JP2000338035A - Bio-chip reading device - Google Patents

Bio-chip reading device

Info

Publication number
JP2000338035A
JP2000338035A JP11149399A JP14939999A JP2000338035A JP 2000338035 A JP2000338035 A JP 2000338035A JP 11149399 A JP11149399 A JP 11149399A JP 14939999 A JP14939999 A JP 14939999A JP 2000338035 A JP2000338035 A JP 2000338035A
Authority
JP
Japan
Prior art keywords
sample
light
biochip
biochip reader
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11149399A
Other languages
Japanese (ja)
Other versions
JP3689901B2 (en
Inventor
Takeo Tanaami
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP14939999A priority Critical patent/JP3689901B2/en
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to DE1055925T priority patent/DE1055925T1/en
Priority to DE60044923T priority patent/DE60044923D1/en
Priority to EP00109722A priority patent/EP1055925B1/en
Priority to EP08160013A priority patent/EP1983331B1/en
Publication of JP2000338035A publication Critical patent/JP2000338035A/en
Priority to US10/769,017 priority patent/US20040182710A1/en
Priority to US10/768,632 priority patent/US20040184960A1/en
Application granted granted Critical
Publication of JP3689901B2 publication Critical patent/JP3689901B2/en
Priority to US12/550,001 priority patent/US8264680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit miniaturization, cost reduction and the enhancement of accuracy by arranging a plurality of the spectroscopic data of a sample to the empty region between sample images in the image corresponding to the sample. SOLUTION: The light (exciting light) emitted from a light source 1 becomes parallel light by a lens 2 to be reflected by a dichroic mirror 3, and the reflected light is condensed through an object lens 4 to irradiate the surface of a sample 5. The sample 5 emits fluorescence (different from exciting light in wavelength) by this irradiation light and this fluorescence again returns to the object lens 4 to be incident on the dichroic mirror 3. The fluorescence from the sample 5 transmitted through the dichroic mirror 3 is diffracted by a diffraction lattice 6 and the angle of diffraction thereof corresponds to a wavelength. The light diffracted by the diffraction lattice 6 is condensed on a photodetector 8 through a lens 7. As the photodetector 8, for example, a camera is used. For example, when spots of a plurality of samples are arranged to a bio-chip, spectroscopic images (spectra) are obtained on the photodetector 8 at positions spatially shifted at every samples.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、DNAや蛋白質の
試料に蛍光物質を標識してこれをレーザ光等で励起して
蛍光を発生させ、その蛍光の波長を読取る読取装置に関
し、特に小型化、低価格化、高精度化のための改善に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reading device for labeling a DNA or protein sample with a fluorescent substance, exciting the fluorescent substance with a laser beam or the like to generate fluorescence, and reading the wavelength of the fluorescence. The present invention relates to improvements for cost reduction and high accuracy.

【0002】[0002]

【従来の技術】従来より、DNAや蛋白質に蛍光物質を
標識しレーザ光を照射してその蛍光物質を励起し、これ
により発生した蛍光を読取り、DNAや蛋白質を検出し
解析する技術がある。また、この場合、バイオチップ上
に蛍光物質が標識されたDNAや蛋白質をアレイ状にス
ポットしたバイオチップが利用される。
2. Description of the Related Art Conventionally, there is a technique of labeling DNA or protein with a fluorescent substance, irradiating a laser beam to excite the fluorescent substance, reading the fluorescence generated thereby, and detecting and analyzing DNA or protein. In this case, a biochip in which DNAs and proteins labeled with a fluorescent substance are spotted in an array on the biochip is used.

