JP2000340883A - Multiwavelength oscillating optical semiconductor device - Google Patents

Multiwavelength oscillating optical semiconductor device

Info

Publication number
JP2000340883A
JP2000340883A JP11147560A JP14756099A JP2000340883A JP 2000340883 A JP2000340883 A JP 2000340883A JP 11147560 A JP11147560 A JP 11147560A JP 14756099 A JP14756099 A JP 14756099A JP 2000340883 A JP2000340883 A JP 2000340883A
Authority
JP
Japan
Prior art keywords
quantum
layer
quantum boxes
wavelength
quantum box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11147560A
Other languages
Japanese (ja)
Inventor
Minefumi Shimoyama
峰史 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11147560A priority Critical patent/JP2000340883A/en
Publication of JP2000340883A publication Critical patent/JP2000340883A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement stable and simultaneous oscillation of a plurality of different wavelengths without making the structure of an element large, by arranging a semiconductor gain waveguide, which has a plurality of quantum boxes each having a different size within an active region thereof, and a reflecting mirror which has a high reflectance with respect to a plurality of discrete wavelengths, in series with each other. SOLUTION: A semiconductor gain waveguide having a number of quantum boxes 1 to 3 each having a different size within an active region 4 thereof, and a reflecting mirror 5 having a high reflectance with respect to a plurality of discrete wavelengths are arranged in series with each other. As the above-mentioned reflecting mirror 5, a distribution reflecting mirror 5 wherein diffraction gratings, each having a gradually varied pitch, are cyclically formed is used. Further, the quantum boxes 1 to 3 are either quantum boxes 1 to 3 based on a Stranski-Krastanow mode, or quantum boxes 1 to 3 which are self-structured by an atomic layer epitaxy method. The quantum boxes 1 to 3 whose diameters are not uniform are formed at a high density, whereby multiwavelength oscillation can be implemented, and the intensity of multiwavelength oscillation light 8 is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多波長発振光半導体
装置に関するものであり、特に、波長多重通信システム
の光源として用いる複数の異なる波長で同時に安定に発
振する多波長発振光半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-wavelength oscillating optical semiconductor device, and more particularly to a multi-wavelength oscillating optical semiconductor device used as a light source in a wavelength division multiplexing communication system and capable of oscillating simultaneously at a plurality of different wavelengths. is there.

【0002】[0002]

【従来の技術】近年のインターネット利用者数の急激な
増大に伴い、光通信システムの整備が急ピッチで進めら
れている。しかし、動画などの大規模データを必要な時
に遠隔地から受け取るといった新しい形態のサービスも
始まりつつあり、さらなる指数関数的な通信量の増大が
見込まれる現在、従来の時分割多重通信システムでは早
晩限界に達すると考えられている。
2. Description of the Related Art With the rapid increase in the number of Internet users in recent years, maintenance of optical communication systems has been progressing at a rapid pace. However, a new form of service, such as receiving large-scale data such as moving images from a remote location when needed, is also starting to occur, and the exponential increase in traffic is expected at present. Is believed to reach.

【0003】この様な状況を打開するために、異なる複
数の波長の光を一本の光ファイバに導入する波長多重通
信への移行が叫ばれているが、この次世代の通信手段と
目されている波長多重通信システムには、当然ながら複
数の異なる波長の光を放射する光源が必要となる。
[0003] In order to overcome such a situation, a shift to wavelength division multiplexing communication, in which light of a plurality of different wavelengths is introduced into one optical fiber, is called out, but this is regarded as the next generation communication means. Such a wavelength division multiplexing communication system naturally requires a light source that emits light of a plurality of different wavelengths.

【0004】従来、この様な要請に応える多波長光源と
しては、多数の半導体レーザを一列に並べて同時に駆動
し、光結合器によってこれらの複数の異なった波長の光
を一本の光ファイバの導波路に導くアレイ型レーザが知
られている。
Conventionally, as a multi-wavelength light source meeting such a demand, a large number of semiconductor lasers are arranged in a line and driven simultaneously, and an optical coupler is used to guide these plural wavelengths of light through a single optical fiber. Array-type lasers for guiding to a wave path are known.

【0005】また、他の多波長光源としては、異なる発
振波長の量子箱からなる活性層を多層積層させることに
よって、多波長同時発振を実現することも提案されてい
る(必要ならば、特開昭63−213384号公報参
照)。例えば、各活性層における量子箱のサイズが互い
に異なるように堆積条件等を制御することによって、各
活性層における発振波長が互いに異なるようにしたもの
である。
Further, as another multi-wavelength light source, it has been proposed to realize multi-wavelength simultaneous oscillation by laminating active layers composed of quantum boxes having different oscillation wavelengths in a multilayer (if necessary, see Japanese Patent Application Laid-Open (JP-A) no. See JP-A-63-213384). For example, by controlling deposition conditions and the like so that the size of the quantum box in each active layer is different from each other, the oscillation wavelength in each active layer is different from each other.

【0006】なお、この様な量子箱(QD:Quant
um Dot)とは、キャリアに3次元的な量子閉じ込
めを与えるほど極微細なポテンシャルの箱であり、この
量子箱においてはキャリアの状態関数密度はデルタ関数
的に離散化し、その基底準位には2個のキャリア、例え
ば、伝導帯においては2個の電子しか存在することがで
きず、また、励起準位にはその準位の次数に応じて複数
個の電子が存在することができるものである。
Incidentally, such a quantum box (QD: Quant)
um Dot) is a box of potential that is extremely fine enough to give a carrier three-dimensional quantum confinement. In this quantum box, the state function density of the carrier is discretized as a delta function, and its ground level is Two carriers, for example, only two electrons can exist in the conduction band, and a plurality of electrons can exist in the excited level according to the order of the level. is there.

