JP2000285974A - Photosensitized photovolatic power generation element - Google Patents

Photosensitized photovolatic power generation element

Info

Publication number
JP2000285974A
JP2000285974A JP11087749A JP8774999A JP2000285974A JP 2000285974 A JP2000285974 A JP 2000285974A JP 11087749 A JP11087749 A JP 11087749A JP 8774999 A JP8774999 A JP 8774999A JP 2000285974 A JP2000285974 A JP 2000285974A
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor electrode
dense portion
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11087749A
Other languages
Japanese (ja)
Inventor
Akihiro Horiguchi
昭宏 堀口
Hiroyasu Sumino
裕康 角野
Maki Yonezu
麻紀 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11087749A priority Critical patent/JP2000285974A/en
Publication of JP2000285974A publication Critical patent/JP2000285974A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To prevent short circuit of an electric circuit between a charge transfer layer and a transparent electrode and separation between a transparent conductive film and an n-type semiconductor electrode and improve long-term reliability, by constituting the n-type semiconductor electrode with a dense portion with a specific thickness and a porous portion. SOLUTION: An n-type semiconductor electrode is constituted with a dense portion 8 and a porous portion 4, and thickness of the dense portion 8 is not less than 0.01 μm and not more than 0.6 μm. For forming the thickness of the dense portion 8 so thin, recesses and projections existing on this surface are preferably set not larger than 90 nm. As a result, a thin film with thickness less than 100 nm having no stress concentration is formed to provide a highly efficient cell with long-term reliability. Because microstructure may slightly vary depending on an employed raw material, preferably, relative density of the dense portion 8 is not less than 93% and not more than 100%. More preferably, pores in the dense portion 8 are closed. In addition, volume ratio of a polycrystalline phase contained in the dense portion 8 is preferably not less than 5% and not more than 70%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、長期信頼性であり
高い変換効率を有する光増感型太陽光発電素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photosensitized photovoltaic device having long-term reliability and high conversion efficiency.

【0002】[0002]

【従来の技術】一般に、太陽光発電素子はSiなどの半
導体を用いたものと、特開平1- 220380に記載し
てあるような光増感型の太陽光発電素子がある。光増感
型セルの構造はガラスやポリマーなどの基板が上下に用
いられそれぞれの基板にはフッ素をドープしたSnO2
が透明電極として形成されている。その一方の透明電極
に数十ナノメートルサイズの多孔質構造を持ったTiO
2などの化合物がn型半導体電極として用いられてい
る。このn型半導体電極には、Ruなどを中心金属に持
った錯体色素が吸着してある。また、もう一方の基板と
色素が吸着してあるTiO2などのn型半導体電極の間
にはヨウ素などの酸化還元イオンを含んだ電解液( 電荷
輸送層) が用いられている。この場合は電解液を用いて
いるので湿式増感型太陽光発電素子である。
2. Description of the Related Art In general, there are photovoltaic elements using semiconductors such as Si and photo-sensitized photovoltaic elements as described in JP-A-1-220380. The structure of the photosensitized cell is such that substrates such as glass and polymer are used vertically and SnO 2 doped with fluorine is used for each substrate.
Are formed as transparent electrodes. TiO with a porous structure of several tens of nanometers on one of the transparent electrodes
Compounds such as 2 are used as n-type semiconductor electrodes. A complex dye having Ru or the like as a central metal is adsorbed on the n-type semiconductor electrode. An electrolyte (charge transport layer) containing redox ions such as iodine is used between the other substrate and an n-type semiconductor electrode such as TiO 2 on which a dye is adsorbed. In this case, since the electrolytic solution is used, the device is a wet-sensitized solar power generation device.

【0003】このようなセルの受光材として用いられて
いる基板にまず太陽光があたり通過する。次に透明電極
を通過する。この際、光のごく短波長側を除き、大部分
の他の波長の光は電荷分離を行う錯体色素が吸着してあ
るTiO2などのn型半導体電極にあたる。光は、色素
の基底状態にある電子を励起する。励起され電子は、n
型半導体電極の伝導帯に注入される。さらに電子は、透
明電極を流れ外部負荷へと向かう。対向電極へと到達し
た電子は、I3-+2e-→3I-の反応でよう素を還元
する。この還元されたよう化物イオンは、n型半導体電
極に電子を渡しRu( III) であるが、還元されRu(I
I) になる。そしてよう化物イオンは酸化され3I-→I
-+2e-となる。以上のように発電されることにな
る。
[0003] First, sunlight hits a substrate used as a light receiving material of such a cell. Next, it passes through a transparent electrode. At this time, except for the very short wavelength side of the light, most of the light of other wavelengths hits an n-type semiconductor electrode such as TiO 2 on which a complex dye for charge separation is adsorbed. Light excites electrons in the ground state of the dye. The excited electrons are n
Is injected into the conduction band of the type semiconductor electrode. Further, the electrons flow through the transparent electrode and go to an external load. The electrons that have reached the counter electrode reduce iodine by a reaction of I3 + 2e → 3I . The reduced iodide ions pass electrons to the n-type semiconductor electrode and are Ru (III), but are reduced to Ru (I
I). And iodide ions are oxidized 3I - → I
3 - + 2e - to become. Power is generated as described above.

【0004】この光増感型セルの電解質部分をOMeTADの
ホール伝導性材料でセルを形成することがしられてい
る。この場合、n型半導体電極にはTiO2を用いてお
り、電解質部分と透明導電膜電極が電気的にショートし
ないようにコンパクトな層を設けている。しかしなが
ら、この膜の断面を見ると、柱状の結晶が成長しその柱
と注の間は決して緻密で液体を全く通過させないとは言
い難く、実際にはショートしてしまうと言う問題があっ
た。
[0004] It has been proposed that the electrolyte portion of the photosensitized cell is formed of a hole conductive material of OMeTAD. In this case, TiO 2 is used for the n-type semiconductor electrode, and a compact layer is provided so that the electrolyte portion and the transparent conductive film electrode are not electrically short-circuited. However, looking at the cross section of this film, a columnar crystal grows, and it is difficult to say that the column and the gap are dense and impervious to liquid at all, and there is a problem that a short circuit actually occurs.

【0005】また、透明導電膜とn型半導体電極に生じ
る熱膨張率に起因する応力を極限に低減し透明導電膜と
n型半導体電極間の剥離、受光側の基板と透明導電膜の
剥離を温度変化のある長期的な使用に耐える事ができな
いと言う問題があった。
[0005] Further, the stress caused by the coefficient of thermal expansion generated in the transparent conductive film and the n-type semiconductor electrode is reduced to the utmost, and peeling between the transparent conductive film and the n-type semiconductor electrode and peeling of the light-receiving side substrate and the transparent conductive film are prevented. There was a problem that it could not withstand long-term use with temperature changes.

【0006】[0006]

【発明が解決しようとする課題】従来の太陽光発電素子
は、n型半導体電極が柱状の結晶で成長しその柱と柱の
間は決して緻密で液体を全く通過させないとは言い難い
微構造であり電解質と透明導電膜電極が電気的にショー
トするという問題があった。また、熱膨張率に起因する
応力によって透明導電膜とn型半導体電極間に剥離が生
じるという問題があった。本発明の課題は、上記課題に
鑑みてなされたもので、電荷輸送層と透明電極間の電気
回路の短絡を防止し、また透明導電膜とn型半導体電極
間の剥離を防止して長期信頼性を向上させた光増感型太
陽光発電素子を提供する事を課題とする。
The conventional photovoltaic element has a microstructure in which an n-type semiconductor electrode is grown with columnar crystals, and the space between the columns is so dense that it is hard to say that liquid cannot pass at all. There was a problem that the electrolyte and the transparent conductive film electrode were electrically short-circuited. In addition, there is a problem that separation occurs between the transparent conductive film and the n-type semiconductor electrode due to stress caused by the coefficient of thermal expansion. The object of the present invention has been made in view of the above problems, and prevents short circuit of an electric circuit between a charge transport layer and a transparent electrode, and prevents peeling between a transparent conductive film and an n-type semiconductor electrode to provide a long-term reliability. An object of the present invention is to provide a photosensitized photovoltaic power generation element having improved performance.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は具体的には、光受光面を有する第1の基板
と、この第1の基板の前記光受光面と対向する面に形成
された透明導電膜と、この透明導電膜表面に形成され色
素を吸着したn型半導体電極と、このn型半導体電極に
隣接して形成された電荷輸送層と、前記第1の基板と対
向する側で且つ前記電荷輸送層を介して形成され表面に
導電膜を有する第2の基板とを具備する光増感型太陽光
発電素子において、n型半導体電極を厚さ0.01μm以上
0.6 μm以下、望ましくは0.01μm以上0.3 μm以下で
ある緻密な部分と多孔部分からなる全く新規の電極にす
るものである。この緻密な部分と多孔部分の密着性は極
めて良好であるが、透明導電膜と密着した場合この2つ
の層が応力を吸収する様に働くため透明導電膜がn型半
導体電極から剥離するのを防止する事ができる。さら
に、緻密な部分が電解質を透過するのを防止する事に加
え緻密な部分と多孔部分の境界は電解質の透過を防止す
る用に働き、結果的には電解質の透過を防止して電解質
と透明導電膜電極がショートするのを防止することがで
きる。
In order to solve the above-mentioned problems, the present invention specifically provides a first substrate having a light receiving surface and a surface of the first substrate facing the light receiving surface. A transparent conductive film formed on the transparent conductive film, an n-type semiconductor electrode formed on the surface of the transparent conductive film and adsorbing a dye, a charge transport layer formed adjacent to the n-type semiconductor electrode, A second substrate having a conductive film on the surface formed on the opposite side and with the charge transport layer interposed therebetween, wherein the n-type semiconductor electrode has a thickness of 0.01 μm or more.
The electrode is a completely new electrode comprising a dense part and a porous part of 0.6 μm or less, preferably 0.01 μm or more and 0.3 μm or less. The adhesion between the dense portion and the porous portion is extremely good, but when the transparent portion is in close contact with the transparent conductive film, the two layers work so as to absorb stress. Can be prevented. Furthermore, in addition to preventing the dense part from permeating the electrolyte, the boundary between the dense part and the porous part works to prevent the permeation of the electrolyte, resulting in the prevention of the permeation of the electrolyte and the transparency of the electrolyte. Short circuit of the conductive film electrode can be prevented.

