JP2000246076A - Gas dissolution method - Google Patents

Gas dissolution method

Info

Publication number
JP2000246076A
JP2000246076A JP11055259A JP5525999A JP2000246076A JP 2000246076 A JP2000246076 A JP 2000246076A JP 11055259 A JP11055259 A JP 11055259A JP 5525999 A JP5525999 A JP 5525999A JP 2000246076 A JP2000246076 A JP 2000246076A
Authority
JP
Japan
Prior art keywords
gas
water
dissolved
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11055259A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11055259A priority Critical patent/JP2000246076A/en
Publication of JP2000246076A publication Critical patent/JP2000246076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple and highly precise method for controlling the gas concentration of water in which a gas is dissolved and which is to be used for wet washing of electronic materials such as a silicon substrate for semiconductors, a glass substrate for liquid crystals. SOLUTION: This method is for obtaining water in which a gas is dissolved in a desired concentration at a prescribed temperature and a prescribed pressure and is carried out by adjusting the temperature or the pressure of water in which the gas is to be dissolved to be that at which the desired concentration is equal to the saturated concentration and then supplying and dissolving the gas to and in the water until the gas is dissolved to the saturated concentration. Next, the resultant water saturated with the gas at the adjusted temperature or the adjusted pressure is adjusted to be the prescribed temperature or the prescribed pressure to give an unsaturated water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス溶解方法に関
する。さらに詳しくは、本発明は、半導体用シリコン基
板、液晶用ガラス基板などの電子材料などのウェット洗
浄に用いられるガス溶解水のガス濃度の制御を、簡便な
方法でしかも高い精度で行うことができるガス溶解方法
に関する。
The present invention relates to a gas dissolving method. More specifically, the present invention can control the gas concentration of gas-dissolved water used for wet cleaning of electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals by a simple method and with high accuracy. It relates to a gas dissolution method.

【0002】[0002]

【従来の技術】半導体用シリコン基板、液晶用ガラス基
板、フォトマスク用石英基板などの電子材料の表面か
ら、微粒子、有機物、金属などを除去することは、製品
の品質、歩留まりを確保する上で極めて重要である。こ
の目的のために、いわゆるRCA洗浄法と呼ばれる過酸
化水素をベースとする濃厚薬液による高温でのウェット
洗浄が行われ、アンモニアと過酸化水素水の混合溶液
(APM)や塩酸と過酸化水素水の混合溶液(HPM)
などが用いられていた。これらの洗浄法を採用した場合
の多大な薬液コスト、リンス用の超純水コスト、廃液処
理コスト、薬品蒸気を排気し新たに清浄空気を調製する
空調コストなどを低減し、さらに水の大量使用、薬物の
大量廃棄、排ガスの放出などの環境への負荷を低減する
ために、近年ウェット洗浄工程の見直しが進められてい
る。本発明者らは、先に特定のガスを超純水に溶解し、
必要に応じて微量の薬品を添加して調製する、薬品の使
用量が極めて少なく、しかも優れた洗浄効果を発揮する
機能性洗浄水を開発した。この機能性洗浄水は、省資源
性と環境保全性が高く評価され、高濃度薬液に代わって
使用されるようになった。機能性洗浄水に用いられるガ
スとしては、水素ガス、酸素ガス、オゾンガス、希ガ
ス、炭酸ガスなどがある。これらのガスを溶解した機能
性洗浄水は、純水に近い性質を維持しつつ、従来から使
用されていた高濃度の薬液洗浄に匹敵する洗浄効果を有
する。特に、アンモニアを極微量添加した水素ガス溶解
水、酸素ガス溶解水、アルゴンなどの希ガス溶解水は、
超音波を併用した洗浄工程で使用すると、極めて高い微
粒子除去効果を発揮する。ガス溶解水の製造にあたって
は、精度のよいガス流量コントローラーなどを採用する
ことによって、再現性よく、比較的高濃度の特定ガスを
溶解した水が得られる。しかし、特定ガスを溶解した機
能性洗浄水の使用が広がるにつれて、溶存ガス濃度の制
御を、より簡便に、しかも高い精度で行うことができる
ガス溶解方法が求められるようになった。
2. Description of the Related Art Removal of fine particles, organic substances, metals, and the like from the surface of electronic materials such as silicon substrates for semiconductors, glass substrates for liquid crystals, and quartz substrates for photomasks is necessary to ensure product quality and yield. Very important. For this purpose, wet cleaning is performed at a high temperature using a concentrated chemical based on hydrogen peroxide, which is a so-called RCA cleaning method, and a mixed solution of ammonia and hydrogen peroxide (APM) or hydrochloric acid and hydrogen peroxide is used. Mixed solution (HPM)
And so on. The use of these cleaning methods reduces the cost of chemical solutions, the cost of ultrapure water for rinsing, the cost of waste liquid treatment, and the cost of air conditioning that exhausts chemical vapors and prepares fresh air. In recent years, the wet cleaning process has been reviewed in order to reduce the burden on the environment such as mass disposal of drugs and emission of exhaust gas. The present inventors previously dissolved a specific gas in ultrapure water,
We have developed a functional wash water that is prepared by adding a trace amount of chemicals as needed, uses a very small amount of chemicals, and exhibits excellent cleaning effects. This functional washing water has been highly evaluated for its resource saving and environmental preservation, and has been used in place of high-concentration chemicals. Examples of the gas used for the functional cleaning water include hydrogen gas, oxygen gas, ozone gas, rare gas, and carbon dioxide gas. The functional cleaning water in which these gases are dissolved has a cleaning effect comparable to that of a conventionally used high-concentration chemical cleaning while maintaining properties close to pure water. In particular, rare gas dissolved water such as hydrogen gas dissolved water, oxygen gas dissolved water, argon, etc.
When used in a washing step using ultrasonic waves, an extremely high effect of removing fine particles is exhibited. In the production of gas-dissolved water, the use of an accurate gas flow controller or the like can provide water with a relatively high concentration of a specific gas dissolved therein with good reproducibility. However, as the use of functional cleaning water in which a specific gas is dissolved has been widespread, a gas dissolving method that can more simply and precisely control the concentration of a dissolved gas has been required.