【0007】この様な半導体量子箱を簡単に形成する方
法としては、自己形成させる方法が知られており、具体
的には、格子不整合の半導体をある条件で気相エピタキ
シャル成長させることにより3次元の微細構造、即ち、
量子箱構造を自己形成する方法が提案(例えば、特願平
7−217466号参照)されている。なお、これらの
自己形成方法としては、Stranski−Krast
anov(ストランスキー−クラスタノフ)モードによ
る量子箱の形成方法、Volmer−Webber(ボ
ルマー−ウェッバー)モードによる量子箱の形成方法、
或いは、ALE(原子層エピタキシー)法を用いた原料
の交互供給による自己組織化量子箱の形成方法等が知ら
れている。
As a simple method of forming such a semiconductor quantum box, a method of self-forming is known. Specifically, a three-dimensional semiconductor is obtained by vapor-phase epitaxial growth of a lattice-mismatched semiconductor under certain conditions. The microstructure of
A method of self-forming a quantum box structure has been proposed (for example, see Japanese Patent Application No. 7-217466). In addition, as these self-forming methods, Transki-Klast
a method of forming a quantum box in an anov (Stransky-Krasnov) mode, a method of forming a quantum box in a Volmer-Webber (Volmer-Webber) mode,
Alternatively, a method of forming a self-assembled quantum box by alternately supplying materials using an ALE (atomic layer epitaxy) method is known.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来のアレイ
型レーザの場合には、一つの素子の中に多数の独立した
ストライプ型レーザ構造が必要になり、素子が大型化す
るという問題がある。しかも、各々のストライプ型レー
ザにおける発振波長を正確に制御する必要があり、この
様なアレイ型レーザを作製するには高精度の製造技術が
必要になる。
However, in the case of a conventional array type laser, there is a problem that a large number of independent stripe type laser structures are required in one element, and the element becomes large. In addition, it is necessary to precisely control the oscillation wavelength of each stripe laser, and a high-precision manufacturing technique is required to manufacture such an array laser.

【0009】一方、量子箱活性層を多層化した半導体レ
ーザの場合には、原理的には多波長発振が可能である
が、現実的には実現困難な構造であると考えられる。即
ち、第1に、それぞれの活性層における量子箱の発振波
長を揃えるためには、それぞれの活性層における量子箱
の径を揃える必要があるが、現在の成長技術では不可能
である。
On the other hand, in the case of a semiconductor laser having a multi-layered quantum box active layer, multi-wavelength oscillation is possible in principle, but it is considered that the structure is practically difficult to realize. That is, first, in order to equalize the oscillation wavelength of the quantum box in each active layer, it is necessary to equalize the diameter of the quantum box in each active layer, but this is not possible with the current growth technology.

【0010】第2に、発振波長を設計値通りにするため
には、量子箱の径と組成とを正確に制御して作製するこ
とが要求されるが、これも現状では困難である。さら
に、上記の第1及び第2の要件を満たすことができると
しても、多層化には限界があり、限界の層数によって発
振する波長数が制限されるという問題がある。
Secondly, in order to make the oscillation wavelength match the design value, it is required to manufacture the quantum box by precisely controlling the diameter and composition thereof, but this is also difficult at present. Further, even if the above first and second requirements can be satisfied, there is a limit to multilayering, and there is a problem that the number of oscillating wavelengths is limited by the limit number of layers.

【0011】したがって、本発明は、素子構造を大型化
することなく、複数の異なった波長で同時に安定な発振
を行うことを目的とする。
Accordingly, an object of the present invention is to perform stable oscillation at a plurality of different wavelengths simultaneously without increasing the size of the element structure.

【0012】[0012]

【課題を解決するための手段】図1は本発明の原理的構
成の説明図であり、この図1を参照して本発明における
課題を解決するための手段を説明する。なお、図1
(a)は、光半導体装置の概略的断面図であり、また、
図1(b)は、光半導体装置に設けた反射鏡を模式的に
拡大して示した図であり、図において、符号6,7は夫
々一導電型クラッド層及び逆導電型クラッド層である。 図1(a)及び(b)参照 (1)本発明は、多波長発振光半導体装置において、大
きさの異なる多数の量子箱1〜3を活性領域4内に持つ
半導体利得導波路と、離散的な複数の波長で高い反射率
を有する反射鏡5とを直列に配置したことを特徴とす
る。
FIG. 1 is an explanatory view of the principle configuration of the present invention. Referring to FIG. 1, means for solving the problems in the present invention will be described. FIG.
(A) is a schematic sectional view of an optical semiconductor device,
FIG. 1B is a schematic enlarged view of a reflecting mirror provided in the optical semiconductor device. In the drawing, reference numerals 6 and 7 denote a one conductivity type cladding layer and a reverse conductivity type cladding layer, respectively. . 1 (a) and 1 (b) (1) According to the present invention, in a multi-wavelength oscillation optical semiconductor device, a semiconductor gain waveguide having a large number of quantum boxes 1 to 3 having different sizes in an active region 4 is provided. And a reflecting mirror 5 having high reflectivity at a plurality of wavelengths is arranged in series.

【0013】この様に、大きさの異なる量子箱1〜3、
即ち、径の異なる量子箱1〜3を多量に内包する半導体
利得導波路を用いることにより、注入電流量を増すこと
によって多波長での同時の誘導放出が可能になる。即
ち、均一拡がりが、例えば、室温において0.5nm程
度に充分小さな準位間の発光遷移を行う量子箱1〜3が
2つあり、しかもお互いの遷移波長が、この均一拡がり
より、例えば、1nm程度離れていた場合、2つの量子
箱1〜3は互いに独立に発光し、他方の光による誘導吸
収・誘導放出を行うことはない。これは、量子箱1〜3
が完全に離散的準位を持つためであり、1次元閉じ込め
或いは2次元閉じ込めの量子井戸構造との大きな違いで
ある。
As described above, quantum boxes 1 to 3 having different sizes are provided.
That is, by using a semiconductor gain waveguide including a large amount of quantum boxes 1 to 3 having different diameters, simultaneous stimulated emission at multiple wavelengths can be achieved by increasing the amount of injected current. That is, for example, there are two quantum boxes 1 to 3 that perform light emission transition between levels at room temperature, for example, at a sufficiently small level of about 0.5 nm at room temperature. If they are separated from each other, the two quantum boxes 1 to 3 emit light independently of each other, and do not perform stimulated absorption and stimulated emission by the other light. These are quantum boxes 1-3
Has a completely discrete level, which is a big difference from the quantum well structure of one-dimensional confinement or two-dimensional confinement.

