ンピングによって行う。
FIGS. 1 to 3 show an example of an embodiment of the present invention.
Shown in FIG. 1 shows a power transmission unit of the wireless power transmission device of the present invention. The power transmission unit of the wireless power transmission device includes an interconnection 1a of the power supply device 1 and an interconnection 2a of the load device 2. The interconnecting portion 1a of the power supply device 1 and the interconnecting portion 2a of the load device 2 have outer shells formed of a bottomed cylindrical housing 1b and a housing 2b, respectively, and are provided on an inner surface 1e of a contact wall 1c of the housing 1b. The primary side coil 3 is disposed on the inner surface 2e of the contact wall 2c of the housing 2b, and the secondary side coil 4 is disposed such that the winding axis of the coil coincides with the central axis of the housing 1b and the housing 2b. In this example, a generally used cylindrical coil is used for the primary coil 3, and a planar coil 5 in which a copper foil is spirally formed as shown in FIG.
Is used. The formation of the planar coil 5 and the arrangement of the contact wall 2c of the housing 2b on the inner surface 2e are performed by hot stamping.

【0015】次に本発明の非接触電力伝達装置の動作説
明をする。図3はこの非接触電力伝達装置の回路図を示
すものであり、図3(a)が電力供給装置1の回路図、
図3(b)が負荷機器2の回路図である。まず電力供給
装置1において、交流電源8から供給される交流電流を
高周波発生回路9によって高周波電流に変換し、ハウジ
ング1bの接触壁1cの内面1eに配設した一次側コイ
ル3に高周波電流を流し、図1に示すような磁束Bを発
生させる。次に負荷機器2において、ハウジング2bの
接触壁2cの内面2eに配設した平面コイル5である二
次側コイル4に前記磁束Bが交差することによって、電
磁誘導により二次側コイル4に起電力が発生し、整流ダ
イオード10により整流した後、電池11に電流を供給
し、充電を行う。こうして電力を供給された負荷機器2
は負荷機器2に配設した電源スイッチ13をオンにする
ことによって負荷12を駆動させることができる。
Next, the operation of the wireless power transmission device of the present invention will be described. FIG. 3 is a circuit diagram of the non-contact power transmission device. FIG. 3A is a circuit diagram of the power supply device 1, and FIG.
FIG. 3B is a circuit diagram of the load device 2. First, in the power supply device 1, an AC current supplied from an AC power supply 8 is converted into a high-frequency current by a high-frequency generation circuit 9, and the high-frequency current is supplied to the primary coil 3 disposed on the inner surface 1e of the contact wall 1c of the housing 1b. , A magnetic flux B as shown in FIG. Next, in the load device 2, the magnetic flux B intersects with the secondary coil 4, which is a planar coil 5 disposed on the inner surface 2e of the contact wall 2c of the housing 2b, so that the secondary coil 4 is generated by electromagnetic induction. After power is generated and rectified by the rectifier diode 10, a current is supplied to the battery 11 to perform charging. Load equipment 2 supplied with power in this way
Can turn on the load 12 by turning on the power switch 13 disposed on the load device 2.

【0016】上記のように本発明の非接触電力伝達装置
は、二次側コイル4を平面コイル5に形成し、平面コイ
ル5を負荷機器2の相互接続部2aのハウジング2bの
接触壁2cの内面2eに配設することで、平面コイル5
である二次側コイル4の全部分と相手側コイルである一
次側コイル3間の距離が短くなり、一次側コイル3から
発生する磁束Bのうち二次側コイル4に交差する磁束B
の数を多くすることができるので、大きな起電力が得ら
れ、一次側コイル3から二次側コイル4へ伝達される電
力を増大させることができる。また逆に負荷機器2側に
一定の電力を得ようとする場合、従来のものと比べて、
一次側コイル3又は二次側コイル4のインダクタが小さ
くて済むため、部品の小型化、及びコストダウンを図る
ことができる。また平面コイル5であるため、縦方向の
スペースを取らないので、装置を小型化、及び薄型化で
きる。また上記平面コイル5をホットスタンピングによ
って負荷機器2の相互接続部2aのハウジング2bの接
触壁2cに配設することで、非接触電力伝達装置の電力
伝達部を低コストで製造することが可能となる。またホ
ットスタンピングにより、ハウジングの曲面部にも平面
コイル5を配設できるため、商品のハウジング形状の自
由度が増す。
As described above, in the non-contact power transmission device of the present invention, the secondary coil 4 is formed on the planar coil 5 and the planar coil 5 is formed on the contact wall 2 c of the housing 2 b of the interconnection 2 a of the load device 2. By disposing on the inner surface 2e, the planar coil 5
, The distance between the entire portion of the secondary coil 4 and the primary coil 3, which is the partner coil, becomes shorter, and the magnetic flux B crossing the secondary coil 4 among the magnetic fluxes B generated from the primary coil 3.
Can be increased, a large electromotive force can be obtained, and the power transmitted from the primary coil 3 to the secondary coil 4 can be increased. Conversely, when trying to obtain constant power on the load device 2 side, compared to the conventional one,
Since the inductor of the primary side coil 3 or the secondary side coil 4 can be small, the size of components can be reduced and the cost can be reduced. Further, since the planar coil 5 does not take up space in the vertical direction, the device can be reduced in size and thickness. In addition, by disposing the planar coil 5 on the contact wall 2c of the housing 2b of the interconnection 2a of the load device 2 by hot stamping, it is possible to manufacture the power transmission unit of the non-contact power transmission device at low cost. Become. Further, since the flat coil 5 can be disposed on the curved surface of the housing by hot stamping, the degree of freedom of the housing shape of the product is increased.

