JP2000314866A - Stn type liquid crystal display device - Google Patents

Stn type liquid crystal display device

Info

Publication number
JP2000314866A
JP2000314866A JP11125590A JP12559099A JP2000314866A JP 2000314866 A JP2000314866 A JP 2000314866A JP 11125590 A JP11125590 A JP 11125590A JP 12559099 A JP12559099 A JP 12559099A JP 2000314866 A JP2000314866 A JP 2000314866A
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
crystal molecules
crystal cell
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11125590A
Other languages
Japanese (ja)
Inventor
Takashi Sugiyama
貴 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP11125590A priority Critical patent/JP2000314866A/en
Priority to DE10021922A priority patent/DE10021922A1/en
Publication of JP2000314866A publication Critical patent/JP2000314866A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133636Birefringent elements, e.g. for optical compensation with twisted orientation, e.g. comprising helically oriented LC-molecules or a plurality of twisted birefringent sublayers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133749Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for low pretilt angles, i.e. lower than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an STN type liquid crystal display device having a double layer cell with improved viewing angle characteristics. SOLUTION: The STN type liquid crystal display device is provided with a first liquid crystal cell having a driving electrode and a second liquid crystal cell for compensating optical retardation of the first liquid crystal cell located so as to be superimposed on the first liquid crystal cell in the same optical path as the first liquid crystal cell. In the second liquid crystal cell, liquid crystal molecules existing at the boundary of two substrates holding the liquid crystal are given a pretilt of which the tilt direction is set so as to make the liquid crystal molecules 4 twist and at the same time be subjected to a splay deformation and besides the tilt direction of the liquid crystal molecules 4 existing at the boundary and the direction of rise of the liquid crystal molecules 4 existing at the central part of the liquid crystal layer of the first liquid crystal cell during driving are arranged to be in parallel with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置に係
わり、特にSTN型の光学的補償液晶セルと駆動液晶セ
ル(表示セル)とを重ねて配置した二層STN型液晶表示
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a two-layer STN type liquid crystal display device in which an STN type optical compensation liquid crystal cell and a driving liquid crystal cell (display cell) are arranged in an overlapping manner.

【0002】[0002]

【従来の技術】STN型LCD(Super−Twis
ted Nematic Liquid Crysta
l Display)は、1984年にT.J.Sch
effer他により提案された。STN型LCDにおけ
る不要な色付を防止してクリアな白黒表示を実現する方
法として、2層型のSTN−LCDが提案されている。
2. Description of the Related Art STN-type LCDs (Super-Twis)
ted Nematic Liquid Crysta
l Display) was published in 1984 by T.W. J. Sch
Proposed by effer et al. A two-layer STN-LCD has been proposed as a method of realizing clear black and white display by preventing unnecessary coloring in the STN LCD.

【0003】図5を参照して2層型STN−LCDの構
造について説明する。図5は2層型STN−LCDの電
圧無印加時の断面を模式的に描いたものである。上側の
STN型液晶セル(以下、単にセルと称する)1は補償
セルであり、下側のセル2は駆動セル(表示セル)であ
る。補償セル1と駆動セル2は、それぞれ対向する透明
ガラス基板3の間に液晶分子4を配置している。図5に
示すように、液晶分子4は長軸方向を有している。上下
の基板3間の液晶分子4のツイスト(ねじれ)方向は液
晶に添加するカイラル剤で規定しており、上下セルで互
いに逆になっている。ツイスト角はいずれも160〜2
70度程度である。駆動セル2だけが透明電極(図示せ
ず)を有し、電極への電圧の印加により液晶分子4の配
列を変えて光の透過率を制御する。上下セル1、2を互
いに直交する偏光軸方向の2枚の偏光板5a,5bが挟
持している。
The structure of a two-layer STN-LCD will be described with reference to FIG. FIG. 5 schematically illustrates a cross section of the two-layer STN-LCD when no voltage is applied. The upper STN type liquid crystal cell (hereinafter simply referred to as a cell) 1 is a compensation cell, and the lower cell 2 is a drive cell (display cell). In the compensation cell 1 and the driving cell 2, liquid crystal molecules 4 are arranged between the transparent glass substrates 3 facing each other. As shown in FIG. 5, the liquid crystal molecules 4 have a long axis direction. The twist (twist) direction of the liquid crystal molecules 4 between the upper and lower substrates 3 is defined by a chiral agent added to the liquid crystal, and is reversed in the upper and lower cells. All twist angles are 160-2
It is about 70 degrees. Only the driving cell 2 has a transparent electrode (not shown), and controls the light transmittance by changing the arrangement of the liquid crystal molecules 4 by applying a voltage to the electrode. The upper and lower cells 1 and 2 are sandwiched between two polarizing plates 5a and 5b in a direction of a polarization axis orthogonal to each other.

【0004】補償セル1と駆動セル2とは、液晶分子の
ツイスト方向以外は、互いに同一のの光学的特性を有す
る。すなわち、上下のセルは、ツイスト角、プレティル
ト角、液晶材料、液晶の屈折率(Δn)、セル厚(d)な
どが同一となっている。しかも、両セルの対向する液晶
分子4aと4bとは配向方向が直交している。従って、
両セルはお互いに相手のセルの光学的性質(面内異方
性)を補償しあっているので、直交ニコル配置の偏光板
5a,5bと組み合わせると、光学的補償が完全になさ
れた高コントラストなノーマリブラックの表示が実現で
きる。
The compensation cell 1 and the driving cell 2 have the same optical characteristics except for the twist direction of liquid crystal molecules. That is, the upper and lower cells have the same twist angle, pretilt angle, liquid crystal material, liquid crystal refractive index (Δn), cell thickness (d), and the like. In addition, the liquid crystal molecules 4a and 4b facing each other in both cells have their orientation directions orthogonal to each other. Therefore,
Since both cells compensate each other for the optical properties (in-plane anisotropy) of the other cell, when combined with the polarizers 5a and 5b having the orthogonal Nicol arrangement, a high contrast in which optical compensation is completely achieved is achieved. Display of normally black can be realized.