【0003】バイオチップの読取りは次のようにして行
われる。レーザ光を例えば横軸方向に振って照射しアレ
イ状の各スポットの蛍光物質を励起させ、発光した蛍光
を例えば光ファイバーで集光し、これを光学フィルタを
介して受光器で受光し、目的の波長を抽出する。このよ
うにして1ライン(スポット列)の読取り動作が終わる
と、バイオチップを縦軸方向に駆動し、上記と同様の操
作を行う。この操作を繰り返してバイオチップ全体を読
取る。
[0003] Reading of a biochip is performed as follows. For example, the laser light is oscillated in the horizontal axis direction to irradiate and irradiate the fluorescent substance of each spot in the array, and the emitted fluorescent light is condensed by, for example, an optical fiber, and the light is received by a light receiver via an optical filter. Extract the wavelength. When the reading operation of one line (spot row) is completed in this way, the biochip is driven in the vertical direction, and the same operation as described above is performed. This operation is repeated to read the entire biochip.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の読取装置には次のような課題があった。 1)バイオチップはスポットが多く、外形寸法が大き
い。アレイ数も多い。 2)蛍光の波長を光学フィルタで分離するため、多色で
はスペクトラムが各色素の濃度により混合して分離し難
い。 3)自己蛍光や背景光等が混合するため定量性が悪化
し、精度が悪い。 4)蛍光色に応じて光学フィルタ、受光器を切替える場
合、その切替え操作に時間がかかる。 5)光学フィルタ、受光器を切替える代わりに、これら
を複数個用意し同時に受光させると高速となるが、高価
になるという欠点がある。 6)走査型共焦点顕微鏡を用いると、部品点数が多いた
め、高価で大型であり、また測定に時間がかかる。
However, such a conventional reading apparatus has the following problems. 1) The biochip has many spots and large external dimensions. There are many arrays. 2) Since the wavelength of the fluorescent light is separated by the optical filter, in the case of multi-color, the spectra are hardly separated by mixing depending on the concentration of each dye. 3) Quantitative property deteriorates due to mixing of auto-fluorescence, background light, etc., resulting in poor precision. 4) When switching the optical filter and the light receiver according to the fluorescent color, the switching operation takes time. 5) Instead of switching the optical filter and the light receiver, if a plurality of these are prepared and light is received at the same time, the speed is increased, but there is a disadvantage that it is expensive. 6) When a scanning confocal microscope is used, the number of parts is large, so that it is expensive and large, and the measurement takes time.

【0005】本発明の目的は、上記の課題を解決するも
ので、一挙に、小型化、低価格化、高精度化を図ること
のできるバイオチップ読取装置を実現することにある。
[0005] An object of the present invention is to solve the above-mentioned problems, and to provide a biochip reader which can be reduced in size, price, and accuracy at a glance.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、請求項1の発明では、複数の試料をスポット
状またはラインアレイ状に配置したバイオチップに光を
照射して、受光器により前記複数の試料に応じた画像情
報を読取るバイオチップ読取装置であって、前記試料に
応じた画像における試料像間の空き領域に、対象となる
試料の複数の分光情報を配置する手段を備えたことを特
徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a biochip in which a plurality of samples are arranged in a spot or line array is irradiated with light, and a light receiving device is provided. A biochip reader that reads image information corresponding to the plurality of samples, comprising means for arranging a plurality of pieces of spectral information of the target sample in a space between sample images in an image corresponding to the sample. It is characterized by having.

【0007】このような構成によれば、受光器の画像の
試料間に試料の分光情報が出力でき、同時多波長測定が
容易に実現できる。また、多波長情報をコンパクトに得
ることもできる。
According to such a configuration, the spectral information of the sample can be output between the samples of the image of the light receiving device, and simultaneous multi-wavelength measurement can be easily realized. Also, multi-wavelength information can be obtained compactly.

【0008】この場合、請求項2のように、前記手段と
しては、試料と受光器の間に、回折格子、または光学フ
ィルタと光学的シフト手段の組み合わせ、またはフーリ
エ分光手段を配置した構成とすることができ、適宜に各
種の機構を利用することができる。
[0008] In this case, as the second aspect, the means has a configuration in which a diffraction grating, a combination of an optical filter and an optical shift means, or a Fourier spectroscopy means is disposed between the sample and the light receiver. And various mechanisms can be used as appropriate.