【0017】次に本発明の実施の形態の他の例を図4に
示す。この非接触電力伝達装置は、平面コイル5である
二次側コイル4の配設を除く他の構成は前記例と同じで
あり、この例では二次側コイル4をハウジング2bの接
触壁2cに外面2dと面一となるように埋設する。この
ような構成とすることで、一次側コイル3と二次側コイ
ル4間のギャップが、ハウジング1bの接触壁1cの厚
みのみとなり、短くなるため、一次側コイル3から二次
側コイル4へ伝達される電力をより増大させることがで
きる。
Next, another example of the embodiment of the present invention is shown in FIG. This non-contact power transmission device has the same configuration as that of the above example except for the arrangement of the secondary coil 4 which is the planar coil 5, and in this example, the secondary coil 4 is attached to the contact wall 2c of the housing 2b. It is buried so as to be flush with the outer surface 2d. With such a configuration, the gap between the primary coil 3 and the secondary coil 4 becomes only the thickness of the contact wall 1c of the housing 1b and becomes shorter. The transmitted power can be further increased.

【0018】次に本発明の実施の形態の他の例を図5に
示す。この非接触電力伝達装置は、平面コイル5である
二次側コイル4の配設を除く他の構成は第1の例と同じ
であり、この例では二次側コイル4として2つの平面コ
イル5,5をハウジング2bの接触壁2cの外面2dと
内面2eの両面に配設し、且つ外面2dと内面2eの両
面に配設した両コイル5,5を電気的接続部材15を介
して接続する。尚、外面2dと内面2eの両面に配設し
た両コイル5,5は夫々、接触壁2cの外面2d、及び
内面2eと面一になるように埋設する。このような構成
とすることで、一次側コイル3と二次側コイル4間のギ
ャップが、ハウジング1bの接触壁1cの厚みのみとな
り、短くなるため、一次側コイル3から二次側コイル4
へ伝達される電力を増大させることができ、加えてハウ
ジング2bの接触壁2cの外面2dと内面2eの両面に
配設した両コイル5,5を接続することにより、コイル
の巻数が増え、インダクタが増大するため、一次側コイ
ル3から二次側コイル4へ伝達される電力をさらに増大
させることができる。
Next, another example of the embodiment of the present invention is shown in FIG. This non-contact power transmission device has the same configuration as that of the first example except for the arrangement of the secondary coil 4 which is the planar coil 5, and in this example, two planar coils 5 are used as the secondary coil 4. , 5 are disposed on both the outer surface 2d and the inner surface 2e of the contact wall 2c of the housing 2b, and the coils 5, 5 disposed on both the outer surface 2d and the inner surface 2e are connected via an electrical connection member 15. . The coils 5, 5 disposed on both the outer surface 2d and the inner surface 2e are embedded so as to be flush with the outer surface 2d and the inner surface 2e of the contact wall 2c, respectively. With such a configuration, the gap between the primary coil 3 and the secondary coil 4 is reduced only by the thickness of the contact wall 1c of the housing 1b, so that the gap between the primary coil 3 and the secondary coil 4 is reduced.
The power transmitted to the contact wall 2c of the housing 2b can be increased. In addition, by connecting both the coils 5, 5 disposed on both the outer surface 2d and the inner surface 2e of the contact wall 2c of the housing 2b, the number of turns of the coil is increased and the inductor is increased. Therefore, the power transmitted from the primary coil 3 to the secondary coil 4 can be further increased.