【0005】図6に、ツイスト角180度の2層STN
型LCDの構造の断面図(電圧無印加時の液晶配列を示
した。)を示す。図5と同じ参照番号のものは同一の要
素を示す。電圧印加時の逆ティルト不良を防止するため
に、駆動セル2にはセル中央の液晶分子がすべて同じ方
向から立ち上がるように液晶分子にあらかじめプレティ
ルト角が付与されている。電圧無印加時、液晶分子は全
厚さ方向に対してほぼ均一のプレティルト角を有する。
この例ではθm=2度となるようにラビング処理をして
界面の液晶分子にプレティルト角が与えられている。
FIG. 6 shows a two-layer STN having a twist angle of 180 degrees.
FIG. 1 is a cross-sectional view of a structure of a liquid crystal display (showing liquid crystal alignment when no voltage is applied). Those having the same reference numbers as in FIG. 5 indicate the same elements. In order to prevent reverse tilt failure at the time of applying a voltage, a pretilt angle is previously given to the liquid crystal molecules in the driving cell 2 so that all the liquid crystal molecules at the center of the cell rise from the same direction. When no voltage is applied, the liquid crystal molecules have a substantially uniform pretilt angle with respect to the entire thickness direction.
In this example, the liquid crystal molecules at the interface are given a pretilt angle by performing a rubbing process so that θm = 2 degrees.

【0006】図7に、ラビングローラによるラビング方
向とそれにより付与されるプレティルト角θpの方向と
の関係を示す。補償セル1は、駆動セル2の光学的補償
をするようにθpのプレティルト角が与えられている。
FIG. 7 shows the relationship between the rubbing direction of the rubbing roller and the direction of the pretilt angle θp given thereby. The compensation cell 1 is given a pretilt angle of θp so as to optically compensate the driving cell 2.

【0007】図8は各セルの上下基板のラビング方向と
偏光板の偏光軸との関係を示す平面図である。180度
ツイスト(上下基板間の液晶分子の向きのねじれ)の場
合を示す。図8の(a)は図5の2層セルの補償セル1
の上下基板のラビング方向を示し、図8の(b)は駆動
セル2の上下基板のラビング方向を示す。高透過率でか
つ高コントラストな表示を実現するには、偏光板5a,
5bの偏光軸とセル基板界面の液晶分子の配向方向との
なす角度は、図8左側に示すように45度とするのが通
常である。
FIG. 8 is a plan view showing the relationship between the rubbing directions of the upper and lower substrates of each cell and the polarization axis of the polarizing plate. The case of a 180-degree twist (twist in the direction of liquid crystal molecules between the upper and lower substrates) is shown. FIG. 8A shows a compensation cell 1 of the two-layer cell of FIG.
8 (b) shows the rubbing direction of the upper and lower substrates of the driving cell 2. FIG. In order to realize a display with high transmittance and high contrast, the polarizing plate 5a,
The angle between the polarization axis 5b and the alignment direction of the liquid crystal molecules at the cell substrate interface is usually 45 degrees as shown on the left side of FIG.

【0008】図6の2層セルに電圧を印加した場合は、
駆動セル2の液晶分子が揃ってプレティルト角の方向か
ら立ち上がり、駆動セルのリタデーションが小さくなり
補償セル1による補償が崩れるために、2層セルは光透
過状態(白表示)となる。
When a voltage is applied to the two-layer cell of FIG.
Since the liquid crystal molecules of the drive cell 2 are aligned and rise from the direction of the pretilt angle, the retardation of the drive cell is reduced and the compensation by the compensation cell 1 is broken, so that the two-layer cell is in a light transmitting state (white display).

【0009】図9に駆動セル2での印加電圧の変化に対
する光の透過率変化の特性の例を示す。2層セルをマル
チプレックス駆動する場合は、図9に示すOFF電圧V
offとON電圧Vonの印加により白黒表示を得る。
ON電圧VoffとON電圧Vonは駆動条件であるデ
ューティ数、バイアス比及び駆動電圧値により決まり、
デューティ数が大きいほどON電圧とOFF電圧との比
(Von/Voff)は小さくなる。
FIG. 9 shows an example of a characteristic of a change in light transmittance with respect to a change in an applied voltage in the driving cell 2. When the two-layer cell is multiplex driven, the OFF voltage V shown in FIG.
A black-and-white display is obtained by applying the off and ON voltage Von.
The ON voltage Voff and the ON voltage Von are determined by a driving condition such as a duty number, a bias ratio, and a driving voltage value.
The ratio between the ON voltage and the OFF voltage (Von / Voff) decreases as the duty number increases.

