JP2000313940A - Duplex stainless steel material and its manufacture - Google Patents

Duplex stainless steel material and its manufacture

Info

Publication number
JP2000313940A
JP2000313940A JP12041899A JP12041899A JP2000313940A JP 2000313940 A JP2000313940 A JP 2000313940A JP 12041899 A JP12041899 A JP 12041899A JP 12041899 A JP12041899 A JP 12041899A JP 2000313940 A JP2000313940 A JP 2000313940A
Authority
JP
Japan
Prior art keywords
stainless steel
duplex stainless
steel material
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12041899A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsuyama
宏之 松山
Shinji Tsuge
信二 柘植
Yoshio Taruya
芳男 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12041899A priority Critical patent/JP2000313940A/en
Publication of JP2000313940A publication Critical patent/JP2000313940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a duplex stainless steel material excellent in antibacterial characteristics and resistance to the sticking of marine life, and its manufactur ing method. SOLUTION: The duplex stainless steel material has a composition containing <=0.05% C, <=2.0% Si, <=2.0% Mn, 16-30% Cr, 3.0-9.0% Ni, 0.2-2.0% Mo, 1.0-5.0% Cu, 0.005-0.05% Al, and 0.10-0.35% N and is provided, in its surface, with a Cu ion supply source in which the proportion of Cu to the total of Fe, Cr, Ni, and Cu is made to >=3 atomic %. It is desirable that the Cu ion supply source is a Cu-enriched layer in which major axis is 0.01-0.5 μm and the number of Cu precipitates is made to >=10 pieces for 100 μm2 of the ferritic-phase surface of the steel material or the content of Cu within the region between the surface of the steel material and a position at a depth of 50 Å from the surface is made to >=4 atomic %. This steel can be easily manufactured by subjecting a duplex stainless steel with the above chemical composition to heating at 550-900 deg.C for 0.1-8 hr or to heating up to 850-1,150 deg.C in an oxidizing atmosphere and then applying acid pickling to remove oxide scales from the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抗菌性が求められ
る貯水槽や排水浄化処理装置、食品製造装置等、あるい
は耐生物付着性が求められる海洋構造物や海水等を利用
して冷却する熱交換器等の素材に好適な二相ステンレス
鋼材およびその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a heat storage tank, a wastewater purifying treatment apparatus, a food production apparatus, etc., which require antibacterial properties, or a marine structure, seawater, etc., which require biofouling resistance. The present invention relates to a duplex stainless steel material suitable for a material such as an exchanger and a method for producing the same.

【0002】[0002]

【従来の技術】海洋構造物や海水等を利用して冷却する
熱交換器等では、使用中に鋼材表面にフジツボや貝類等
の海洋生物が付着、繁殖して、鋼材表面に隙間が形成
され、腐食事故の原因になる、管内が閉塞され冷却水
の流通が妨げられる、熱交換効率が低下する等の問題
が生じる。
2. Description of the Related Art In a heat exchanger or the like that uses marine structures or seawater for cooling, marine organisms such as barnacles and shellfish adhere to and propagate on the steel surface during use, and gaps are formed on the steel surface. This causes problems such as a corrosion accident, a blockage in the pipe, obstruction of the flow of cooling water, and a decrease in heat exchange efficiency.

【0003】このような海洋生物の付着防止対策とし
て、軟鋼、Zn等を犠牲陽極とする電気防食を施した
り、塩素注入やスポンジボール洗浄などの処理などがお
こなわれているが、これらの処理にはZnによる環境汚
染やメンテナンスコストが嵩む等の弊害がある。
[0003] As measures to prevent the adhesion of marine organisms, such treatments as electrolytic protection using mild steel, Zn or the like as a sacrificial anode, chlorine injection, sponge ball cleaning, and the like are performed. However, there is an adverse effect such as environmental pollution by Zn and an increase in maintenance cost.

【0004】また、医療関係機器や厨房機器等に使用さ
れるステンレス鋼材には、院内感染や食中毒防止対策と
してステンレス鋼素材自体が抗菌性を備えることを望ま
れている。
[0004] In addition, it is desired that stainless steel materials used in medical equipment and kitchen equipment have antimicrobial properties as a measure against hospital infection and food poisoning.

【0005】抗菌性を備えたステンレス鋼として、特開
平8−60301号公報には表層部のCu濃度が0.1
原子%で、かつ、下地鋼のCu濃度の0.2倍以上であ
るマルテンサイト系ステンレス鋼が、特開平8−603
02号公報には表面のCu濃度が同様の範囲にあるオー
ステナイト系ステンレス鋼が、特開平8−60303号
公報には表面のCu濃度が同様の範囲にあるフェライト
系ステンレス鋼が開示されている。また上記各公報には
素材ステンレス鋼を交番電解処理するその製造方法が開
示されている。
As a stainless steel having antibacterial properties, Japanese Patent Laid-Open Publication No. Hei 8-60301 discloses that the Cu concentration of the surface layer is 0.1%.
A martensitic stainless steel having an atomic percentage of 0.2% or more of the Cu concentration of the base steel is disclosed in Japanese Patent Application Laid-Open No. 8-603.
No. 02 discloses an austenitic stainless steel having a surface Cu concentration in a similar range, and Japanese Unexamined Patent Publication No. Hei 8-60303 discloses a ferritic stainless steel having a surface Cu concentration in a similar range. Each of the above publications discloses a method for producing a stainless steel material by alternating electrolytic treatment.

【0006】また、特開平9−170053号公報には
Cuを0.4〜3重量%含有するフェライト系ステンレ
ス鋼が、特開平9−176800号公報にはCuを1〜
5重量%含有するオーステナイト系ステンレス鋼が、特
開平9−195016号公報にはCuを0.4〜5重量
%含有するマルテンサイト系ステンレス鋼が開示されて
いる。これらのステンレス鋼はいずれもそのマトリック
ス中にCuリッチ相が0.2体積%以上析出しているも
のである。
JP-A-9-170053 discloses a ferritic stainless steel containing 0.4 to 3% by weight of Cu, and JP-A-9-176800 discloses a ferrite stainless steel containing 1 to 3% by weight of Cu.
Japanese Patent Application Laid-Open No. 9-195016 discloses a martensitic stainless steel containing 5% by weight of an austenitic stainless steel containing 0.4 to 5% by weight of Cu. In all of these stainless steels, 0.2% by volume or more of Cu-rich phase is precipitated in the matrix.

【0007】特公平1−24206号公報には二相ステ
ンレス鋼にCuを含有させた鋼が開示されているが、C
uを含有させる目的が耐食性改善であり、抗菌性や耐生
物付着性に関する技術は示されていない。
Japanese Patent Publication No. 1-24206 discloses a steel containing Cu in duplex stainless steel.
The purpose of containing u is to improve corrosion resistance, and no technique relating to antibacterial properties and bioadhesion resistance is disclosed.