【0003】[0003]

【発明が解決しようとする課題】本発明は、半導体用シ
リコン基板、液晶用ガラス基板などの電子材料などのウ
ェット洗浄に用いられるガス溶解水のガス濃度の制御
を、簡便な方法でしかも高い精度で行うことができるガ
ス溶解方法を提供することを目的としてなされたもので
ある。
SUMMARY OF THE INVENTION According to the present invention, the gas concentration of gas-dissolved water used for wet cleaning of electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals is controlled by a simple method with high accuracy. The purpose of the present invention is to provide a gas dissolving method which can be carried out in the above.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、ガスを溶解させる
水を所望濃度を飽和濃度とする温度又は圧力に調整して
ガスを供給し、ガスを飽和濃度まで溶解させたのち、得
られたガス飽和溶解水の温度又は圧力をふたたび調整し
て未飽和溶解水とすることにより、簡単な操作で溶解ガ
ス濃度を正確に制御し得ることを見いだし、この知見に
基づいて本発明を完成するに至った。すなわち、本発明
は、(1)所定温度、所定圧力における所望濃度のガス
溶解水を得る方法であって、ガスを溶解させる水を、該
所望濃度を飽和濃度とする温度又は圧力に調整したの
ち、該水にガスを供給してガスを飽和濃度まで溶解し、
次いで、得られた該調整温度又は該調整圧力におけるガ
ス飽和溶解水を、所定温度又は所定圧力に調整して未飽
和溶解水とするガス溶解方法、を提供するものである。
さらに、本発明の好ましい態様として、(2)超純水を
常温以上に加温したのち、ガスをその温度における飽和
濃度まで溶解させ、次いでガス溶解水の温度を常温まで
下げる第(1)項記載のガス溶解方法、(3)溶解させる
ガスが、水素ガス、酸素ガス、アルゴンガス、クリプト
ンガス又はキセノンガスである第(2)項記載のガス溶解
方法、(4)超純水が保有される密閉環境を、常圧以下
の減圧条件下に保ちつつ、ガスをその圧力における飽和
濃度まで溶解させ、次いでガス溶解水の環境を常圧に戻
す第(1)項記載のガス溶解方法、及び、(5)溶解させ
るガスが、水素ガス、酸素ガス、ヘリウムガス、ネオン
ガス、アルゴンガス、クリプトンガス又はキセノンガス
である第(4)項記載のガス溶解方法、を挙げることがで
きる。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has adjusted the water for dissolving the gas to a temperature or a pressure at which the desired concentration becomes the saturation concentration, and adjusted the gas. After supplying and dissolving the gas to the saturated concentration, the temperature or pressure of the obtained gas-saturated dissolved water is adjusted again to obtain the unsaturated dissolved water, so that the dissolved gas concentration can be accurately controlled by a simple operation. The inventors have found that the present invention has been achieved, and have completed the present invention based on this finding. That is, the present invention provides (1) a method of obtaining gas-dissolved water having a desired concentration at a predetermined temperature and a predetermined pressure, wherein the water for dissolving the gas is adjusted to a temperature or pressure at which the desired concentration is a saturated concentration. Supplying gas to the water to dissolve the gas to a saturation concentration,
Next, the present invention provides a gas dissolving method in which the obtained gas-saturated dissolved water at the adjusted temperature or the adjusted pressure is adjusted to a predetermined temperature or a predetermined pressure to obtain unsaturated dissolved water.
Further, as a preferred embodiment of the present invention, (2) after heating the ultrapure water to room temperature or higher, dissolve the gas to a saturation concentration at that temperature, and then lower the temperature of the gas-dissolved water to room temperature. (3) The gas dissolving method according to (2), wherein the gas to be dissolved is hydrogen gas, oxygen gas, argon gas, krypton gas or xenon gas, and (4) ultrapure water is retained. The gas dissolving method according to item (1), wherein the gas is dissolved to a saturated concentration at that pressure while maintaining the sealed environment under reduced pressure below normal pressure, and then the environment of the gas-dissolved water is returned to normal pressure, and (5) The gas dissolving method according to (4), wherein the gas to be dissolved is hydrogen gas, oxygen gas, helium gas, neon gas, argon gas, krypton gas or xenon gas.