【0014】また、離散的な複数の波長で高い反射率を
有する反射鏡5を設けることによって、不規則な多数波
長で発振していた多波長発振光8の波長間隔及び絶対波
長の制御が可能になり、多重光通信システム用の多波長
光源として好適なものとなる。
Further, by providing the reflecting mirror 5 having a high reflectance at a plurality of discrete wavelengths, it is possible to control the wavelength interval and the absolute wavelength of the multi-wavelength oscillating light 8 oscillated at irregular multiple wavelengths. Thus, it becomes suitable as a multi-wavelength light source for a multiplex optical communication system.

【0015】(2)また、本発明は、上記(1)におい
て、離散的な複数の波長で高い反射率を有する反射鏡5
として、ピッチを徐々に変化させた回折格子が周期的に
形成された分布反射鏡5を用いたことを特徴とする。
(2) Further, according to the present invention, in the above (1), the reflecting mirror 5 having a high reflectance at a plurality of discrete wavelengths.
The present invention is characterized in that a distributed reflector 5 in which a diffraction grating with a gradually changed pitch is periodically formed is used.

【0016】この様に、離散的な複数の波長で高い反射
率を有する反射鏡5は、超周期回折格子(SSG:Su
per Structure Grating)、即
ち、ピッチを徐々に変化させた回折格子が周期をLとし
て周期的に形成された分布反射鏡を用いることによって
容易に形成することができる。このSSG構造は、基本
的な回折格子構造が持つ周期性に、さらに大きな周期
性、即ち、超周期性を加えることによって複数波長での
高反射率が実現されるものである(必要ならば、H.I
shii,et.al,IEEE,J.QE,Vol.
32,No.3,pp433,1996参照)。
As described above, the reflecting mirror 5 having a high reflectance at a plurality of discrete wavelengths is provided by a super-periodic diffraction grating (SSG: Su).
(per Structure Grating), that is, a diffraction grating having a gradually changed pitch can be easily formed by using a distributed reflecting mirror in which a period is set to L and formed periodically. This SSG structure realizes high reflectivity at a plurality of wavelengths by adding even greater periodicity, that is, super-periodicity, to the periodicity of a basic diffraction grating structure (if necessary, HI
shii, et. al, IEEE, J. et al. QE, Vol.
32, no. 3, pp 433, 1996).

【0017】(3)また、本発明は、上記(1)または
(2)において、量子箱1〜3が、ストランスキー−ク
ラスタノフモードによる量子箱1〜3、或いは、原子層
エピタキシー法を用いた自己組織化による量子箱1〜3
のいずれかであることを特徴とする。
(3) In the present invention, in the above (1) or (2), the quantum boxes 1 to 3 may use the quantum boxes 1 to 3 based on the Stransky-Krasnov mode or the atomic layer epitaxy method. Quantum boxes 1-3 by self-organization
Or any one of the following.

【0018】この様に、多波長発振に適した量子箱1〜
3としては、ストランスキー−クラスタノフモードによ
る量子箱1〜3、或いは、原子層エピタキシー法を用い
た自己組織化による量子箱1〜3が好適である。即ち、
これらの自己形成方法は、量子箱1〜3を高密度で形成
することができるが、量子箱1〜3の径を揃えることは
困難であり、したがって、単一波長で発振する量子ドッ
ト半導体レーザの作製は困難であるが、逆に、この欠点
を積極的に利用することによって、径の不揃いな量子箱
1〜3を高密度で形成し、それによって、多波長発振が
可能になり、且つ、多波長発振光8の強度を高めること
ができる。
As described above, the quantum boxes 1 to 1 suitable for multi-wavelength oscillation
As 3, quantum boxes 1 to 3 based on the Stranky-Clusteroff mode or quantum boxes 1 to 3 based on self-organization using the atomic layer epitaxy method are preferable. That is,
These self-forming methods can form the quantum boxes 1 to 3 at a high density, but it is difficult to make the diameters of the quantum boxes 1 to 3 uniform, and therefore, the quantum dot semiconductor laser oscillating at a single wavelength It is difficult to fabricate, but conversely, by taking advantage of this drawback, quantum boxes 1 to 3 having irregular diameters are formed at a high density, thereby enabling multi-wavelength oscillation, and In addition, the intensity of the multi-wavelength oscillation light 8 can be increased.

【0019】[0019]

【発明の実施の形態】ここで、本発明の第1の実施の形
態を図2乃至図4を参照して説明するが、まず、図2及
び図3を参照して本発明の第1の実施の形態の製造工程
を説明する。なお、各図は、レーザ光の光軸方向に沿っ
た断面図である。 図2(a)参照 まず、(001)面を主面とするn型GaAs基板11
上にフォトレジスト(図示せず)を塗布し、このフォト
レジストの内の一部に電子ビーム露光装置を用いて周期
的にピッチを変化させた格子パターンを露光したのち、
フォトレジストを現像して格子状レジストパターンを形
成し、次いで、この格子状レジストパターンをマスクと
してn型GaAs基板11をエッチングすることによっ
てSSG構造12を形成する。なお、このSSG構造1
2は、上述の様に、ピッチを徐々に変化させた回折格子
の周期をLとしてこの回折格子を周期的に形成したもの
であり、このSSG構造12をDBR鏡、即ち、分布ブ
ラッグ反射鏡として用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, a first embodiment of the present invention will be described with reference to FIGS. 2 to 4. First, a first embodiment of the present invention will be described with reference to FIGS. The manufacturing process of the embodiment will be described. Each drawing is a cross-sectional view along the optical axis direction of the laser light. Referring to FIG. 2A, first, an n-type GaAs substrate 11 having a (001) plane as a main surface.
After applying a photoresist (not shown) on the top and exposing a part of the photoresist to a lattice pattern having a periodically changed pitch using an electron beam exposure apparatus,
The photoresist is developed to form a lattice resist pattern, and then the n-type GaAs substrate 11 is etched using the lattice resist pattern as a mask to form the SSG structure 12. This SSG structure 1
As described above, the diffraction grating is periodically formed by setting the period of the diffraction grating whose pitch is gradually changed to L, as described above. This SSG structure 12 is used as a DBR mirror, that is, a distributed Bragg reflector. Used.