【0008】n 型半導体電極を形成する粒径が数ミクロ
ン以下であり、電極の粒には空乏層が存在する。この空
乏層の存在により、n 型半導体電極には内部抵抗が存在
する。従って、n 型半導体電極の厚さは電荷が伝わる方
向に対して薄い必要がある。また薄い膜を達成するため
にn 型半導体電極の緻密な部分の表面の凹凸が小さいこ
とも有効である。また、透明電極と電荷輸送層が直接接
することで、電気回路の短絡が発生する。これを絶対に
避けない限り高効率なせる特性は得られない。そのため
には、電荷輸送層が液体の場合や、固体の場合でも含浸
プロセスで液体の場合が考えられるので、n型半導体電
極の緻密な部分の相対密度が90%以上100%以下望
ましくは93 %以上100%以下であるである事が、さ
らにはn型半導体電極の緻密な部分の気孔が閉気孔であ
り、液体を通過させない微構造にすることが良い。
The n-type semiconductor electrode has a grain size of several microns or less, and the electrode grains have a depletion layer. Due to the presence of the depletion layer, the n-type semiconductor electrode has an internal resistance. Therefore, the thickness of the n-type semiconductor electrode needs to be small in the direction in which electric charges are transmitted. In order to achieve a thin film, it is also effective that the unevenness on the surface of the dense portion of the n-type semiconductor electrode is small. In addition, a direct contact between the transparent electrode and the charge transport layer causes a short circuit in the electric circuit. Unless this is absolutely avoided, the characteristic of high efficiency cannot be obtained. For this purpose, it is conceivable that the charge transport layer is liquid or liquid even if it is solid, so that the relative density of the dense portion of the n-type semiconductor electrode is 90% or more and 100% or less, preferably 93%. It is preferable that the density is not less than 100% and that the pores in the dense portion of the n-type semiconductor electrode are closed pores and have a microstructure that does not allow liquid to pass through.

【0009】さらに、光増感型セルは、受光する基板、
透明電極、n型半導体電極といった異種材料を多層にし
セルを形成している。n型半導体電極の製造プロセスに
もよるが、形成には数百度の熱処理を用いるのが普通で
あり、また、セルは真冬の最低気温から、真夏の直射日
光を浴びた最高温度まで変化する。このような過酷な温
度条件に発生する熱膨張率の差に起因する応力をできる
だけ緩和することが必要であり、n型半導体電極の緻密
な部分に多結晶相が含有されることでより確実に緩和さ
れることを見出した。
Further, the photosensitized cell includes a substrate for receiving light,
A cell is formed by using multiple layers of different materials such as a transparent electrode and an n-type semiconductor electrode. Depending on the manufacturing process of the n-type semiconductor electrode, heat treatment at a temperature of several hundred degrees is usually used for the formation, and the cell changes from the lowest temperature in midwinter to the highest temperature in direct sunlight in midsummer. It is necessary to reduce as much as possible the stress caused by the difference in the coefficient of thermal expansion that occurs under such severe temperature conditions, and the dense portion of the n-type semiconductor electrode contains the polycrystalline phase more reliably. Found to be relaxed.

【0010】[0010]

【発明の実施の形態】本発明は、長期信頼性を有し高効
率の太陽光発電素子の発明であって、その実施の形態に
ついて詳述する。n型半導体電極の構造および物性を従
来に無い物とすることで、透明導電膜とn型半導体電極
に生じる熱膨張率に起因する応力を極限に低減し透明導
電膜とn型半導体電極間の剥離、受光側の基板と透明導
電膜の剥離を温度変化のある長期的な使用から防ぐ。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a high-efficiency photovoltaic power generation device having long-term reliability, and its embodiment will be described in detail. By making the structure and physical properties of the n-type semiconductor electrode unprecedented, the stress caused by the coefficient of thermal expansion generated in the transparent conductive film and the n-type semiconductor electrode is reduced to the utmost, and the distance between the transparent conductive film and the n-type semiconductor electrode is reduced. The peeling and the peeling of the transparent conductive film from the substrate on the light receiving side are prevented from long-term use with temperature change.

【0011】具体的な光増感型太陽光発電素子の断面図
を図1に示した。ここで、簡単に本実施の形態の太陽光
発電素子について説明しておく。1は基板太陽光を受光
する光受光面を有する基板(第1の基板:図中上下の基
板)及び対向基板(第2の基板:図中下の基板)、2は
イオン拡散防止膜、3は透明導電膜、4はn型半導体電
極(多孔部分)、5はこのn型半導体電極の表面に吸着
された状態で存在する錯体色素、6は電解質として働く
電荷輸送層、7は電荷輸送層を基板1を対向させて形成
した空間に封止する封止部分、8はn型半導体電極(緻
密な部分)である。
FIG. 1 is a sectional view of a specific photosensitized solar power generation device. Here, the photovoltaic power generation element of the present embodiment will be briefly described. Reference numeral 1 denotes a substrate having a light receiving surface for receiving sunlight (first substrate: upper and lower substrates in the figure) and a counter substrate (second substrate: lower substrate in the figure), 2 denotes an ion diffusion preventing film, Is a transparent conductive film, 4 is an n-type semiconductor electrode (porous portion), 5 is a complex dye adsorbed on the surface of the n-type semiconductor electrode, 6 is a charge transport layer serving as an electrolyte, 7 is a charge transport layer Is a sealing portion for sealing in a space formed by facing the substrate 1, and 8 is an n-type semiconductor electrode (dense portion).

【0012】受光材として用いる基板1には、ガラスや
有機ポリマー基板を用いる。ガラスの場合、ローコスト
の目的でソーダライムガラス( 青板ガラス) が汎用性基
板として用いることが多い。ソーダライムガラスの熱膨
張率は、8.5〜9.0×10-6/℃( 室温付近) であ
る。アクリル樹脂の場合70×10-6/℃( 室温付近)
である。ポリカーボネートの場合70×10-6/℃( 室
温付近) である。また、透明電極には、SnO
2(F)、ITO、ZnO(Al)などを用いる。これ
ら透明電極用いる化合物の熱伝導率は、SnO2(F)
の場合3.8×10-6/℃( 室温付近) 、ZnO(A
l)の場合2.1〜4.0×10-6/℃( 室温付近) で
ある。一般に、透明電極に用いられる化合物の熱膨張率
は、基板1に対して非常に小さな値である。さらに、n
型半導体電極8にTiO2のアナターゼ相を用いた場合
6.6×10-6/℃〜10×10-6/℃( 室温付近) で
ある。BaTiO3の場合14×10-6/℃ (>120
℃) である。SrTiO3の場合9.4×10-6/℃(
室温付近) である。
As the substrate 1 used as a light receiving material, a glass or organic polymer substrate is used. In the case of glass, soda-lime glass (blue glass) is often used as a versatile substrate for the purpose of low cost. The coefficient of thermal expansion of soda lime glass is 8.5 to 9.0 × 10 −6 / ° C. (around room temperature). 70 × 10 -6 / ℃ for acrylic resin (around room temperature)
It is. In the case of polycarbonate, it is 70 × 10 −6 / ° C. (around room temperature). In addition, the transparent electrode has SnO
2 (F), ITO, ZnO (Al) or the like is used. The thermal conductivity of the compound used for these transparent electrodes is SnO 2 (F)
3.8 × 10 −6 / ° C. (around room temperature), ZnO (A
In the case of 1), it is 2.1 to 4.0 × 10 −6 / ° C. (around room temperature). In general, the thermal expansion coefficient of the compound used for the transparent electrode is very small with respect to the substrate 1. Furthermore, n
When the anatase phase of TiO 2 is used for the type semiconductor electrode 8, it is 6.6 × 10 −6 / ° C. to 10 × 10 −6 / ° C. (around room temperature). 14 × 10 −6 / ° C. for BaTiO 3 (> 120
° C). 9.4 × 10 −6 / ° C. for SrTiO 3 (
(Around room temperature).

【0013】以上述べた如く、異種材料が多層構造とな
っている。製造するときの加熱冷却や、セル使用時の真
冬の最低気温から真夏の直射日光下の最高温度までの熱
サイクルにより、熱膨張率の異なる材料は応力を受け、
最終的には剥離等を生じ、長期信頼性を持って高効率が
出せないのが現状である。
As described above, different materials have a multilayer structure. Materials with different coefficients of thermal expansion are subjected to stress due to heating and cooling during manufacturing, and thermal cycling from the lowest temperature in the middle of winter when using the cell to the highest temperature in direct sunlight in the middle of summer.
At present, peeling occurs, and high efficiency cannot be obtained with long-term reliability.