【0005】[0005]

【発明の実施の形態】本発明のガス溶解方法は、所定温
度、所定圧力における所望濃度のガス溶解水を得る方法
であって、ガスを溶解させる水を、該所望濃度を飽和濃
度とする温度又は圧力に調整したのち、該水にガスを供
給してガスを飽和濃度まで溶解し、次いで、得られた該
調整温度又は該調整圧力におけるガス飽和溶解水を、所
定温度又は所定圧力に調整して未飽和溶解水とするもの
である。本発明方法は、半導体用シリコン基板、液晶用
ガラス基板、フォトマスク用石英基板などの電子材料の
表面を洗浄して、微粒子を除去するために用いられる、
水素ガス、酸素ガス、希ガスなどを溶解した超純水の調
製に好適に用いることができる。電子材料などの洗浄に
用いられるガス溶解水の洗浄力は、溶存ガス濃度により
変動するので、常に一定した洗浄効果が求められる洗浄
工程においては、ガス溶解水中の溶存ガス濃度を厳密に
管理する必要がある。水中へのガスの溶解量は、温度及
び圧力により一義的に決まるので、ガスを溶解させる水
を、所望する溶存ガス濃度を飽和濃度とする温度又は圧
力に調整したのち、ガスを供給して飽和濃度まで溶解
し、次いで、得られた該調整温度又は該調整圧力におけ
るガス飽和溶解水を、所定温度又は所定圧力に調整する
ことにより、溶存ガス濃度が厳密に制御されたガス溶解
水を得ることができる。本発明方法においては、ガスを
溶解させる水の温度のみを調整することができ、圧力の
みを調整することもでき、あるいは、温度と圧力を同時
に調整することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION The gas dissolving method of the present invention is a method for obtaining gas-dissolved water having a desired concentration at a predetermined temperature and a predetermined pressure. Or, after adjusting to a pressure, a gas is supplied to the water to dissolve the gas to a saturated concentration, and then the obtained gas-saturated dissolved water at the adjusted temperature or the adjusted pressure is adjusted to a predetermined temperature or a predetermined pressure. To obtain unsaturated dissolved water. The method of the present invention is used for cleaning the surface of an electronic material such as a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, and a quartz substrate for a photomask to remove fine particles,
It can be suitably used for preparing ultrapure water in which hydrogen gas, oxygen gas, rare gas and the like are dissolved. Since the cleaning power of gas-dissolved water used for cleaning electronic materials, etc., varies depending on the concentration of dissolved gas, it is necessary to strictly control the concentration of dissolved gas in gas-dissolved water in the cleaning process where a constant cleaning effect is always required. There is. Since the amount of gas dissolved in water is uniquely determined by the temperature and pressure, the water in which the gas is dissolved is adjusted to a temperature or pressure at which the desired dissolved gas concentration is saturated, and then the gas is supplied to saturate. Dissolved gas concentration, and then adjusting the obtained gas-saturated dissolved water at the adjusted temperature or the adjusted pressure to a predetermined temperature or a predetermined pressure to obtain a gas-dissolved water whose dissolved gas concentration is strictly controlled. Can be. In the method of the present invention, only the temperature of the water in which the gas is dissolved can be adjusted, only the pressure can be adjusted, or both the temperature and the pressure can be adjusted simultaneously.