【0010】[0010]

【発明が解決しようとする課題】図6の2層セルを1/
64デューティで1/9バイアスのマルチプレックス駆
動をした場合の視角特性(等コントラスト曲線)を図1
0に示す。同図でΦは観察者から表示画面を見た視角
(方位角)を示し、Θは基板面法線に対する極角度で、C
Rはコントラスト比を示す。このセルでは駆動セルの中
央部の液晶分子の立ち上がり方向がΦ=0度の方向に対
応している。Φ=0度とΦ=180度とを通る方向、す
なわち駆動セルの中央部の液晶分子の配向方向に並行な
方向の視角特性がよくないことが判る。特にΦ=180
度の方向についてはコントラスト比の値が1以下となる
白黒反転領域(図10の斜線領域)が存在しており、は
なはだ見にくいものになっている。この原因を考察する
と以下のようになる。
The two-layer cell shown in FIG.
FIG. 1 shows the viewing angle characteristic (equal contrast curve) when multiplex driving with 1/9 bias is performed at 64 duty.
0 is shown. In the same figure, Φ is the viewing angle of the display screen from the observer
(Azimuth angle), Θ is a polar angle with respect to the substrate surface normal, and C
R indicates a contrast ratio. In this cell, the rising direction of the liquid crystal molecules at the center of the driving cell corresponds to the direction of Φ = 0 degrees. It can be seen that the viewing angle characteristics in the direction passing through Φ = 0 degrees and Φ = 180 degrees, that is, the direction parallel to the alignment direction of the liquid crystal molecules at the center of the driving cell are not good. Especially Φ = 180
In the degree direction, there is a black-and-white inversion area (shaded area in FIG. 10) where the value of the contrast ratio is 1 or less, which makes it hard to see. Considering the cause, it is as follows.

【0011】ON状態の透過率をある程度高く保つ必要
があるために、ON電圧をあまり下げることはできな
い。それにつれてOFF電圧も、透過率が変化し始める
電圧にかなり近いところに設定する。デューティ比が大
きい場合には、OFF電圧をさらにそれ以上の電圧に設
定する必要がある。このようなOFF電圧では駆動セル
の中央付近の液晶分子は図11に示すようにかなり立ち
上がっている。
Since the transmittance in the ON state needs to be kept high to some extent, the ON voltage cannot be reduced much. Accordingly, the OFF voltage is also set to a position very close to the voltage at which the transmittance starts to change. When the duty ratio is large, it is necessary to set the OFF voltage to a higher voltage. At such an OFF voltage, the liquid crystal molecules near the center of the driving cell rise considerably as shown in FIG.

【0012】図12に駆動セルの印加電圧の変化に対す
る中央の液晶分子のティルト角の変化の特性を示す。図
12の特性から、図9の電圧−透過率特性での透過率が
変化し始める電圧よりもさらに低い電圧でセル中央の液
晶分子はすでにその傾きが変化し始めていることが判
る。
FIG. 12 shows the characteristics of the change in the tilt angle of the liquid crystal molecules at the center with respect to the change in the voltage applied to the driving cell. From the characteristics of FIG. 12, it can be seen that the inclination of the liquid crystal molecules in the center of the cell has already started to change at a voltage lower than the voltage at which the transmittance in the voltage-transmittance characteristics of FIG.

【0013】前述のΦ=0度とΦ=180度を結ぶ方向
での2層セルの視角特性を左右するのは、その方向を向
いた液晶分子、すなわち駆動セルの中央付近の液晶分子
と補償セルの界面付近の液晶分子である。特に、駆動セ
ルの中央付近の液晶分子は、上述のようにOFF電圧に
おいてもある程度傾きを持って立ち上がっているため
に、セルを斜め上方から見た場合のリタデーションの変
化が大きい。具体的には図11のAの方向から表示面を
見た場合は、駆動セルのリタデーションは真正面から見
た場合よりも大きく、Bの方向から見た場合には逆に小
さい。従って、見る方向によって補償セルとの間の補償
条件が大きくずれてしまい、この方向における視角特性
が悪いものになってしまうのである。
The viewing angle characteristic of the two-layer cell in the direction connecting Φ = 0 ° and Φ = 180 ° is determined by the liquid crystal molecules oriented in that direction, that is, the liquid crystal molecules near the center of the driving cell. Liquid crystal molecules near the cell interface. In particular, since the liquid crystal molecules near the center of the driving cell rise with a certain inclination even at the OFF voltage as described above, the change in retardation when the cell is viewed from obliquely above is large. Specifically, when the display surface is viewed from the direction A in FIG. 11, the retardation of the drive cell is larger than when viewed from the front, and is smaller when viewed from the direction B. Therefore, the compensation condition between the compensation cell and the compensating cell greatly shifts depending on the viewing direction, and the viewing angle characteristics in this direction become poor.

【0014】もし、補償セルのリタデーションも駆動セ
ルと同じように視角方向に対して変化すれば、視角特性
がこのように悪くなることはないが、図6で示したよう
に補償セルの両界面の液晶分子は180°ツイストを介
して互いにティルト方向が逆になっているために、補償
セル内で視角変化に対するリタデーション変化を自己補
償していまい、駆動セルのリタデーション変化を補償す
ることはできない。
If the retardation of the compensating cell also changes in the viewing angle direction in the same manner as the driving cell, the viewing angle characteristics do not deteriorate as described above. However, as shown in FIG. Since the tilt directions of the liquid crystal molecules are opposite to each other via the 180 ° twist, the retardation change with respect to the viewing angle change can be self-compensated in the compensation cell, and the retardation change of the driving cell cannot be compensated.