【0019】次に本発明の実施の形態の他の例を図6に
示す。この非接触電力伝達装置は、第2の例の構成にお
いて、ハウジング2bの接触壁2cの外面2dに面一に
埋設した平面コイル5を保護するために、防護シール6
で平面コイル5の露出部5aを覆ったものである。この
ような構成とすることで、負荷機器2の落下、転倒、及
び電力供給装置1との着脱による二次側コイル4のコイ
ルの断線又は劣化を防止することができる。
Next, another example of the embodiment of the present invention is shown in FIG. This non-contact power transmission device has a protective seal 6 to protect the planar coil 5 buried flush with the outer surface 2d of the contact wall 2c of the housing 2b in the configuration of the second example.
Cover the exposed portion 5a of the planar coil 5. With such a configuration, it is possible to prevent disconnection or deterioration of the coil of the secondary coil 4 due to dropping and falling of the load device 2 and detachment from the power supply device 1.

【0020】次に本発明の実施の形態の他の例を図7に
示す。この非接触電力伝達装置は、前記例の構成におい
て、防護シール6の中心部に磁気部7を設けたものであ
る。尚、磁気部7の中心は一次側コイル3と、二次側コ
イル4の巻き軸と同一直線上に位置する。このような構
成とすることで、磁束Bが防護シール6の中心部の磁気
部7に集束され、二次側コイル4を交差する磁束Bの数
が増加するため、一次側コイル3から二次側コイル4へ
伝達される電力の伝達効率を上げることができる。
Next, another example of the embodiment of the present invention is shown in FIG. This non-contact power transmission device has a configuration in which the magnetic portion 7 is provided at the center of the protective seal 6 in the configuration of the above example. The center of the magnetic part 7 is located on the same straight line as the winding axes of the primary coil 3 and the secondary coil 4. With such a configuration, the magnetic flux B is focused on the magnetic portion 7 at the center of the protective seal 6 and the number of magnetic fluxes B crossing the secondary coil 4 increases. The transmission efficiency of the power transmitted to the side coil 4 can be increased.

【0021】次に本発明の実施の形態の他の例を図8に
示す。この非接触電力伝達装置は、平面コイル5である
二次側コイル4の配設を除く他の構成は第2の例と同じ
であり、この例では一次側コイル3から発生する磁束B
と交差する場所に二次側コイル4を複数配設する。この
ように1つの二次側コイル4の場合では交差しない磁束
Bも二次側コイル4を前記磁束Bと交差するように複数
設けることにより、二次側コイル4に交差する磁束Bの
数を増やすことができるので、大きな起電力が得られ、
一次側コイル3から二次側コイル4へ伝達される電力を
より増大させることができる。
Next, another example of the embodiment of the present invention is shown in FIG. This non-contact power transmission device has the same configuration as that of the second example except for the arrangement of the secondary coil 4 which is the planar coil 5, and in this example, the magnetic flux B generated from the primary coil 3
A plurality of secondary side coils 4 are disposed at a location where the secondary coil 4 intersects. As described above, by providing a plurality of the magnetic fluxes B that do not intersect with one secondary coil 4 so as to intersect the magnetic flux B, the number of the magnetic fluxes B intersecting the secondary coil 4 can be reduced. Can increase the amount of electromotive force,
The power transmitted from the primary coil 3 to the secondary coil 4 can be further increased.

【0022】[0022]

【発明の効果】本発明の請求項1記載の発明にあって
は、電力供給装置側に一次側コイルを、負荷機器側に二
次側コイルを配設し、一次側コイルから二次側コイルへ
の電磁誘導により電力伝達する非接触電力伝達装置にお
いて、一次側コイル又は二次側コイルを平面コイルに形
成し、該平面コイルを電力供給装置又は負荷機器の相互
接続部の接触壁に配設することで、一次側コイル又は二
次側コイルが平面コイルとなっているため、該平面コイ
ルの全部分と相手側コイル間の距離が短くなり、一次側
コイルから発生する磁束のうち二次側コイルに交差する
磁束の数を多くすることができるので、大きな起電力が
得られ、一次側コイルから二次側コイルへ伝達される電
力を増大させることができる。また逆に負荷機器側に一
定の電力を得ようとする場合、従来のものと比べて、一
次側コイル又は二次側コイルのインダクタが小さくて済
むため、部品の小型化、及びコストダウンを図ることが
できる。また平面コイルであるため、縦方向のスペース
を取らないので、装置を小型化、及び薄型化できる。
According to the first aspect of the present invention, the primary coil is disposed on the power supply device side, the secondary coil is disposed on the load equipment side, and the secondary coil is disposed from the primary coil. In a non-contact power transmission device that transmits power by electromagnetic induction to a power supply device, a primary coil or a secondary coil is formed in a planar coil, and the planar coil is disposed on a contact wall of an interconnecting portion of a power supply device or a load device. By doing so, since the primary coil or the secondary coil is a planar coil, the distance between the entire part of the planar coil and the partner coil is reduced, and the secondary side of the magnetic flux generated from the primary coil is reduced. Since the number of magnetic fluxes crossing the coil can be increased, a large electromotive force can be obtained, and the power transmitted from the primary coil to the secondary coil can be increased. Conversely, when trying to obtain a certain amount of power on the load device side, the inductor of the primary coil or the secondary coil can be smaller than that of the conventional device, so that miniaturization of parts and cost reduction are achieved. be able to. Further, since the coil is a planar coil, it does not take up space in the vertical direction, so that the device can be reduced in size and thickness.