【0014】応力に対して剥離やクラックが生じないよ
うにするためには、膜厚を薄い構造にすること、ヤング
率を小さな材料にすることを光増感セル材料で新たに見
出した。
In order to prevent peeling or cracking due to stress, a photosensitized cell material was newly found to have a structure having a small film thickness and a material having a small Young's modulus.

【0015】本発明では、n型半導体電極を緻密な部分
8と多孔性の部分4から構成し緻密な部分の厚さを0.
01μm以上0.6μm以下にすることで剥離やクラッ
クが生じないことを突き止めた。この厚さに関しては、
薄い方が応力緩和効果があり、好ましくは0.01μm
以上0.3μm以下であることを見出した。更に好まし
くは0.01μm以上0.1μm未満である。 さら
に、n 型半導体電極4、8を形成する粒径が数ミクロン
以下であり、電極の粒には空乏層が存在し、この空乏層
の存在により、n 型半導体電極4、8には内部抵抗が存
在する。しかし本発明のn 型半導体電極4、8の緻密な
部分の厚さは非常に薄く内部抵抗が非常に小さくするこ
とができ高効率が得られることがわかった。
In the present invention, the n-type semiconductor electrode is composed of the dense portion 8 and the porous portion 4, and the thickness of the dense portion is set to 0.1.
It was found that peeling and cracking did not occur when the thickness was set to 01 μm or more and 0.6 μm or less. Regarding this thickness,
The thinner one has a stress relaxation effect, preferably 0.01 μm
It was found that it was not less than 0.3 μm. More preferably, it is 0.01 μm or more and less than 0.1 μm. Further, the particle size forming the n-type semiconductor electrodes 4 and 8 is several microns or less, and a depletion layer exists in the particles of the electrodes. Exists. However, it was found that the thickness of the dense portions of the n-type semiconductor electrodes 4 and 8 of the present invention was extremely small, the internal resistance was extremely reduced, and high efficiency was obtained.

【0016】しかしながら、薄い膜を形成しようとして
も膜表面の凹凸が余りにも大きい場合には、その凹凸長
よりも薄い膜は形成不可能となり、たとえ試みたとして
も微構造は島状構造となり層状の厚さが均一の膜にはな
らない。 L.Kavan等の研究のElectrochim.Acta 40,643-
652(1995) に記してある膜では凹凸が100nm〜30
0nm存在し実質的には、100nm未満の薄膜は形成
しようとしても島状構造となり形成不可能が予想され
る。本発明では、n型半導体電極の緻密な部分8の表面
に存在する凹凸を90nm以下として応力集中のしない
100nm未満の厚さの薄膜を形成し、長期信頼性高効
率セルを得ることが新規にできた。
However, if the surface roughness of the film is too large even if a thin film is to be formed, a film thinner than the length of the surface cannot be formed. Does not become a film having a uniform thickness. Electrochim.Acta 40,643-
In the film described in 652 (1995), unevenness is 100 nm to 30 nm.
It is expected that a thin film having a thickness of 0 nm and having a thickness of less than 100 nm will be formed into an island structure and cannot be formed substantially. In the present invention, it has been newly proposed to form a thin film having a thickness of less than 100 nm without stress concentration by setting the unevenness existing on the surface of the dense portion 8 of the n-type semiconductor electrode to 90 nm or less to obtain a long-term reliable high-efficiency cell. did it.

【0017】この緻密な部分8は電荷輸送層と透明電極
3間の電気回路の短絡を全く生じるのを防ぎ、電気ロス
を無くす効果があり、その効果が最も現れるのが、液体
分子をも通過させないことが必要であり( 少しでも通す
と効果激減) 、 n型半導体電極の緻密な部分8の大で
あることを突き止めた。用いる原材料により微構造が少
し異なることもあるので、好ましくは、相対密度が93
%以上100%以下である時に効果が最大であることも
突き止めた。更に好ましくは、n型半導体電極の緻密な
部分8の気孔が閉気孔であることである。
The dense portion 8 has the effect of preventing a short circuit in the electric circuit between the charge transport layer and the transparent electrode 3 at all, and has the effect of eliminating electric loss. It was necessary not to allow it to do so (the effect was drastically reduced if a little was passed), and it was found that the dense portion 8 of the n-type semiconductor electrode was large. Since the microstructure may be slightly different depending on the raw material used, the relative density is preferably 93%.
It was also found that the effect was maximum when the percentage was not less than 100% and not more than 100%. More preferably, the pores of the dense portion 8 of the n-type semiconductor electrode are closed pores.

【0018】また同時に、熱サイクルから生じる応力を
緩和するには、n型半導体電極のヤング率を小さくすれ
ば、剥離やクラックが生じなくなることを新規に突き止
めた。ヤング率を小さくするためには、 n型半導体電
極の緻密な部分8に多結晶相(多結晶相)が含有されて
いるとき達成されることがわかった。一般に結晶相が多
い場合には、電極の電気伝導上昇し、多結晶相が多い場
合には電極の電気伝導が低下する。電気伝導が大きく抵
抗が小さいことがn型半導体電極には求められるが、一
方でヤング率を小さくする必要も出る。本発明はこの両
者を解決する組成としてn型半導体電極の緻密な部分8
に含まれる多結晶相の体積割合が5%以上70%以下の
範囲の値であるという全く新たな材料を発明した。この
時長期に亘り剥離やクラックが生じない信頼性の高い高
効率な光増感型セルが達成される。
At the same time, it has been newly found that, if the Young's modulus of the n-type semiconductor electrode is reduced to reduce the stress caused by the thermal cycle, peeling and cracking will not occur. It has been found that the reduction in Young's modulus is achieved when the dense portion 8 of the n-type semiconductor electrode contains a polycrystalline phase (polycrystalline phase). In general, when there are many crystal phases, the electric conduction of the electrodes increases, and when there are many polycrystalline phases, the electric conduction of the electrodes decreases. The n-type semiconductor electrode is required to have high electric conductivity and low resistance, but it is also necessary to reduce the Young's modulus. The present invention provides a composition which solves both of these problems, as a dense portion 8 of an n-type semiconductor electrode.
A completely new material has been invented in which the volume fraction of the polycrystalline phase contained in the material is in the range of 5% to 70%. At this time, a highly reliable and highly efficient photosensitized cell free from peeling or cracking over a long period of time is achieved.

【0019】以上述べた如く、従来に無い全く新規なn
型半導体電極の構造および物性さらには結晶相組成を新
規にすることで、課題を解決し長期信頼性を有する高効
率の光増感型太陽光発電素子を全く新規に達成したので
ある。
As described above, a completely new n
By making the structure and physical properties of the type semiconductor electrode and the crystal phase composition new, a high-efficiency photosensitized photovoltaic power generation device that solves the problem and has long-term reliability has been achieved completely new.

【0020】更に本発明のセルを構成する他の部分につ
いての実施の形態もう少し詳しく説明する。本発明の長
期信頼性の高効率太陽光発電素子は、(1)ガラスやポ
リマーなどの太陽光のほぼ全波長領域に対して透明な受
光板の片面に、イオンの拡散を防止する膜2が必要に応
じて形成され、また金属や透明導電膜も形成された受光
材料が形成された受光板と、(2)受光材料の片面にあ
る透明導電膜に連結された熱応力を緩和すると同時に短
絡を防止し電子を伝導する機能を持つ緻密な層8と錯体
色素5を吸着する多孔体部分からなるn型半導体電極
4、(3)n 型半導体電極に吸着した色素5と、(4)
(1)に記した金属や透明導電膜3の対向電極3を形成
した第2の基板1と、(5)色素5を吸着させたn 型半
導体電極4と対向電極3の間に形成される、イオン伝導
性あるいはホール伝導性物質からなる電荷輸送層6と、
(5)(1)に形成された電極に電気的に対向した電極
の形成された基板から構成されていることを特徴とす
る。
Embodiments of other parts constituting the cell of the present invention will be described in more detail. The high-efficiency photovoltaic power generation device with long-term reliability according to the present invention includes (1) a film 2 for preventing diffusion of ions on one surface of a light-receiving plate, such as glass or a polymer, which is transparent to almost all wavelength regions of sunlight. A light-receiving plate on which a light-receiving material is formed, where necessary, and on which a metal or a transparent conductive film is also formed, and (2) a thermal stress connected to the transparent conductive film on one side of the light-receiving material is relieved and short-circuited. An n-type semiconductor electrode 4 comprising a dense layer 8 having a function of preventing the occurrence of electrons and conducting electrons and a porous portion adsorbing the complex dye 5, (3) the dye 5 adsorbed on the n-type semiconductor electrode, and (4)
It is formed between the second substrate 1 on which the counter electrode 3 of the metal or the transparent conductive film 3 described in (1) is formed, and (5) the n-type semiconductor electrode 4 on which the dye 5 is adsorbed and the counter electrode 3. A charge transport layer 6 made of an ion-conductive or hole-conductive material;
(5) It is characterized by comprising a substrate on which an electrode electrically facing the electrode formed in (1) is formed.