【0008】[0008]

【発明が解決しようとする課題】海洋構造物や海水等を
利用して冷却する熱交換器等には、耐孔食性、耐粒界腐
食性あるいは耐応力腐食性等が重要とされている。フェ
ライト相とオーステナイト相からなる二相ステンレス鋼
材は優れた強度特性と対海水耐食性を有していることか
ら、これらの構造部材の素材として多用されている。ま
た、従来の方法では、構造部材にフジツボや貝類等の海
洋生物が付着、繁殖し、構造物の耐食性や性能が劣化す
るのを避けるために電気防食や定期的な洗浄処理などの
付帯作業を必要としている。しかしながら、これらの付
帯作業は膨大な経費と工数を要するうえその効果も必ず
しも十分なものではなかった。このため、効率よく生物
付着を防止できる方法が求められていた。
It is important for a heat exchanger or the like that cools by using an offshore structure or seawater to have pitting corrosion resistance, intergranular corrosion resistance, stress corrosion resistance, and the like. A duplex stainless steel material comprising a ferrite phase and an austenitic phase has excellent strength characteristics and corrosion resistance against seawater, and is therefore frequently used as a material for these structural members. In addition, according to the conventional method, in order to prevent marine organisms such as barnacles and shellfish from adhering to and propagating on the structural members, and to prevent the corrosion resistance and performance of the structure from deteriorating, ancillary work such as cathodic protection and periodic cleaning treatment is performed. In need of. However, these additional operations require enormous costs and man-hours, and their effects are not always sufficient. For this reason, there has been a demand for a method capable of efficiently preventing biological adhesion.

【0009】本発明の目的はこのような問題点を解決す
る方法を提供することにあり、具体的には抗菌性と耐生
物付着性に優れた二相ステンレス鋼材およびその製造方
法を提供することにある。
It is an object of the present invention to provide a method for solving such problems, and more specifically, to provide a duplex stainless steel material excellent in antibacterial properties and bio-adhesion resistance and a method for producing the same. It is in.

【0010】[0010]

【課題を解決するための手段】本発明者らは、二相ステ
ンレス鋼材の抗菌性と耐生物付着性の改善を目的として
種々研究を進めた結果、以下に述べるような新たな知見
を得た。
Means for Solving the Problems The present inventors have conducted various studies for the purpose of improving the antibacterial property and bio-adhesion resistance of a duplex stainless steel material, and have obtained the following new findings. .

【0011】a.耐生物付着性は、二相ステンレス鋼の
表面における生物の付着し難さの指標であるために抗菌
性に比例し、抗菌性が優れるものを耐生物付着性に優れ
るものと考える。鋼材表面に付着した微生物にCuイオ
ンが接触するとCuイオンは細胞膜に到達し、タンパク
質に吸着される。吸着されたCuイオンは、細胞の構成
成分であるたん白質のSH基のラジカルなどを破壊し、
微生物のエネルギー代謝機能を不能にするという抗菌作
用を発現する。
A. The biofouling resistance is an index of the difficulty of biofouling on the surface of the duplex stainless steel, and is therefore proportional to the antibacterial property, and those having excellent antibacterial properties are considered to have excellent biofouling resistance. When the Cu ions come into contact with the microorganisms attached to the steel surface, the Cu ions reach the cell membrane and are adsorbed by the protein. The adsorbed Cu ions destroy the radicals of protein SH groups, which are constituents of cells,
It exhibits an antibacterial effect that disables the energy metabolism function of microorganisms.

【0012】b.しかしながら耐生物付着性の改善に
は、耐抗菌性に必要なCuイオン濃度に比較してはるか
に濃度の高いCuイオンを供給できることが必要であ
る。二相ステンレス鋼材表面でのこのような高濃度のC
uイオン源としては、その表面に、Fe、Cr、Niお
よびCuの合計に対するCuの比率が原子%で3%以上
のCuを含有する部分を鋼材表面に備えさせればよい。
B. However, in order to improve the bioadhesion resistance, it is necessary to supply a Cu ion having a much higher concentration than the Cu ion concentration required for antibacterial resistance. Such a high concentration of C on the surface of duplex stainless steel
As the u-ion source, the surface of the steel material may be provided with a portion containing Cu in which the ratio of Cu to the total of Fe, Cr, Ni and Cu is 3% or more in atomic%.

【0013】その方法としては、フェライト相表面に所
定の大きさのCu析出物を配するか、鋼材表面に上記濃
度のCuを含有する層(以下、単に「Cu富化層」とも
記す)を備えさせるのが好適である。
As the method, a Cu precipitate having a predetermined size is arranged on the surface of the ferrite phase, or a layer containing the above concentration of Cu (hereinafter, also simply referred to as “Cu-enriched layer”) is formed on the surface of the steel material. Preferably, it is provided.

【0014】c.このような鋼は、フェライト相の固溶
限を超えてCuを含有する二相ステンレス鋼を素材とし
て用い、その鋼材の表面にCu析出物を露出させるため
の熱処理を施すこと、あるいは、その鋼の表層部にCu
富化層を形成するように、熱処理と酸洗を施すことで容
易に製造できる。
C. Such steel uses a duplex stainless steel containing Cu exceeding the solid solubility limit of the ferrite phase as a material, and is subjected to a heat treatment to expose Cu precipitates on the surface of the steel material, or Cu on the surface layer of
It can be easily manufactured by performing heat treatment and pickling so as to form an enriched layer.

【0015】本発明は上記のような知見を基にして完成
されたものであり、その要旨は下記(1)〜(3)に記
載の抗菌性と耐生物付着性に優れた二相ステンレス鋼材
および(4)、(5)に記載のその製造方法にある。
The present invention has been completed on the basis of the above findings, and the gist of the present invention is as described in the following (1) to (3), which is a duplex stainless steel material excellent in antibacterial properties and bioadhesion resistance. And (4) and (5).

【0016】(1)重量%でC:0.05%以下、S
i:2.0%以下、Mn:2.0%以下、Cr:16〜
30%、Ni:3.0〜9.0%、Mo:0.2〜2.
0%、Cu:1.0%超え5.0%以下、Al:0.0
05〜0.05%、N:0.10〜0.35%を含有す
る二相ステンレス鋼材であって、その表面にFe、C
r、NiおよびCuの合計に対するCuの比率が原子%
で3%以上であるCuイオン供給源を有することを特徴
とする抗菌性と耐生物付着性に優れた二相ステンレス鋼
材。
(1) C: 0.05% or less by weight%, S
i: 2.0% or less, Mn: 2.0% or less, Cr: 16 to
30%, Ni: 3.0-9.0%, Mo: 0.2-2.
0%, Cu: more than 1.0% and 5.0% or less, Al: 0.0
A duplex stainless steel material containing 0.05 to 0.05% and N: 0.10 to 0.35%, the surface of which is Fe, C
The ratio of Cu to the total of r, Ni and Cu is atomic%
A duplex stainless steel material having excellent antibacterial properties and bio-adhesion resistance, characterized by having a Cu ion supply source of 3% or more.

【0017】(2)前記Cuイオン供給源が、鋼材の少
なくともフェライト相表面に、長径が0.01〜0.5
μmであり、その密度が100μm2 あたり10個以上
のCu析出物であることを特徴とする上記 (1) に記載
の二相ステンレス鋼材。
(2) The Cu ion supply source has a long diameter of 0.01 to 0.5 on at least the ferrite phase surface of the steel material.
(2) The duplex stainless steel material as described in (1) above, wherein the density is 10 or more Cu precipitates per 100 μm 2 .

【0018】(3)前記Cuイオン供給源が、鋼材表面
から深さ50オングストロームまでの深さの領域のF
e、Cr、NiおよびCuの合計に対するCuの比率が
原子%で3%以上であるCu富化層であることを特徴と
する上記 (1) に記載の二相ステンレス鋼材。
(3) When the Cu ion supply source has a depth of 50 angstrom from the surface of the steel,
(2) The duplex stainless steel material according to the above (1), wherein the material is a Cu-enriched layer in which the ratio of Cu to the total of e, Cr, Ni and Cu is 3% or more in atomic%.