【0023】また本発明の請求項2記載の発明にあって
は、請求項1記載の発明の効果に加えて、平面コイルに
形成した一次側コイル又は二次側コイルのいずれかを電
力供給装置又は負荷機器の相互接続部の接触壁の外面に
配設することで、一次側コイルと二次側コイル間のギャ
ップが、電力供給装置又は負荷機器のいずれかの相互接
続部の接触壁の厚みのみとなり、短くなるため、一次側
コイルから二次側コイルへ伝達される電力をより増大さ
せることができる。
According to a second aspect of the present invention, in addition to the effects of the first aspect, either the primary side coil or the secondary side coil formed in the planar coil is supplied to the power supply device. Or, by arranging on the outer surface of the contact wall of the interconnection of the load device, the gap between the primary coil and the secondary coil increases the thickness of the contact wall of the interconnection of either the power supply device or the load device. Only the power is shortened, so that the power transmitted from the primary coil to the secondary coil can be further increased.

【0024】また本発明の請求項3記載の発明にあって
は、請求項1記載の発明の効果に加えて、平面コイルに
形成した一次側コイル又は二次側コイルのいずれかを電
力供給装置又は負荷機器の相互接続部の接触壁の外面と
内面の両面に配設し、且つ外面と内面の両面に配設した
両コイルを電気的に接続することで、一次側コイルと二
次側コイル間のギャップが、電力供給装置又は負荷機器
のいずれかの相互接続部の接触壁の厚みのみとなり、短
くなるため、一次側コイルから二次側コイルへ伝達され
る電力を増大させることができ、加えて電力供給装置又
は負荷機器の相互接続部の接触壁の外面と内面の両面に
配設した両コイルを接続することにより、コイルの巻数
が増え、インダクタが増大するため、一次側コイルから
二次側コイルへ伝達される電力をさらに増大させること
ができる。
According to a third aspect of the present invention, in addition to the effect of the first aspect, either the primary side coil or the secondary side coil formed in the planar coil is supplied to the power supply device. Alternatively, the primary coil and the secondary coil are disposed on both the outer surface and the inner surface of the contact wall of the interconnection part of the load device, and both coils disposed on the outer surface and the inner surface are electrically connected. Since the gap between the power supply device and the thickness of the contact wall of any of the interconnecting parts of the load device is reduced and shortened, the power transmitted from the primary coil to the secondary coil can be increased, In addition, by connecting both coils disposed on both the outer surface and the inner surface of the contact wall of the interconnection part of the power supply device or the load device, the number of turns of the coil increases and the number of inductors increases. Transfer to the next coil Power can be further increased.

【0025】また本発明の請求項4記載の発明にあって
は、請求項2又は3のいずれかに記載の発明の効果に加
えて、平面コイルを保護するための防護シールで平面コ
イルの露出部を覆うことで、負荷機器の落下、転倒、及
び電力供給装置との着脱による一次側コイル又は二次側
コイルのいずれかのコイルの断線又は劣化を防止するこ
とができる。
According to a fourth aspect of the present invention, in addition to the effects of the second or third aspect, the flat coil is exposed by a protective seal for protecting the flat coil. By covering the portion, it is possible to prevent disconnection or deterioration of either the primary side coil or the secondary side coil due to dropping and falling of the load device and attachment / detachment with the power supply device.