【0006】本発明方法においては、ガスを溶解させる
水をあらかじめ脱気して溶存ガスの飽和度を低下させ、
ガス溶解キャパシティーに空きをつくったのち、ガスを
溶解させることが好ましい。本発明において、ガスの飽
和度とは、水中に溶解しているガスの量を、温度25
℃、圧力1気圧におけるガスの溶解量で除した値であ
る。例えば、水が温度25℃、圧力1気圧で窒素ガスと
接して平衡状態にあるとき、水への窒素ガスの溶解量は
17.6mg/リットルであるので、水中に溶解している
ガスが窒素ガスのみであって、その溶解量が17.6mg
/リットルである水の飽和度は1.0倍であり、水中に
溶解しているガスが窒素ガスのみであって、その溶解量
が8.8mg/リットルである水の飽和度は0.5倍であ
る。また、温度25℃、圧力1気圧で空気と接して平衡
状態にある水は、窒素ガス13.7mg/リットル及び酸
素ガス8.1mg/リットルを溶解して飽和度1.0倍の状
態となっているので、脱気によりガスの溶解量を窒素ガ
ス2.7mg/リットル、酸素ガス1.6mg/リットルとし
た水の飽和度は0.2倍である。飽和度0.5倍の水は、
ガス溶解キャパシティーに飽和度0.5倍に相当する空
きがあるので、飽和度0.5倍に相当する量の他のガス
を容易かつ迅速に溶解することができる。また、飽和度
0.2倍の水は、ガス溶解キャパシティーに飽和度0.8
倍に相当する空きがあるので、飽和度0.8倍に相当す
る量の他の気体を容易かつ迅速に溶解することができ
る。本発明方法によりガスを溶解させるに際して、水の
脱気処理方法に特に制限はなく、例えば、真空脱気、減
圧膜脱気などによることができる。また、水に、ガスを
溶解させる方法に特に制限はなく、例えば、バブリン
グ、気体透過膜を用いる溶解などによることができる。
In the method of the present invention, the water for dissolving the gas is degassed in advance to reduce the saturation of the dissolved gas,
It is preferable to dissolve the gas after making a space in the gas dissolving capacity. In the present invention, the gas saturation refers to the amount of gas dissolved in water at a temperature of 25.
It is a value obtained by dividing the amount of gas dissolved at 1 ° C. and 1 atm. For example, when water is in equilibrium with a nitrogen gas at a temperature of 25 ° C. and a pressure of 1 atm, the dissolved amount of the nitrogen gas in the water is 17.6 mg / liter. Gas only, dissolved amount 17.6mg
/ Liter of water is 1.0 times, the only gas dissolved in water is nitrogen gas, and the dissolved amount of 8.8 mg / liter of water is 0.5. It is twice. Water in equilibrium with air at a temperature of 25 ° C. and a pressure of 1 atm is dissolved in 13.7 mg / liter of nitrogen gas and 8.1 mg / liter of oxygen gas to become 1.0 times in saturation. Therefore, the degree of saturation of water is 0.2 times when the amount of dissolved gas is set to 2.7 mg / liter of nitrogen gas and 1.6 mg / liter of oxygen gas by degassing. Water with a saturation of 0.5 times
Since there is a space corresponding to the saturation of 0.5 times in the gas dissolving capacity, other gas corresponding to the saturation of 0.5 times can be easily and quickly dissolved. Further, water having a saturation degree of 0.2 times has a saturation degree of 0.8 in the gas dissolving capacity.
Since there is a space equivalent to twice the amount, another gas corresponding to a saturation degree of 0.8 can be easily and rapidly dissolved. In dissolving the gas by the method of the present invention, there is no particular limitation on the method of degassing water, and for example, vacuum degassing, reduced pressure film degassing, and the like can be used. The method for dissolving the gas in water is not particularly limited, and may be, for example, bubbling, dissolution using a gas permeable membrane, or the like.