【0019】(4)上記 (1) に記載の化学組成を有す
る二相ステンレス鋼を550〜900℃で0.1〜8時
間保持する熱処理を施すことを特徴とする上記(2)に
記載の二相ステンレス鋼材の製造方法。
(4) The duplex stainless steel having the chemical composition described in (1) above is subjected to a heat treatment at 550 to 900 ° C. for 0.1 to 8 hours. Manufacturing method for duplex stainless steel.

【0020】(5)上記 (1) に記載の化学組成を有す
る二相ステンレス鋼を、酸化性雰囲気中で850〜13
50℃に加熱した後酸洗して表面の酸化スケールを除去
することを特徴とする上記(3)に記載の二相ステンレ
ス鋼材の製造方法。
(5) A duplex stainless steel having the chemical composition described in (1) above is prepared in an oxidizing atmosphere at 850 to 13
The method for producing a duplex stainless steel according to the above (3), wherein the scale is heated to 50 ° C. and then pickled to remove oxide scale on the surface.

【0021】[0021]

【発明の実施の形態】以下に本発明の二相ステンレス鋼
材およびその製造方法について詳細に説明する。なお、
以下に示す化学組成の%表示は、特に断らない限り重量
%を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION The duplex stainless steel material of the present invention and a method for producing the same will be described in detail below. In addition,
Unless otherwise specified, the chemical composition shown below in% means weight%.

【0022】鋼の化学組成: C:Cは鋼中で炭化物となって析出し、鋼材の延性を損
ない耐食性をも劣化させるので、少ないほうがよい。靱
性、延性および耐食性を確保するためにC含有量は0.
05%以下とする。
Chemical composition of steel: C: C is precipitated as a carbide in the steel, impairing the ductility of the steel material and deteriorating the corrosion resistance. In order to ensure toughness, ductility, and corrosion resistance, the C content is set to 0.
It shall be not more than 05%.

【0023】Si:Siは必須元素ではないが、溶鋼の
脱酸作用と共に鋼材の耐食性を改善する作用があるので
含有させてもよい。Siは微量であっても上記効果が得
られるが、これらの効果をより顕著に発揮させるには
0.10%以上含有させるのが好ましい。Si含有量が
2.0%を超えると溶接性および加工性が損なわれるの
でその含有量は2.0%以下とする。
Si: Si is not an essential element, but may be included because it has a function of deoxidizing molten steel and improving the corrosion resistance of steel. Although the above effects can be obtained even with a small amount of Si, it is preferable to contain 0.10% or more to exhibit these effects more remarkably. If the Si content exceeds 2.0%, weldability and workability are impaired, so the content is set to 2.0% or less.

【0024】Mn:Mnは必須元素ではないが、溶鋼の
脱酸作用と共に、Sを硫化物として固定し熱間脆性を抑
制する作用を有するので含有させてもよい。Mnは微量
であっても上記効果が得られるが、これらの効果をより
顕著に発揮させるには0.50%以上含有させるのがよ
い。Mnが2.0%を超えると鋼の耐食性が劣化するの
でMn含有量は2.0%以下とする。
Mn: Mn is not an essential element, but may be contained because it has a function of fixing S as a sulfide and suppressing hot brittleness together with the deoxidizing action of molten steel. Although the above-mentioned effects can be obtained even when Mn is a very small amount, it is preferable to contain 0.50% or more in order to exert these effects more remarkably. If Mn exceeds 2.0%, the corrosion resistance of the steel deteriorates, so the Mn content is set to 2.0% or less.

【0025】Cr:Crには鋼材の耐食性を向上させる
作用があり、きわめて重要な元素である。耐海水鋼とし
て良好な耐食性を確保するためには16%以上含有させ
る必要がある。好ましくは18%以上である。Cr含有
量が30%を超えると、鋼の加工性および溶接性が劣化
する。また、Crを過剰に含有させると、フェライト相
とオーステナイト相からなる二相組織を得るのに必要な
Niを増す必要があり、コストが高くなる。従ってCr
含有量は30%以下とする。好ましくは25%以下であ
る。
Cr: Cr has an effect of improving the corrosion resistance of steel and is a very important element. In order to secure good corrosion resistance as seawater resistant steel, it is necessary to contain 16% or more. It is preferably at least 18%. If the Cr content exceeds 30%, the workability and weldability of steel deteriorate. Further, when Cr is excessively contained, it is necessary to increase Ni necessary for obtaining a two-phase structure composed of a ferrite phase and an austenite phase, which increases costs. Therefore Cr
The content is 30% or less. Preferably it is 25% or less.

【0026】Ni:鋼の機械的性質、加工性および一般
耐食性を向上させると共に、鋼の組織をオーステナイト
・フェライトの二相組織とするためにNiを3.0%以
上含有させる。好ましくは4%以上である。Ni含有量
が9.0%を超えるとコストに見合う性能改善効果が得
られないのでNi含有量は9.0%以下とする。好まし
くは7%以下である。
Ni: In order to improve the mechanical properties, workability and general corrosion resistance of the steel, and to make the steel structure a two-phase structure of austenite / ferrite, Ni is contained in an amount of 3.0% or more. It is preferably at least 4%. If the Ni content exceeds 9.0%, a performance improvement effect commensurate with cost cannot be obtained, so the Ni content is set to 9.0% or less. It is preferably at most 7%.

【0027】Mo:鋼材の耐海水性を向上させるために
Moを0.2%以上含有させる。好ましくは0.8%以
上である。その含有量が2.0%を超えると、Cu析出
物を析出させる熱処理時にσ相が析出し鋼が脆化するの
でMo含有量は2.0%以下とする。好ましくは1.5
%以下である。
Mo: Mo is contained in an amount of 0.2% or more to improve the seawater resistance of the steel material. Preferably it is 0.8% or more. If the content exceeds 2.0%, the σ phase precipitates during the heat treatment for precipitating Cu precipitates, and the steel becomes brittle. Therefore, the Mo content is set to 2.0% or less. Preferably 1.5
% Or less.

【0028】Cu:Cuは本発明の二相ステンレス鋼材
において抗菌効果および耐生物付着効果を発現させるた
めに最も重要な合金元素である。本発明の鋼材表面に
は、原子%で4%以上のCuイオン供給源が備えられて
いる。大気中の水分や海水に接した鋼材表面のCuイオ
ン源から溶出するCuイオンが、表面に付着した大腸
菌、黄色ブドウ球菌などの菌類の成長、増殖を抑制する
ことにより、抗菌効果や海洋生物の付着を妨げる効果
(耐生物付着性)が発揮される。
Cu: Cu is the most important alloying element for exhibiting the antibacterial effect and the anti-biological effect in the duplex stainless steel material of the present invention. The steel material surface of the present invention is provided with a Cu ion supply source of 4% or more in atomic%. Cu ions eluted from the Cu ion source on the surface of steel in contact with atmospheric moisture and seawater suppress the growth and proliferation of fungi such as Escherichia coli and Staphylococcus aureus attached to the surface, thereby providing antibacterial effects and marine life. The effect of preventing adhesion (biological adhesion resistance) is exhibited.