【0026】また本発明の請求項5記載の発明にあって
は、請求項4記載の発明の効果に加えて、前記防護シー
ルの中心部に磁気部を設けたことで、磁束が防護シール
の中心部の磁気部に集束され、二次側コイルを交差する
磁束の数が増加するため、一次側コイルから二次側コイ
ルへ伝達される電力の伝達効率を上げることができる。
According to a fifth aspect of the present invention, in addition to the effect of the fourth aspect, a magnetic portion is provided at the center of the protective seal, so that a magnetic flux is generated by the protective seal. Since the number of magnetic fluxes that are focused on the central magnetic portion and cross the secondary coil increases, the transmission efficiency of power transmitted from the primary coil to the secondary coil can be increased.

【0027】また本発明の請求項6記載の発明にあって
は、請求項1乃至4のいずれかに記載の発明の効果に加
えて、一次側コイルから発生する磁束と交差する場所に
二次側コイルを複数配設したことで、1つの二次側コイ
ルの場合では交差しない磁束も二次側コイルを前記磁束
と交差するように複数設けることにより、二次側コイル
に交差する磁束の数を増やすことができるので、大きな
起電力が得られ、一次側コイルから二次側コイルへ伝達
される電力をより増大させることができる。
According to the invention of claim 6 of the present invention, in addition to the effects of the invention of any one of claims 1 to 4, a secondary coil is provided at a place where the magnetic flux generated from the primary coil intersects. By arranging a plurality of side coils, the number of magnetic fluxes that intersect with the secondary coil is also provided by providing a plurality of secondary coils such that the magnetic flux that does not intersect in the case of one secondary coil intersects with the magnetic flux. Can be increased, a large electromotive force can be obtained, and the power transmitted from the primary coil to the secondary coil can be further increased.

【0028】また本発明の請求項7記載の発明にあって
は、上記平面コイルをホットスタンピングによって電力
供給装置又は負荷機器の相互接続部の接触壁に配設する
ことで、非接触電力伝達装置の電力伝達部を低コストで
製造することが可能となる。またホットスタンピングに
より、ハウジングの曲面部にも平面コイルを配設できる
ため、商品のハウジング形状の自由度が増す。
In the invention according to claim 7 of the present invention, the planar coil is disposed on a contact wall of an interconnecting portion of a power supply device or a load device by hot stamping, so that a non-contact power transmission device is provided. Can be manufactured at low cost. In addition, since the flat coil can be arranged on the curved surface of the housing by hot stamping, the degree of freedom of the housing shape of the product is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示すものであり、
非接触電力伝達装置の電力伝達部の断面図である。
FIG. 1 shows an example of an embodiment of the present invention,
It is sectional drawing of the electric power transmission part of a non-contact electric power transmission device.

【図2】同上の(a)は負荷機器の相互接続部の接触壁
近傍の上面図、(b)はA−A線断面図である。
FIG. 2A is a top view of the vicinity of a contact wall of an interconnection portion of a load device, and FIG. 2B is a cross-sectional view taken along line AA.

【図3】同上の(a)は電力供給装置の回路図、(b)
は負荷機器の回路図である。
FIG. 3A is a circuit diagram of a power supply device, and FIG.
Is a circuit diagram of a load device.

【図4】本発明の実施の形態の他の例を示すものであ
り、非接触電力伝達装置の電力伝達部の断面図である。
FIG. 4 illustrates another example of the embodiment of the present invention, and is a cross-sectional view of a power transmission unit of a non-contact power transmission device.

【図5】本発明の実施の形態の他の例を示すものであ
り、非接触電力伝達装置の電力伝達部の断面図である。
FIG. 5 illustrates another example of the embodiment of the present invention, and is a cross-sectional view of a power transmission unit of a non-contact power transmission device.

【図6】本発明の実施の形態の他の例を示すものであ
り、非接触電力伝達装置の電力伝達部の断面図である。
FIG. 6 shows another example of the embodiment of the present invention, and is a cross-sectional view of a power transmission unit of a non-contact power transmission device.

【図7】本発明の実施の形態の他の例を示すものであ
り、非接触電力伝達装置の電力伝達部の断面図である。
FIG. 7 shows another example of the embodiment of the present invention, and is a cross-sectional view of a power transmission unit of a non-contact power transmission device.

【図8】本発明の実施の形態の他の例を示すものであ
り、非接触電力伝達装置の電力伝達部の断面図である。
FIG. 8 shows another example of the embodiment of the present invention, and is a cross-sectional view of a power transmission unit of a non-contact power transmission device.

【図9】従来例を示すものであり、非接触電力伝達装置
の電力伝達部の断面図である。
FIG. 9 illustrates a conventional example, and is a cross-sectional view of a power transmission unit of a non-contact power transmission device.

【図10】従来例を示すものであり、非接触電力伝達装
置の電力伝達部の断面図である。
FIG. 10 illustrates a conventional example, and is a cross-sectional view of a power transmission unit of a wireless power transmission device.