【0009】また、請求項3のように、試料がスポット
の場合、受光器上に分光情報を2次元的に展開させるこ
ともできる。このような発明によれば、コンパクトであ
りながらも情報量が多く高精度の測定が可能となる。
Further, when the sample is a spot, the spectral information can be developed two-dimensionally on the light receiving device. According to such an invention, a large amount of information can be measured with high accuracy while being compact.

【0010】また、本発明では、請求項4のように、測
定には走査型または非走査型の共焦点顕微鏡、あるいは
2光子励起型顕微鏡が適宜利用できる。
Further, in the present invention, a scanning or non-scanning confocal microscope or a two-photon excitation microscope can be appropriately used for the measurement.

【0011】また、請求項5のように、分光情報の信号
に対し、既知のスペクトラムを利用して回帰法によりノ
イズと分離する手段を用いて、精度を上げることもでき
る。
Further, the accuracy of the signal of the spectral information can be improved by using means for separating the signal of the spectral information from noise by a regression method using a known spectrum.

【0012】また、請求項6のように、分光対象領域を
制限するための開口部を、各試料の位置と一致させるか
または各試料の一部と一致させると、ノイズの少ない情
報が得られる。
Further, when the opening for limiting the spectral target area is matched with the position of each sample or with a part of each sample, information with less noise can be obtained. .

【0013】請求項7の発明では、試料の画像位置と一
致または試料の一部と一致する開口部を持つ非走査型共
焦点顕微鏡を読取手段としたことを特徴とする。このよ
うな構成によってもノイズの少ない情報を容易に得るこ
とができる。
According to a seventh aspect of the present invention, the reading means is a non-scanning confocal microscope having an opening which coincides with the image position of the specimen or which coincides with a part of the specimen. Even with such a configuration, information with less noise can be easily obtained.

【0014】[0014]

【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明の読取装置の一実施例を示す構
成図である。図において、1はレーザ光を発生する光
源、2は光源からの光を平行光にするレンズ、3はダイ
クロイックミラー、4は対物レンズ、5は試料、6は回
折格子、7はレンズ、8は受光器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of the reading apparatus of the present invention. In the figure, 1 is a light source that generates laser light, 2 is a lens that converts light from the light source into parallel light, 3 is a dichroic mirror, 4 is an objective lens, 5 is a sample, 6 is a diffraction grating, 7 is a lens, and 8 is It is a light receiver.

【0015】光源1から発生した光(励起光)はレンズ
2により平行光となり、ダイクロイックミラー3で反射
し、対物レンズ4を介して集光し試料5面を照射する。
この照射光により試料は蛍光(励起光とは波長が異な
る)を発し、その蛍光は再び対物レンズ4に逆戻りしダ
イクロイックミラー3に入射する。
The light (excitation light) generated from the light source 1 is converted into parallel light by the lens 2, reflected by the dichroic mirror 3, condensed through the objective lens 4, and illuminates the surface of the sample 5.
The sample emits fluorescence (having a wavelength different from that of the excitation light) by the irradiation light, and the fluorescence returns to the objective lens 4 again and enters the dichroic mirror 3.

【0016】ダイクロイックミラー3を透過した試料か
らの蛍光は回折格子6で回折する。その回折角は波長に
対応する。回折格子6で回折した光はレンズ7を介して
受光器8上に集光する。受光器8は例えばカメラ等が使
用される。
The fluorescence from the sample transmitted through the dichroic mirror 3 is diffracted by the diffraction grating 6. The diffraction angle corresponds to the wavelength. The light diffracted by the diffraction grating 6 is condensed on a light receiver 8 via a lens 7. As the light receiver 8, for example, a camera or the like is used.