【0021】(1)及び(4)のアノードおよびカソー
ドからなる電極群が形成される非導電性基板1は、良好
な絶縁性があればいかなるものであってもよい。具体的
には例えば、ソーダライムガラス等のガラス基板、ポリ
カーボネートやアクリル樹脂などの有機ポリマー基板、
アルミナ、窒化アルミニウムなどのセラミック基板、シ
リコン基板等が挙げられる。また非導電性材料でない場
合でも、電極群を形成する面をポリマー、ガラス、セラ
ミックなどの絶縁性物質でコーティングすれば良く、ス
テンレス、アルミニウム、チタン等の金属基板やカーボ
ン基板などを用いることが出来る。ただし、少なくとも
一方の基板は太陽光を透過する透明性が要求される。
The non-conductive substrate 1 on which the electrode group consisting of the anode and the cathode of (1) and (4) is formed may be of any type as long as it has good insulating properties. Specifically, for example, a glass substrate such as soda lime glass, an organic polymer substrate such as polycarbonate or acrylic resin,
A ceramic substrate such as alumina and aluminum nitride, a silicon substrate, and the like can be given. In addition, even if it is not a non-conductive material, the surface forming the electrode group may be coated with an insulating substance such as a polymer, glass, or ceramic, and a metal substrate such as stainless steel, aluminum, or titanium, or a carbon substrate can be used. . However, at least one of the substrates is required to be transparent to sunlight.

【0022】また、受光側の基板と透明導電膜の間にイ
オン拡散防止膜2がありことが好ましい。イオン拡散防
止膜2はシリカ膜等を用いることができる。一般的にn
型半導体電極4、8に用いる材料は、特にチタン、ジル
コニウム、ハフニウム、ストロンチウム、亜鉛、インジ
ウム、イットリウム、ランタン、バナジウム、ニオブ、
タンタル、クロム、モリブデン、タングステンなどの酸
化物やペロブスカイト類が挙げられる。特に最適なのは
TiO 2のアナターゼ相である。錯体色素5を吸着させる
多孔部分4は、単位面積当たり大きな表面積を有してい
る方が好ましく、100以上がよい。好ましくは500
以上であり、更に好ましくは1000以上である。また
多孔部分4の厚さは、薄いと色素5が吸着する表面積が
小さくなり好ましくない。また、厚すぎると内部抵抗が
大きくなり変換効率の低下につながる。好ましくは2μ
mから15μmであり、更に好ましくは5μmから10
μmである。また、多孔部分4の気孔サイズは、100
nm以下、1μm以上が好ましい。100nm以上1μ
m以下の気孔は光を散乱し変換効率の低下につながるた
めに好ましくない。n型半導体電極の緻密な部分8と多
孔な部分は、同一の化合物から構成されていることが好
ましいが、電子が錯体色素5からn型半導体色素の多孔
部分4に注入され、緻密な部分8に連続的に注入される
伝導帯の連結構造が保たれている場合には、n型半導体
電極4、8が異なる2種類の化合物から構成されていて
も動作には何ら問題ない。
It is preferable that an ion diffusion preventing film 2 is provided between the light receiving side substrate and the transparent conductive film. As the ion diffusion preventing film 2, a silica film or the like can be used. Generally n
Materials used for the type semiconductor electrodes 4 and 8 are, in particular, titanium, zirconium, hafnium, strontium, zinc, indium, yttrium, lanthanum, vanadium, niobium,
Examples include oxides such as tantalum, chromium, molybdenum, and tungsten, and perovskites. Especially best is
It is an anatase phase of TiO 2 . The porous portion 4 for adsorbing the complex dye 5 preferably has a large surface area per unit area, more preferably 100 or more. Preferably 500
And more preferably 1,000 or more. On the other hand, if the thickness of the porous portion 4 is small, the surface area on which the dye 5 is adsorbed becomes small, which is not preferable. On the other hand, if it is too thick, the internal resistance increases, leading to a decrease in conversion efficiency. Preferably 2μ
m to 15 μm, more preferably 5 μm to 10 μm.
μm. The pore size of the porous portion 4 is 100
nm or less and 1 μm or more are preferable. 100μm or more 1μ
Pores smaller than m are not preferred because they scatter light and lead to a reduction in conversion efficiency. The dense part 8 and the porous part of the n-type semiconductor electrode are preferably made of the same compound. However, electrons are injected from the complex dye 5 into the porous part 4 of the n-type semiconductor dye, In the case where the connection structure of the conduction band continuously injected into the n-type semiconductor electrodes is maintained, there is no problem in operation even if the n-type semiconductor electrodes 4 and 8 are composed of two different compounds.

【0023】電極群を形成する材料は、導電性物質であ
ればいかなるものでも良い。アノードおよびカソードを
構成する材料は、同じでも異なっていても良い。電荷輸
送層6が電解質層である場合は電気化学的に安定である
材料を用いることが好ましく、具体的には白金、金、カ
ーボン等を用いることが望ましい。また、SnO2(フ
ッ素ドープ)、ITO (In-Sn 酸化物)やZnO (A lドー
プ)などの酸化物系の導電膜で形成することが望まし
い。この他の材料、例えばアルミニウム、銅、鉄、ステ
ンレス、チタン、銀、ドープしたポリアニリン、ポリピ
ロール、ポリチオフェンなどの導電性高分子などであっ
ても、電解質に接する表面のみ白金や金、カーボン等で
被覆すれば同等の安定性を得ることができる。こうした
被覆は、例えば所望のパターンに電極を形成した後に
(全面電極でも可能)、電解あるいは無電解めっきによ
って白金、金などをコーティングすることによって行わ
れる。電極表面は微細構造によって表面積が増大された
状態が良く、例えば白金であれば白金黒状態に、カーボ
ンであれば多孔質状態になっていることが好ましい。熱
サイクルから生じる応力を緩和するために、電極の厚さ
は薄いことが望まれる。1μm以下が好ましく、より好
ましくは0.7μm以下である。しかし抵抗率が大きい
場合には変換効率が低下しない厚さにすべきである。
The material forming the electrode group may be any conductive material. The materials constituting the anode and the cathode may be the same or different. When the charge transport layer 6 is an electrolyte layer, it is preferable to use a material that is electrochemically stable, and specifically, it is desirable to use platinum, gold, carbon, or the like. In addition, it is preferable that the conductive film be formed of an oxide-based conductive film such as SnO 2 (fluorine-doped), ITO (In-Sn oxide), or ZnO (Al-doped). Even with other materials such as aluminum, copper, iron, stainless steel, titanium, silver, doped polyaniline, polypyrrole, polythiophene, and other conductive polymers, only the surface in contact with the electrolyte is coated with platinum, gold, carbon, etc. Then, the same stability can be obtained. Such a coating is performed by, for example, forming electrodes in a desired pattern (a full-surface electrode is also possible) and then coating platinum, gold, or the like by electrolytic or electroless plating. The surface of the electrode is preferably in a state where the surface area is increased by the fine structure. For example, it is preferable that platinum is in a platinum black state and that of carbon is in a porous state. It is desirable that the thickness of the electrode be small in order to alleviate the stress resulting from thermal cycling. It is preferably 1 μm or less, more preferably 0.7 μm or less. However, when the resistivity is large, the thickness should be such that the conversion efficiency does not decrease.

【0024】色素5は可視光領域に吸収を有し、光励起
反応によって半導体層に電子を注入できるものであれば
いかなるものでもよく、遷移金属錯体などが用いられ
る。具体的にはルテニウム、オスミウム、鉄などの金属
錯体が挙げらる。特に配位子が二座や三座あるいは全座
ポリピリジル化合物であり、カルボキシル基などの二酸
化チタン表面の水酸基と結合可能な置換基を有するもの
がよい。
The dye 5 may be any dye as long as it has absorption in the visible light region and can inject electrons into the semiconductor layer by a photoexcitation reaction, and a transition metal complex or the like is used. Specific examples include metal complexes such as ruthenium, osmium, and iron. In particular, it is preferable that the ligand is a bidentate, tridentate or all-dentate polypyridyl compound and has a substituent such as a carboxyl group that can bind to a hydroxyl group on the surface of titanium dioxide.

【0025】電荷輸送層6としては、イオン伝導性物質
としてはヨウ化物、臭化物、ハイドロキノンなどの可逆
的酸化還元対を含む電解質溶液、架橋ポリアクリル樹脂
誘導体や架橋ポリアクリロニトリル誘導体などをマトリ
ックスとして電解質溶液を含浸させた高分子ゲル電解
質、ポリアルキレンオキシドやシリコーン樹脂類などに
電解質を溶解した高分子電解質、高分子アンモニウム塩
などの溶融塩電解質が用いられる。
The charge transport layer 6 is composed of an electrolyte solution containing a reversible redox couple such as iodide, bromide, or hydroquinone as an ion conductive material, or a matrix containing a crosslinked polyacryl resin derivative or a crosslinked polyacrylonitrile derivative as a matrix. , A polymer electrolyte in which an electrolyte is dissolved in a polyalkylene oxide, a silicone resin, or the like, and a molten salt electrolyte such as a polymer ammonium salt.