【符号の説明】[Explanation of symbols]

1 電力供給装置 1a 相互接続部 1c 接触壁 1d 外面 1e 内面 2 負荷機器 2a 相互接続部 2c 接触壁 2d 外面 2e 内面 3 一次側コイル 4 二次側コイル 5 平面コイル 5a 露出部 6 防護シール 7 磁気部 B 磁束 DESCRIPTION OF SYMBOLS 1 Power supply apparatus 1a Interconnection part 1c Contact wall 1d Outer surface 1e Inner surface 2 Load equipment 2a Interconnector 2c Contact wall 2d Outer surface 2e Inner surface 3 Primary side coil 4 Secondary side coil 5 Planar coil 5a Exposed part 6 Protective seal 7 Magnetic part B magnetic flux

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電力供給装置側に一次側コイルを、負荷
機器側に二次側コイルを配設し、一次側コイルから二次
側コイルへの電磁誘導により電力伝達する非接触電力伝
達装置において、一次側コイル又は二次側コイルを平面
コイルに形成し、該平面コイルを電力供給装置又は負荷
機器の相互接続部の接触壁に配設することを特徴とする
非接触電力伝達装置。
1. A non-contact power transmission device in which a primary coil is disposed on a power supply device side, a secondary coil is disposed on a load device side, and power is transmitted by electromagnetic induction from the primary coil to the secondary coil. A non-contact power transmission device, wherein a primary coil or a secondary coil is formed in a planar coil, and the planar coil is disposed on a contact wall of an interconnecting portion of a power supply device or a load device.
【請求項2】 平面コイルに形成した一次側コイル又は
二次側コイルのいずれかを電力供給装置又は負荷機器の
相互接続部の接触壁の外面に配設することを特徴とする
請求項1記載の非接触電力伝達装置。
2. A power supply device or a load device, wherein one of a primary coil and a secondary coil formed on a planar coil is disposed on an outer surface of a contact wall of an interconnecting portion of the power supply device or the load device. Non-contact power transmission device.
【請求項3】 平面コイルに形成した一次側コイル又は
二次側コイルのいずれかを電力供給装置又は負荷機器の
相互接続部の接触壁の外面と内面の両面に配設し、且つ
外面と内面の両面に配設した両コイルを電気的に接続す
ることを特徴とする請求項1記載の非接触電力伝達装
置。
3. A primary coil or a secondary coil formed in a planar coil is disposed on both the outer surface and the inner surface of a contact wall of an interconnecting portion of a power supply device or a load device, and the outer surface and the inner surface are provided. The non-contact power transmission device according to claim 1, wherein both coils disposed on both surfaces of the non-contact power transmission device are electrically connected.
【請求項4】 平面コイルを保護するための防護シール
で平面コイルの露出部を覆うことを特徴とする請求項2
又は3のいずれかに記載の非接触電力伝達装置。
4. The exposed portion of the planar coil is covered with a protective seal for protecting the planar coil.
Or the non-contact power transmission device according to any one of 3.
【請求項5】 前記防護シールの中心部に磁気部を設け
たことを特徴とする請求項4記載の非接触電力伝達装
置。
5. The non-contact power transmission device according to claim 4, wherein a magnetic portion is provided at a central portion of the protective seal.
【請求項6】 一次側コイルから発生する磁束と交差す
る場所に二次側コイルを複数配設したことを特徴とする
請求項1乃至4のいずれかに記載の非接触電力伝達装
置。
6. The non-contact power transmission device according to claim 1, wherein a plurality of secondary coils are provided at locations intersecting with a magnetic flux generated from the primary coils.
【請求項7】 上記平面コイルをホットスタンピングに
よって電力供給装置又は負荷機器の相互接続部の接触壁
に配設することを特徴とする非接触電力伝達装置の製造
方法。
7. A method for manufacturing a non-contact power transmission device, wherein the planar coil is disposed on a contact wall of an interconnecting portion of a power supply device or a load device by hot stamping.
JP11146741A 1999-05-26 1999-05-26 Noncontact power transmission device and manufacture thereof Pending JP2000341885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11146741A JP2000341885A (en) 1999-05-26 1999-05-26 Noncontact power transmission device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11146741A JP2000341885A (en) 1999-05-26 1999-05-26 Noncontact power transmission device and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000341885A true JP2000341885A (en) 2000-12-08