【0020】図2(b)参照 次いで、MBE(モレキュラ・ビーム・エピタキシー)
装置を用いて、厚さが、例えば、0.9μmで、Al組
成比が、例えば0.4のn型AlGaAsクラッド層1
3、厚さが、例えば、0.1μmのGaAs−SCH
(Separate Confinement Het
erostructure)層14、厚さが、例えば、
40nmでIn組成比が0.1のInGaAs導波層1
5、及び、厚さが、例えば、0.1μmのGaAsSC
H層16を順次成長させる。
FIG. 2 (b) Next, MBE (Molecular Beam Epitaxy)
Using an apparatus, an n-type AlGaAs cladding layer 1 having a thickness of, for example, 0.9 μm and an Al composition ratio of, for example, 0.4 is used.
3. GaAs-SCH having a thickness of, for example, 0.1 μm
(Separate Confinment Het
erostructure) layer 14, having a thickness of, for example,
InGaAs waveguide layer 1 with 40 nm and In composition ratio of 0.1
GaAsSC having a thickness of, for example, 0.1 μm
The H layer 16 is sequentially grown.

【0021】図2(c)参照 次いで、SSG構造12を形成しなかった領域上に成長
したGaAsSCH層16及びInGaAs導波層15
を選択的に除去して、GaAsSCH層14を露出させ
る。
Next, as shown in FIG. 2C, the GaAsSCH layer 16 and the InGaAs waveguide layer 15 grown on the region where the SSG structure 12 was not formed.
Is selectively removed to expose the GaAs SCH layer 14.

【0022】図3(d)参照 次いで、GaAsSCH層16及びInGaAs導波層
15を選択的に除去した領域上に、Stranski−
Krastanovモードによって量子箱導波層17を
形成したのち、厚さが、例えば、0.1μmのGaAs
SCH層18を成長させて表面を平坦化する。
Next, referring to FIG. 3D, a Transski-layer is formed on the region where the GaAsSCH layer 16 and the InGaAs waveguide layer 15 are selectively removed.
After the quantum box waveguide layer 17 is formed by the Krastanov mode, the thickness is, for example, 0.1 μm GaAs.
The SCH layer 18 is grown to planarize the surface.

【0023】図3(e)参照 図3(e)は図3(d)の破線で示す円内を模式的に拡
大して示した図であり、この量子箱導波層17を形成す
る場合には、MOVPE法(有機金属気相成長法)を用
いて、成長温度を500℃とした状態でTMIn(トリ
メチルインジウム)及びAsH3 をInAs換算で1〜
2ML(モノレーヤー)分だけ同時供給する。この成長
開始当初においては、2次元的成長が起こりInGaA
s濡れ層が形成され、このInGaAs濡れ層の膜厚が
弾性限界を越えた時点で、InGaAs濡れ層の表面に
オングストロームオーダーの3次元核が比較的高密度で
離散的に形成される。さらに、成長を続けると、3次元
核を成長核としてIn組成比が相対的に大きなInGa
Asからなる量子箱21〜23が形成され、量子箱21
〜23の周辺部はIn組成比が相対的に小さなInGa
As濡れ層となる。なお、図においては、全体を纏めて
InAs層19として示している。
FIG. 3E is a diagram schematically showing, in an enlarged scale, the inside of the circle shown by the broken line in FIG. 3D, in which the quantum box waveguide layer 17 is formed. In the following, TMIn (trimethyl indium) and AsH 3 were converted to InAs by 1 to 3 with the growth temperature of 500 ° C. using MOVPE (metal organic chemical vapor deposition).
Simultaneous supply for 2ML (monolayer). At the beginning of this growth, two-dimensional growth occurs and InGaAs
An s wetting layer is formed, and when the thickness of the InGaAs wetting layer exceeds the elastic limit, a three-dimensional nucleus of an Angstrom order is discretely formed at a relatively high density on the surface of the InGaAs wetting layer. Further, when the growth is continued, InGa having a relatively large In composition ratio is used with the three-dimensional nucleus as a growth nucleus.
As quantum boxes 21 to 23 made of As are formed,
To 23 are InGa having a relatively small In composition ratio.
It becomes an As wetting layer. In the figure, the whole is collectively shown as an InAs layer 19.

【0024】これは、InGaAs濡れ層の厚さが弾性
限界を越える場合、In組成比が相対的に大きなInG
aAsからなる量子箱21〜23を局所的に発生させる
ことによってInGaAs成長層全体としてはInGa
As成長層の全面に歪が発生する場合よりも低歪エネル
ギーとなり、結晶学的に安定した成長になるためと考え
られる。
This is because when the thickness of the InGaAs wetting layer exceeds the elastic limit, the InG composition ratio is relatively large.
By locally generating quantum boxes 21 to 23 made of aAs, the InGaAs growth layer as a whole becomes InGa
It is considered that the strain energy becomes lower than that in the case where the strain is generated on the entire surface of the As growth layer, and the crystal becomes crystallographically stable.

【0025】次いで、例えば、30nmのGaAsバリ
ア層20を成長させ、このサイクルを、例えば、3回繰
り返すことによって3層の多層構造からなる量子箱導波
層17が形成される。なお、この場合の量子箱21〜2
3の平均直径は約20nmであり、面被覆率は約10%
であり、これは、互いに隣接する量子箱21〜23の間
の平均距離が約180nmになることに相当するので、
互いに隣接する量子箱21〜23に間の不所望な相互作
用は生じない。
Next, a GaAs barrier layer 20 of, for example, 30 nm is grown, and this cycle is repeated, for example, three times to form the quantum box waveguide layer 17 having a three-layer structure. In this case, the quantum boxes 21 to 2
3 has an average diameter of about 20 nm and a surface coverage of about 10%.
Since this corresponds to an average distance between the quantum boxes 21 to 23 adjacent to each other being about 180 nm,
There is no undesired interaction between the quantum boxes 21 to 23 adjacent to each other.