【0017】バイオチップに、例えば図2に示すように
4個の試料S1,S2,S3,S4のスポットが配置さ
れている場合、受光器8には図3のように各試料ごとに
空間的にずれた位置に波長λ1〜λnの分光画像(スペ
クトラム)が得られる。この分光画像は分光情報である
が、白黒カメラで十分その分光情報を測定することがで
きる。この場合、図からも明らかなように各スポットの
隙間が巧みに利用されている。
When, for example, spots of four samples S1, S2, S3, and S4 are arranged on the biochip as shown in FIG. 2, the photodetector 8 has a spatial arrangement for each sample as shown in FIG. The spectral images (spectrum) of the wavelengths λ1 to λn are obtained at the positions deviated from the above. Although the spectral image is spectral information, the spectral information can be sufficiently measured with a monochrome camera. In this case, as is clear from the figure, the gaps between the spots are skillfully used.

【0018】上記実施例ではスポットがアレイ状に点在
するバイオチップを対象としているが、本発明はこれに
限らずライン状に配置された電気泳動パターンの蛍光パ
ターンも対象にすることができる。その場合は、図4に
示すような像が得られる。すなわち、各レーンの泳動パ
ターン(縦軸方向)について空間的に横軸方向にずれた
位置にλ1〜λnの分光画像が生じる。
Although the above embodiment is directed to a biochip in which spots are scattered in an array, the present invention is not limited to this, and it is also applicable to a fluorescent pattern of an electrophoresis pattern arranged in a line. In that case, an image as shown in FIG. 4 is obtained. That is, spectral images of λ1 to λn are generated at positions spatially shifted in the horizontal axis direction with respect to the migration pattern (vertical axis direction) of each lane.

【0019】図5は本発明の他の実施例を示す構成図で
ある。図5は直角に2枚の回折光子を配置した例であ
る。このような構成によれば、図6に示すように2次元
のスペクトラムが得られる。例えば、横軸方向(X軸方
向)を100nm刻み、縦軸方向(Y軸方向)を10n
m刻みとすれば、ダイナミックレンジが広く、かつ高精
度の計測が可能となる。
FIG. 5 is a block diagram showing another embodiment of the present invention. FIG. 5 shows an example in which two diffracted photons are arranged at right angles. According to such a configuration, a two-dimensional spectrum is obtained as shown in FIG. For example, the horizontal axis direction (X-axis direction) is incremented by 100 nm, and the vertical axis direction (Y-axis direction) is 10 n.
With m increments, a high dynamic range and high-precision measurement is possible.

【0020】図7は回折格子の代わりにダイクロイック
ミラーを使用した場合の実施例である。これは光学フィ
ルタと光学的シフト手段の組み合わせである。図示のよ
うに、透過波長の異なるダイクロイックミラー31,3
2,33(光学フィルタ)を光軸上に積み重ねる。この
場合、ダイクロイックミラーを反射する光が、丁度回折
格子で回折するのと同様な角度で反射するように、各ダ
イクロイックミラーの角度を設定しておく(光学的シフ
ト手段に相当する)。
FIG. 7 shows an embodiment in which a dichroic mirror is used instead of the diffraction grating. This is a combination of an optical filter and an optical shifting means. As shown, dichroic mirrors 31 and 3 having different transmission wavelengths are provided.
2, 33 (optical filters) are stacked on the optical axis. In this case, the angles of the dichroic mirrors are set so that the light reflected by the dichroic mirrors is reflected at the same angle as the one just diffracted by the diffraction grating (corresponding to an optical shift means).