【0015】本発明の目的は、視角特性を改善した2層
セル型のSTN型液晶表示装置を提供することである。
An object of the present invention is to provide a two-layer cell type STN type liquid crystal display device having improved viewing angle characteristics.

【0016】[0016]

【課題を解決するための手段】本発明のSTN型液晶表
示装置は、駆動電極を有する第1の液晶セルと、前記第
1の液晶セルと同一の光路中に前記第1の液晶セルと重
ねて配置され前記第1の液晶セルの光学位相差補償用の
第2の液晶セルとを有し、前記第2の液晶セルは、液晶
を挟持する2枚の基板の界面の液晶分子にプレティルト
を与え、そのティルト方向を前記基板間で液晶分子がツ
イストすると同時にスプレイ変形を受けるように設定
し、かつ前記界面の液晶分子のティルト方向と前記第1
の液晶セルの液晶層の中央部の液晶分子の駆動時の立ち
あがり方向とが揃うように配列した。
According to the present invention, there is provided an STN type liquid crystal display device comprising: a first liquid crystal cell having a driving electrode; and the first liquid crystal cell in the same optical path as the first liquid crystal cell. And a second liquid crystal cell for compensating the optical phase difference of the first liquid crystal cell, wherein the second liquid crystal cell applies pretilt to liquid crystal molecules at an interface between two substrates sandwiching the liquid crystal. The tilt direction is set so that the liquid crystal molecules are twisted between the substrates and simultaneously undergoes splay deformation, and the tilt direction of the liquid crystal molecules at the interface and the first tilt direction are set.
The liquid crystal molecules of the liquid crystal cell were arranged so that the rising direction of the liquid crystal molecules at the center of the liquid crystal layer when driving was aligned.

【0017】[0017]

【発明の実施の形態】本発明のSTN型液晶表示装置
は、補償セル内の液晶分子の配列を工夫し、従来自己補
償してしまっていた補償セルのリタデーションの視角に
よる変化を駆動セルの変化に近づけることにより、従来
視角特性の悪かった方向の視角特性を改善する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The STN type liquid crystal display device of the present invention devises the arrangement of liquid crystal molecules in a compensation cell, and changes the retardation of the compensation cell, which has been self-compensated conventionally, due to the viewing angle by the change of the driving cell. , The viewing angle characteristic in the direction where the viewing angle characteristic was poor in the past is improved.

【0018】本発明の一実施態様によれば、図1の2層
液晶セルの断面図に示すように、補償セル1における液
晶分子のプレティルトが従来のものとは異なる。すなわ
ち、補償セル1の両界面のうちのいずれか一方の界面の
液晶分子のティルト方向を図6の従来のものとは逆方向
にし、上下基板界面のプレティルトがほぼ同一方向を向
くようにする。セル内の液晶分子はツイストすると同時
にスプレイ変形を受ける。180°ツイストの場合、上
下基板のプレティルト角がほぼ平行となるので、この方
向に沿う光学異方性が生じる。補償セル界面でのティル
ト方向と、駆動セル中央の液晶分子の立ち上がり方向と
を揃えることにより補償セル内の両界面の液晶分子同士
が補償セル内において視角変化によるリタデーション変
化を自己補償するのではなく、補償セルと駆動セルとが
互いに協働し、駆動セル2のセル中央付近の液晶分子に
対して補償セル1の液晶分子がリタデーションの視角依
存性を補償するような配列として、視角特性を改善す
る。なお、図1では透明電極や配向膜は図示を省略して
いる。
According to one embodiment of the present invention, as shown in the cross-sectional view of the two-layer liquid crystal cell in FIG. 1, the pretilt of the liquid crystal molecules in the compensation cell 1 is different from the conventional one. That is, the tilt direction of the liquid crystal molecules at one of the two interfaces of the compensation cell 1 is set to the opposite direction to the conventional one in FIG. 6, and the pretilt at the interface between the upper and lower substrates is directed substantially in the same direction. The liquid crystal molecules in the cell undergo a splay deformation while being twisted. In the case of a 180 ° twist, since the pretilt angles of the upper and lower substrates are substantially parallel, optical anisotropy occurs in this direction. By aligning the tilt direction at the compensation cell interface and the rising direction of the liquid crystal molecules at the center of the driving cell, the liquid crystal molecules at both interfaces in the compensation cell do not self-compensate for the retardation change due to the change in viewing angle in the compensation cell. The compensating cell and the driving cell cooperate with each other, so that the liquid crystal molecules of the compensating cell 1 compensate for the viewing angle dependence of the retardation with respect to the liquid crystal molecules near the cell center of the driving cell 2, thereby improving the viewing angle characteristics. I do. In FIG. 1, the illustration of the transparent electrode and the alignment film is omitted.

【0019】図2に、図1の180度ツイストの2層セ
ルの各セルの上下基板のラビング方向と偏光板の偏光軸
との関係を示す。図2の(a)は図1の2層セルの補償
セル1の上下基板のラビング方向を示す。駆動セル2の
上下基板のラビング方向を図2の(b)に示す。偏光板
5a,5bの偏光軸とセル基板界面の液晶分子の配向方
向とのなす角度は、図2に示すように45度とする。
FIG. 2 shows the relationship between the rubbing directions of the upper and lower substrates of each cell of the 180-degree twisted two-layer cell of FIG. 1 and the polarization axis of the polarizing plate. FIG. 2A shows the rubbing directions of the upper and lower substrates of the compensation cell 1 of the two-layer cell of FIG. The rubbing directions of the upper and lower substrates of the driving cell 2 are shown in FIG. The angle between the polarization axes of the polarizing plates 5a and 5b and the orientation direction of the liquid crystal molecules at the cell substrate interface is 45 degrees as shown in FIG.