【0026】電解質溶液の場合、十分な空孔率を有する
多孔質のシリカ、アルミナ、ルチル相の二酸化チタンと
いった無機多孔質体や、ポリ(弗化ビニリデン)などの
有機物質の多孔質体に含浸させた状態で用いてもよい。
In the case of an electrolyte solution, an inorganic porous material such as porous silica, alumina and rutile phase titanium dioxide having a sufficient porosity, or a porous material of an organic substance such as poly (vinylidene fluoride) is impregnated. You may use it in the state made to be.

【0027】ホール伝導性物質としては、トリアリルア
ミン類などのアモルファス材料、ポリビニルカルバゾー
ルなどの高分子型ホール輸送性材料、ポリフェニレン、
ポリフェニレンビニレン、ポリチオフェン、ポリピロー
ル、ポリアニリン、ポリシロール、ポリシランなどの共
役性高分子、またはこれらの誘導体などが用いられる。
本発明の長期信頼性であり高い変換効率を有する光増感
型太陽光発電素子は、例えば次のような方法で作製され
る。まず可視域の波長で光透過性が良好なガラスあるい
は有機ポリマー基板1にスパッタ法、CVD法あるいは
ゾルゲル法などでSnO2、ITOやZnOなどを主成
分とする透明導電膜3を形成する。次に、この透明導電
膜3上にスパッタ法、CVD法あるいはゾルゲル法のよ
うな種々の方法でn型半導体電極の緻密な部分8を形成
する。必要に応じて、n型半導体電極の多結晶相の含有
割合を所望の割合にするための熱処理等を行う。ひきつ
づき、n型半導体部部の多孔部分4を原料化合物粉末を
使用したペーストをスクリーン印刷やスキージ印刷で形
成する。別の方法としてスパッタ法、CVD法あるいは
ゾルゲル法などを用いることができる。プロセスにもよ
るが、その後熱処理が必要ならば行う。比表面積を増大
させるためのエッチングなどを行うことも許容される。
Examples of the hole conductive substance include amorphous materials such as triallylamines, polymeric hole transport materials such as polyvinyl carbazole, polyphenylene, and the like.
A conjugated polymer such as polyphenylenevinylene, polythiophene, polypyrrole, polyaniline, polysilole, or polysilane, or a derivative thereof is used.
The photosensitized photovoltaic device having long-term reliability and high conversion efficiency of the present invention is manufactured by, for example, the following method. First, a transparent conductive film 3 containing SnO 2 , ITO, ZnO, or the like as a main component is formed on a glass or organic polymer substrate 1 having good light transmittance at a wavelength in the visible region by a sputtering method, a CVD method, a sol-gel method, or the like. Next, the dense portion 8 of the n-type semiconductor electrode is formed on the transparent conductive film 3 by various methods such as a sputtering method, a CVD method or a sol-gel method. If necessary, heat treatment or the like is performed to adjust the content ratio of the polycrystalline phase of the n-type semiconductor electrode to a desired ratio. Subsequently, the paste using the raw material compound powder is formed on the porous portion 4 of the n-type semiconductor portion by screen printing or squeegee printing. As another method, a sputtering method, a CVD method, a sol-gel method, or the like can be used. After that, depending on the process, heat treatment is performed if necessary. Performing etching or the like to increase the specific surface area is also permitted.

【0028】引き続き、錯体色素5をアルコールなどの
有機溶剤に溶解した溶液に、n型酸化物半導体4、8が
表面に形成されたガラス基板1を浸し所定の時間保持す
る。この工程は、溶液にガラス基板1を浸したものを還
流装置に入れ、還流処理を施すことでも達成できる。還
流処理を行うことによりただ単に溶液に浸すのに比べる
と短時間で十分な色素5を吸着できる。
Subsequently, the glass substrate 1 on which the n-type oxide semiconductors 4 and 8 are formed is immersed in a solution in which the complex dye 5 is dissolved in an organic solvent such as alcohol, and held for a predetermined time. This step can also be achieved by placing the glass substrate 1 immersed in a solution in a reflux device and performing a reflux process. By performing the reflux treatment, a sufficient amount of the dye 5 can be adsorbed in a shorter time than when the dye 5 is simply immersed in the solution.

【0029】十分色素5を吸着させたn型酸化物半導体
電極4、8つき基板を溶液から引き上げ乾燥した後、対
向電極3のついたガラスあるいは有機物基板1と向かい
合わせて配置し、周囲を一部を除いてエポキシ系などの
樹脂7で封止する。封止する場合、n型酸化物半導体電
極4、8と対極の間にスペースを調整するためにガラス
あるいはポリマーのビーズを配置することも許容する。
After the substrate with the n-type oxide semiconductor electrodes 4 and 8 on which the dye 5 has been sufficiently adsorbed is pulled out of the solution and dried, the substrate is placed so as to face the glass or organic substrate 1 with the counter electrode 3, and the surroundings are one-sided. Except for the portion, the package is sealed with an epoxy resin 7 or the like. In the case of sealing, it is also allowed to dispose glass or polymer beads for adjusting the space between the n-type oxide semiconductor electrodes 4 and 8 and the counter electrode.

【0030】次にこの2枚の透明導電基板3間に電荷輸
送層6を含浸する。電荷輸送層6として溶液を使用する
場合は電解液をあらかじめ調整しておき、これを容器に
入れ、周囲を封止した前記透明基板1とともに脱気でき
る容器内に設置した後、一度十分脱気を行い、次に容器
内のガラス基板1の未封止の部分を電解液に接触させ、
引き続き脱気容器の真空を破って電解液6を透明基板1
間に注入する。十分に電解液6の注入が完了した後未封
止の部分をエポキシ樹脂7で封止して太陽光発電素子と
する。
Next, the charge transport layer 6 is impregnated between the two transparent conductive substrates 3. When a solution is used as the charge transport layer 6, an electrolytic solution is prepared in advance, put in a container, and placed in a container that can be degassed together with the transparent substrate 1 whose periphery is sealed, and then sufficiently degassed once. Is performed, and then the unsealed portion of the glass substrate 1 in the container is brought into contact with the electrolytic solution,
Subsequently, the vacuum in the degassing vessel is broken and the electrolyte 6 is transferred to the transparent substrate 1.
Inject in between. After the injection of the electrolyte 6 is sufficiently completed, the unsealed portion is sealed with an epoxy resin 7 to obtain a photovoltaic device.

【0031】電荷輸送層6が固体、あるいは擬似固体の
場合は、n型酸化物半導体4、8を形成した透明基板1
と対極が形成された透明基板1の封止を行う前に、n型
酸化物半導体電極4、8上に粉末状,粒状あるいは板状
の固体あるいは擬似固体の電解質を適量配置し、さらに
その上に対極3を形成した透明基板1を配置した後脱気
容器内で加熱しながら電荷輸送層6を溶融し、n型酸化
物半導体電極4、8内部に電荷輸送層6を含浸させたあ
と大気に戻し冷却して所望の接合を完成する。なお、脱
気容器中で加熱し電荷輸送層6を溶融している間、適当
な荷重をかけることも許容される。最後に2枚の透明基
板1の周囲をエポキシ樹脂7等で封止して目的の太陽光
発電素子とする。
When the charge transport layer 6 is a solid or pseudo solid, the transparent substrate 1 on which the n-type oxide semiconductors 4 and 8 are formed
Before sealing the transparent substrate 1 on which the counter electrode is formed, an appropriate amount of a powdery, granular or plate-like solid or quasi-solid electrolyte is disposed on the n-type oxide semiconductor electrodes 4 and 8, and further thereon. After the transparent substrate 1 on which the counter electrode 3 is formed is arranged, the charge transport layer 6 is melted while being heated in a degassing container, and the n-type oxide semiconductor electrodes 4 and 8 are impregnated with the charge transport layer 6 and then air. And cooled to complete the desired bonding. It should be noted that an appropriate load can be applied while the charge transport layer 6 is melted by heating in the degassing container. Finally, the periphery of the two transparent substrates 1 is sealed with an epoxy resin 7 or the like to obtain a target solar power generation element.

【0032】[0032]

【実施例】以下、例示的ではあるが限定的ではない実施
例を用いて本発明をより深く理解する事ができる。 (実施例1)図1に示した構造の光増感型太陽発電素子
を以下の手順で作成した。チタンイソプロポキシドを、
脱水した2−プロパノールに溶解し、それを還流装置を
用いて加熱しながら1時間還流を行い、均一な溶液とな
るよう混合した。次にドライボックス中で、激しく攪拌
しながら0.1M硝酸溶液を還流後の溶液に滴下し透明なゾ
ル溶液を作製した。
The present invention can be better understood with reference to the following illustrative but non-limiting examples. (Example 1) A photosensitized solar power generation device having the structure shown in FIG. 1 was prepared by the following procedure. Titanium isopropoxide,
It was dissolved in dehydrated 2-propanol, and refluxed for 1 hour while heating using a reflux device, and mixed to form a uniform solution. Next, in a dry box, a 0.1 M nitric acid solution was dropped into the refluxed solution with vigorous stirring to prepare a transparent sol solution.