【0021】図8は回折格子やダイクロイックミラーに
代えて、サバール方式やマイケルソン型の非可動型のフ
ーリエ分光手段81を用いた例である。この場合、受光
器に得られる画像は、スペクトラムそのものではなく、
干渉縞像である。したがって、この干渉縞像を計算手段
(図示せず)によりフーリエ変換処理することによりス
ペクトラムが得られる。
FIG. 8 shows an example in which a non-movable Fourier spectroscopic means 81 of the Savart type or Michelson type is used in place of the diffraction grating or the dichroic mirror. In this case, the image obtained on the receiver is not the spectrum itself,
It is an interference fringe image. Therefore, a spectrum can be obtained by subjecting the interference fringe image to Fourier transform processing by a calculating means (not shown).

【0022】なお、測定には通常の蛍光顕微鏡やカメラ
だけでなく、共焦点や2光子方式の顕微鏡を用いると、
更に高分解能となる。また、共焦点のスライス効果によ
り個々の試料の厚みがばらついている場合でも常に一定
の体積の試料を測定出来るため、定量性も向上する。な
お、この場合、共焦点顕微鏡は非走査型でもよい。
When using a confocal or two-photon microscope in addition to a normal fluorescence microscope or camera for the measurement,
Higher resolution is obtained. Further, even when the thickness of each sample varies due to the confocal slicing effect, a constant volume of the sample can always be measured, so that the quantitative property is improved. In this case, the confocal microscope may be a non-scanning type.

【0023】また、図9に示すように本来の蛍光とわず
かに波長が異なる自己蛍光等は、使用される試薬の特性
が既知であるため、容易に除去することができる。必要
なら信号スペクトルを回帰法により分離してもよい。こ
のようにすれば、高精度、高感度化を容易に実現するこ
とができる。
Further, as shown in FIG. 9, autofluorescence having a wavelength slightly different from the original fluorescence can be easily removed because the characteristics of the reagent used are known. If necessary, the signal spectrum may be separated by a regression method. In this case, high precision and high sensitivity can be easily realized.

【0024】また、分光では、スリット等の遮光手段で
測定領域を制限する必要がある。そのため、例えば図1
0に示すように、開口部Aを試料S1のある領域と一致
させるか、または試料の一部と一致させることにより、
面積を最も有効に使うことができる。
In the case of spectroscopy, it is necessary to limit the measurement area by light shielding means such as a slit. Therefore, for example, FIG.
As shown in FIG. 0, by aligning the opening A with a certain region of the sample S1 or with a part of the sample,
The area can be used most effectively.

【0025】これは、試料のふち部の乱れによるエラー
を除去するためにも有効である。なお、開口部の形状は
丸型だけでなく矩形などでもよい。
This is also effective for removing an error due to disturbance of the edge of the sample. Note that the shape of the opening may be not only a round shape but also a rectangular shape.

【0026】また、図10に示すような開口部あるいは
上記のような矩形型の開口部を非走査型共焦点顕微鏡の
ピンホールまたはスリットとして利用すると、安価かつ
小型でありながら共焦点の高分解能とスライスによる定
量性が得られる。この場合、検出手段は図1に示すよう
な分光方式に限らず、一般のフィルタ方式でもよい。
When the aperture shown in FIG. 10 or the rectangular aperture as described above is used as a pinhole or a slit of a non-scanning confocal microscope, it is inexpensive and small, but has high confocal high resolution. And quantification by slice. In this case, the detection means is not limited to the spectral method as shown in FIG. 1, but may be a general filter method.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば次の
ような効果がある。 1)フィルタや受光器を切替えることなく多波長の蛍光
を同時に測定でき、コンパクトな読取装置を実現するこ
とができる。 2)受光器上に表示されるスペクトラムの撮影は白黒カ
メラでよく、安価で済む。 3)受光器上に表示されるスペクトラムは、容易に2次
元スペクトラムとすることもでき、高精度化が容易であ
る。
As described above, according to the present invention, the following effects can be obtained. 1) Fluorescence of multiple wavelengths can be measured simultaneously without switching between filters and light receivers, and a compact reader can be realized. 2) The spectrum displayed on the light receiver can be photographed with a black-and-white camera, which is inexpensive. 3) The spectrum displayed on the light receiver can easily be a two-dimensional spectrum, and high accuracy can be easily achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るバイオチップ読取装置の一実施例
を示す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a biochip reader according to the present invention.