Family

ID=15414554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11146741A Pending JP2000341885A (en) 1999-05-26 1999-05-26 Noncontact power transmission device and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000341885A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099965A3 (en) * 2011-01-18 2012-11-01 Afshin Partovi Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
JP2013062987A (en) * 2011-09-14 2013-04-04 Toshiba Corp Wireless power transmission device and wireless power transmission method
US8629654B2 (en) 2006-01-31 2014-01-14 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US8890470B2 (en) 2010-06-11 2014-11-18 Mojo Mobility, Inc. System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith
US9356659B2 (en) 2011-01-18 2016-05-31 Mojo Mobility, Inc. Chargers and methods for wireless power transfer
US9461501B2 (en) 2006-06-01 2016-10-04 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US9496732B2 (en) 2011-01-18 2016-11-15 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9577440B2 (en) 2006-01-31 2017-02-21 Mojo Mobility, Inc. Inductive power source and charging system
US9722447B2 (en) 2012-03-21 2017-08-01 Mojo Mobility, Inc. System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment
US9837846B2 (en) 2013-04-12 2017-12-05 Mojo Mobility, Inc. System and method for powering or charging receivers or devices having small surface areas or volumes
US10115520B2 (en) 2011-01-18 2018-10-30 Mojo Mobility, Inc. Systems and method for wireless power transfer
US11201500B2 (en) 2006-01-31 2021-12-14 Mojo Mobility, Inc. Efficiencies and flexibilities in inductive (wireless) charging
US11211975B2 (en) 2008-05-07 2021-12-28 Mojo Mobility, Inc. Contextually aware charging of mobile devices
US11329511B2 (en) 2006-06-01 2022-05-10 Mojo Mobility Inc. Power source, charging system, and inductive receiver for mobile devices
US11398747B2 (en) 2011-01-18 2022-07-26 Mojo Mobility, Inc. Inductive powering and/or charging with more than one power level and/or frequency
US11444485B2 (en) 2019-02-05 2022-09-13 Mojo Mobility, Inc. Inductive charging system with charging electronics physically separated from charging coil