【0007】電子材料などの洗浄水として用いられるガ
ス溶解超純水は、常温で用いられる場合が多いので、超
純水を常温以上に加温したのち、ガスをその温度におけ
る飽和濃度まで溶解させ、次いでガス溶解水の温度を常
温まで下げることにより、所望濃度のガス溶解水を得る
ことができる。水を加温してガスを飽和濃度まで溶解し
たのち冷却する方法は、濃度の比較的高いガス溶解水を
得る方法として適している。例えば、水素ガスの水への
溶解量は、温度50℃以上ではほぼ一定して1.4mg/
リットルであるので、水温を50℃まで昇温して水素ガ
スを飽和濃度まで溶解し、25℃まで冷却することによ
り、飽和濃度の約0.9倍の水素ガスを溶解した水を得
ることができる。また、酸素ガスの80℃における水へ
の溶解量は25.1mg/リットルであるので、水温を8
0℃まで昇温して酸素ガスを飽和濃度まで溶解し、25
℃まで冷却することにより、飽和濃度の約0.6倍の酸
素ガスを溶解した水を得ることができる。水を加温して
ガスを飽和濃度まで溶解したのち冷却する方法は、水温
が低いほど飽和溶解濃度が高くなる水素ガス、酸素ガ
ス、アルゴンガス、クリプトンガス、キセノンガスなど
に適用することができる。ガスを溶解させる水の温度
が、ガス溶解水の使用温度より高い場合には、ガスを溶
解させる水の加温工程を省略することができる。
Since gas-dissolved ultrapure water used as washing water for electronic materials and the like is often used at room temperature, after heating ultrapure water to room temperature or higher, the gas is dissolved to a saturation concentration at that temperature. Then, by lowering the temperature of the gas-dissolved water to room temperature, gas-dissolved water having a desired concentration can be obtained. A method in which water is heated to dissolve the gas to a saturated concentration and then cooled is suitable as a method for obtaining gas-dissolved water having a relatively high concentration. For example, the amount of hydrogen gas dissolved in water is almost constant at a temperature of 50 ° C. or higher, which is 1.4 mg / water.
Since it is liter, the water temperature is raised to 50 ° C. to dissolve the hydrogen gas to the saturation concentration, and then cooled to 25 ° C. to obtain water in which the hydrogen gas is dissolved at about 0.9 times the saturation concentration. it can. Since the amount of oxygen gas dissolved in water at 80 ° C. is 25.1 mg / liter, the water temperature is set at 8 ° C.
The temperature was raised to 0 ° C. to dissolve oxygen gas to a saturation concentration,
By cooling down to ° C., water in which oxygen gas having a saturation concentration of about 0.6 times is dissolved can be obtained. The method in which water is heated to dissolve the gas to the saturation concentration and then cooled can be applied to hydrogen gas, oxygen gas, argon gas, krypton gas, xenon gas, etc., in which the saturation concentration increases as the water temperature decreases. . When the temperature of the water for dissolving the gas is higher than the use temperature of the water for dissolving the gas, the step of heating the water for dissolving the gas can be omitted.

【0008】電子材料などの洗浄水として用いられるガ
ス溶解超純水は、常圧で用いられる場合が多いので、超
純水が保有される密閉環境を常圧以下の減圧状態にした
のち、ガスをその圧力における飽和濃度まで溶解させ、
次いでガス溶解水の環境を常圧に戻すことにより、所望
濃度のガス溶解水を得ることができる。水を減圧状態と
してガスを飽和濃度まで溶解したのち常圧に戻す方法に
よれば、比較的広い範囲の溶存ガス濃度を選ぶことがで
きる。すなわち、減圧状態におけるガスの水への溶解量
は、近似的にヘンリーの法則にしたがい、温度25℃に
おける水の蒸気圧は24mmHgであるので、密閉環境を
0.1気圧の減圧状態としてガスを飽和濃度まで溶解し
たのち、常圧に戻すことにより、常圧における飽和濃度
の約0.1倍のガスを溶解した水を得ることができる。
水が保有される密閉環境を減圧条件下に保ちつつ、ガス
をその圧力における飽和濃度まで溶解させたのち、ガス
溶解水の環境を常圧に戻す方法は、水素ガス、酸素ガ
ス、ヘリウムガス、ネオンガス、アルゴンガス、クリプ
トンガス、キセノンガスなど、ほとんどすべてのガスに
適用することができる。減圧状態の密閉環境においてガ
スを飽和濃度まで溶解した水を常圧に戻す方法に特に制
限はなく、例えば、ポンプを用いてガス溶解水を密閉環
境から常圧に保たれた配管に送り出し、そのままユース
ポイントまで移送して洗浄などに用いることができ、あ
るいは、ポンプを用いてガス溶解水を密閉環境から常圧
に保たれた貯槽に送り出し、いったん貯留することもで
きる。
[0008] Since gas-dissolved ultrapure water used as washing water for electronic materials and the like is often used at normal pressure, the sealed environment in which ultrapure water is held is depressurized to a normal pressure or lower, and then gaseous. To the saturation concentration at that pressure,
Next, by returning the environment of the gas-dissolved water to normal pressure, gas-dissolved water having a desired concentration can be obtained. According to the method of dissolving the gas to a saturated concentration by reducing the pressure of water and then returning the gas to a normal pressure, a relatively wide range of the dissolved gas concentration can be selected. That is, the amount of gas dissolved in water in a decompressed state approximately follows Henry's law, and the vapor pressure of water at a temperature of 25 ° C. is 24 mmHg. After dissolving to a saturated concentration, the pressure is returned to normal pressure, whereby water in which a gas having a concentration of about 0.1 times the saturated concentration at normal pressure is dissolved can be obtained.
After dissolving the gas to the saturated concentration at that pressure while maintaining the closed environment where water is held under reduced pressure, the method of returning the environment of the gas-dissolved water to normal pressure is hydrogen gas, oxygen gas, helium gas, It can be applied to almost all gases such as neon gas, argon gas, krypton gas and xenon gas. There is no particular limitation on the method of returning the water in which the gas has been dissolved to the saturated concentration in the closed environment under reduced pressure to normal pressure. It can be transported to a point of use and used for cleaning or the like, or the gas-dissolved water can be sent out of a sealed environment to a storage tank maintained at normal pressure using a pump and temporarily stored.