【図2】バイオチップ上の試料の配列を説明するための
図である。
FIG. 2 is a diagram for explaining the arrangement of samples on a biochip.

【図3】受光器上に表示される分光情報を説明するため
の説明図である。
FIG. 3 is an explanatory diagram for explaining spectral information displayed on a light receiver.

【図4】ラインアレイ状に配置された試料を測定した場
合の分光情報を説明するための説明図である。
FIG. 4 is an explanatory diagram for explaining spectral information when measuring samples arranged in a line array.

【図5】本発明の他の実施例を示す構成図である。FIG. 5 is a configuration diagram showing another embodiment of the present invention.

【図6】分光情報が2次元的に展開された場合の分光画
像についての説明図である。
FIG. 6 is an explanatory diagram of a spectral image when spectral information is developed two-dimensionally.

【図7】本発明の更に他の実施例を示す構成図である。FIG. 7 is a configuration diagram showing still another embodiment of the present invention.

【図8】本発明の更に他の実施例を示す構成図である。FIG. 8 is a configuration diagram showing still another embodiment of the present invention.

【図9】自己蛍光等の分布状態を示す説明図である。FIG. 9 is an explanatory diagram showing a distribution state of autofluorescence and the like.

【図10】試料と開口部の関係に係る説明図である。FIG. 10 is an explanatory diagram relating to a relationship between a sample and an opening.

【符号の説明】[Explanation of symbols]

1 光源 2 レンズ 3,31,32,33 ダイクロイックミラー 4 対物レンズ 5,S1,S2,S3,S4 試料 6,61 回折格子 7 レンズ 8 受光器 81 フーリエ分光手段 A 開口部 Reference Signs List 1 light source 2 lens 3, 31, 32, 33 dichroic mirror 4 objective lens 5, S1, S2, S3, S4 sample 6, 61 diffraction grating 7 lens 8 light receiver 81 Fourier spectroscopic means A opening