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316371B1 (en) 2006-01-31 2022-04-26 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US9577440B2 (en) 2006-01-31 2017-02-21 Mojo Mobility, Inc. Inductive power source and charging system
US11342792B2 (en) 2006-01-31 2022-05-24 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US8629654B2 (en) 2006-01-31 2014-01-14 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US11569685B2 (en) 2006-01-31 2023-01-31 Mojo Mobility Inc. System and method for inductive charging of portable devices
US11349315B2 (en) 2006-01-31 2022-05-31 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US8947047B2 (en) 2006-01-31 2015-02-03 Mojo Mobility, Inc. Efficiency and flexibility in inductive charging
US11462942B2 (en) 2006-01-31 2022-10-04 Mojo Mobility, Inc. Efficiencies and method flexibilities in inductive (wireless) charging
US9276437B2 (en) 2006-01-31 2016-03-01 Mojo Mobility, Inc. System and method that provides efficiency and flexiblity in inductive charging
US11404909B2 (en) 2006-01-31 2022-08-02 Mojo Mobillity Inc. Systems for inductive charging of portable devices that include a frequency-dependent shield for reduction of electromagnetic interference and heat during inductive charging
US11201500B2 (en) 2006-01-31 2021-12-14 Mojo Mobility, Inc. Efficiencies and flexibilities in inductive (wireless) charging
US9793721B2 (en) 2006-01-31 2017-10-17 Mojo Mobility, Inc. Distributed charging of mobile devices
US11411433B2 (en) 2006-01-31 2022-08-09 Mojo Mobility, Inc. Multi-coil system for inductive charging of portable devices at different power levels
US11329511B2 (en) 2006-06-01 2022-05-10 Mojo Mobility Inc. Power source, charging system, and inductive receiver for mobile devices
US9461501B2 (en) 2006-06-01 2016-10-04 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US11121580B2 (en) 2006-06-01 2021-09-14 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US11601017B2 (en) 2006-06-01 2023-03-07 Mojo Mobility Inc. Power source, charging system, and inductive receiver for mobile devices
US11606119B2 (en) 2008-05-07 2023-03-14 Mojo Mobility Inc. Metal layer for inductive power transfer
US11211975B2 (en) 2008-05-07 2021-12-28 Mojo Mobility, Inc. Contextually aware charging of mobile devices
US11283306B2 (en) 2010-06-11 2022-03-22 Mojo Mobility, Inc. Magnet with multiple opposing poles on a surface for use with magnetically sensitive components
US10714986B2 (en) 2010-06-11 2020-07-14 Mojo Mobility, Inc. Intelligent initiation of inductive charging process
US8890470B2 (en) 2010-06-11 2014-11-18 Mojo Mobility, Inc. System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith
US9112362B2 (en) 2011-01-18 2015-08-18 Mojo Mobility, Inc. Methods for improved transfer efficiency in a multi-dimensional inductive charger
US11398747B2 (en) 2011-01-18 2022-07-26 Mojo Mobility, Inc. Inductive powering and/or charging with more than one power level and/or frequency
US10115520B2 (en) 2011-01-18 2018-10-30 Mojo Mobility, Inc. Systems and method for wireless power transfer
US9112363B2 (en) 2011-01-18 2015-08-18 Mojo Mobility, Inc. Intelligent charging of multiple electric or electronic devices with a multi-dimensional inductive charger
US9112364B2 (en) 2011-01-18 2015-08-18 Mojo Mobility, Inc. Multi-dimensional inductive charger and applications thereof
US9106083B2 (en) 2011-01-18 2015-08-11 Mojo Mobility, Inc. Systems and method for positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
US9496732B2 (en) 2011-01-18 2016-11-15 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9356659B2 (en) 2011-01-18 2016-05-31 Mojo Mobility, Inc. Chargers and methods for wireless power transfer
US9178369B2 (en) 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
WO2012099965A3 (en) * 2011-01-18 2012-11-01 Afshin Partovi Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
WO2013038783A3 (en) * 2011-09-14 2013-07-18 Kabushiki Kaisha Toshiba Wireless power transmission device and method thereof
JP2013062987A (en) * 2011-09-14 2013-04-04 Toshiba Corp Wireless power transmission device and wireless power transmission method
CN103814420A (en) * 2011-09-14 2014-05-21 株式会社东芝 Wireless power transmission device and method thereof
US9722447B2 (en) 2012-03-21 2017-08-01 Mojo Mobility, Inc. System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment
US11292349B2 (en) 2013-04-12 2022-04-05 Mojo Mobility Inc. System and method for powering or charging receivers or devices having small surface areas or volumes
US11114886B2 (en) 2013-04-12 2021-09-07 Mojo Mobility, Inc. Powering or charging small-volume or small-surface receivers or devices
US9837846B2 (en) 2013-04-12 2017-12-05 Mojo Mobility, Inc. System and method for powering or charging receivers or devices having small surface areas or volumes
US11929202B2 (en) 2013-04-12 2024-03-12 Mojo Mobility Inc. System and method for powering or charging receivers or devices having small surface areas or volumes
US11444485B2 (en) 2019-02-05 2022-09-13 Mojo Mobility, Inc. Inductive charging system with charging electronics physically separated from charging coil
US11811238B2 (en) 2019-02-05 2023-11-07 Mojo Mobility Inc. Inductive charging system with charging electronics physically separated from charging coil

Similar Documents

Publication Publication Date Title
KR101896631B1 (en) Non-contact Charging Module and Non-contact Charging Instrument
JP2000341885A (en) Noncontact power transmission device and manufacture thereof
JP5118394B2 (en) Non-contact power transmission equipment
WO2009081934A1 (en) Plane coil, and non-contact power transmission device using the same
WO2012099170A1 (en) Contactless power transfer system
JP2002199598A (en) Contactless battery charger
JPH11103531A (en) Noncontact charger
TW201239920A (en) Wireless power supply system and multi-layer shim assembly
US11232900B2 (en) Device for a wireless power transfer system
JP4835787B1 (en) Non-contact charging module and non-contact charging device
EP2631922B1 (en) Non-contact charging module and non-contact charger
TW201320121A (en) Planar coil, coil module including planar coil, power receiving device including planar coil, and contactless electric power transmission apparatus including planar coil
EP2631923B1 (en) Wireless power connector and wireless power connector system
US11189417B2 (en) Transformer device
JP5223509B2 (en) Power conversion transmission device and non-contact type charged device
CN212934371U (en) Coil module
JP2019165096A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system
JP5018124B2 (en) POWER TRANSMISSION SYSTEM, POWER TRANSMISSION DEVICE, AND ELECTRONIC DEVICE
JP7106943B2 (en) Coil unit, wireless power transmission device, wireless power reception device, wireless power transmission system
JP3766295B2 (en) Contactless charger
JP5595893B2 (en) Resonant coil and non-contact power transmission device having the same
JP2009004514A (en) Non-contact power transfer apparatus
WO2023217379A1 (en) Inductor arrangement for generating or receiving an electromagnetic field
JP2024039908A (en) Coil parts, coil intermediate materials, power transmission equipment, power reception equipment, and power transmission systems
JP2005110357A (en) Noncontact charging electronic apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050125