【0020】図1の構造の2層セル(プレティルト角は
2度)の視角特性を図10に示した従来のセルの特性と
同様な条件で測定した結果を図3に示す。従来問題とな
っていたΦ=0度とΦ=180度とを結ぶ方向の視角特
性が改善されていることが判る。この条件でのOFF電
圧における駆動セル中央の液晶分子がかなり立ち上がっ
ていることを考えれば、補償セル1のプレティルト角を
駆動セルのプレティルト角より大きくした方がより効果
が得られるはずである。
FIG. 3 shows the results of measuring the viewing angle characteristics of the two-layer cell (pretilt angle is 2 degrees) having the structure shown in FIG. 1 under the same conditions as those of the conventional cell shown in FIG. It can be seen that the viewing angle characteristic in the direction connecting Φ = 0 degrees and Φ = 180 degrees, which has conventionally been a problem, has been improved. Considering that the liquid crystal molecules at the center of the drive cell rise considerably at the OFF voltage under this condition, the effect should be more obtained if the pretilt angle of the compensation cell 1 is larger than the pretilt angle of the drive cell.

【0021】このような考え方に基づき、補償セル1の
プレティルト角を6度と14度にしたものをさらに製作
し、駆動セルと組み合わせて図1のものと同一の駆動条
件で視角特性を測定した結果を図4の(a),(b)に
示す。この結果から、補償セル1のプレティルト角が2
度の場合に比べて、本発明の効果である視角特性の改善
がより顕著に現れる。例えば、プレティルト角が14度
のセルでは、図4の(b)で示されるように、図10の
従来のセルでΦ=180度の方向に存在していたコント
ラスト比が1以下の白黒反転領域が消滅しており、非常
に広い角度範囲の視角特性が改善がなされたことが判
る。
Based on such a concept, the compensating cell 1 was further manufactured with the pretilt angles of 6 degrees and 14 degrees, and the viewing angle characteristics were measured under the same driving conditions as those of FIG. 1 in combination with the driving cell. The results are shown in FIGS. From this result, the pretilt angle of the compensation cell 1 is 2
Compared with the case of the degree, the improvement of the viewing angle characteristic, which is the effect of the present invention, appears more remarkably. For example, in a cell having a pretilt angle of 14 degrees, as shown in FIG. 4B, a black-and-white inversion area having a contrast ratio of 1 or less existing in the direction of Φ = 180 degrees in the conventional cell of FIG. Disappears, indicating that the viewing angle characteristics in a very wide angle range have been improved.

【0022】[0022]

【実施例】次に、以上説明した、2層(D−)STN型
液晶表示装置の測定実験のために作成して使用した2層
セルの諸条件を記述する。なお、比較のために従来の構
造の2層セルの条件についても示す。
Next, the conditions of the two-layer cell prepared and used for the measurement experiment of the two-layer (D-) STN type liquid crystal display device described above will be described. For comparison, conditions of a two-layer cell having a conventional structure are also shown.

【0023】(1)実施例のセル(プレティルト角2
度)駆動セル 基板:透明電極付ガラス基板 配向膜:日産化学工業製SE−150(プレティルト角
2度) ラビング:レーヨン製ラビング布使用 配向方向:図1、図2と同様(180度ツイスト) セル厚d:6.6μm 液晶:ロリク製RDP−00333にカイラル材として
メルク製S−811を0.55wt%添加(左ツイス
ト)
(1) Cell of Example (Pretilt Angle 2
Degree) Drive cell substrate: Glass substrate with transparent electrode Alignment film: Nissan Chemical Industries SE-150 (pretilt angle 2 degrees) Rubbing: Using rayon rubbing cloth Orientation direction: Same as FIGS. 1 and 2 (180 degree twist) Cell Thickness d: 6.6 μm Liquid crystal: 0.55 wt% of Merck S-811 added as a chiral material to Roriku RDP-00333 (left twist)

【0024】補償セル 基板:ガラス基板(透明電極なし) 配向膜:日産化学工業製SE−150(プレティルト角
2度) ラビング:レーヨン製ラビング布使用 配向方向:図1、図2と同様(180度ツイスト) セル厚d:6.6μm 液晶:ロリク製RDP−00333にカイラル材として
メルク製ZLI−3786を0.55wt%添加(右ツ
イスト)
Compensation cell substrate: glass substrate (without transparent electrode) Alignment film: Nissan Chemical Industries SE-150 (pretilt angle: 2 degrees) Rubbing: using rayon rubbing cloth Orientation direction: same as FIGS. 1 and 2 (180 degrees) Twist) Cell thickness d: 6.6 μm Liquid crystal: 0.55 wt% of Merck ZLI-3786 added as chiral material to Roriku RDP-00333 (right twist)

【0025】偏光板 偏光板:日東電工製G−1220 偏光板配置角度:図2と同様 Polarizing plate Polarizing plate: G-1220 manufactured by Nitto Denko Polarizing plate arrangement angle: As in FIG.