【0033】得られた溶液にSiO2のイオン拡散防止
膜と0.9μmの厚さの酸化スズにフッ素がドープさ
れ、そのシート抵抗が5Ω/□の透明導電膜が形成され
たほう珪ガラス基板1を浸漬し、およそ5cm/min のスピ
ードで引き上げた。これを最高温度600℃で空気中で
熱処理を行った。この溶液への浸漬から600℃での焼
成までの行程を複数回行い、厚さ0.3mmの相対密度が
98%で多結晶相を含有しない酸化チタン薄膜を形成し
た。このn型半導体電極の緻密な部分8の表面の凹凸は
50nmであった。 相の決定はX線回折法により構成
相を測定した。アナターゼに対応するピークが観察さ
れ、より高温で熱処理した別の試料と粉末X線回折のピ
ーク強度を比較し、さらに化学分析を併用して薄膜内に
残存する多結晶相の割合を測定したが、0%であった。
また、気孔率を微構造観察を行うことで求めたところ2
%(相対密度98%)であった。
A borosilicate glass substrate on which an SiO 2 ion diffusion preventing film and a 0.9 μm thick tin oxide are doped with fluorine in the obtained solution to form a transparent conductive film having a sheet resistance of 5Ω / □. 1 was immersed and pulled up at a speed of about 5 cm / min. This was heat-treated at a maximum temperature of 600 ° C. in air. The process from immersion in this solution to firing at 600 ° C. was performed a plurality of times to form a titanium oxide thin film having a thickness of 0.3 mm and a relative density of 98% and containing no polycrystalline phase. The unevenness on the surface of the dense portion 8 of the n-type semiconductor electrode was 50 nm. The phases were determined by measuring the constituent phases by the X-ray diffraction method. A peak corresponding to anatase was observed, the peak intensity of powder X-ray diffraction was compared with another sample heat-treated at a higher temperature, and the ratio of the polycrystalline phase remaining in the thin film was measured using chemical analysis in combination. , 0%.
The porosity was determined by observing the microstructure.
% (98% relative density).

【0034】次に、平均一次粒径が30nmの高純度酸化
チタン( アナターゼ) 粉末に硝酸を添加した後純水とと
もに混練し、さらに界面活性剤で安定化させたペースト
を作製した。これをn型半導体電極に緻密な部分8の上
にガラス基板1上にスクリーン印刷法で印刷し、温度45
0 ℃で熱処理を行って厚さ2 μm の酸化チタン( アナタ
ーゼ) からなるn型半導体電極4、8を形成した。この
スキージ印刷、熱処理を複数回繰り返し、最終的に酸化
すず導電膜上に厚さ8μm のアナターゼ相からなる酸化
チタンn型半導体電極4、8を形成した。このn型半導
体電極4のラフネスファクターは1500であった。ラ
フネスファクターは、基板の投影面積に対する、窒素吸
着量から求めた。
Next, nitric acid was added to a high-purity titanium oxide (anatase) powder having an average primary particle diameter of 30 nm, kneaded with pure water, and a paste stabilized with a surfactant was prepared. This is printed by a screen printing method on the glass substrate 1 on the dense portion 8 of the n-type semiconductor electrode,
Heat treatment was performed at 0 ° C. to form n-type semiconductor electrodes 4 and 8 made of titanium oxide (anatase) having a thickness of 2 μm. This squeegee printing and heat treatment were repeated a plurality of times to finally form titanium oxide n-type semiconductor electrodes 4 and 8 having an anatase phase and having a thickness of 8 μm on the tin oxide conductive film. The roughness factor of the n-type semiconductor electrode 4 was 1500. The roughness factor was determined from the nitrogen adsorption amount with respect to the projected area of the substrate.

【0035】この2層構造の酸化チタン薄膜が形成され
たガラス基板を、シス−ビス( シオシアナト) −N ,N
−ビス(2,2’−ジピリジル−4,4’−ジカルボン
酸)−ルテニウム(II) 二水和物)の錯体色素をエタノ
ールに溶かした3.7×10-4M溶液に浸漬して7時間放置
し酸化チタン薄膜に色素5を十分吸着させた。色素吸着
量を検量線より計算しところおよそ5.5×10-7mol /
cm2であった。対向電極3としてフッ素をドープ下酸化
すずに白金を薄くコートした電極を形成したガラス基板
1を、直径が20μm のスペーサーを利用して前述の二層
構造の酸化チタンn型半導体電極4を作製した基板上1
に配置し、周囲を電解液注入口を残してエポキシ系樹脂
7で固めて固定した。注入孔からよう化テトラプロピル
アンモニウム0.4M ,よう化カリウム0.02M ,ヨ
ウ素0.03M のアセトニトリル/炭酸エチレン混合溶
媒電解質溶液を注入した。注入後、エポキシ樹脂7を封
孔して光電変換素子を作製した。
The glass substrate on which the titanium oxide thin film having the two-layer structure was formed was prepared using cis-bis (siocyanato) -N, N
-Bis (2,2'-dipyridyl-4,4'-dicarboxylic acid) -ruthenium (II) dihydrate complex dye was immersed in a 3.7 × 10 -4 M solution of ethanol, The dye 5 was sufficiently adsorbed on the titanium oxide thin film after being left for a while. The amount of the dye adsorbed was calculated from the calibration curve to be about 5.5 × 10 −7 mol /
It was cm 2. A glass substrate 1 on which an electrode coated thinly with platinum without being doped with fluorine as a counter electrode 3 was formed, and a titanium oxide n-type semiconductor electrode 4 having the above-mentioned two-layer structure was prepared using a spacer having a diameter of 20 μm. On board 1
And the periphery was fixed with an epoxy resin 7 except for an electrolyte injection port. An acetonitrile / ethylene carbonate mixed solvent electrolyte solution of tetrapropylammonium iodide 0.4M, potassium iodide 0.02M, and iodine 0.03M was injected from the injection hole. After the injection, the epoxy resin 7 was sealed to produce a photoelectric conversion element.

【0036】作製した直後に太陽電池セルに擬似太陽光
を15mW/cm 2の強度で照射してその変換効率(初期)を
求めたところエネルギー変換効率10.5%が得られ
た。その後、サーマルサイクルテスト(TCT)を行っ
た。25℃の空気雰囲気中に30分放置した後、100
℃まで30分間で温度上昇させた。100℃で30分間
放置し、その後−10℃まで40分で降温しー10℃で
30分間放置した。その後100℃まで40分で昇温し
30分放置した。このようなー10℃から100℃間の
温度サイクルを500回行った。太陽電池セルに擬似太
陽光を15mW/cm 2の強度で照射してその変換効率(TC
T後)を求めたところエネルギー変換効率10.3%が
得られ、効率の低下はほとんど無かった。セルを分解
し、走査型電子顕微鏡と透過型電子顕微鏡でイオン拡散
防止膜2/透明導電膜3/n型半導体電極の緻密な部分
8の界面付近を観察を行った、剥離は観察されなかっ
た。本実施例の効果をまとめると、長期信頼性を有し高
効率の太陽光発電素子の発明であって、n 型半導体電極
の構造および物性を従来に無い物とすることで、透明導
電膜3とn型半導体電極8に生じる熱膨張率に起因する
応力を極限に低減し透明導電膜3とn型半導体電極8間
の剥離、受光側の基板1と透明導電膜3の剥離を温度変
化のある長期的な使用から防具と共に、電荷輸送層6と
透明電極3間の電気回路の短絡を全く生じるのを防ぎ、
電気ロスを非常に少なくし、更にはn 型半導体電極4、
8内での電気的抵抗を極端に小さくすることができる。
Immediately after fabrication, the solar cell was irradiated with simulated sunlight at an intensity of 15 mW / cm 2 , and its conversion efficiency (initial) was measured. As a result, an energy conversion efficiency of 10.5% was obtained. Thereafter, a thermal cycle test (TCT) was performed. After leaving in an air atmosphere at 25 ° C. for 30 minutes, 100
The temperature was increased to 30 ° C. in 30 minutes. It was left at 100 ° C. for 30 minutes, then cooled to −10 ° C. in 40 minutes, and left at −10 ° C. for 30 minutes. Thereafter, the temperature was raised to 100 ° C. in 40 minutes and left for 30 minutes. Such a temperature cycle between −10 ° C. and 100 ° C. was performed 500 times. A solar cell is irradiated with simulated sunlight at an intensity of 15 mW / cm 2 and its conversion efficiency (TC
After (T) was obtained, an energy conversion efficiency of 10.3% was obtained, and there was almost no decrease in efficiency. The cell was disassembled, and the vicinity of the interface of the ion diffusion preventing film 2 / the transparent conductive film 3 / the dense portion 8 of the n-type semiconductor electrode was observed with a scanning electron microscope and a transmission electron microscope. No peeling was observed. . The effects of the present embodiment can be summarized as follows: a high-efficiency photovoltaic power generation device having long-term reliability, in which the structure and physical properties of the n-type semiconductor electrode are unprecedented, and And the stress due to the coefficient of thermal expansion generated in the n-type semiconductor electrode 8 is reduced to the utmost, and the separation between the transparent conductive film 3 and the n-type semiconductor electrode 8 and the separation between the substrate 1 on the light receiving side and the transparent conductive film 3 are changed by a temperature change. Along with the armor from a certain long-term use, it prevents a short circuit of the electric circuit between the charge transport layer 6 and the transparent electrode 3 from occurring at all,
Electricity loss is extremely reduced, and furthermore, the n-type semiconductor electrode 4,
The electrical resistance in the inside 8 can be extremely reduced.