【0009】本発明方法を超純水に適用し、得られたガ
ス溶解超純水を電子材料などの洗浄水として用いる場
合、原水として使用する超純水は、温度25℃における
電気抵抗率が18MΩ・cm以上であり、有機体炭素が1
0μg/リットル以下であり、金属分の含有量が20n
g/リットル以下であり、微粒子が10,000個/リ
ットル以下であることが好ましい。本発明方法によりガ
ス溶解超純水を調製して電子材料などの洗浄に用いる場
合、温度調節又は圧力調節に伴う水質の悪化は避けなけ
ればならないので、温度調節又は圧力調節を行う機器の
接液部材は、フッ素樹脂などの水質悪化を招くおそれの
ない部材とすることが好ましい。例えば、フッ素樹脂製
のチューブを複数本束ねて容器に入れ、チューブの内側
又は外側にガスを溶解する水を流し、チューブ壁面を介
して逆の側に加温媒体又は冷却媒体を通水あるいは保持
する構造を有する熱交換器などを挙げることができる。
加温及び冷却の媒体としては、水などの液体のほかに気
体も適用することができるが、温度調節効果の面からは
熱容量の大きい液体が適している。本発明方法によれ
ば、高価な気体流量調整器具などを用いることなく、加
温状態又は減圧状態における飽和濃度まで特定のガスを
溶解させることによって、溶存ガス濃度が厳密に制御さ
れたガス溶解水を、容易にかつ再現性よく得ることがで
きる。
When the method of the present invention is applied to ultrapure water and the obtained gas-dissolved ultrapure water is used as washing water for electronic materials and the like, the ultrapure water used as raw water has an electrical resistivity at a temperature of 25 ° C. 18 MΩ · cm or more and one organic carbon
0 μg / liter or less, and the metal content is 20 n
g / liter or less, and preferably 10,000 particles / liter or less. When preparing gas-dissolved ultrapure water according to the method of the present invention and using it for cleaning electronic materials and the like, deterioration of water quality due to temperature control or pressure control must be avoided. It is preferable that the member is a member such as a fluororesin which does not cause deterioration of water quality. For example, a plurality of fluororesin tubes are bundled and put in a container, water for dissolving gas is flowed inside or outside the tubes, and a heating medium or a cooling medium is passed or held on the opposite side through the tube wall surface. And the like.
As a medium for heating and cooling, a gas other than a liquid such as water can be applied, but a liquid having a large heat capacity is suitable from the viewpoint of a temperature control effect. According to the method of the present invention, a gas dissolved water whose dissolved gas concentration is strictly controlled by dissolving a specific gas to a saturated concentration in a heated state or a reduced pressure state without using an expensive gas flow rate adjusting device or the like. Can be obtained easily and with good reproducibility.