【0026】図3(f)参照 次いで、全面に厚さが、例えば、1.2μmで、Al組
成比が、例えば、0.4のp型AlGaAsクラッド層
24、及び、厚さが、例えば、0.3μmのp型GaA
sコンタクト層25を順次成長させたのち、p型GaA
sコンタクト層25及びp型AlGaAsクラッド層2
4の一部を、例えば、1.2μmの深さまでエッチング
して、SSG構造12を構成する回折格子の溝に垂直な
方向に、幅が、例えば、2.5μmのストライプ状メサ
を形成してリッジ構造の導波路とする。
Next, a p-type AlGaAs cladding layer 24 having a thickness of, for example, 1.2 μm and an Al composition ratio of, for example, 0.4, and a thickness of, for example, 0.3 μm p-type GaAs
After sequentially growing the s-contact layer 25, p-type GaAs
s contact layer 25 and p-type AlGaAs cladding layer 2
4 is etched to a depth of, for example, 1.2 μm to form a stripe-shaped mesa having a width of, for example, 2.5 μm in a direction perpendicular to the grooves of the diffraction grating constituting the SSG structure 12. The waveguide has a ridge structure.

【0027】次いで、p型GaAsコンタクト層25及
びストライプ状メサの側面を覆うようにp側電極26を
設けるとともに、n型GaAs基板11の裏面にn側電
極27を形成し、次いで、共振器長が1μmになるよう
に劈開することによって量子箱導波層17を含む半導体
利得導波路とSSG構造12からなるDBR鏡とが直列
に配置された多波長発振半導体レーザの基本構成が完成
する。
Next, a p-side electrode 26 is provided so as to cover the p-type GaAs contact layer 25 and the side surfaces of the stripe-shaped mesas, and an n-side electrode 27 is formed on the back surface of the n-type GaAs substrate 11. Is cut to 1 μm, thereby completing a basic configuration of a multi-wavelength oscillation semiconductor laser in which a semiconductor gain waveguide including the quantum box waveguide layer 17 and a DBR mirror having the SSG structure 12 are arranged in series.

【0028】図4参照 図4はこの様にして形成した多波長発振半導体レーザの
斜視図であり、ストライプ状メサ28の側面及び頂面を
覆うように設けたp側電極26及びn型GaAs基板1
1の裏面に設けたn側電極27から量子箱導波層17に
電流を注入することによって、互いに径の異なる量子箱
21〜23において、1.55μm近傍を中心波長とす
る異なった波長での誘導放出が生じ、この内、SSG構
造12の離散的共振波長のみが優勢になって、SSG構
成12によって規定される発振波長及び波長間隔での多
波長レーザ発振が可能になる。また、上記の第1の実施
の形態においては、量子箱21〜23が形成されるIn
As層19を3層積層しているので、充分な利得を持ち
得る活性層構造が形成される。
FIG. 4 is a perspective view of the multi-wavelength oscillation semiconductor laser formed in this manner. The p-side electrode 26 and the n-type GaAs substrate are provided so as to cover the side and top surfaces of the stripe-shaped mesa 28. 1
By injecting a current into the quantum box waveguide layer 17 from the n-side electrode 27 provided on the back surface of the quantum well 21, the quantum boxes 21 to 23 having different diameters have different wavelengths around 1.55 μm as center wavelengths. Stimulated emission occurs, of which only the discrete resonant wavelength of the SSG structure 12 becomes dominant, allowing multi-wavelength lasing at the lasing wavelengths and wavelength intervals defined by the SSG configuration 12. Further, in the above-described first embodiment, In which the quantum boxes 21 to 23 are formed is referred to as In.
Since the three As layers 19 are stacked, an active layer structure capable of having a sufficient gain is formed.

【0029】次に、図5を参照して本発明の第2の実施
の形態の多波長発振半導体レーザを説明するが、この第
2の実施の形態は、共振器をDFB(分布帰還)型共振
器としたものであり、その他の構成は上記の第1の実施
の形態と同様である。 図5参照 図5は本発明の第2の実施の形態の多波長発振半導体レ
ーザの斜視図であり、上記の第1の実施の形態と同様
に、まず、(001)面を主面とするn型GaAs基板
11上にフォトレジスト(図示せず)を塗布し、このフ
ォトレジストの内の一部に電子ビーム露光装置を用いて
周期的にピッチを変化させた格子パターンを露光したの
ち、フォトレジストを現像して格子状レジストパターン
を形成し、次いで、この格子状レジストパターンをマス
クとしてn型GaAs基板11をエッチングすることに
よってSSG構造12を形成したのち、MBE装置を用
いて、厚さが、例えば、0.9μmで、Al組成比が、
例えば0.4のn型AlGaAsクラッド層13、及
び、厚さが、例えば、0.1μmのGaAsSCH層1
4を順次成長させる。
Next, a multi-wavelength oscillation semiconductor laser according to a second embodiment of the present invention will be described with reference to FIG. 5. In the second embodiment, the resonator is a DFB (distributed feedback) type. The other configuration is the same as that of the first embodiment. FIG. 5 is a perspective view of a multi-wavelength oscillation semiconductor laser according to a second embodiment of the present invention. As in the first embodiment, first, the (001) plane is used as a main surface. A photoresist (not shown) is applied on the n-type GaAs substrate 11, and a part of the photoresist is exposed to a lattice pattern having a periodically changed pitch using an electron beam exposure apparatus. The resist is developed to form a lattice-like resist pattern, and then the n-type GaAs substrate 11 is etched using the lattice-like resist pattern as a mask to form an SSG structure 12, and then the thickness is reduced using an MBE apparatus. For example, at 0.9 μm, the Al composition ratio is
For example, an n-type AlGaAs cladding layer 13 having a thickness of 0.4 and a GaAs SCH layer 1 having a thickness of 0.1 μm, for example.
4 is grown sequentially.