【0026】(2)実施例のセル(プレティルト角6
度)駆動セル 基板:透明電極付ガラス基板 配向膜:日産化学工業製SE−150(プレティルト角
2度) ラビング:レーヨン製ラビング布使用 配向方向:図1、図2と同様(180度ツイスト) セル厚d:6.6μm 液晶:ロリク製RDP−00333にカイラル材として
メルク製S−811を0.55wt%添加(左ツイス
ト)
(2) Example cell (pretilt angle 6
Degree) Drive cell substrate: Glass substrate with transparent electrode Alignment film: Nissan Chemical Industries SE-150 (pretilt angle 2 degrees) Rubbing: Using rayon rubbing cloth Orientation direction: Same as FIGS. 1 and 2 (180 degree twist) Cell Thickness d: 6.6 μm Liquid crystal: 0.55 wt% of Merck S-811 added as a chiral material to Roriku RDP-00333 (left twist)

【0027】補償セル 基板:ガラス基板(透明電極なし) 配向膜:チッソ製PIA−2101(プレティルト角6
度) ラビング:木綿製ラビング布使用 配向方向:図1、図2と同様(180度ツイスト) セル厚d:6.6μm 液晶:ロリク製RDP−00333にカイラル材として
メルク製ZLI−3786を0.55wt%添加(右ツ
イスト)
Compensation cell substrate: glass substrate (without transparent electrode) Alignment film: PIA-2101 manufactured by Chisso (pretilt angle: 6)
Rubbing: Use of cotton rubbing cloth Orientation direction: Same as in FIGS. 1 and 2 (180 ° twist) Cell thickness d: 6.6 μm Liquid crystal: 0.5 g of Merck ZLI-3786 as a chiral material for Roriku RDP-00333. 55wt% addition (right twist)

【0028】偏光板 偏光板:日東電工製G−1220 偏光板配置角度:図2と同様 Polarizing plate Polarizing plate: G-1220 manufactured by Nitto Denko Polarizing plate arrangement angle: As in FIG.

【0029】(3)実施例のセル(プレティルト角14
度)駆動セル 基板:透明電極付ガラス基板 配向膜:日産化学工業製SE−150(プレティルト角
2度) ラビング:レーヨン製ラビング布使用 配向方向:図1、図2と同様(180度ツイスト) セル厚d:6.6μm 液晶:ロリク製RDP−00333にカイラル材として
メルク製S−811を0.55wt%添加(左ツイス
ト)
(3) The cell of the embodiment (pretilt angle 14
Degree) Driving cell substrate: Glass substrate with transparent electrode Alignment film: SE-150 manufactured by Nissan Chemical Industries (pretilt angle 2 degrees) Rubbing: Use of rubbing cloth made of rayon Alignment direction: Same as FIGS. 1 and 2 (180 degree twist) Cell Thickness d: 6.6 μm Liquid crystal: 0.55 wt% of Merck S-811 added as a chiral material to Roriku RDP-00333 (left twist)

【0030】補償セル 基板:ガラス基板(透明電極なし) 配向膜:日立化成工業製LQ−1800(プレティルト
角14度) ラビング:ナイロン製ラビング布使用 配向方向:図1、図2と同様(180度ツイスト) セル厚d:6.6μm 液晶:ロリク製RDP−00333にカイラル材として
メルク製ZLI−3786を0.55wt%添加(右ツ
イスト)
Compensation cell substrate: glass substrate (without transparent electrode) Alignment film: LQ-1800 manufactured by Hitachi Chemical Co., Ltd. (pretilt angle: 14 degrees) Rubbing: use of nylon rubbing cloth Alignment direction: same as FIGS. 1 and 2 (180 degrees) Twist) Cell thickness d: 6.6 μm Liquid crystal: 0.55 wt% of Merck ZLI-3786 added as chiral material to Roriku RDP-00333 (right twist)

【0031】偏光板 偏光板:日東電工製G−1220 偏光板配置角度:図2と同様 Polarizing plate Polarizing plate: G-1220 manufactured by Nitto Denko Polarizing plate arrangement angle: As in FIG.

【0032】(4)従来の2層セル駆動セル 基板:透明電極付ガラス基板 配向膜:日産化学工業製SE−150(プレティルト角
2度) ラビング:レーヨン製ラビング布使用 配向方向:図6及び図8と同様(180度ツイスト) セル厚d:6.6μm 液晶:ロリク製RDP−00333にカイラル材として
メルク製S−811を0.55wt%添加(左ツイス
ト)
(4) Conventional two-layer cell driving cell substrate: glass substrate with transparent electrode Alignment film: SE-150 (pretilt angle 2 degrees) manufactured by Nissan Chemical Industries Rubbing: using rubbing cloth made of rayon Alignment direction: FIG. 6 and FIG. Same as 8 (180 ° twist) Cell thickness d: 6.6 μm Liquid crystal: 0.55 wt% of Merck S-811 as a chiral material added to Roriku RDP-00333 (left twist)

【0033】補償セル 基板:ガラス基板(透明電極なし) 配向膜:日産化学工業製SE−150(プレティルト角
2度) ラビング:レーヨン製ラビング布使用 配向方向:図6及び図8と同様(180度ツイスト) セル厚d:6.6μm 液晶:ロリク製RDP−00333にカイラル材として
メルク製ZLI−3786を0.55wt%添加(右ツ
イスト)
Compensation cell substrate: glass substrate (without transparent electrode) Alignment film: SE-150 manufactured by Nissan Chemical Industries (pretilt angle: 2 degrees) Rubbing: use of rubbing cloth manufactured by rayon Alignment direction: same as FIGS. 6 and 8 (180 degrees) Twist) Cell thickness d: 6.6 μm Liquid crystal: 0.55 wt% of Merck ZLI-3786 added as chiral material to Roriku RDP-00333 (right twist)

【0034】偏光板 偏光板:日東電工製G−1220 偏光板配置角度:図8と同様 Polarizing plate Polarizing plate: G-1220 manufactured by Nitto Denko Polarizing plate arrangement angle: As in FIG.