【0010】[0010]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。以下の実施例においては、常温
(25℃)、常圧(1気圧)の下で、飽和未満であり、
かつ十分な洗浄効果を有する33mg/リットルの酸素ガ
ス溶解を溶解した超純水を製造することを目標とした。
33mg/リットルが酸素ガスの飽和溶解濃度となる温度
と圧力を公知の資料から求めると、常圧下の場合40
℃、常温の場合0.83気圧であることが分かる。 実施例1 脱気膜モジュールを用いて超純水を減圧膜脱気したの
ち、テフロン製熱交換器を用いて脱気された超純水を4
0℃まで加温し、過剰量の酸素ガスを用いて常圧下でバ
ブリングによる酸素ガスの溶解を行った。この後、再度
別のテフロン製熱交換器を用いて常温まで冷却したの
ち、気相を窒素ガス雰囲気とした貯槽に貯留した。溶存
酸素計を用いて酸素ガス溶解水の溶存酸素ガス濃度を測
定したところ、目標通り33mg/リットルとなってい
た。オゾンを含有する超純水で表面を酸化した直径6イ
ンチのシリコンウェーハをアルミナ微粉末で汚染するこ
とにより、表面にアルミナ微粒子が付着した汚染ウェー
ハを調製した。ウェーハ・ゴミ検出装置[東京光学機械
(株)]を用いて付着微粒子数を測定したところ、ウェー
ハ1枚当たり直径0.2μm以上の微粒子が44,000
個付着していた。この汚染ウェーハを500rpmで回転
させ、上記の酸素ガス溶解水に超音波照射ノズル[プレ
テック社、ファインジェット]を用いて周波数1.6MHz
の超音波を出力13.5Wで照射しつつ、700ml/分
の流量で流しかけ、60秒間スピン洗浄を行った。次い
で、超純水を用いてすすぎを行ったのち乾燥した。乾燥
後のウェーハ表面の付着微粒子数を同様にして測定した
ところ、2,520個であり、微粒子の除去率は94.3
%であった。 実施例2 超純水を実施例1と同様にして膜脱気したのち、0.8
3気圧に調整した減圧密閉容器に導き、この容器内で過
剰量の酸素ガスを用いてバブリングによる酸素ガスの溶
解を行った。この後、この酸素ガス溶解水を窒素ガス雰
囲気で常圧に保たれた貯槽に導いて貯留した。溶存酸素
計を用いて酸素ガス溶解水の溶存酸素ガス濃度を測定し
たところ、目標通り33mg/リットルとなっていた。こ
の酸素ガス溶解水を用いて、実施例1で調製した汚染ウ
ェーハを、実施例1と同様にして洗浄した。乾燥後のウ
ェーハ表面の付着微粒子数は2,650個であり、微粒
子の除去率は94.0%であった。 比較例1 脱気膜モジュールと気体溶解膜モジュールを接続し、前
段の脱気膜モジュールで超純水の脱気を行い、後段の気
体溶解膜モジュールで定量的なガス供給による酸素ガス
の溶解を行うことにより、溶存酸素ガス濃度33mg/リ
ットルの酸素ガス溶解水を調製した。この酸素ガス溶解
水を用い、実施例1で調製した汚染ウェーハを、実施例
1と同様にして洗浄した。乾燥後のウェーハ表面の付着
微粒子数は2,600個であり、微粒子の除去率は94.
1%であった。実施例1〜2及び比較例1の結果を、第
1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In the following examples, under normal temperature (25 ° C.) and normal pressure (1 atm), it is less than saturated,
The objective was to produce ultrapure water in which 33 mg / liter of oxygen gas was dissolved, which had a sufficient cleaning effect.
The temperature and pressure at which 33 mg / liter becomes the saturated dissolved concentration of oxygen gas are calculated from known data.
It can be seen that the temperature is 0.83 atm in the case of ° C. and normal temperature. Example 1 Ultrapure water was degassed under reduced pressure using a degassing membrane module, and then degassed using a Teflon heat exchanger.
The mixture was heated to 0 ° C., and dissolved in oxygen gas by bubbling under normal pressure using an excess amount of oxygen gas. Then, after cooling to room temperature again using another Teflon heat exchanger, the gas phase was stored in a storage tank in a nitrogen gas atmosphere. When the dissolved oxygen gas concentration of the oxygen gas-dissolved water was measured using a dissolved oxygen meter, it was 33 mg / liter as intended. A 6-inch diameter silicon wafer whose surface was oxidized with ozone-containing ultrapure water was contaminated with alumina fine powder to prepare a contaminated wafer having alumina fine particles adhered to the surface. Wafer / dust detector [Tokyo Optical Machinery
And the number of fine particles having a diameter of 0.2 μm or more per wafer was 44,000.
Individually adhered. The contaminated wafer was rotated at 500 rpm, and the above-mentioned oxygen gas-dissolved water was subjected to an ultrasonic irradiation nozzle [Pretec, Fine Jet] at a frequency of 1.6 MHz.
Was applied at a flow rate of 700 ml / min while irradiating the ultrasonic wave at an output of 13.5 W, and spin cleaning was performed for 60 seconds. Next, the substrate was rinsed with ultrapure water and dried. The number of particles attached on the wafer surface after drying was measured in the same manner. As a result, the number was 2,520, and the removal rate of the particles was 94.3.
%Met. Example 2 Ultrapure water was subjected to membrane degassing in the same manner as in Example 1, followed by 0.8
It was led to a reduced-pressure closed vessel adjusted to 3 atm, and oxygen gas was dissolved by bubbling in this vessel using an excess amount of oxygen gas. Thereafter, the oxygen gas-dissolved water was introduced into a storage tank maintained at normal pressure in a nitrogen gas atmosphere and stored. When the dissolved oxygen gas concentration of the oxygen gas-dissolved water was measured using a dissolved oxygen meter, it was 33 mg / liter as intended. Using this oxygen gas dissolved water, the contaminated wafer prepared in Example 1 was cleaned in the same manner as in Example 1. The number of the attached fine particles on the wafer surface after drying was 2,650, and the removal rate of the fine particles was 94.0%. Comparative Example 1 A degassing membrane module and a gas-dissolving membrane module were connected, ultrapure water was degassed in a prestage degassing membrane module, and oxygen gas was dissolved by quantitative gas supply in a latter stage gas dissolving membrane module. As a result, oxygen gas dissolved water having a dissolved oxygen gas concentration of 33 mg / liter was prepared. Using this oxygen gas dissolved water, the contaminated wafer prepared in Example 1 was cleaned in the same manner as in Example 1. The number of attached fine particles on the wafer surface after drying was 2,600, and the removal rate of fine particles was 94.
1%. Table 1 shows the results of Examples 1 and 2 and Comparative Example 1.