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/483 G01N 33/483 C 33/566 33/566 Fターム(参考) 2G020 AA04 BA02 BA04 CA01 CB05 CB23 CB43 CC04 CC22 CC26 CD14 CD27 CD35 2G045 AA39 BA11 BB11 CB30 DA13 DA36 FA12 FA17 FA19 FA26 FB02 FB12 JA01 2G054 AA06 AB07 CA30 CE02 EA03 FA18 FA19 GA03 GA04 JA02 JA07 2G059 AA01 BB12 CC20 DD01 EE07 FF11 GG01 HH02 JJ02 JJ05 JJ07 KK04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 33/483 G01N 33/483 C 33/566 33/566 F-term (Reference) 2G020 AA04 BA02 BA04 CA01 CB05 CB23 CB43 CC04 CC22 CC26 CD14 CD27 CD35 2G045 AA39 BA11 BB11 CB30 DA13 DA36 FA12 FA17 FA19 FA26 FB02 FB12 JA01 2G054 AA06 AB07 CA30 CE02 EA03 FA18 FA19 GA03 GA04 JA02 JA07 2G059 AA01 BB12 CC20 DD01 EJ01 KK07 DD01 JJ01 FF07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】複数の試料をスポット状またはラインアレ
イ状に配置したバイオチップに光を照射して、受光器に
より前記複数の試料に応じた画像情報を読取るバイオチ
ップ読取装置であって、 前記試料に応じた画像における試料像間の空き領域に、
対象となる試料の複数の分光情報を配置する手段を備え
たことを特徴とするバイオチップ読取装置。
1. A biochip reader for irradiating a biochip on which a plurality of samples are arranged in a spot or a line array with light and reading image information corresponding to the plurality of samples by a light receiver, In the empty area between the sample images in the image corresponding to the sample,
A biochip reader comprising means for arranging a plurality of pieces of spectral information of a target sample.
【請求項2】前記手段は、前記試料と受光器の間に、回
折格子、または光学フィルタと光学的シフト手段の組み
合わせ、またはフーリエ分光手段を配置した構成である
ことを特徴とする請求項1記載のバイオチップ読取装
置。
2. The apparatus according to claim 1, wherein said means has a structure in which a diffraction grating, a combination of an optical filter and an optical shift means, or a Fourier spectroscopic means is arranged between the sample and the light receiving device. The biochip reader according to the above.
【請求項3】前記手段は、前記試料がスポットの場合、
前記受光器上に分光情報を2次元的に展開するように構
成されてなることを特徴とする請求項1記載のバイオチ
ップ読取装置。
3. The method according to claim 2, wherein the sample is a spot.
The biochip reader according to claim 1, wherein the biochip reader is configured to two-dimensionally expand spectral information on the light receiver.
【請求項4】前記手段は、走査型または非走査型の共焦
点顕微鏡、あるいは2光子励起型顕微鏡を用いたことを
特徴とする請求項1記載のバイオチップ読取装置。
4. The biochip reader according to claim 1, wherein said means uses a scanning or non-scanning confocal microscope or a two-photon excitation microscope.
【請求項5】前記分光情報の信号に対し、既知のスペク
トラムを利用して回帰法によりノイズと分離する手段を
有したことを特徴とする請求項1記載のバイオチップ読
取装置。
5. The biochip reader according to claim 1, further comprising means for separating said spectral information signal from noise by a regression method using a known spectrum.
【請求項6】分光対象領域を制限するための開口部が、
各試料の位置と一致するかまたは各試料の一部と一致す
るようにしたことを特徴とする請求項1記載のバイオチ
ップ読取装置。
6. An opening for limiting a spectral target area,
2. The biochip reader according to claim 1, wherein the biochip reader matches the position of each sample or a part of each sample.
【請求項7】複数の試料をスポット状またはラインアレ
イ状に配置したバイオチップに光を照射して、受光器に
より前記複数の試料に応じた画像情報を読取るバイオチ
ップ読取装置であって、 前記試料の画像位置と一致または試料の一部と一致する
開口部を持つ非走査型共焦点顕微鏡を読取手段としたこ
とを特徴とするバイオチップ読取装置。
7. A biochip reader for irradiating a biochip on which a plurality of samples are arranged in a spot or a line array with light and reading image information corresponding to the plurality of samples by a light receiver, A biochip reader comprising: a non-scanning confocal microscope having an opening corresponding to an image position of a sample or a part of the sample as reading means.
JP14939999A 1999-05-28 1999-05-28 Biochip reader Expired - Fee Related JP3689901B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14939999A JP3689901B2 (en) 1999-05-28 1999-05-28 Biochip reader
DE60044923T DE60044923D1 (en) 1999-05-28 2000-05-08 Biochip reader
EP00109722A EP1055925B1 (en) 1999-05-28 2000-05-08 Biochip reader
EP08160013A EP1983331B1 (en) 1999-05-28 2000-05-08 Optical system for reading a biochip
DE1055925T DE1055925T1 (en) 1999-05-28 2000-05-08 Biochip reader and electrophoresis system
US10/769,017 US20040182710A1 (en) 1999-05-28 2004-01-30 Biochip reader and electrophoresis system
US10/768,632 US20040184960A1 (en) 1999-05-28 2004-01-30 Biochip reader and electrophoresis system
US12/550,001 US8264680B2 (en) 1999-05-28 2009-08-28 Biochip reader and electrophoresis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14939999A JP3689901B2 (en) 1999-05-28 1999-05-28 Biochip reader

Publications (2)

Publication Number Publication Date
JP2000338035A true JP2000338035A (en) 2000-12-08
JP3689901B2 JP3689901B2 (en) 2005-08-31