【0035】以上説明した実施例では、ツイスト角が1
80度の場合であったが、2層STN液晶表示装置は、
一般的に2層STN液晶表示装置が採用し得るすべての
ツイスト角、例えば150〜270度程度に対しても同
様に適用可能である。180度ツイスト以外の場合で
は、補償セルの界面の液晶分子と駆動セル中央の液晶分
子は並行とならず、ある角度を持ったものとなるが、そ
の場合も補償セルのどちらか一方の界面の液晶分子のテ
ィルト方向を従来のものと逆にし、セル内の液晶分子に
スプレイ変形が生じるような配列にし、かつ補償セルの
界面でのティルト方向と駆動セル中央の液晶分子の立ち
上がり方向を揃える(それぞれの方向のなす角度が90
度以下とする。)ことにより、上述の実施例と同様な効
果を得ることができる。
In the embodiment described above, the twist angle is 1
Although it was 80 degrees, the two-layer STN liquid crystal display device
In general, the present invention can be similarly applied to all twist angles that can be adopted by a two-layer STN liquid crystal display device, for example, about 150 to 270 degrees. In the case other than the 180-degree twist, the liquid crystal molecules at the interface of the compensation cell and the liquid crystal molecules at the center of the driving cell do not become parallel and have a certain angle. The tilt direction of the liquid crystal molecules is reversed from that of the conventional one, so that the liquid crystal molecules in the cell are arranged in such a way that splay deformation occurs, and the tilt direction at the interface of the compensation cell and the rising direction of the liquid crystal molecules at the center of the driving cell are aligned ( The angle between each direction is 90
Degrees or less. Thus, the same effect as in the above-described embodiment can be obtained.

【0036】以上、実施例に沿って発明を説明したが、
本発明はこれらに制限されるものではない。例えば、種
々の変更、改良、組み合わせが可能なことは当業者に自
明であろう。
The invention has been described with reference to the embodiments.
The present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, and combinations are possible.

【0037】[0037]

【発明の効果】以上説明したように、本発明の2層ST
N型液晶表示装置は、補償セルの一方の界面の液晶分子
の配向方向を従来のものと逆にして、かつ補償セルの界
面でのプレティルトの方向と駆動セルの中央の液晶分子
の立ちあがり方向とを揃えたことによって、視角特性を
改善することができる。
As described above, the two-layer ST of the present invention is used.
In the N-type liquid crystal display device, the orientation direction of the liquid crystal molecules at one interface of the compensation cell is reversed from that of the conventional one, and the pretilt direction at the interface of the compensation cell and the rising direction of the liquid crystal molecules at the center of the driving cell. , Viewing angle characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による2層セルSTN型液晶表
示装置の断面図である。
FIG. 1 is a cross-sectional view of a two-layer cell STN type liquid crystal display according to an embodiment of the present invention.

【図2】図1の2層セルSTN型液晶表示装置の基板の
ラビング方向と偏光板の偏光軸方向を表した平面図であ
る。
FIG. 2 is a plan view showing a rubbing direction of a substrate and a polarization axis direction of a polarizing plate of the two-layer cell STN type liquid crystal display device of FIG.

【図3】本発明の実施例の2層セルSTN型液晶表示装
置の視角特性図である。
FIG. 3 is a viewing angle characteristic diagram of a two-layer cell STN type liquid crystal display device according to an example of the present invention.

【図4】本発明の他の実施例の2層セルSTN型液晶表
示装置の視角特性図である。
FIG. 4 is a viewing angle characteristic diagram of a two-layer cell STN type liquid crystal display device according to another embodiment of the present invention.

【図5】従来の2層セルSTN液晶表示装置の断面図で
ある。
FIG. 5 is a cross-sectional view of a conventional two-layer cell STN liquid crystal display device.

【図6】従来の180度ツイストの2層セルSTN液晶
表示装置の断面図である。
FIG. 6 is a cross-sectional view of a conventional 180-degree twisted two-layer cell STN liquid crystal display device.

【図7】ラビング方向とプレティルト角との関係を示す
図である。
FIG. 7 is a diagram showing a relationship between a rubbing direction and a pretilt angle.

【図8】従来の180度ツイスト2層セルSTN型液晶
表示装置の基板のラビング方向と偏光板の偏光軸方向を
表した平面図である。
FIG. 8 is a plan view showing a rubbing direction of a substrate and a polarization axis direction of a polarizing plate of a conventional 180-degree twisted two-layer cell STN type liquid crystal display device.

【図9】駆動セルの印加電圧対光透過率特性である。FIG. 9 is a graph showing an applied voltage versus light transmittance characteristic of a driving cell.

【図10】従来の2層セルSTN液晶表示装置の視角特
性である。
FIG. 10 shows viewing angle characteristics of a conventional two-layer cell STN liquid crystal display device.

【図11】駆動セルのOFF電圧時の液晶分子の配列を
示す。
FIG. 11 shows an arrangement of liquid crystal molecules when an OFF voltage is applied to a driving cell.