【0030】次いで、上記の第1の実施の形態と同様な
成長方法を用いて、Stranski−Krastan
ovモードによって量子箱導波層17を形成したのち、
厚さが、例えば、0.1μmのGaAsSCH層18、
厚さが、例えば、1.2μmで、Al組成比が、例え
ば、0.4のp型AlGaAsクラッド層24、及び、
厚さが、例えば、0.3μmのp型GaAsコンタクト
層25を順次成長させ、次いで、p型GaAsコンタク
ト層25及びp型AlGaAsクラッド層24の一部
を、例えば、1.2μmの深さまでエッチングして、S
SG構造12を構成する回折格子の溝に垂直な方向に、
幅が、例えば、2.5μmのストライプ状メサを形成し
てリッジ構造の導波路とする。
Next, using a growth method similar to that of the above-described first embodiment, a Transki-Krastan
After forming the quantum box waveguide layer 17 by the ov mode,
A GaAsSCH layer 18 having a thickness of, for example, 0.1 μm;
A p-type AlGaAs cladding layer 24 having a thickness of, for example, 1.2 μm and an Al composition ratio of, for example, 0.4;
A p-type GaAs contact layer 25 having a thickness of, for example, 0.3 μm is sequentially grown, and then a part of the p-type GaAs contact layer 25 and a part of the p-type AlGaAs cladding layer 24 are etched to a depth of, for example, 1.2 μm. Then S
In the direction perpendicular to the grooves of the diffraction grating constituting the SG structure 12,
A stripe-shaped mesa having a width of, for example, 2.5 μm is formed to form a waveguide having a ridge structure.

【0031】次いで、p型GaAsコンタクト層25及
びストライプ状メサ28の側面を覆うようにp側電極2
6を設けるとともに、n型GaAs基板11の裏面にn
側電極27を形成し、次いで、共振器長が1μmになる
ように劈開することによって量子箱導波層17を含む半
導体利得導波路とSSG構造12からなるDFB共振器
とが直列に配置された多波長発振半導体レーザの基本構
成が完成する。
Next, the p-side electrode 2 is formed so as to cover the side surfaces of the p-type GaAs contact layer 25 and the stripe-shaped mesa 28.
6 and n-type GaAs substrate 11
The side electrode 27 was formed, and then cleaved so that the resonator length became 1 μm, whereby the semiconductor gain waveguide including the quantum box waveguide layer 17 and the DFB resonator including the SSG structure 12 were arranged in series. The basic configuration of the multi-wavelength oscillation semiconductor laser is completed.

【0032】この第2の実施の形態においても、DFB
共振器を構成するSSG構造12によって、所定の発振
波長で且つ所定の波長間隔での多波長での同時発振が可
能になる。なお、この第2の実施の形態においては、D
BR構造の場合とは異なり、SSG構造12の上にも量
子箱導波層17を延在させているので、InGaAs導
波層の成長工程及びその選択的除去工程が不要になり、
それによって、製造工程がより簡素化される。
In the second embodiment, the DFB
The SSG structure 12 constituting the resonator enables simultaneous oscillation at a predetermined oscillation wavelength and at multiple wavelengths at predetermined wavelength intervals. In the second embodiment, D
Unlike the case of the BR structure, since the quantum box waveguide layer 17 extends on the SSG structure 12, the step of growing the InGaAs waveguide layer and the step of selectively removing the same become unnecessary.
Thereby, the manufacturing process is further simplified.

【0033】以上、本発明の各実施の形態を説明してき
たが、本発明は、各実施の形態に記載した構成及び条件
に限られるものではなく、各種の変更が可能である。例
えば、上記の各実施の形態の説明においては、量子箱の
形成方法として、高密度で径が不揃いの量子箱が形成さ
れやすいStranski−Krastanovモード
による自己形成方法を用いているが、Stranski
−Krastanovモードによる自己形成方法に限ら
れるものではなく、ALE法を用いた自己組織化による
方法を用いても良いものである。
The embodiments of the present invention have been described above. However, the present invention is not limited to the configurations and conditions described in the embodiments, and various changes can be made. For example, in the description of each of the above-described embodiments, a self-forming method by the Transki-Krastanov mode in which quantum boxes having high density and irregular diameters are easily formed is used as a method of forming quantum boxes.
-The method is not limited to the self-forming method by the Krastanov mode, and a method by self-organization using the ALE method may be used.

【0034】このALE法による自己組織化による方法
を用いる場合には、例えば、GaAsSCH層14を形
成したのち、TMIn等のIn原料を単独で供給するこ
とによってGaAsSCH層14の表面にIn金属島が
離散的に形成される。次いで、TMGa(トリメチルガ
リウム)等のGa原料を単独で供給すると、GaAsS
CH層14の表面にGa金属島が離散的に形成されると
共に、In金属島においてはInとGaとが混合してI
n+Ga金属島が形成される。
In the case of using the self-assembly method by the ALE method, for example, after forming a GaAsSCH layer 14, an In material such as TMIn is supplied alone to form an In metal island on the surface of the GaAsSCH layer 14. It is formed discretely. Next, when a Ga raw material such as TMGa (trimethylgallium) is supplied alone, GaAsS
Ga metal islands are discretely formed on the surface of the CH layer 14, and In and Ga are mixed on the In metal island to form I metal.
An n + Ga metal island is formed.

【0035】次いで、AsH3 等のAs原料を単独で供
給すると、表面において再構成(Reconstruc
tion)が起こりIn+Ga金属島においてはIn組
成比が相対的に大きなInGaAs量子箱が形成され、
Ga金属島及びその近傍においてはIn組成比が相対的
に小さなInGaAs層が形成され、この様なサイクル
を数サイクル繰り返すことによって最終的な量子箱導波
層が形成されることになる。
Next, when As material such as AsH 3 is supplied alone, restructuring (Reconstruct) is performed on the surface.
) occurs, and an InGaAs quantum box having a relatively large In composition ratio is formed in the In + Ga metal island,
In the Ga metal island and its vicinity, an InGaAs layer having a relatively small In composition ratio is formed. By repeating such a cycle several times, a final quantum box waveguide layer is formed.

【0036】この様に、ALE法を用いた自己組織化に
よる方法を用いた場合にも、Stranski−Kra
stanovモードによる自己形成方法と同様に、高密
度で径が不揃いの量子箱が形成されやすく、それによっ
て、多波長発振が可能になる。
As described above, even when the method based on self-organization using the ALE method is used, the Transki-Kra
Similar to the self-forming method by the Stanov mode, a quantum box having a high density and an irregular diameter is easily formed, thereby enabling multi-wavelength oscillation.

【0037】また、上記の各実施の形態の説明において
は、SSG構造12をn型GaAs基板に直接形成して
いるが、n型GaAs層11上にn型GaAsバッファ
層を設け、このn型GaAsバッファ層11に設けても
良いものであり、或いは、自己酸化膜の形成に対する対
策を取るならば、n型AlGaAsクラッド層13に形
成しても良いものである。
In the description of each of the above embodiments, the SSG structure 12 is formed directly on the n-type GaAs substrate. However, an n-type GaAs buffer layer is provided on the n-type GaAs layer 11 and the n-type GaAs buffer layer is provided. It may be provided on the GaAs buffer layer 11, or may be formed on the n-type AlGaAs cladding layer 13 if measures are taken against the formation of a self-oxidized film.

【0038】また、上記の各実施の形態の説明において
は、ストライプ状メサ28を形成して、リッジ構造とし
ているが、ストライプ状構造はBH(埋込ヘテロ接合)
構造等の他の公知のストライプ状構造を用いても良いこ
とは言うまでもない。
In the above embodiments, the ridge structure is formed by forming the stripe-shaped mesas 28, but the stripe-shaped structure is a BH (buried heterojunction).
It goes without saying that other known stripe-shaped structures such as a structure may be used.

【0039】また、本発明の各実施の形態の説明におい
ては、量子箱をInGaAs量子箱として説明している
が、他のIII-V族化合物半導体で構成しても良いことは
原理的に自明であり、さらに、II−VI族化合物半導
体、或いはIV−VI族化合物半導体等の他の化合物半
導体にも適用し得ることは明らかである。
In the description of each embodiment of the present invention, the quantum box is described as an InGaAs quantum box, but it is in principle self-evident that the quantum box may be made of another III-V compound semiconductor. It is apparent that the present invention can be applied to other compound semiconductors such as II-VI compound semiconductors or IV-VI compound semiconductors.

【0040】[0040]

【発明の効果】本発明によれば、高密度で且つ径が不揃
いな量子箱を利用して量子箱導波路を構成するととも
に、この量子箱導波路に直列にSSG等の離散的な複数
の波長で高い反射率を有する反射鏡を配置しているの
で、簡単な構成によって、発振波長及び波長間隔が制御
された多波長での安定した同時発振が可能になり、それ
によって、素子を大型化することなく安定した多波長光
源を得ることができ、ひいては、波長多重通信システム
の実現に寄与するところが大きい。
According to the present invention, a quantum box waveguide is constructed using quantum boxes having high density and irregular diameters, and a plurality of discretes such as SSG are serially connected to the quantum box waveguide. Since a reflector with high reflectivity at wavelength is arranged, the simple structure enables stable simultaneous oscillation at multiple wavelengths with controlled oscillation wavelength and wavelength interval, thereby increasing the size of the element. Therefore, it is possible to obtain a stable multi-wavelength light source without any need, and thus greatly contribute to the realization of a wavelength multiplex communication system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理的構成の説明図である。FIG. 1 is an explanatory diagram of a basic configuration of the present invention.

【図2】本発明の第1の実施の形態の途中までの製造工
程の説明図である。
FIG. 2 is an explanatory diagram of a manufacturing process partway through the first embodiment of the present invention.

【図3】本発明の第1の実施の形態の図2以降の製造工
程の説明図である。
FIG. 3 is an explanatory view of a manufacturing process of the first embodiment of the present invention after FIG. 2;

【図4】本発明の第1の実施の形態の多波長発振半導体
レーザの斜視図である。
FIG. 4 is a perspective view of the multi-wavelength oscillation semiconductor laser according to the first embodiment of the present invention.