【0011】[0011]

【表1】 [Table 1]

【0012】第1表の結果から、40℃において酸素ガ
スを溶解したのち常温まで冷却することにより調製した
実施例1の酸素ガス溶解水と、0.83気圧において酸
素ガスを溶解したのち常圧に戻すことにより調製した実
施例2の酸素ガス溶解水は、脱気膜モジュールと気体溶
解膜モジュールを接続した装置を用いて調製した比較例
1の酸素ガス溶解水と同じ洗浄効果を有することが分か
る。
From the results shown in Table 1, the oxygen gas-dissolved water of Example 1 prepared by dissolving oxygen gas at 40 ° C. and then cooling to room temperature, and dissolving oxygen gas at 0.83 atm and then normal pressure The oxygen gas-dissolved water of Example 2 prepared by reverting to the above has the same cleaning effect as the oxygen gas-dissolved water of Comparative Example 1 prepared using an apparatus in which a degassing membrane module and a gas dissolving membrane module are connected. I understand.

【0013】[0013]

【発明の効果】本発明のガス溶解方法によれば、特定の
ガスの溶存濃度を高度に制御したガス溶解水を、ガス供
給量の厳密な制御をすることなく、経済的に製造するこ
とができる。
According to the gas dissolving method of the present invention, gas dissolved water in which the dissolved concentration of a specific gas is highly controlled can be produced economically without strict control of the gas supply amount. it can.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定温度、所定圧力における所望濃度のガ
ス溶解水を得る方法であって、ガスを溶解させる水を、
該所望濃度を飽和濃度とする温度又は圧力に調整したの
ち、該水にガスを供給してガスを飽和濃度まで溶解し、
次いで、得られた該調整温度又は該調整圧力におけるガ
ス飽和溶解水を、所定温度又は所定圧力に調整して未飽
和溶解水とするガス溶解方法。
1. A method for obtaining gas-dissolved water having a desired concentration at a predetermined temperature and a predetermined pressure, comprising:
After adjusting the temperature or pressure to the desired concentration to a saturated concentration, supplying a gas to the water to dissolve the gas to a saturated concentration,
Next, a gas dissolving method in which the obtained gas-saturated dissolved water at the adjusted temperature or the adjusted pressure is adjusted to a predetermined temperature or a predetermined pressure to obtain unsaturated dissolved water.
JP11055259A 1999-03-03 1999-03-03 Gas dissolution method Pending JP2000246076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11055259A JP2000246076A (en) 1999-03-03 1999-03-03 Gas dissolution method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11055259A JP2000246076A (en) 1999-03-03 1999-03-03 Gas dissolution method

Publications (1)

Publication Number Publication Date
JP2000246076A true JP2000246076A (en) 2000-09-12

Family

ID=12993609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11055259A Pending JP2000246076A (en) 1999-03-03 1999-03-03 Gas dissolution method

Country Status (1)

Country Link
JP (1) JP2000246076A (en)

Similar Documents

Publication Publication Date Title
US4863561A (en) Method and apparatus for cleaning integrated circuit wafers
US6491763B2 (en) Processes for treating electronic components
KR100303933B1 (en) Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates
JP3624162B2 (en) Temperature-controlled gasification of deionized water for megasonic cleaning of semiconductor wafers
US20020066717A1 (en) Apparatus for providing ozonated process fluid and methods for using same
JP2001015474A (en) Method and device for degassing demineralized water for ultrasonically cleaning semiconductor wafer
JP2009260020A (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gas
WO2012073574A1 (en) Method for removal of photoresist
JP4088810B2 (en) Substrate cleaning apparatus and substrate cleaning method
EP0924970B1 (en) Cleaning solution for electronic materials and method for using the same
WO2003088337A1 (en) Resist removing apparatus and method of removing resist
TW404853B (en) Wet processing methods for the manufacture of electronic components using ozonated process fluids
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
JPH05109686A (en) Method and apparatus for cleaning silicon wafer
JP2000246076A (en) Gas dissolution method
JP2000216130A (en) Washing water and method for electronic material
JPH11166700A (en) Gas-containing extra pure water-supplying device
JP2001054768A (en) Cleaning method and cleaning device
JPH11181493A (en) Cleaning water for electronic material
JP2000319689A (en) Cleaning water for electronic material
JP5037748B2 (en) Ozone water concentration adjustment method and ozone water supply system
US20070240826A1 (en) Gas supply device and apparatus for gas etching or cleaning substrates
JP2005039002A (en) Washing apparatus and method therefor
JPH11158494A (en) Cleaning water for electronic material
JPH11265870A (en) Cleaning of electronic material