【0037】(実施例2)n型半導体電極の緻密な部分
8の成膜をスパッタ法で作製した。チタンをターゲット
として酸素0.1 Pa,アルゴン0.2 Paの雰囲気中で出力2k
W でスパッタを行った。得られた薄膜の構成相を粉末X
線回折法により同定したところアモルファスの酸化チタ
ンであることが判明した。引き続き、このガラス基板1
を500℃で4時間熱処理を行い、構成相の調整を行っ
た。得られた薄膜の構成相を粉末X線回折装置で確認し
たところ、アナターゼ相に対応するピークが確認され
た。高温で熱処理を行い完全に結晶化した試料の回折パ
ターンとピーク強度を比較したところ、同一であり多結
晶相は含有していなかった。実施例2の条件及び評価結
果を表1及び表2に示す。これらの表に記していない部
分は実施例1と同一である。
Example 2 A dense portion 8 of an n-type semiconductor electrode was formed by sputtering. Output 2k in an atmosphere of 0.1 Pa oxygen and 0.2 Pa argon using titanium as the target
Sputtering was performed with W. The constituent phase of the obtained thin film was powder X
When identified by a line diffraction method, the titanium oxide was found to be amorphous titanium oxide. Then, the glass substrate 1
Was subjected to a heat treatment at 500 ° C. for 4 hours to adjust the constituent phases. When the constituent phases of the obtained thin film were confirmed with a powder X-ray diffractometer, a peak corresponding to the anatase phase was confirmed. A comparison between the diffraction pattern and the peak intensity of a sample which was heat-treated at a high temperature and was completely crystallized showed that they were identical and did not contain a polycrystalline phase. Tables 1 and 2 show the conditions and evaluation results of Example 2. Parts not described in these tables are the same as those in the first embodiment.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】(実施例3〜4)実施例2から実施例13
までの条件及び評価結果も表1表2に示す。これらの表
に記していない部分は実施例1または実施例2と同様で
ある。
(Embodiments 3 and 4) Embodiments 2 to 13
Table 1 and Table 2 also show the conditions up to and the evaluation results. The parts not described in these tables are the same as in the first or second embodiment.

【0041】(実施例5〜7)色素は図2の構造のもの
を用いた以外は実施例1と同様である。以下の実施例で
は、実施例1と同一部分・同一条件を使用した場合は特
に説明することなく、異なる部分について説明する。
(Examples 5 to 7) The dyes were the same as in Example 1 except that the dye having the structure shown in FIG. 2 was used. In the following embodiments, when the same parts and the same conditions as those of the first embodiment are used, the different parts will be described without particular description.

【0042】(実施例8)n型半導体電極の緻密な部分
8を作製するとき、このガラス基板1を450℃で3時
間熱処理を行なった。
Example 8 When fabricating a dense portion 8 of an n-type semiconductor electrode, this glass substrate 1 was heat-treated at 450 ° C. for 3 hours.

【0043】(実施例9)n型半導体電極の緻密な部分
8を作製するとき、このガラス基板1を430℃で3時
間熱処理を行なった。
(Example 9) When forming the dense portion 8 of the n-type semiconductor electrode, this glass substrate 1 was heat-treated at 430 ° C for 3 hours.

【0044】(実施例10)n型半導体電極の緻密な部
分を作製するとき、このガラス基板を410℃で3時間
熱処理を行なった。
Example 10 When forming a dense portion of an n-type semiconductor electrode, this glass substrate was heat-treated at 410 ° C. for 3 hours.

【0045】(実施例11)n型半導体電極の緻密な部
分を作製するとき、このガラス基板を400℃で3時間
熱処理を行なった。
(Example 11) When forming a dense portion of an n-type semiconductor electrode, this glass substrate was heat-treated at 400 ° C for 3 hours.

【0046】(実施例12)電荷輸送材料にホール輸送
性の固体材料を用いた。Ru錯体を吸着したn型半導体電
極と対極を形成したガラス基板で図3に示す固体キャリ
ア輸送材料(固体電荷輸送層)、直径8mmの球状ガラス
スペーサー、封止材をはさんで真空加熱装置内部に配置
し、減圧しながら固体キャリア輸送材料の融点以上にま
で過熱してキャリア輸送材料をとかし、圧着して酸化チ
タン電極との良好な接合を実現したあと冷却し、太陽光
発電素子を作製した。
(Example 12) A solid material having a hole transporting property was used as a charge transporting material. A glass substrate on which a counter electrode is formed with an n-type semiconductor electrode on which a Ru complex is adsorbed, a solid carrier transporting material (solid charge transporting layer) as shown in FIG. 3, a spherical glass spacer having a diameter of 8 mm, and a sealing material inside the vacuum heating device. The carrier transport material was melted by heating to above the melting point of the solid carrier transport material while depressurizing, and pressed to achieve good bonding with the titanium oxide electrode, followed by cooling to produce a photovoltaic device. .

【0047】(実施例13)電荷輸送材料にイオン伝達
性の疑似固体材料を用いた。室温で液状の1−メチル−
3−エチルイミダゾリウムトリフレート溶融塩に対アニ
オンとしてヨウ素イオン(I−)をもつセチルピリニジ
ウム塩をヨウ素とともに溶解し、さらにポリエチレング
リコール−ジアクリレートを溶解して電荷輸送層とし
た。この電荷輸送層を前述の色素を吸着した酸化チタン
上に直径が7mmのポリエチレンスペーサーとともに配置
し、対極とガラス基板を重ね、真空容器中で脱気しなが
ら加熱して溶融塩の粘度を下げ酸化チタン電極に含浸し
た。含浸後、紫外線を照射して溶融塩をゲル化させ、太
陽光発電素子とした。
Example 13 A charge transporting material was a pseudo solid material having ion transportability. 1-methyl-liquid at room temperature
A cetylpyridinium salt having iodine ion (I-) as a counter anion was dissolved together with iodine in 3-ethylimidazolium triflate molten salt, and polyethylene glycol-diacrylate was further dissolved to form a charge transport layer. This charge transport layer is placed on the above-mentioned dye-adsorbed titanium oxide together with a polyethylene spacer having a diameter of 7 mm, a counter electrode and a glass substrate are stacked, and heated while deaerated in a vacuum vessel to lower the viscosity of the molten salt and oxidize it. The titanium electrode was impregnated. After impregnation, the molten salt was gelled by irradiating ultraviolet rays to obtain a photovoltaic device.

【0048】実施例2から実施例11までの条件及び評
価結果を第1表に示す。表に記していない部分は実施例
1と同様である。 (比較例1〜3)比較例1から比較例3までの条件及び
評価結果を表3及び表4に示す。表に記していない部分
は実施例と同様である。
Table 1 shows conditions and evaluation results of Examples 2 to 11. Portions not described in the table are the same as in the first embodiment. (Comparative Examples 1 to 3) Tables 3 and 4 show conditions and evaluation results of Comparative Examples 1 to 3. Parts not described in the table are the same as in the example.

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】(比較例4)n型半導体電極の緻密な部分
を作製するとき、このガラス基板を150℃で3時間熱
処理を行なった。比較例4までの条件及び評価結果を表
3及び表4に示す。表に記していない部分は実施例と同
様である。
(Comparative Example 4) When forming a dense portion of an n-type semiconductor electrode, this glass substrate was heat-treated at 150 ° C for 3 hours. Tables 3 and 4 show the conditions and evaluation results up to Comparative Example 4. Parts not described in the table are the same as in the example.

【0052】[0052]

【発明の効果】上記構成によって、電荷輸送層と透明電
極間の電気回路の短絡を防止し、また透明導電膜とn型
半導体電極間の剥離を防止して長期信頼性を向上させた
光増感型太陽光発電素子を提供することができる。
According to the above structure, a short circuit of the electric circuit between the charge transport layer and the transparent electrode is prevented, and separation between the transparent conductive film and the n-type semiconductor electrode is prevented to improve long-term reliability. A sensitive solar power generation element can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光電変換素子の断面を示す模式図。FIG. 1 is a schematic view showing a cross section of a photoelectric conversion element of the present invention.

【図2】 本発明の実施例5、6、7で用いた色素の構
造図。
FIG. 2 is a structural diagram of a dye used in Examples 5, 6, and 7 of the present invention.

【図3】 本発明の実施例12で使用した固体電荷輸送
層を示す図。
FIG. 3 is a diagram showing a solid charge transport layer used in Example 12 of the present invention.