【図5】本発明の第2の実施の形態の多波長発振半導体
レーザの斜視図である。
FIG. 5 is a perspective view of a multi-wavelength oscillation semiconductor laser according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 量子箱 2 量子箱 3 量子箱 4 活性領域 5 反射鏡 6 一導電型クラッド層 7 逆導電型クラッド層 8 多波長発振光 11 n型GaAs基板 12 SSG構造 13 n型AlGaAsクラッド層 14 GaAsSCH層 15 InGaAs導波層 16 GaAsSCH層 17 量子箱導波層 18 GaAsSCH層 19 InAs層 20 GaAsバリア層 21 量子箱 22 量子箱 23 量子箱 24 p型AlGaAsクラッド層 25 p型GaAsコンタクト層 26 p側電極 27 n側電極 28 ストライプ状メサ DESCRIPTION OF SYMBOLS 1 Quantum box 2 Quantum box 3 Quantum box 4 Active region 5 Reflector 6 One conductivity type cladding layer 7 Reverse conductivity type cladding layer 8 Multi-wavelength oscillation light 11 n-type GaAs substrate 12 SSG structure 13 n-type AlGaAs cladding layer 14 GaAsSCH layer 15 InGaAs waveguide layer 16 GaAsSCH layer 17 quantum box waveguide layer 18 GaAsSCH layer 19 InAs layer 20 GaAs barrier layer 21 quantum box 22 quantum box 23 quantum box 24 p-type AlGaAs cladding layer 25 p-type GaAs contact layer 26 p-side electrode 27 n Side electrode 28 Striped mesa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 大きさの異なる多数の量子箱を活性領域
内に持つ半導体利得導波路と、離散的な複数の波長で高
い反射率を有する反射鏡とを直列に配置したことを特徴
とする多波長発振光半導体装置。
1. A semiconductor gain waveguide having a large number of quantum boxes having different sizes in an active region, and a reflector having a high reflectance at a plurality of discrete wavelengths are arranged in series. Multi-wavelength oscillation optical semiconductor device.
【請求項2】 上記離散的な複数の波長で高い反射率を
有する反射鏡として、ピッチを徐々に変化させた回折格
子が周期的に形成された分布反射鏡を用いたことを特徴
とする請求項1記載の多波長発振光半導体装置。
2. A distributed mirror in which a diffraction grating whose pitch is gradually changed is formed periodically as said reflecting mirror having a high reflectance at a plurality of discrete wavelengths. Item 2. The multi-wavelength oscillation optical semiconductor device according to Item 1.
【請求項3】 上記量子箱が、ストランスキー−クラス
タノフモードによる量子箱、或いは、原子層エピタキシ
ー法を用いた自己組織化による量子箱のいずれかである
ことを特徴とする請求項1または2に記載の多波長発振
光半導体装置。
3. The quantum box according to claim 1, wherein the quantum box is any one of a quantum box based on a Stranky-Krasnov mode and a quantum box based on self-organization using an atomic layer epitaxy method. 2. The multi-wavelength oscillation optical semiconductor device according to 1.
JP11147560A 1999-05-27 1999-05-27 Multiwavelength oscillating optical semiconductor device Withdrawn JP2000340883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11147560A JP2000340883A (en) 1999-05-27 1999-05-27 Multiwavelength oscillating optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11147560A JP2000340883A (en) 1999-05-27 1999-05-27 Multiwavelength oscillating optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2000340883A true JP2000340883A (en) 2000-12-08

Family

ID=15433112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11147560A Withdrawn JP2000340883A (en) 1999-05-27 1999-05-27 Multiwavelength oscillating optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2000340883A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
EP1460742A2 (en) * 2003-03-20 2004-09-22 Fujitsu Limited Semiconductor optical amplifier suitable for coarse WDM communications and light amplification method
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
JP2008172188A (en) * 2007-01-10 2008-07-24 Ind Technol Res Inst Multi-wavelength quantum dot laser device
US7558301B2 (en) 2006-12-20 2009-07-07 Industrial Technology Research Institute Multiwavelength semiconductor laser array and method of fabricating the same
US7695563B2 (en) 2001-07-13 2010-04-13 Applied Materials, Inc. Pulsed deposition process for tungsten nucleation
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7779784B2 (en) 2002-01-26 2010-08-24 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7780788B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
JP2013138249A (en) * 2007-05-01 2013-07-11 Exalos Ag Light source and device
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7674715B2 (en) 2000-06-28 2010-03-09 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7846840B2 (en) 2000-06-28 2010-12-07 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer
US8114789B2 (en) 2001-02-02 2012-02-14 Applied Materials, Inc. Formation of a tantalum-nitride layer
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US7695563B2 (en) 2001-07-13 2010-04-13 Applied Materials, Inc. Pulsed deposition process for tungsten nucleation
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US8668776B2 (en) 2001-10-26 2014-03-11 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US7780788B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US7779784B2 (en) 2002-01-26 2010-08-24 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7745329B2 (en) 2002-02-26 2010-06-29 Applied Materials, Inc. Tungsten nitride atomic layer deposition processes
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
EP1460742A2 (en) * 2003-03-20 2004-09-22 Fujitsu Limited Semiconductor optical amplifier suitable for coarse WDM communications and light amplification method
EP1460742A3 (en) * 2003-03-20 2004-09-29 Fujitsu Limited Semiconductor optical amplifier suitable for coarse WDM communications and light amplification method
US7167301B2 (en) 2003-03-20 2007-01-23 Fujitsu Limited Semiconductor optical amplifier suitable for coarse WDM communications and light amplification method
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US7558301B2 (en) 2006-12-20 2009-07-07 Industrial Technology Research Institute Multiwavelength semiconductor laser array and method of fabricating the same
JP2008172188A (en) * 2007-01-10 2008-07-24 Ind Technol Res Inst Multi-wavelength quantum dot laser device
US7573926B2 (en) 2007-01-10 2009-08-11 Industrial Technology Research Institute Multiwavelength quantum dot laser element
JP2013138249A (en) * 2007-05-01 2013-07-11 Exalos Ag Light source and device

Similar Documents

Publication Publication Date Title
JP2000340883A (en) Multiwavelength oscillating optical semiconductor device
US10431957B2 (en) Multiwavelength quantum cascade laser via growth of different active and passive cores
US5077752A (en) Semiconductor laser
EP1354338A2 (en) Quantum dot devices
JPH11266004A (en) Quantum semiconductor device and quantum semiconductor light emitting device
KR100967977B1 (en) Quantum nano-composite semiconductor laser and quantum nano-composite array
Henini et al. Advances in self-assembled semiconductor quantum dot lasers
JP4151042B2 (en) Semiconductor laser
US20240136803A1 (en) Multi-wavelength vcsel array and method of fabrication
US6867057B2 (en) Method of manufacturing a semiconductor laser
JPH06152059A (en) Semiconductor optical integrated element
US6625189B1 (en) Semiconductor laser device and fabrication method thereof
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
WO2005112210A1 (en) Semiconductor devices including gratings formed using quantum dots and method of manufacture
JP2903321B2 (en) Method of manufacturing semiconductor laser device
JP4075003B2 (en) Semiconductor laser and manufacturing method thereof
JP2001326421A (en) Semiconductor laser device
Pissis et al. Monolithic multiwavelength VCSEL array using cavity patterning
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
EP0525971B1 (en) A semiconductor device and a method for producing the same
WO2023012925A1 (en) Semiconductor optical device and method for producing same
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
JP2957198B2 (en) Semiconductor laser device
JPH09283858A (en) Compd. semiconductor optical device manufacturing method and apparatus
JPH0770781B2 (en) Semiconductor laser array

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801