【図12】駆動セルの中央の液晶分子の印加電圧変化に
対するティルト角の変化を示す図である。
FIG. 12 is a diagram showing a change in tilt angle with respect to a change in applied voltage of liquid crystal molecules at the center of a driving cell.

【符号の説明】[Explanation of symbols]

1 補償セル 2 駆動セル 3 ガラス基板 4 液晶分子 5a,5b 偏光板 DESCRIPTION OF SYMBOLS 1 Compensation cell 2 Drive cell 3 Glass substrate 4 Liquid crystal molecule 5a, 5b Polarizing plate

【手続補正書】[Procedure amendment]

【提出日】平成11年5月26日(1999.5.2
6)
[Submission date] May 26, 1999 (1999.5.2
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図5】 FIG. 5

【図7】 FIG. 7

【図4】 FIG. 4

【図6】 FIG. 6

【図8】 FIG. 8

【図9】 FIG. 9

【図10】 FIG. 10

【図11】 FIG. 11

【図12】 FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 駆動電極を有する第1の液晶セルと、前
記第1の液晶セルと同一の光路中に前記第1の液晶セル
と重ねて配置され前記第1の液晶セルの光学位相差補償
用の第2の液晶セルとを有するSTN型液晶表示装置に
おいて、 前記第2の液晶セルは、液晶を挟持する2枚の基板の界
面の液晶分子にプレティルトを与え、そのティルト方向
を前記基板間で液晶分子がツイストすると同時にスプレ
イ変形を受けるように設定し、かつ前記界面の液晶分子
のティルト方向と前記第1の液晶セルの液晶層の中央部
の液晶分子の駆動時の立ちあがり方向とが揃うように配
列したSTN型液晶表示装置。
1. A first liquid crystal cell having a driving electrode, and an optical phase difference compensation of the first liquid crystal cell which is arranged in the same optical path as the first liquid crystal cell so as to overlap with the first liquid crystal cell. And a second liquid crystal cell having a second liquid crystal cell, wherein the second liquid crystal cell applies a pretilt to liquid crystal molecules at an interface between two substrates sandwiching liquid crystal, and adjusts the tilt direction between the substrates. The liquid crystal molecules are twisted at the same time and are set to undergo splay deformation, and the tilt direction of the liquid crystal molecules at the interface is aligned with the rising direction of the liquid crystal molecules at the center of the liquid crystal layer of the first liquid crystal cell when driving. STN-type liquid crystal display device arranged like this.
【請求項2】 前記第2の液晶セルの界面における液晶
分子のプレティルト角を、前記第1の液晶セルの界面に
おける液晶分子のプレティルト角よりも大きくした請求
項1記載のSTN型液晶表示装置。
2. The STN-type liquid crystal display device according to claim 1, wherein a pretilt angle of liquid crystal molecules at an interface of the second liquid crystal cell is larger than a pretilt angle of liquid crystal molecules at an interface of the first liquid crystal cell.
JP11125590A 1999-05-06 1999-05-06 Stn type liquid crystal display device Pending JP2000314866A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11125590A JP2000314866A (en) 1999-05-06 1999-05-06 Stn type liquid crystal display device
DE10021922A DE10021922A1 (en) 1999-05-06 2000-05-05 SiN type liquid crystal display device for clear monochrome display, has liquid crystal molecule at boundary of glass substrate of compensation cell oriented in tilt direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11125590A JP2000314866A (en) 1999-05-06 1999-05-06 Stn type liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2000314866A true JP2000314866A (en) 2000-11-14

Family

ID=14913942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11125590A Pending JP2000314866A (en) 1999-05-06 1999-05-06 Stn type liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2000314866A (en)
DE (1) DE10021922A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769389B1 (en) 2005-06-17 2007-10-22 가시오게산키 가부시키가이샤 Liquid crystal display device which can control viewing angle and electronic device using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769389B1 (en) 2005-06-17 2007-10-22 가시오게산키 가부시키가이샤 Liquid crystal display device which can control viewing angle and electronic device using same

Also Published As

Publication number Publication date
DE10021922A1 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
US8638403B2 (en) Liquid crystal display device
KR100341296B1 (en) Optical compaensator for super-twist nematic liquid crystal displays
JP3322197B2 (en) Liquid crystal display
KR20010021234A (en) Liquid crystal display apparatus
GB2276730A (en) Liquid crystal display
KR20010072055A (en) Improving the angle of view of a lcd screen by novel birefringent film stacking
JP2000292815A (en) Perpendicularly aligned ecb mode liquid crystal display device
JP4202463B2 (en) Liquid crystal display
JP4846222B2 (en) Liquid crystal display element
JP3007524B2 (en) Liquid crystal display device and liquid crystal element
JP2000314866A (en) Stn type liquid crystal display device
JP3657708B2 (en) Liquid crystal electro-optical device
JPH0933906A (en) Liquid crystal element and liquid crystal device
JPH06235914A (en) Liquid crystal display device
JP2002196367A (en) Liquid crystal display device
JP3643439B2 (en) Liquid crystal display element
JP3898208B2 (en) Liquid crystal electro-optical device
JPH05289097A (en) Liquid crystal display element
JPH09203895A (en) Liquid crystal display element and optical anisotropic element
JPH06347762A (en) Liquid crystal display device
JP2825903B2 (en) Liquid crystal display device
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
JP3728409B2 (en) Liquid crystal display device
JP3506804B2 (en) LCD panel
JP2825902B2 (en) Liquid crystal display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030107