【符号の説明】[Explanation of symbols]

1.基板 2.イオン拡散防止膜 3.透明導電膜 4.n型半導体電極(多孔部分) 5.錯体色素 6.電荷輸送層 7.封止部分 8.n型半導体電極(緻密な部分) 1. Substrate 2. 2. Ion diffusion prevention film Transparent conductive film 4. 4. n-type semiconductor electrode (porous portion) Complex dye 6. Charge transport layer 7. Sealed part 8. n-type semiconductor electrode (dense part)

フロントページの続き (72)発明者 米津 麻紀 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5F051 AA14 5H032 AA06 AS16 EE02 EE07 EE16 EE18 HH02 HH04 Continued on the front page (72) Inventor Maki Yonezu 1st address, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa F-term (reference) 5F051 AA14 5H032 AA06 AS16 EE02 EE07 EE16 EE18 HH02 HH04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光受光面を有する第1の基板と、この第1
の基板の前記光受光面と対向する面に形成された透明導
電膜と、この透明導電膜表面に形成され色素を吸着した
n型半導体電極と、このn型半導体電極に隣接して形成
された電荷輸送層と、前記第1の基板と対向する側で且
つ前記電荷輸送層を介して形成され表面に導電膜を有す
る第2の基板とを具備する光増感型太陽光発電素子にお
いて、前記n型半導体電極は厚さ0.01μm以上0.6 μm
以下の緻密な部分と多孔部分の積層構造であることを特
徴とする光増感型太陽光発電素子。
A first substrate having a light receiving surface;
A transparent conductive film formed on the surface of the substrate facing the light receiving surface, an n-type semiconductor electrode formed on the surface of the transparent conductive film and adsorbing a dye, and formed adjacent to the n-type semiconductor electrode. A photosensitized solar power generation device comprising: a charge transport layer; and a second substrate having a conductive film on a surface formed on the side facing the first substrate and with the charge transport layer interposed therebetween. n-type semiconductor electrode has a thickness of 0.01 μm or more and 0.6 μm
A photosensitized photovoltaic device having the following laminated structure of a dense portion and a porous portion.
【請求項2】前記緻密な部分の相対密度が90%以上1
00%以下であることを特徴とする請求項1 に記載の光
増感型太陽光発電素子。
2. The method according to claim 1, wherein a relative density of the dense portion is 90% or more.
2. The photosensitized solar power generation element according to claim 1, wherein the content is not more than 00%.
【請求項3】前記緻密な部分の気孔が閉気孔であること
を特徴とする請求項1 に記載の光増感型太陽光発電素
子。
3. The photosensitized photovoltaic power generation device according to claim 1, wherein the pores in the dense portion are closed pores.
【請求項4】前記光受光面と前記透明導電膜の間にイオ
ン拡散防止膜を有する事を特徴とする請求項1に記載の
光増感型太陽光発電素子。
4. The photosensitized solar power generation device according to claim 1, further comprising an ion diffusion preventing film between the light receiving surface and the transparent conductive film.
【請求項5】前記イオン拡散防止膜がシリカ膜であるこ
とを特徴とする請求項6に記載の光増感型太陽光発電素
子。
5. The photosensitized solar power generation device according to claim 6, wherein said ion diffusion preventing film is a silica film.
【請求項6】前記緻密な部分の表面の凹凸が90nm以
下であることを特徴とする請求項1に記載の光増感型太
陽光発電素子。
6. The photosensitized solar power generation device according to claim 1, wherein the unevenness on the surface of the dense portion is 90 nm or less.
JP11087749A 1999-03-30 1999-03-30 Photosensitized photovolatic power generation element Pending JP2000285974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087749A JP2000285974A (en) 1999-03-30 1999-03-30 Photosensitized photovolatic power generation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087749A JP2000285974A (en) 1999-03-30 1999-03-30 Photosensitized photovolatic power generation element

Publications (1)

Publication Number Publication Date
JP2000285974A true JP2000285974A (en) 2000-10-13

Family

ID=13923594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087749A Pending JP2000285974A (en) 1999-03-30 1999-03-30 Photosensitized photovolatic power generation element

Country Status (1)

Country Link
JP (1) JP2000285974A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038909A1 (en) * 2001-10-31 2003-05-08 Sony Corporation Method for fabricating photoelectric conversion element and photoelectric conversion element
WO2004112184A1 (en) * 2003-05-30 2004-12-23 Fujikura Ltd. Electrolyte composition and photoelectric converter using same
JP2004363069A (en) * 2002-06-14 2004-12-24 Hitachi Metals Ltd Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using same
JP2005251605A (en) * 2004-03-05 2005-09-15 Toppan Printing Co Ltd Dye-sensitized solar cell, module, and manufacturing method of dye-sensitized solar cell
JP2006086056A (en) * 2004-09-17 2006-03-30 Kyoto Univ Dye-sensitized solar cell
WO2006085574A1 (en) * 2005-02-10 2006-08-17 Japan Carlit Co., Ltd. Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same
WO2007015342A1 (en) * 2005-08-02 2007-02-08 Fujikura Ltd. Electrode substrate and photoelectric converter
JP2007128750A (en) * 2005-11-04 2007-05-24 Erekuseru Kk Dye-sensitized solar cell
JP2007128754A (en) * 2005-11-04 2007-05-24 Erekuseru Kk Dye-sensitized solar cell
JP2008053165A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Dye-sensitized solar battery
JP2008053166A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Reverse irradiation type dye-sensitized large scale solar battery
JP2008192427A (en) * 2007-02-02 2008-08-21 Fujikura Ltd Electrode substrate and photoelectric conversion element
JP2008192520A (en) * 2007-02-07 2008-08-21 Kyushu Institute Of Technology Dye-sensitized solar battery and its manufacturing method
JP2010033915A (en) * 2008-07-29 2010-02-12 Gunze Ltd Dye-sensitized solar cell and manufacturing method thereof
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP2014241243A (en) * 2013-06-12 2014-12-25 株式会社豊田中央研究所 Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10197130B4 (en) * 2001-10-31 2014-08-28 Sony Corporation Method for producing a photoelectric converter and photoelectric converter
WO2003038909A1 (en) * 2001-10-31 2003-05-08 Sony Corporation Method for fabricating photoelectric conversion element and photoelectric conversion element
JP2004363069A (en) * 2002-06-14 2004-12-24 Hitachi Metals Ltd Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using same
JP4596305B2 (en) * 2002-06-14 2010-12-08 日立金属株式会社 Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using the same
JP2008288216A (en) * 2003-05-30 2008-11-27 Fujikura Ltd Electrolyte composition for dye-sensitized solar cell and the dye-sensitized solar cell using the same
WO2004112184A1 (en) * 2003-05-30 2004-12-23 Fujikura Ltd. Electrolyte composition and photoelectric converter using same
AU2004248778B2 (en) * 2003-05-30 2007-11-15 Fujikura Ltd. Electrolyte composition and photoelectric converter using same
EP1655799A4 (en) * 2003-05-30 2009-12-30 Fujikura Ltd Electrolyte composition and photoelectric converter using same
JP2005251605A (en) * 2004-03-05 2005-09-15 Toppan Printing Co Ltd Dye-sensitized solar cell, module, and manufacturing method of dye-sensitized solar cell
JP2006086056A (en) * 2004-09-17 2006-03-30 Kyoto Univ Dye-sensitized solar cell
WO2006085574A1 (en) * 2005-02-10 2006-08-17 Japan Carlit Co., Ltd. Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same
JP5308661B2 (en) * 2005-02-10 2013-10-09 日本カーリット株式会社 Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
JP2007042366A (en) * 2005-08-02 2007-02-15 Fujikura Ltd Electrode substrate and photoelectric conversion element
AU2006276649C1 (en) * 2005-08-02 2010-06-24 Fujikura Ltd. Electrode substrate and photoelectric converter
WO2007015342A1 (en) * 2005-08-02 2007-02-08 Fujikura Ltd. Electrode substrate and photoelectric converter
KR101017920B1 (en) * 2005-08-02 2011-03-04 가부시키가이샤후지쿠라 Electrode substrate and photoelectric converter
AU2006276649B2 (en) * 2005-08-02 2009-10-01 Fujikura Ltd. Electrode substrate and photoelectric converter
JP2007128750A (en) * 2005-11-04 2007-05-24 Erekuseru Kk Dye-sensitized solar cell
JP2007128754A (en) * 2005-11-04 2007-05-24 Erekuseru Kk Dye-sensitized solar cell
JP2008053165A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Dye-sensitized solar battery
JP2008053166A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Reverse irradiation type dye-sensitized large scale solar battery
JP2008192427A (en) * 2007-02-02 2008-08-21 Fujikura Ltd Electrode substrate and photoelectric conversion element
JP2008192520A (en) * 2007-02-07 2008-08-21 Kyushu Institute Of Technology Dye-sensitized solar battery and its manufacturing method
JP2010033915A (en) * 2008-07-29 2010-02-12 Gunze Ltd Dye-sensitized solar cell and manufacturing method thereof
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP2014241243A (en) * 2013-06-12 2014-12-25 株式会社豊田中央研究所 Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module

Similar Documents

Publication Publication Date Title
JP4856089B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP2000285974A (en) Photosensitized photovolatic power generation element
KR100978401B1 (en) Multiple-dyes sensitized solar cells and method for preparing the same
JP2001093591A (en) Photoelectric conversion device
EP1783793A2 (en) Solar cell and manufacturing method thereof
KR101246983B1 (en) Dye-sensitized solar cell
JP2007280761A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic power generation device
JP3544888B2 (en) Photosensitized solar cell
JP3441361B2 (en) Photoelectric conversion element
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP2006310252A (en) Transparent electrode, dye-sensitized solar cell having it and dye-sensitized solar cell module
JP2005285472A (en) Photoelectric conversion device
JP2004363069A (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using same
JP4601285B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP5095126B2 (en) Photoelectric conversion element
JPH11219734A (en) Semiconductor for photoelectric conversion material, laminate using the semiconductor, manufacture of those and photocell
JP2004164950A (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
JP2005064493A (en) Photoelectric converter and photovoltaic device using the same
JP2008010237A (en) Photoelectric conversion device, its manufacturing method, and optical power generation device
JP2010020938A (en) Dye-sensitized solar battery
JP5013741B2 (en) Photoelectric conversion device and photovoltaic power generation device
JP4901194B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
Nursam et al. Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713