【0029】鋼材表面に上記所望の濃度のCuイオン源
を備えさせるために、鋼には1.0%を超えるCuを含
有させる。好ましくは1.5%以上である。Cu含有量
が5.0%を超えると製造コストが高くなるうえ、熱間
圧延での割れや500℃近傍での脆化が著しくなるなど
の問題が生じるので好ましくない。従ってCu含有量の
上限は5.0%とする。好ましくは2.5%以下であ
る。N:NはNiと同様にオーステナイト形成元素であ
る。また、溶接部の耐食性を向上させる作用もあるので
これらの効果を得るために0.10%以上含有させる。
N含有量が0.35%を超えると溶接部でクロム窒化物
が析出し、耐食性が損なわれることがあるのでN含有量
は0.35%以下とする。好ましくは0.20%以下で
ある。
In order to provide the above-mentioned desired concentration of Cu ion source on the steel material surface, the steel contains more than 1.0% of Cu. Preferably it is 1.5% or more. If the Cu content exceeds 5.0%, the production cost is increased, and problems such as cracking during hot rolling and significant embrittlement at around 500 ° C. are caused. Therefore, the upper limit of the Cu content is set to 5.0%. Preferably it is 2.5% or less. N: N is an austenite forming element like Ni. In addition, since it also has the effect of improving the corrosion resistance of the welded portion, 0.10% or more is contained in order to obtain these effects.
If the N content exceeds 0.35%, chromium nitride may precipitate at the welded portion and impair corrosion resistance, so the N content is set to 0.35% or less. Preferably it is 0.20% or less.

【0030】Al:Alは溶鋼の脱酸作用があるので脱
酸元素として含有させる。十分な脱酸効果を得るために
Al含有量は0.005%以上とする。0.05%を超
えるとAlNとしての析出量が増し耐食性を損なうと共
に靱性も悪化させのでAl含有量は0.05%以下とす
る。
Al: Since Al has a deoxidizing effect on molten steel, Al is contained as a deoxidizing element. In order to obtain a sufficient deoxidizing effect, the Al content is set to 0.005% or more. If it exceeds 0.05%, the amount of precipitation as AlN increases, thereby impairing corrosion resistance and deteriorating toughness. Therefore, the Al content is set to 0.05% or less.

【0031】Ca、Zr、希土類元素:これらの元素
は、必須元素ではないが、鋼の熱間加工性を向上させる
作用があるので、1種または2種以上を含有させてもよ
い。しかしながら過剰に含有させると靱性が損なわれる
ことがあるため、含有させる場合でもその上限は、Ca
およびZrにおいてはそれぞれ0.01%以下、希土類
元素においては0.10%以下とするのがよい。
[0031] Ca, Zr, rare earth elements: These elements are not essential elements, but they have an effect of improving the hot workability of steel, so that one or more kinds may be contained. However, if it is contained excessively, the toughness may be impaired.
And Zr are preferably 0.01% or less, respectively, and rare earth elements are preferably 0.10% or less.

【0032】Nb、Ti、V:必須元素ではないが、こ
れらの元素は、鋼の耐食性を一層向上させる作用がある
ので1種または2種以上を含有させてもよい。しかしな
がら過剰に含有させても耐食性向上効果が飽和するの
で、含有させる場合でもそれぞれ0.05%以下とする
のがよい。
Nb, Ti, V: These are not essential elements, but one or more of these elements may be contained since they have the effect of further improving the corrosion resistance of steel. However, the effect of improving the corrosion resistance saturates even if it is contained excessively, so that even when it is contained, it is better to make each content 0.05% or less.

【0033】残部はFeおよび不可避的不純物である。
不可避的不純物の中でもPは鋼の溶接性や熱間加工性を
阻害する。従ってP含有量は0.03%以下とするのが
好ましい。また、Sは鋼の耐食性、延性および靱性を劣
化させるので、その含有量は0.01%以下とするのが
好ましい。
The balance is Fe and inevitable impurities.
Among the unavoidable impurities, P impairs the weldability and hot workability of steel. Therefore, the P content is preferably set to 0.03% or less. Further, since S deteriorates the corrosion resistance, ductility and toughness of steel, its content is preferably 0.01% or less.

【0034】Cu析出物:Cuイオン供給源としては、
鋼材表面にFe、Cr、NiおよびCuの合計に対する
Cuの比率が原子%で3%以上であるCu析出物および
/またはCu富化層が好適である。
Cu deposits: As a Cu ion source,
A Cu precipitate and / or a Cu-enriched layer in which the ratio of Cu to the total of Fe, Cr, Ni and Cu is 3% or more in atomic% on the steel surface is preferable.

【0035】Cu析出物としては、所定量のCuを含有
させた二相ステンレス鋼材に熱処理を施し、固溶してい
るCu原子を、鋼中や鋼表面にランダムに析出させたも
のがよい。Cu析出物は、Cuのみから構成されるもの
でもよいし、Cuの他に金属間化合物を形成するNi、
Ti、Fe、Si、PまたはSを含むものであってもよ
い。Cu析出物は、鋼中に存在するものもあれば、鋼表
面に露出しているものものもあるが、本発明が規定する
のは鋼材表面に露出しているCu析出物である。
As the Cu precipitate, it is preferable that a duplex stainless steel material containing a predetermined amount of Cu is subjected to a heat treatment so that Cu atoms in a solid solution are randomly precipitated in the steel or on the steel surface. The Cu precipitate may be composed of only Cu, or may be Ni, which forms an intermetallic compound in addition to Cu,
It may contain Ti, Fe, Si, P or S. Although some of the Cu precipitates are present in the steel and some of them are exposed on the steel surface, the present invention specifies the Cu precipitates exposed on the steel material surface.

【0036】Cuの固溶限はオーステナイト相よりもフ
ェライト相の方が小さいので、Cuの析出はオーステナ
イト相にもわずかに見られるが、フェライト相の方が優
先して析出する。Cu析出物の大きさや形状は、熱処理
温度または熱処理時間によって調整できる。熱処理条件
が低温短時間であれば10nm程度の粒状析出物とな
り、高温長時間であれば長径が1μm以下の棒状析出物
として析出する。本発明で規定する析出密度は、フェラ
イト相に析出したCu析出物を鋼材表面で観察して測定
されるものである。
Since the solid solubility limit of Cu is smaller in the ferrite phase than in the austenite phase, precipitation of Cu is slightly observed in the austenite phase, but the ferrite phase is preferentially precipitated. The size and shape of the Cu precipitate can be adjusted by the heat treatment temperature or heat treatment time. If the heat treatment is performed at low temperature for a short time, a granular precipitate of about 10 nm is formed, and when the heat treatment is performed for a long time at a high temperature, the precipitate is formed as a rod-shaped precipitate having a major axis of 1 μm or less. The precipitation density defined in the present invention is measured by observing a Cu precipitate precipitated in a ferrite phase on a steel material surface.

【0037】本発明で規定するCu析出物の析出密度
は、少なくともフェライト相表面において、長径が0.
01〜0.5μmの範囲のものが、100μm2 あたり
10個の割合で析出しているのがよい。抗菌性および耐
生物付着性に対しては析出物の数よりも大きさがより強
く影響し、析出物が大きいほど抗菌性および耐生物付着
性の改善効果が優れている。
The precipitation density of the Cu precipitate specified in the present invention is such that the major axis has a diameter of at least at least at the ferrite phase surface.
It is preferable that the particles in the range of 01 to 0.5 μm are precipitated at a rate of 10 per 100 μm 2 . The antimicrobial and bioadhesive properties are more strongly affected by the size than the number of precipitates, and the larger the precipitates, the better the effect of improving antibacterial and bioadhesive properties.

【0038】その長径が0.01μm未満では十分な抗
菌性が得られない。他方、長径が0.5μmを超える大
きな析出物を得るためには高温で長時間の熱処理を施す
必要があるが、後述する異相の析出による鋼が脆化する
という問題がある。したがって、Cu析出物の大きさ
は、長径が0.5μm以下とするのがよい。
If the major axis is less than 0.01 μm, sufficient antibacterial properties cannot be obtained. On the other hand, in order to obtain a large precipitate having a major axis exceeding 0.5 μm, it is necessary to perform a long-time heat treatment at a high temperature, but there is a problem that the steel is embrittled due to the precipitation of a heterophase described later. Therefore, the size of the Cu precipitate is preferably such that the major axis is 0.5 μm or less.

【0039】少なくともフェライト層表面におけるCu
析出物の密度が100μm2 あたり10個の割合に満た
ない場合には十分な抗菌性および耐生物付着性が得られ
ない。オーステナイト相における析出物は大きさ、密度
ともに任意である。
At least Cu on the surface of the ferrite layer
If the density of the precipitates is less than 10 per 100 μm 2, sufficient antibacterial properties and bioadhesion resistance cannot be obtained. The size and density of the precipitate in the austenite phase are arbitrary.

【0040】Cu析出物の長径は、鋼から薄膜試料を採
取し、透過型電子顕微鏡で観察することにより得られる
長径であり、球状または円盤状の時はその直径を、棒状
の時はその長さを長径とする。またCu析出物の密度
は、二相ステンレス鋼100μm2 に存在するフェライ
ト相中におけるCu析出物の個数である。
The major axis of the Cu precipitate is the major axis obtained by collecting a thin film sample from steel and observing it with a transmission electron microscope. The diameter is the diameter when the shape is spherical or disk, and the length when the shape is rod. Let the length be the major axis. The density of Cu precipitates is the number of Cu precipitates in the ferrite phase existing in 100 μm 2 of the duplex stainless steel.

【0041】Cu富化層:Cuイオン供給源としてのC
u富化層におけるCu濃度は、所望の抗菌性および耐生
物付着性を得るために、鋼鋼材表面から深さ50オング
ストロームまでの深さの領域のFe、Cr、Niおよび
Cuの合計に対するCuの比率が原子%で3%以上とす
る。鋼材表面から深さ50オングストロームを超える部
分については、鋼材表面でのCuイオン濃度にあまり影
響しないので任意である。Cu富化層のCuの原子比率
はX線光電子分光法(XPS)で求めることができる。
Cu-enriched layer: C as a Cu ion source
The Cu concentration in the u-enriched layer is determined by the Cu content relative to the sum of Fe, Cr, Ni and Cu in the region from the steel surface to a depth of 50 Å in order to obtain the desired antibacterial and biofouling resistance. The ratio is 3% or more in atomic%. A portion exceeding a depth of 50 angstroms from the surface of the steel material is optional since it does not significantly affect the Cu ion concentration on the surface of the steel material. The atomic ratio of Cu in the Cu-rich layer can be determined by X-ray photoelectron spectroscopy (XPS).

【0042】Cuイオン供給源としてCu析出物とCu
富化層を共に備えさせるとさらに優れた耐抗菌性や耐生
物付着性表面が得られる。
Cu precipitates and Cu as a Cu ion supply source
With the enrichment layer together, a better antibacterial and bioadhesive surface is obtained.

【0043】製造方法:本発明の抗菌性と耐生物付着性
に優れた二相ステンレス鋼材は、母材として上述の化学
組成を備えた鋼を圧延し、公知の方法で熱処理して得ら
れるフェライト、オーステナイト組織を有する二相ステ
ンレス鋼を用いる。
Production method: The duplex stainless steel material of the present invention having excellent antibacterial and bioadhesive properties is obtained by rolling a steel having the above-mentioned chemical composition as a base material and heat-treating it by a known method. A duplex stainless steel having an austenitic structure is used.

【0044】Cuイオン供給源としてCu析出物を利用
する場合には、上記母材としての二相ステンレス鋼を5
50〜900℃に加熱し、0.1〜8時間保持するCu
析出処理を施すのがよい。加熱温度が550℃に満たな
い場合には所望のCu析出物が得られない。好ましくは
600℃以上である。加熱温度が900℃を超えると、
析出したCuが再固溶するのでよくない。望ましくは8
50℃以下とするのがよい。保持時間が0.1時間に満
たない場合にはCu析出物の成長が不十分である。従っ
て保持時間は0.1時間以上とするのがよい。保持時間
が8時間を超えるとσ相析出により鋼が著しく脆化する
ので保持時間は8時間以下とするのがよい。
When a Cu precipitate is used as a Cu ion supply source, a duplex stainless steel as
Cu heated to 50 to 900 ° C. and held for 0.1 to 8 hours
A precipitation treatment is preferably performed. If the heating temperature is lower than 550 ° C., a desired Cu precipitate cannot be obtained. Preferably it is 600 ° C. or higher. When the heating temperature exceeds 900 ° C,
This is not good because the precipitated Cu is dissolved again. Preferably 8
The temperature is preferably set to 50 ° C. or lower. If the holding time is less than 0.1 hour, the growth of Cu precipitates is insufficient. Therefore, the holding time is preferably set to 0.1 hour or more. If the holding time exceeds 8 hours, the steel is remarkably embrittled by σ phase precipitation, so the holding time is preferably 8 hours or less.

【0045】Cu析出処理時の雰囲気は任意であり、大
気でも構わない。析出処理後の冷却方法は、500℃近
傍で徐冷されることによる脆化もあるため、水冷などに
よる急冷がよい。
The atmosphere during the Cu deposition treatment is arbitrary, and may be air. As for the cooling method after the precipitation treatment, rapid cooling by water cooling or the like is preferable because there is embrittlement due to slow cooling at around 500 ° C.

【0046】Cuイオン供給源としてCu富化層を表面
に備えさせる場合には、母材としての二相ステンレス鋼
を850〜1350℃に加熱して鋼の表面にFeやCr
を含有する酸化スケールを生成させ、その後、酸洗して
酸化スケールや母材の一部を溶解、除去し、鋼中のCu
を鋼材表面に電気化学的に析出、濃化させたものがよ
い。酸化雰囲気としては大気が好ましい。酸洗は特に限
定するものではないが通常用いられる硝弗酸酸洗がよ
い。Cuイオン供給源としてCu析出物とCu富化層を
共に備えさせる場合にはCu析出処理後に上記の酸洗を
おこなうのが効率的である。
When a Cu-enriched layer is provided on the surface as a Cu ion supply source, a duplex stainless steel as a base material is heated to 850 to 1350 ° C. to deposit Fe or Cr on the surface of the steel.
Is generated, and then pickling is performed to dissolve and remove the oxide scale and a part of the base material.
Is preferably electrochemically precipitated and concentrated on the surface of a steel material. The oxidizing atmosphere is preferably air. The pickling is not particularly limited, but a commonly used nitric hydrofluoric acid pickling is preferred. When both a Cu precipitate and a Cu-enriched layer are provided as a Cu ion supply source, it is efficient to perform the above pickling after the Cu deposition treatment.

【0047】[0047]

【実施例】(実施例1)表1に示す種々の化学組成を有
する鋼を真空高周波炉で溶解して鋼塊とし、これを厚さ
が6mmの鋼板に熱間圧延し、1050℃に20分間保
持した後水冷して固溶化処理を行い、母材としてのフェ
ライト・オーステナイト組織を有する二相ステンレス鋼
板を作製した。
(Example 1) Steels having various chemical compositions shown in Table 1 were melted in a vacuum high-frequency furnace to form a steel ingot, which was hot-rolled into a 6 mm-thick steel plate and heated to 1050 ° C at 20 ° C. After holding for 2 minutes, a solution treatment was performed by cooling with water to prepare a duplex stainless steel sheet having a ferrite-austenite structure as a base material.

【0048】[0048]

【表1】 [Table 1]

【0049】これらの母材を大気中で800℃に加熱し
て1.5時間保持した後水冷し、硝弗酸溶液を用いて酸
洗した後、Cuイオン供給源として主としてCu析出物
を備えた処理材を得た。上記処理材から得た薄膜試料に
ついて透過電子顕微鏡観察をおこない、各処理材のフェ
ライト相表面に認められるCu析出物の密度と大きさを
測定した。
These base materials were heated to 800 ° C. in the air, held for 1.5 hours, cooled with water, pickled with a nitric hydrofluoric acid solution, and provided mainly with Cu precipitates as a Cu ion supply source. A treated material was obtained. The thin film samples obtained from the treated materials were observed with a transmission electron microscope, and the density and size of Cu precipitates observed on the ferrite phase surface of each treated material were measured.

【0050】上記処理材の抗菌性試験を以下の方法で評
価した。試験に使用した菌は、Escherichia coli IFO 3
301 (大腸菌)とStaphylococcus aureus (黄色ぶどう
球菌)である。2種類の菌を普通寒天培地にて培養した
後、滅菌精製水で500倍に希釈した普通ブイヨン培地
に均一に分散させて菌数2.5×105 個/ミリリットルの菌
液を調製した。各処理材から50mm角の試験片を切り
出し、表面を#600エメリーペーパーで研磨し、その
表面に各菌液を0.5ミリリットルずつ塗布し、試験片と同じ
大きさのポリエチレンのフィルムを載せ、35℃、相対
湿度90%以上で24時間静置した後菌液を拭き取り、
拭き取った菌液を希釈液中に振り出した。所定量の振り
出し液を計測用培地に混釈し、37℃で48時間培養を
行い、発生した集落数を計測し、菌数が2.5×103
個/ミリリットル以下になったものは減菌率99%以上で優れ
た抗菌性が有すると判断した。得られた結果を表2に示
す。
The antibacterial test of the treated material was evaluated by the following method. The bacteria used for the test were Escherichia coli IFO 3
301 (Escherichia coli) and Staphylococcus aureus (Staphylococcus aureus). After culturing the two types of bacteria on a common agar medium, they were uniformly dispersed in a normal broth medium diluted 500-fold with sterile purified water to prepare a bacterial solution having a bacterial count of 2.5 × 10 5 cells / ml. A 50 mm square test piece was cut out from each treated material, the surface was polished with # 600 emery paper, and 0.5 ml of each bacterial solution was applied to the surface, and a polyethylene film of the same size as the test piece was placed thereon. After standing at 35 ° C. and a relative humidity of 90% or more for 24 hours, the bacterial solution was wiped off,
The wiped bacterial solution was sprinkled into the diluent. A predetermined amount of the shake-out solution was mixed with a measurement medium, cultured at 37 ° C. for 48 hours, the number of colonies generated was counted, and the number of bacteria was 2.5 × 10 3
It was judged that those having a number of cells / ml or less had an excellent antibacterial property with a sterilization rate of 99% or more. Table 2 shows the obtained results.

【0051】耐食性を、ASTMD−114152に規
定される条件に準じた30℃の人工海水中に3ヶ月浸漬
して、その腐食減量を測定して評価した。また、長さ5
5mm×幅10mm×板厚5mmの試験片にVノッチを
付与し、JIS−Z2242に規定される条件に準拠し
て靱性を測定し、0℃において衝撃値で20J/cm2
以上有するものを靱性に優れていると判断した。得られ
た結果を表2に示す。
The corrosion resistance was evaluated by immersing in artificial seawater at 30 ° C. for 3 months according to the conditions specified in ASTM D-114152, and measuring the corrosion loss. In addition, length 5
A V-notch is applied to a 5 mm × 10 mm × 5 mm thick test piece, the toughness is measured in accordance with the conditions specified in JIS-Z2242, and the impact value is 20 J / cm 2 at 0 ° C.
Those having the above were judged to be excellent in toughness. Table 2 shows the obtained results.

【0052】[0052]

【表2】 [Table 2]

【0053】表2からわかるように、鋼1〜5の表面に
は、0.01〜0.5μmのCuの相が10個/100
μm2 以上の密度で析出していた。一方、Cu含有量が
本発明の規定する範囲よりも少なかった鋼A、BではC
u析出物が形成されていたものの密度は10個/100
μm2 未満であり、鋼EではCu析出物が検出されなか
った。抗菌性試験結果では、鋼1〜5および鋼Cは培養
後の発生集落数が180以下で優れた抗菌性を示した。
しかし、鋼A、BおよびEでは、1.0×106 以上に
増菌しており抗菌効果はなかった。鋼DはMo含有量が
多く、σ相が析出して耐食性が低下し、撃値が低く靱性
もよくなかった。鋼CはCu含有量が多すぎ、鋼FはA
l含有量が多すぎたために発錆が認められ、また靱性も
よくなかった。
As can be seen from Table 2, on the surfaces of steels 1 to 5, 10 phases of Cu having a thickness of 0.01 to 0.5 μm were formed at a rate of 10/100.
It was deposited at a density of μm 2 or more. On the other hand, in steels A and B in which the Cu content was less than the range specified by the present invention, C
The density of u precipitates formed was 10/100
μm 2 , and no Cu precipitate was detected in steel E. According to the antibacterial test results, steels 1 to 5 and steel C exhibited excellent antibacterial properties when the number of colonies generated after culturing was 180 or less.
However, in the case of steels A, B and E, the number of bacteria was increased to 1.0 × 10 6 or more, and there was no antibacterial effect. Steel D had a high Mo content, a σ phase was precipitated, the corrosion resistance was reduced, the impact value was low, and the toughness was poor. Steel C has too much Cu content, steel F has A
Since the l content was too large, rusting was observed and the toughness was poor.

【0054】(実施例2)実施例1に記載した鋼3を熱
間圧延し焼鈍して得た厚さが6mmの二相ステンレス鋼
を大気中で種々の温度に保持する熱処理をおこない、C
uイオン供給源として主としてCu析出物を備えた鋼板
を作製した。これらの鋼板から得た試験片について、実
施例1に記載したのと同様の方法で、フェライト相表面
のCu析出状況、抗菌性、耐食性および靱性を調査し
た。結果を表3に示した。
(Example 2) Duplex stainless steel having a thickness of 6 mm obtained by hot rolling and annealing the steel 3 described in Example 1 was subjected to a heat treatment at various temperatures in the atmosphere to obtain C.
A steel sheet mainly provided with Cu precipitates as a u ion supply source was produced. The test pieces obtained from these steel sheets were examined for the state of Cu precipitation on the ferrite phase surface, antibacterial properties, corrosion resistance and toughness in the same manner as described in Example 1. The results are shown in Table 3.

【0055】[0055]

【表3】 [Table 3]

【0056】表3からわかるように、加熱温度が好まし
い範囲であった試験片は所望の析出密度のCu析出物が
得られており、抗菌性、耐食性および靱性共に良好であ
った。析出物が大きかったものは特に抗菌性が優れてい
た。他方、500℃または1000℃で熱処理した試験
片はCuの析出状態が良くなく抗菌性および靱性は不良
であった。
As can be seen from Table 3, the test specimen having the heating temperature within the preferred range had a Cu precipitate having a desired precipitation density, and had good antibacterial properties, corrosion resistance and toughness. Those with large precipitates were particularly excellent in antibacterial properties. On the other hand, the test piece heat-treated at 500 ° C. or 1000 ° C. had poor Cu precipitation and poor antibacterial properties and toughness.

【0057】(実施例3)実施例1に記載した鋼3を熱
間圧延、酸洗、冷間圧延して厚さ1mmの冷間圧延鋼板
とし、大気中において様々な温度と時間で熱処理し、1
0%硝酸と2%フッ酸の混合酸液による酸洗をおこな
い、Cuイオン供給源として鋼材表面に種々の濃度のC
u富化層を備えた試験片を得た。これらの試験片表面の
Cu富化状況をX線光電子分光法(XPS)で調査し
た。また、実施例1に記載したのと同様の方法で各試験
片の抗菌性を調査した。得られた結果を表4に示した。
Example 3 The steel 3 described in Example 1 was hot-rolled, pickled, and cold-rolled into a cold-rolled steel sheet having a thickness of 1 mm, and heat-treated at various temperatures and times in the atmosphere. , 1
Pickling with a mixed acid solution of 0% nitric acid and 2% hydrofluoric acid is performed, and various concentrations of C
A test piece provided with a u-enriched layer was obtained. The state of Cu enrichment on the surfaces of these test pieces was investigated by X-ray photoelectron spectroscopy (XPS). Further, the antibacterial property of each test piece was investigated in the same manner as described in Example 1. Table 4 shows the obtained results.

【0058】[0058]

【表4】 [Table 4]

【0059】表4からわかるように、好ましい条件で熱
処理したものは所望のCu富化層が得られており、抗菌
性が良好であった。好ましくない熱処理条件で析出処理
したものはCu富化状況が良くなく抗菌性が良くなかっ
た。
As can be seen from Table 4, those heat-treated under preferable conditions had a desired Cu-enriched layer and had good antibacterial properties. Those subjected to precipitation treatment under unfavorable heat treatment conditions had poor Cu enrichment and poor antibacterial properties.

【0060】なお、上記実施例1の試番3、5、7と同
様の試験片、実施例2に記載の試番26と同様にCu析
出物が検出されなかった試験片、および、実施例3の試
番33、36に記載したのと同様にCu富化層のCu濃
度が異なる試験片を岸壁にて海水中に3ヵ月浸漬し、フ
ジツボの付着状況を観察した。試番3、5および33と
同様の試験片ではフジツボの付着が認められず、良好な
耐生物付着性を示していた。しかしながら試番7、26
および36と同様の試験片ではフジツボが付着してお
り、耐生物付着性はよくなかった。
The test pieces similar to test numbers 3, 5, and 7 in Example 1 above, the test pieces in which no Cu precipitate was detected as in test number 26 described in Example 2, and the test pieces In the same manner as described in Test Nos. 33 and 36 of No. 3, test pieces having different Cu concentrations in the Cu-enriched layer were immersed in seawater for 3 months on the quay, and the adhesion of barnacles was observed. In the same test pieces as Test Nos. 3, 5, and 33, adhesion of barnacles was not recognized, and good bioadhesion resistance was shown. However, trial number 7, 26
Barnacles adhered to the same test specimens as in Nos. 36 and 36, and the bioadhesion resistance was poor.

【0061】[0061]

【発明の効果】本発明の二相ステンレス鋼材は、抗菌性
と耐生物付着性に優れており、しかも耐食性にも優れて
いる。貯水槽タンクや海水を用いる熱交換器などの素材
として使用して優れた性能を発揮し得る。また本発明の
鋼板は容易に製造することができるので、産業上極めて
有用である。
The duplex stainless steel material of the present invention is excellent in antibacterial properties and bio-adhesion resistance, and is also excellent in corrosion resistance. Excellent performance can be achieved when used as a material for water storage tanks or heat exchangers using seawater. Further, since the steel sheet of the present invention can be easily manufactured, it is extremely useful in industry.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樽谷 芳男 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 Fターム(参考) 4K053 PA03 PA12 QA01 RA16 RA17 TA02 TA03 TA04 TA16 TA24 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshio Tarutani 4-5-33 Kitahama, Chuo-ku, Osaka Sumitomo Metal Industries, Ltd. F-term (reference) 4K053 PA03 PA12 QA01 RA16 RA17 TA02 TA03 TA04 TA16 TA24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.05%以下、Si:
2.0%以下、Mn:2.0%以下、Cr:16〜30
%、Ni:3.0〜9.0%、Mo:0.2〜2.0
%、Cu:1.0%超え5.0%以下、Al:0.00
5〜0.05%、N:0.10〜0.35%を含有する
二相ステンレス鋼材であって、その表面にFe、Cr、
NiおよびCuの合計に対するCuの比率が原子%で3
%以上であるCuイオン供給源を有することを特徴とす
る抗菌性と耐生物付着性に優れた二相ステンレス鋼材。
1. C: 0.05% or less by weight%, Si:
2.0% or less, Mn: 2.0% or less, Cr: 16 to 30
%, Ni: 3.0 to 9.0%, Mo: 0.2 to 2.0
%, Cu: more than 1.0% and 5.0% or less, Al: 0.00
A duplex stainless steel material containing 5 to 0.05% and N: 0.10 to 0.35%, the surface of which is Fe, Cr,
The ratio of Cu to the total of Ni and Cu is 3 in atomic%.
A duplex stainless steel material having excellent antibacterial properties and bio-adhesion resistance, characterized by having a Cu ion supply source of at least 0.1%.
【請求項2】 前記Cuイオン供給源が、鋼材の少なく
ともフェライト相表面に、長径が0.01〜0.5μm
であり、その密度が100μm2 あたり10個以上のC
u析出物であることを特徴とする請求項1に記載の抗菌
性と耐生物付着性に優れた二相ステンレス鋼材。
2. The method according to claim 1, wherein the Cu ion supply source has a major axis of at least 0.01 to 0.5 μm on at least the ferrite phase surface of the steel material.
And a density of 10 or more C per 100 μm 2
The duplex stainless steel material according to claim 1, wherein the duplex stainless steel material is a u-precipitate.
【請求項3】 前記Cuイオン供給源が、鋼材表面から
深さ50オングストロームまでの深さの領域のFe、C
r、NiおよびCuの合計に対するCuの比率が原子%
で3%以上であるCu富化層であることを特徴とする請
求項1に記載の抗菌性と耐生物付着性に優れた二相ステ
ンレス鋼材。
3. The method according to claim 1, wherein the Cu ion supply source comprises Fe, C in a region having a depth from the steel material surface to a depth of 50 Å.
The ratio of Cu to the total of r, Ni and Cu is atomic%
2. The duplex stainless steel material according to claim 1, wherein the Cu-enriched layer is 3% or more. 3.
【請求項4】 請求項1に記載の化学組成を有する二相
ステンレス鋼を550〜900℃で0.1〜8時間保持
する熱処理を施すことを特徴とする請求項2に記載の抗
菌性と耐生物付着性に優れた二相ステンレス鋼材の製造
方法。
4. The antibacterial property according to claim 2, wherein the duplex stainless steel having the chemical composition according to claim 1 is subjected to heat treatment at 550 to 900 ° C. for 0.1 to 8 hours. A method for manufacturing duplex stainless steel with excellent bioadhesion resistance.
【請求項5】 請求項1に記載の化学組成を有する二相
ステンレス鋼を、酸化性雰囲気中で850〜1350℃
に加熱した後酸洗して表面の酸化スケールを除去するこ
とを特徴とする請求項3に記載の抗菌性と耐生物付着性
に優れた二相ステンレス鋼材の製造方法。
5. A duplex stainless steel having the chemical composition according to claim 1, which is heated to 850 to 1350 ° C. in an oxidizing atmosphere.
The method for producing a duplex stainless steel material having excellent antibacterial properties and bio-adhesion resistance according to claim 3, wherein the surface is oxidized and then pickled to remove oxide scale on the surface.
JP12041899A 1999-04-27 1999-04-27 Duplex stainless steel material and its manufacture Pending JP2000313940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12041899A JP2000313940A (en) 1999-04-27 1999-04-27 Duplex stainless steel material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12041899A JP2000313940A (en) 1999-04-27 1999-04-27 Duplex stainless steel material and its manufacture

Publications (1)

Publication Number Publication Date
JP2000313940A true JP2000313940A (en) 2000-11-14

Family

ID=14785743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12041899A Pending JP2000313940A (en) 1999-04-27 1999-04-27 Duplex stainless steel material and its manufacture

Country Status (1)

Country Link
JP (1) JP2000313940A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476771A1 (en) * 2009-09-10 2012-07-18 Sumitomo Metal Industries, Ltd. Two-phase stainless steel
US20130312880A1 (en) * 2011-02-14 2013-11-28 Nippon Steel & Sumitomo Metal Cororation Duplex stainless steel and production method therefor
EP2677056A1 (en) * 2011-02-14 2013-12-25 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel
JP2017509790A (en) * 2014-02-03 2017-04-06 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Duplex stainless steel
JP2017214636A (en) * 2016-06-02 2017-12-07 新日鐵住金ステンレス株式会社 Two-phase stainless steel for storage tank
CN111593269A (en) * 2020-05-26 2020-08-28 上海大学 Antimicrobial adhesion seawater corrosion resistant duplex stainless steel for ship pump valve and preparation method and application thereof
EP3604593A4 (en) * 2017-03-30 2020-09-02 NIPPON STEEL Stainless Steel Corporation Two-phase stainless steel and manufacturing method therefor
CN112210721A (en) * 2020-09-30 2021-01-12 福州大学 Antibacterial super-grade duplex stainless steel and preparation method thereof
CN115768914A (en) * 2020-04-13 2023-03-07 日本制铁株式会社 Martensitic stainless steel material and method for producing martensitic stainless steel material
US11932926B2 (en) 2014-06-17 2024-03-19 Outokumpu Oyj Duplex ferritic austenitic stainless steel composition

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476771A1 (en) * 2009-09-10 2012-07-18 Sumitomo Metal Industries, Ltd. Two-phase stainless steel
EP2476771A4 (en) * 2009-09-10 2014-07-23 Nippon Steel & Sumitomo Metal Corp Two-phase stainless steel
EP2902525A1 (en) * 2009-09-10 2015-08-05 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel
US20130312880A1 (en) * 2011-02-14 2013-11-28 Nippon Steel & Sumitomo Metal Cororation Duplex stainless steel and production method therefor
EP2677056A1 (en) * 2011-02-14 2013-12-25 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel
EP2677056A4 (en) * 2011-02-14 2015-03-25 Nippon Steel & Sumitomo Metal Corp Duplex stainless steel
EP2677054A4 (en) * 2011-02-14 2016-12-28 Nippon Steel & Sumitomo Metal Corp Duplex stainless steel, and process for production thereof
US9771628B2 (en) * 2011-02-14 2017-09-26 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel and production method therefor
EP3102714A4 (en) * 2014-02-03 2017-09-20 Outokumpu Oyj Duplex stainless steel
JP2017509790A (en) * 2014-02-03 2017-04-06 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Duplex stainless steel
AU2015212697B2 (en) * 2014-02-03 2019-04-18 Outokumpu Oyj Duplex stainless steel
US11692253B2 (en) 2014-02-03 2023-07-04 Outokumpu Oyj Duplex stainless steel
US11932926B2 (en) 2014-06-17 2024-03-19 Outokumpu Oyj Duplex ferritic austenitic stainless steel composition
JP2017214636A (en) * 2016-06-02 2017-12-07 新日鐵住金ステンレス株式会社 Two-phase stainless steel for storage tank
EP3604593A4 (en) * 2017-03-30 2020-09-02 NIPPON STEEL Stainless Steel Corporation Two-phase stainless steel and manufacturing method therefor
CN115768914A (en) * 2020-04-13 2023-03-07 日本制铁株式会社 Martensitic stainless steel material and method for producing martensitic stainless steel material
CN115768914B (en) * 2020-04-13 2023-09-22 日本制铁株式会社 Martensitic stainless steel material and method for producing martensitic stainless steel material
CN111593269A (en) * 2020-05-26 2020-08-28 上海大学 Antimicrobial adhesion seawater corrosion resistant duplex stainless steel for ship pump valve and preparation method and application thereof
CN112210721A (en) * 2020-09-30 2021-01-12 福州大学 Antibacterial super-grade duplex stainless steel and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0980915B1 (en) Stainless steel product having enhanced antibacterial action and method for producing the same
JP2000313940A (en) Duplex stainless steel material and its manufacture
JP2017206725A (en) Ferritic stainless steel and manufacturing method therefor
EP0992599A1 (en) Titanium alloy and method for producing the same
JP3223418B2 (en) Ferritic stainless steel excellent in antibacterial property and method for producing the same
JP3309769B2 (en) Cu-containing stainless steel sheet and method for producing the same
JP3227405B2 (en) Ferritic stainless steel with excellent antibacterial properties
JPH10140295A (en) Stainless steel excellent in antibacterial characteristic, and its production
JP6958707B2 (en) Duplex stainless steel sheet with austenite / ferrite type
JP3232532B2 (en) Austenitic stainless steel excellent in antibacterial property and method for producing the same
JPH09256116A (en) High strength martensitic stainless steel excellent in antibacterial characteristic
JP2000160294A (en) High hardness antibacterial steel material and its manufacture
JPH11343540A (en) Martensitic stainless steel excellent in antibacterial property
JP2000008145A (en) Ferritic stainless steel excellent in antifungal property and its production
JP2017190522A (en) Steel material
JP2000336461A (en) High hardness stainless steel superior in antibacterial property and corrosion resistance
JP6809656B1 (en) Duplex stainless steel sheet with austenite ferrite
JPH09195016A (en) Martensitic stainless steel excellent in antibacterial property and its production
JPH11310856A (en) Austenitic stainless steel material excellent in machinability and antibacterial characteristic, and its manufacture
JP3973456B2 (en) Austenitic stainless steel with excellent high temperature salt damage corrosion resistance
JP3691283B2 (en) Inexpensive stainless steel for natural seawater
JP4064554B2 (en) Inexpensive antibacterial cold-rolled steel sheet
JP2023140295A (en) Antimicrobial corrosion low alloy steel
JPH10324920A (en) Manufacture of ferritic stainless steel sheet excellent in antibacterial characteristic, workability, and corrosion resistance
WO2023181895A1 (en) Microorganism-corrosion-resistant low-alloy steel material and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051021

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070913

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520