Family

ID=15474292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14939999A Expired - Fee Related JP3689901B2 (en) 1999-05-28 1999-05-28 Biochip reader

Country Status (1)

Country Link
JP (1) JP3689901B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038754A1 (en) * 2001-11-01 2003-05-08 Diachip Co., Ltd. Method for analyzing image of biochip
US7349093B2 (en) 2005-02-17 2008-03-25 Matsushita Electric Industrial Co., Ltd. Fluorescence measurement apparatus
JP2011007775A (en) * 2009-05-22 2011-01-13 Canon Inc Imaging apparatus and imaging method
JP2011080980A (en) * 2009-09-14 2011-04-21 Ricoh Co Ltd Spectral distribution measuring device
CN109856059A (en) * 2019-03-08 2019-06-07 金华职业技术学院 A kind of electrochemistry Infrared Reflective Spectra experimental provision
CN117402721A (en) * 2023-11-03 2024-01-16 苏州思迈德生物科技有限公司 Detection device and detection method for multicolor fluorescence detection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038754A1 (en) * 2001-11-01 2003-05-08 Diachip Co., Ltd. Method for analyzing image of biochip
US7349093B2 (en) 2005-02-17 2008-03-25 Matsushita Electric Industrial Co., Ltd. Fluorescence measurement apparatus
JP2011007775A (en) * 2009-05-22 2011-01-13 Canon Inc Imaging apparatus and imaging method
JP2011080980A (en) * 2009-09-14 2011-04-21 Ricoh Co Ltd Spectral distribution measuring device
CN109856059A (en) * 2019-03-08 2019-06-07 金华职业技术学院 A kind of electrochemistry Infrared Reflective Spectra experimental provision
CN117402721A (en) * 2023-11-03 2024-01-16 苏州思迈德生物科技有限公司 Detection device and detection method for multicolor fluorescence detection
CN117402721B (en) * 2023-11-03 2024-04-19 苏州思迈德生物科技有限公司 Detection device and detection method for multicolor fluorescence detection

Also Published As

Publication number Publication date
JP3689901B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
EP1055925B1 (en) Biochip reader
US7532326B2 (en) Multiple-label fluorescence imaging using excitation-emission matrices
DK2594981T3 (en) Methods and apparatus for confocal imaging
US5585639A (en) Optical scanning apparatus
CA2316984C (en) Spectral imaging apparatus and methodology
CA2315812C (en) Detector having a transmission grating beam splitter for multi-wavelength sample analysis
US7365842B2 (en) Light scanning type confocal microscope
US6320196B1 (en) Multichannel high dynamic range scanner
RU2414695C2 (en) Multipoint analysis apparatus
WO2001069211A1 (en) Multi-wavelength array reader for biological assay
JP2006098419A (en) Method for optical acquisition of characteristic dimension of illuminated sample
JP2001108684A (en) Dna testing method and device
WO2007113473A1 (en) Confocal microscopy with a two-dimensional array of light emitting diodes
JP2004170977A (en) Method and arrangement for optically grasping sample with depth of resolution
JP2001311690A (en) Biochip reader and electrophoretic apparatus
JP3689901B2 (en) Biochip reader
US7446867B2 (en) Method and apparatus for detection and analysis of biological materials through laser induced fluorescence
JP2002014043A (en) Multicolor analyzer for microscope, and multicolor analysis method using microscope
EP1381847A2 (en) Hybrid-imaging spectrometer
JP2003232733A (en) Method and device for fluorescent image detection and method and device for dna inspection
JPH03239928A (en) Multichannel fluorescence spectral diffraction device
EP1980841A1 (en) Method and Apparatus for Detection and Analysis of Biological Materials through Laser Induced Fluorescence
JPH06317472A (en) Fluorescent photometer
CA2497775A1 (en) Spectral imaging apparatus and methodology

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees