JP2000245066A - Control equipment of dc power transmission system - Google Patents

Control equipment of dc power transmission system

Info

Publication number
JP2000245066A
JP2000245066A JP11041248A JP4124899A JP2000245066A JP 2000245066 A JP2000245066 A JP 2000245066A JP 11041248 A JP11041248 A JP 11041248A JP 4124899 A JP4124899 A JP 4124899A JP 2000245066 A JP2000245066 A JP 2000245066A
Authority
JP
Japan
Prior art keywords
control
voltage
control angle
converter
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11041248A
Other languages
Japanese (ja)
Inventor
Hiroo Konishi
博雄 小西
Hiroshige Kawazoe
裕成 川添
Takayoshi Sano
孝義 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIJUTSU SOKEN KK
Hitachi Ltd
Original Assignee
GIJUTSU SOKEN KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIJUTSU SOKEN KK, Hitachi Ltd filed Critical GIJUTSU SOKEN KK
Priority to JP11041248A priority Critical patent/JP2000245066A/en
Publication of JP2000245066A publication Critical patent/JP2000245066A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve control precision of a DC power transmission system to which a capacitor commutation converter is applied, and realize cost reduction of equipment. SOLUTION: In the control equipment of a DC power transmission system in which converters 2a, 2b on the power inverter side are constituted of at least two capacitor commutation converters, a control means 10 which controls a converter current to be a previously designated constant value is installed on the power rectifiers 1a, 1b side, and a control means 20 is installed on the power inverter side. The control means 20 consists of a load side synchronous signal forming means 206 for setting the frequency of a load side AC system, a control angle commanding means 203 for controlling at least one power inverter 2a to be in a fixed control angle, a constant voltage control means 202 for controlling the voltage of a load side AC system to be a designated value, and a control angle command value control means 205 for controlling the control angle of the residual power inverter 2b on the basis of deviation between the control angle commanding means and the constant voltage control means, and controls the control angle of the residual power inverter in such a manner that the voltage of the load side AC system becomes the designated value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電源系統で交流を
直流に変換し、負荷側において再び交流に変換して電力
を供給する直流送電システムの制御装置に係り、特に、
電源のない系統にも安定に電力送電するコンデンサ転流
形変換器を適用した直流送電システムの制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a DC power transmission system which converts AC into DC in a power supply system and converts the AC into DC again on the load side to supply power.
The present invention relates to a control device for a DC power transmission system to which a capacitor commutation type converter that stably transmits power to a system without a power source is applied.

【0002】[0002]

【従来の技術】従来、直流送電システム(非同期連系シ
ステム、周波数変換システムを含む。)に使用されてき
たサイリスタを使用した他励式変換器は、交流系統の電
源の力を借りて変換器の転流動作を行う。このため、短
絡容量の小さい交流系統や波形歪の大きい系統で使用す
る場合、特に直流を交流に変換する逆変換器の運転時
は、変換器が転流失敗し、安定運転できない問題があっ
た。最近、他励式変換器と変換用変圧器の間に電力用コ
ンデンサを挿入して構成したコンデンサ転流形変換器
(CCC)が見直され、直流送電システムの変換器とし
ての適用検討が進められている。この変換器は転流時に
無効電力を取らないので、無効電力補償装置の必要がな
く、変換所コストを下げることができ、また、短絡容量
の小さい系統での変換器緊急停止時の過電圧発生の問題
を回避でき、また、転流動作が行われ易くなるので、短
絡容量の小さい系統へも安定送電できるメリットがある
と、考えられている。更に、無効電力補償が必要ないこ
とから、電源のない系統においても自励式変換器と同様
に運転できると、云われている。無電源系統でも安定に
送電可能となると、現在開発中の自励式変換器の代替と
して離島送電等に適用でき、CCCの適用範囲の拡大が
図れる。
2. Description of the Related Art Conventionally, a separately-excited converter using a thyristor, which has been used in a DC power transmission system (including an asynchronous interconnection system and a frequency conversion system), uses the power of an AC system to supply power to the converter. Performs commutation operation. Therefore, when used in an AC system with a small short-circuit capacity or a system with a large waveform distortion, especially when operating an inverter that converts DC to AC, there was a problem that the converter failed to commutate and stable operation was not possible. . Recently, a capacitor commutation type converter (CCC) constructed by inserting a power capacitor between a separately-excited converter and a conversion transformer has been reviewed, and its application as a converter in a DC power transmission system has been studied. I have. Since this converter does not take reactive power during commutation, there is no need for a reactive power compensator and the cost of the converter station can be reduced.In addition, the occurrence of overvoltage during an emergency stop of the converter in a system with a short-circuit capacity is small. It is considered that there is an advantage that the problem can be avoided and the commutation operation is easily performed, so that stable power transmission can be performed even to a system having a small short-circuit capacity. Furthermore, it is said that since no reactive power compensation is required, the system can be operated in the same manner as a self-excited converter even in a system without a power supply. If power can be transmitted stably even in a non-powered system, it can be applied to remote island power transmission as an alternative to the self-commutated converter currently under development, and the applicable range of CCC can be expanded.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、コンデ
ンサ転流形変換器を適用した直流送電システムには上述
したメリットが考えられるが、直流送電システムの制御
装置として、コンデンサ転流形変換器を精度よく制御
し、かつ、装置としてコストの低減を図ることについて
の配慮がなされていなかった。本発明の課題は、電源の
ない系統においても自励式変換器と同様に送電でき、系
統事故時にも安定運転の可能なコンデンサ転流形変換器
を適用した直流送電システムの制御を高精度化し、装置
として低コスト化を図ることにある。
However, the DC power transmission system to which the capacitor commutation type converter is applied has the above-mentioned advantages, but the capacitor commutation type converter is used as a control device of the DC power transmission system with high accuracy. No consideration has been given to controlling and reducing the cost of the apparatus. An object of the present invention is to improve the control of a DC power transmission system using a capacitor commutation type converter capable of transmitting power in a system without a power supply similarly to a self-excited converter and capable of stable operation even in the event of a system failure, An object is to reduce the cost of the apparatus.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、逆変換器側の変換器が少なくとも2つのコンデンサ
転流形変換器から構成される直流送電システムの制御装
置において、交流を直流に変換する順変換器側には、予
め指定された一定値に変換器電流を制御する制御手段を
備え、逆変換器側には、負荷側交流系統の周波数を設定
する負荷側同期信号作成手段と、逆変換器の少なくとも
一つを固定の制御角に制御する制御角指令手段と、負荷
側交流系統の電圧を指定値に制御する定電圧制御手段
と、制御角指令手段と定電圧制御手段の出力偏差に基づ
いて残りの逆変換器の制御角を制御する制御角指令値制
御手段からなる制御手段を備え、残りの逆変換器の制御
角を負荷側交流系統の電圧が指定値となるように制御す
る。また、順変換器側の制御手段に負荷側の交流電圧を
指令値に制御する定電圧制御手段を設け、順変換器を負
荷側の交流電圧に合わせて制御する。また、順変換器側
の制御手段に負荷側の電力を指令値に制御する定電力制
御手段を設け、順変換器を負荷側の電力に合わせて制御
する。また、順変換器側の変換器を少なくとも2つのコ
ンデンサ転流形変換器から構成する。ここで、逆変換器
の起動前は、残りの逆変換器の制御角指令値を固定の制
御角に制御し、起動後は固定の制御角から時定数をもた
せて別の固定の制御角に制御する。ここで、逆変換器の
起動前は、残りの逆変換器の制御角指令値を固定の制御
角に制御し、起動後は固定の制御角から時定数をもたせ
て負荷側交流系統の電圧を指定値に制御する制御角に切
り替えて制御する。
In order to solve the above-mentioned problems, in a control device of a DC power transmission system in which a converter on the inverter side is composed of at least two capacitor commutation type converters, AC is converted to DC. On the side of the forward converter for conversion, there is provided control means for controlling the converter current to a predetermined value specified in advance, and on the side of the inverse converter, load-side synchronization signal generating means for setting the frequency of the load-side AC system, Control angle command means for controlling at least one of the inverters to a fixed control angle, constant voltage control means for controlling the voltage of the load side AC system to a specified value, and control angle command means and constant voltage control means. Control means comprising control angle command value control means for controlling the control angle of the remaining inverter based on the output deviation is provided, and the control angle of the remaining inverter is adjusted so that the voltage of the load side AC system becomes a specified value. To control. The control means on the side of the forward converter is provided with constant voltage control means for controlling the AC voltage on the load side to a command value, and controls the forward converter in accordance with the AC voltage on the load side. The control means on the side of the forward converter is provided with constant power control means for controlling the power on the load side to a command value, and controls the forward converter in accordance with the power on the load side. Further, the converter on the side of the forward converter includes at least two capacitor commutation type converters. Here, before starting the inverter, the control angle command values of the remaining inverters are controlled to a fixed control angle, and after the start, a time constant is given from the fixed control angle to another fixed control angle. Control. Here, before the start of the inverter, the control angle command values of the remaining inverters are controlled to a fixed control angle, and after the start, the voltage of the load-side AC system is given a time constant from the fixed control angle. Control is performed by switching to the control angle for controlling to the specified value.

【0005】[0005]

【発明の実施の形態】以下、本発明の一実施形態を図面
を用いて説明する。図1は、本発明の一実施形態による
直流送電システムの制御装置を示す。本実施形態の直流
送電システムは、他励式変換器と変換用変圧器の間に電
力用コンデンサが挿入されて構成されるコンデンサ転流
形変換器(CCC)を逆変換器側に適用したシステムで
ある。直流送電システムの直流を交流に変換する逆変換
器側は、2つのコンデンサ転流形変換器から構成され
る。図1において、1a、1bは他励式変換器によって
構成される2つの順変換器、2a、2bは他励式変換器
によって構成される2つの逆変換器、ここで、この2つ
の逆変換器は、この逆変換器2a、2bと変換用変圧器
24a、24bの間に各々電力用コンデンサ3a、3b
が挿入されて構成されるいわゆるコンデンサ転流形変換
器(CCC)で逆変換器運転される。11は送電側の交
流系統、21は受電側の交流系統、ここで、受電側の交
流系統21は、発電機等を含まない単なる負荷系統を示
す。12、22は変換器のつながる交流母線、13、2
3は遮断器、14a、14b、24a、24bは変換用
変圧器、15は直流電流を平滑するための直流リアクト
ル、30aは直流送電線本線、30bは帰路線を示す。
なお、非同期連系システムまたは周波数変換システムの
場合は送電線がない場合もある。10は他励式変換器1
a、1bの制御装置、101は予め指定された電流指令
値Idref(負荷が必要とする有効電力に相当する直
流電流)に直流電流Idを制御する定電流制御回路、1
6は交流系統11の交流電圧を検出する交流電圧変成
器、102は検出された交流電圧から交流系統の同期信
号を検出する同期信号検出回路、103a、103bは
交流系統11の交流電圧位相に同期し、定電流制御回路
101からの制御指令値に応じて移相した順変換器1
a、1bの制御パルスを作成するパルス位相制御回路、
18は直流電流Idを検出する直流電流検出器を示す。
20はコンデンサ転流形変換器2a、2bの制御装置、
25は負荷側交流系統21の系統電圧を検出する交流電
圧変成器、201は交流電圧の大きさを検出する整流回
路、202は予め指定された電圧値Vrefに負荷側交
流系統21の電圧を制御する定電圧制御回路、203は
制御角指令回路、204は定電圧制御回路202の出力
と制御角指令回路203の出力の差を求める減算回路、
205は制御角指令値制御回路、206は負荷側交流系
統の周波数に同期した同期信号を出力する負荷側同期信
号作成回路、207a、207bはコンデンサ転流形変
換器2a、2bの制御パルスとなるパルス信号を出力す
るパルス位相制御回路を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a control device of a DC power transmission system according to an embodiment of the present invention. The DC power transmission system of the present embodiment is a system in which a capacitor commutation type converter (CCC) configured by inserting a power capacitor between a separately-excited converter and a conversion transformer is applied to an inverter. is there. The reverse converter for converting DC into AC in the DC power transmission system includes two capacitor commutation converters. In FIG. 1, 1a and 1b are two forward converters constituted by separately-excited converters, 2a and 2b are two inverse converters constituted by separately-excited converters, and the two inverse converters are , Power capacitors 3a, 3b between the inverters 2a, 2b and the conversion transformers 24a, 24b, respectively.
Are operated by a so-called capacitor commutation type converter (CCC) configured by inserting the inverter. 11 is an AC system on the power transmission side, 21 is an AC system on the power receiving side, and here, the AC system 21 on the power receiving side is a simple load system that does not include a generator or the like. 12, 22 are AC buses to which the converters are connected, 13, 2
Reference numeral 3 denotes a circuit breaker, 14a, 14b, 24a, and 24b are conversion transformers, 15 is a DC reactor for smoothing a DC current, 30a is a main DC transmission line, and 30b is a return line.
In the case of an asynchronous interconnection system or a frequency conversion system, there may be no transmission line. 10 is a separately-excited converter 1
a, a control device 101 for controlling a DC current Id to a predetermined current command value Idref (a DC current corresponding to active power required by a load);
6 is an AC voltage transformer for detecting the AC voltage of the AC system 11, 102 is a synchronous signal detecting circuit for detecting a synchronous signal of the AC system from the detected AC voltage, and 103a and 103b are synchronized with the AC voltage phase of the AC system 11. And the forward converter 1 phase-shifted according to the control command value from the constant current control circuit 101.
a pulse phase control circuit for generating control pulses a and 1b;
Reference numeral 18 denotes a DC current detector that detects the DC current Id.
20 is a control device for the capacitor commutation type converters 2a and 2b,
25 is an AC voltage transformer for detecting the system voltage of the load side AC system 21, 201 is a rectifier circuit for detecting the magnitude of the AC voltage, 202 is controlling the voltage of the load side AC system 21 to a predetermined voltage value Vref. Constant voltage control circuit, 203 is a control angle command circuit, 204 is a subtraction circuit that calculates the difference between the output of the constant voltage control circuit 202 and the output of the control angle command circuit 203,
205 is a control angle command value control circuit, 206 is a load side synchronizing signal generation circuit that outputs a synchronizing signal synchronized with the frequency of the load side AC system, and 207a and 207b are control pulses of the capacitor commutation type converters 2a and 2b. 3 shows a pulse phase control circuit that outputs a pulse signal.

【0006】次に、本実施形態の動作を説明する。順変
換器1a、1bの制御装置10では、予め指定された電
流指令値Idrefと直流電流検出器18によって検出
した直流電流Idが定電流制御回路101に入力される
と、パルス位相制御回路103a、103bによって直
流出力電圧を替えて直流電流Idが電流指令値Idre
fとなるような順変換器1a、1bの制御パルスを作成
する。逆変換器の制御装置20では、制御角指令回路2
03の指令に基づいてパルス位相制御回路207aが一
つのコンデンサ転流形変換器2aの制御パルスを作成
し、また、予め指定された電圧値Vrefと整流回路2
01を介して検出した負荷側交流系統21の電圧V2が
定電圧制御回路202に入力されると、定電圧制御回路
202の出力と制御角指令回路203の出力の差を求め
る減算回路204の出力を制御角指令値制御回路205
に入力し、この制御角指令値制御回路205の出力指令
に基づいてパルス位相制御回路207bがもう一つのコ
ンデンサ転流形変換器2bの制御パルスを作成する。
Next, the operation of this embodiment will be described. In the control device 10 of the forward converters 1a and 1b, when the current command value Idref specified in advance and the DC current Id detected by the DC current detector 18 are input to the constant current control circuit 101, the pulse phase control circuit 103a 103b, the DC output voltage is changed and the DC current Id is changed to the current command value Idre.
A control pulse for the forward converters 1a and 1b is generated so as to be f. In the control device 20 of the inverter, the control angle command circuit 2
03, the pulse phase control circuit 207a creates a control pulse for one capacitor commutation type converter 2a, and generates a voltage value Vref and a rectification circuit 2
When the voltage V2 of the load-side AC system 21 detected via the signal line 01 is input to the constant voltage control circuit 202, the output of the subtraction circuit 204 for obtaining the difference between the output of the constant voltage control circuit 202 and the output of the control angle command circuit 203 Control angle command value control circuit 205
The pulse phase control circuit 207b generates a control pulse for another capacitor commutation type converter 2b based on the output command of the control angle command value control circuit 205.

【0007】ここで、この制御角指令値制御回路205
の詳細を図2に示す。210は予め設定されたシーケン
ス指令値SIGに従って時間関数の制御角指令値Ecp
を出力する指令パターン作成回路、211は指令パター
ン作成回路210の出力Ecpと、定電圧制御回路20
2の出力と制御角指令回路203の出力の差を求める減
算回路204の出力Ecのうちの小さい方の値を選択す
る最小値選択回路である。
Here, the control angle command value control circuit 205
2 is shown in FIG. 210 is a control angle command value Ecp of the time function according to a preset sequence command value SIG.
Is a command pattern generating circuit for outputting the output Ecp of the command pattern generating circuit 210 and the constant voltage control circuit 20.
2 is a minimum value selection circuit that selects the smaller value of the output Ec of the subtraction circuit 204 for obtaining the difference between the output of the control angle instruction circuit 203 and the output of the control angle command circuit 203.

【0008】この回路の時間を横軸にとったときの動作
波形を図3に示す。指令パターン作成回路210の出力
Ecpは最初、最小制御角αminの指令値にあり、変
換器の起動指令toで設定された時定数(図3ではラン
プ状に変化する場合を示している。)、つまり最大制御
角αmaxに向かって制御角指令値Ecpが大きくなる
指令値を出力する。一方、定電圧制御回路202の出力
と制御角指令回路203の出力の差、即ち減算回路20
4の出力Ecは、起動指令to以前は最大制御角αma
xにあるが、起動指令toと共に負荷側交流系統の電圧
が高くなり、制御角指令値Ecは前に進む。最小値選択
回路211ではEcpとEcの小さい方の信号を選択
し、時刻trでαbの制御角指令値となる。この制御角
指令値αbがコンデンサ転流形変換器2bの制御角指令
値となる。もう一方のコンデンサ転流形変換器2aの制
御角指令値はαaに示されている。
FIG. 3 shows an operation waveform when the time of this circuit is plotted on the horizontal axis. The output Ecp of the command pattern creation circuit 210 is initially at the command value of the minimum control angle αmin, and is a time constant set by the converter start command to (FIG. 3 shows a case where the output changes in a ramp shape). That is, a command value in which the control angle command value Ecp increases toward the maximum control angle αmax is output. On the other hand, the difference between the output of the constant voltage control circuit 202 and the output of the control angle command circuit 203, that is, the subtraction circuit 20
4 is the maximum control angle αma before the start command to.
x, the voltage of the load-side AC system increases with the start command to, and the control angle command value Ec advances forward. The minimum value selection circuit 211 selects the smaller one of Ecp and Ec, and becomes the control angle command value of αb at time tr. This control angle command value αb becomes the control angle command value of the capacitor commutation type converter 2b. The control angle command value of the other capacitor commutation type converter 2a is indicated by αa.

【0009】いま、αaを180度(αmax)、αb
を10度(αmin)とすると、次式に直流電圧Vdが
表されるように、コンデンサ転流形変換器2aは逆変換
器運転し、他方のコンデンサ転流形変換器2bは順変換
器運転するので、電力が2aと2bの間で還流して負荷
側の交流系統には流れない。(なお、制御角が0〜90
度のとき順変換器運転、制御角が90〜180度のとき
逆変換器運転)
Now, let αa be 180 degrees (αmax), αb
Is 10 degrees (αmin), the capacitor commutation type converter 2a operates as an inverse converter and the other capacitor commutation type converter 2b operates as a forward converter so that the DC voltage Vd is expressed by the following equation. Therefore, the electric power is recirculated between 2a and 2b and does not flow to the AC system on the load side. (Note that the control angle is 0 to 90.
When the angle is in degrees, the forward converter is operated, and when the control angle is 90 to 180 degrees, the inverse converter is operated)

【数式1】Vd=kE2[cosα−0.5X] ここに、E2:変換用変圧器直流側交流電圧 α:制御遅れ角 X:転流リアクタンス k:係数 次に、起動指令が出される時刻toで制御角指令値Ec
pが制御角指令値制御回路205によって図3に示すよ
うにランプ状に変化すると、即ち、コンデンサ転流形変
換器2bを逆変換器側に遅らせていくと、このEcpに
基づいてパルス位相制御回路207bがパルス信号を出
力し、コンデンサ転流形変換器2bを制御する。これに
より負荷側交流系統に電流が流れ込むことになり、交流
電圧V2が徐々に立ち上がってくる。図3の時刻toと
trの期間が負荷側の交流電圧V2を確立するための運
転となる。負荷側の交流電圧V2が上がってくると、指
定された電圧値Vrefに近づき、定電圧制御回路20
2の動作によって出力する指令値と制御角指令回路20
3の出力する指令値の差を求める減算回路204の出力
即ち制御角指令値Ecが漸減し、時刻trで制御角指令
値EcがEcpより小さくなり、最小値選択回路211
によってEcpからEcに自動的に切り替わる。以降、
コンデンサ転流形変換器2bの制御角指令値αbは負荷
側の交流電圧V2が指定値Vrefとなるように制御さ
れる。このようにして電源のない交流系統への送電が確
立される。
[Formula 1] Vd = kE2 [cos α−0.5X] where E2: DC side AC voltage for conversion α: control delay angle X: commutation reactance k: coefficient Next, the time to when the start command is issued to Is the control angle command value Ec
When p changes in a ramp shape by the control angle command value control circuit 205 as shown in FIG. 3, that is, when the capacitor commutation type converter 2b is delayed toward the inverter, pulse phase control is performed based on this Ecp. The circuit 207b outputs a pulse signal and controls the capacitor commutation type converter 2b. As a result, current flows into the load-side AC system, and the AC voltage V2 gradually rises. The period between times to and tr in FIG. 3 is an operation for establishing the AC voltage V2 on the load side. When the AC voltage V2 on the load side rises, it approaches the specified voltage value Vref, and the constant voltage control circuit 20
Command value output by operation 2 and control angle command circuit 20
3, the output of the subtraction circuit 204 for calculating the difference between the command values, ie, the control angle command value Ec, gradually decreases. At time tr, the control angle command value Ec becomes smaller than Ecp.
Automatically switches from Ecp to Ec. Or later,
The control angle command value αb of the capacitor commutation type converter 2b is controlled so that the AC voltage V2 on the load side becomes the specified value Vref. In this way, power transmission to an AC system without a power source is established.

【0010】制御角制御角の移行は、逆変換器運転の安
定動作を考えると、制御角が遅れる方向に移行させるの
がよい。負荷の電力調整は、順変換器1a、1bの電流
指令値Idrefを替えることによって行える。遮断器
の投入は、例えば遮断器13は順変換器1a、1bの起
動前、遮断器23はコンデンサ転流形変換器2a、2b
の起動指令to後の交流電圧が規定値になるtr後に投
入すればよい。なお、負荷側交流系統の周波数は、負荷
側同期信号作成回路206の指令に基づいて作成する方
法をとったが、簡単に順変換器側、即ち送電側の同期信
号検出回路102からの信号をもらって負荷側の同期信
号としてもよい。また、負荷に電源がある場合には、順
変換器側と同様にして交流電圧から同期信号を検出して
負荷交流系統と同期した運転とすることもできる。
The control angle is preferably shifted in the direction in which the control angle is delayed in consideration of the stable operation of the inverter operation. The power adjustment of the load can be performed by changing the current command value Idref of the forward converters 1a and 1b. When the circuit breaker is turned on, for example, the circuit breaker 13 is activated before the forward converters 1a and 1b are activated, and the circuit breaker 23 is switched to the capacitor commutation type converters 2a and 2b.
It may be applied after tr at which the AC voltage after the start instruction “to” becomes a specified value. Although the frequency of the load-side AC system was created based on a command from the load-side synchronization signal creation circuit 206, the signal from the synchronization signal detection circuit 102 on the forward converter side, that is, the power transmission side, was easily obtained. It may be obtained as a synchronization signal on the load side. If the load has a power supply, the operation can be synchronized with the load AC system by detecting a synchronization signal from the AC voltage in the same manner as the forward converter.

【0011】このように、本実施形態では、一つのコン
デンサ転流形変換器2aの制御パルスを制御角指令回路
203の指令に基づいて作成し、また、もう一つのコン
デンサ転流形変換器2bの制御パルスを制御角指令値制
御回路205の出力指令に基づいて作成することによ
り、コンデンサ転流形変換器を適用した直流送電システ
ムを高精度に制御することができ、また、制御装置20
の主要素を形成する制御角指令値制御回路205を指令
パターン作成回路210と最小値選択回路211によっ
て構成するので、コストの低減化を図ることができる。
As described above, in the present embodiment, the control pulse of one capacitor commutation type converter 2a is created based on the command of the control angle command circuit 203, and the other capacitor commutation type converter 2b Is generated based on the output command of the control angle command value control circuit 205, the DC power transmission system to which the capacitor commutation type converter is applied can be controlled with high accuracy.
Since the control angle command value control circuit 205 which forms the main element of the above is composed of the command pattern creation circuit 210 and the minimum value selection circuit 211, the cost can be reduced.

【0012】図4は、本発明の他の実施形態を示す。図
1との違いは、逆変換器2aと2bにより負荷側の交流
電圧を制御する代りに、順変換器1a、1bの制御装置
10に定電圧制御回路202を移し、定電流制御回路1
01と定電圧制御回路202を入れ換え、逆変換器2
a、2bの制御装置20の加算器204への入力を固定
値ALPとし、負荷側の交流電圧を順変換器1a、1b
の電流を制御することによって制御することにある。こ
の場合、2つの逆変換器2a、2bは定常的に固定の制
御角αにより制御される。図4において、順変換器1
a、1bの制御装置10では、予め指定された電圧指令
値Vrefと整流回路201によって検出した電圧V2
が定電圧制御回路202に入力されると、パルス位相制
御回路103a、103bによって直流出力電圧を替え
て直流電流Idを制御し、負荷側の交流電圧V2が電圧
指令値Vrefとなるような順変換器1a、1bの制御
パルスを作成する。逆変換器の制御装置20では、制御
角指令回路203の指令に基づいてパルス位相制御回路
207aが一つのコンデンサ転流形変換器2aの制御パ
ルスを作成し、また、固定値ALPと制御角指令回路2
03の出力の差を求める減算回路204の出力を制御角
指令値制御回路205に入力し、この制御角指令値制御
回路205の出力指令に基づいてパルス位相制御回路2
07bがもう一つのコンデンサ転流形変換器2bの制御
パルスを作成する。このとき、2つの逆変換器2a、2
bは定常的に固定の制御角αにより制御される。また、
本実施形態の起動(停止)は、図1で説明したと同様で
ある。このように、本実施形態では、図1の実施形態と
同様に、コンデンサ転流形変換器を適用した直流送電シ
ステムを高精度に制御することができ、電源のない系統
に安定に電力を送電することができる。
FIG. 4 shows another embodiment of the present invention. The difference from FIG. 1 is that instead of controlling the AC voltage on the load side by the inverters 2a and 2b, the constant voltage control circuit 202 is moved to the control device 10 of the forward converters 1a and 1b, and the constant current control circuit 1
01 and the constant voltage control circuit 202, and the inverter 2
a, the input to the adder 204 of 2b of the control device 20 to a fixed value AL P, sequentially converts the AC voltage of the load side unit 1a, 1b
To control by controlling the current. In this case, the two inverters 2a, 2b are constantly controlled by a fixed control angle α. In FIG. 4, the forward converter 1
In the control device 10 of a and 1b, the voltage command value Vref specified in advance and the voltage V2 detected by the rectifier circuit 201 are used.
Is input to the constant voltage control circuit 202, the DC output voltage is changed by the pulse phase control circuits 103a and 103b to control the DC current Id, and the forward conversion is performed such that the AC voltage V2 on the load side becomes the voltage command value Vref. A control pulse for the devices 1a and 1b is created. In the control unit 20 of the inverter, the pulse phase control circuit 207a creates a control pulse for one capacitor commutated converter 2a in accordance with an instruction of the control angle command circuit 203, also, the control angle a fixed value AL P Command circuit 2
03 is input to the control angle command value control circuit 205, and the pulse phase control circuit 2 is output based on the output command of the control angle command value control circuit 205.
07b creates a control pulse for another capacitor commutation type converter 2b. At this time, two inverters 2a, 2
b is constantly controlled by a fixed control angle α. Also,
The activation (stop) of this embodiment is the same as that described with reference to FIG. As described above, in the present embodiment, similarly to the embodiment of FIG. 1, a DC power transmission system to which a capacitor commutation type converter is applied can be controlled with high accuracy, and power can be stably transmitted to a system without a power supply. can do.

【0013】図5は、本発明の他の実施形態を示す。図
1との違いは、順変換器1aと1bを負荷側の電力に合
わせて制御する点である。図5において、104は負荷
側の電力P2を指令値Prefに制御する定電力制御回
路であり、負荷側の電力P2を指定の値に制御する直流
電流指令値Idpを出力する。26は負荷側の交流電流
を検出する交流電流変成器、210は負荷側の交流電圧
と交流電流の検出値から電力を検出する電力検出回路で
あり、この出力は定電力制御回路104の電力フィード
バック信号に使う。図1の実施形態で説明したように、
負荷側の交流電圧V2は、逆変換器2aと2bの制御角
の差に応じて負荷側に電流が流れることになるので、こ
の電流が流れることによって負荷側のインピーダンスに
応じた交流電圧V2が発生し、定電圧制御回路202の
動作により、指令された交流電圧Vrefとなるように
逆変換器2bの制御角αbが適切な値に制御される。本
実施形態では、交流電圧V2が現れると、負荷側に流れ
る電流を交流電流変成器26により検出すると共に、電
力検出回路210により負荷側の電力P2を検出し、定
電力制御回路104によって負荷側の電力P2が指令値
Prefと一致するように直流電流指令値Idpを作成
し、定電流制御回路101によって直流電流Idが指令
値Idpに一致するように制御する。このような動作に
よって、負荷の要求にあった電力が直流送電システムに
より自動調整され、安定運転が可能となる。
FIG. 5 shows another embodiment of the present invention. The difference from FIG. 1 is that the forward converters 1a and 1b are controlled according to the power on the load side. In FIG. 5, reference numeral 104 denotes a constant power control circuit that controls the load-side power P2 to a command value Pref, and outputs a DC current command value Idp that controls the load-side power P2 to a specified value. Reference numeral 26 denotes an AC current transformer for detecting an AC current on the load side, reference numeral 210 denotes a power detection circuit for detecting power from a detected value of the AC voltage and the AC current on the load side. Use for signals. As described in the embodiment of FIG.
The AC voltage V2 on the load side causes a current to flow to the load side in accordance with the difference between the control angles of the inverters 2a and 2b. Then, the control angle αb of the inverter 2b is controlled to an appropriate value by the operation of the constant voltage control circuit 202 so that the AC voltage Vref is instructed. In the present embodiment, when the AC voltage V2 appears, the current flowing to the load side is detected by the AC current transformer 26, the power detection circuit 210 detects the load side power P2, and the constant power control circuit 104 detects the load side power P2. The DC current command value Idp is generated so that the power P2 of the DC current coincides with the command value Pref, and the constant current control circuit 101 controls the DC current Id to match the command value Idp. By such an operation, the power required by the load is automatically adjusted by the DC power transmission system, and stable operation is possible.

【0014】なお、この場合、定電力制御回路104に
より作成される直流電流指令値Idpには、順変換器1
a、1bの電流耐量に応じた最大電流に指令値を抑える
上限リミッタを付け、また、最小の電流値に関しても、
電流断続を防止する最小電流値、例えば定格電流の10
%といった値に下限リミッタを設定する。また、負荷側
の交流電圧指令値Vrefや、制御角指令値制御回路2
05においても、上下限値を設ける。例えば、制御角指
令値の上限値としては制御角の最大値180度に上限リ
ミッタを付け、下限値としては最小制御角の10度とい
った制御角にリミッタを設ける。このようにリミッタを
設けることにより、変換器の過電流や不安定動作の発生
を防止でき、装置の信頼度を上げることができる。
In this case, the direct current command value Idp generated by the constant power control circuit 104 is
a, 1b with an upper limiter that suppresses the command value to the maximum current according to the current withstand capability.
Minimum current value for preventing current interruption, for example, 10
Set the lower limiter to a value such as%. The load-side AC voltage command value Vref and the control angle command value control circuit 2
05 also sets upper and lower limits. For example, as the upper limit value of the control angle command value, an upper limiter is added to the maximum value of 180 degrees of the control angle, and as the lower limit value, a limiter is provided to the control angle such as 10 degrees of the minimum control angle. By providing the limiter in this manner, the occurrence of overcurrent and unstable operation of the converter can be prevented, and the reliability of the device can be increased.

【0015】図6は、本発明の他の実施形態を示す。本
実施形態では逆変換器側と同様に順変換器側にもコンデ
ンサ転流形変換器を使用する。制御装置10の構成は図
5の実施形態と同様でよく、動作も同様である。本実施
形態では、順変換器側の調相設備が不要となり、順変換
所のコストが下げられ、また、システム緊急停止時の過
電圧の発生を抑制することができる。
FIG. 6 shows another embodiment of the present invention. In the present embodiment, a capacitor commutation type converter is used on the forward converter side as well as on the inverse converter side. The configuration of the control device 10 may be the same as the embodiment of FIG. 5, and the operation is also the same. In the present embodiment, the phase converter on the side of the forward converter becomes unnecessary, the cost of the forward converter is reduced, and the occurrence of overvoltage at the time of emergency stop of the system can be suppressed.

【0016】図7は、送電電力が大きく、逆変換器が複
数台から構成される本発明の他の実施形態を示す。図7
に示すように、4つの逆変換器からなるような場合は、
2つの逆変換器のペアを作り、上述したように、一方を
順変換器、他方を逆変換器運転して、負荷の電力に合わ
せて順変換器運転を行っている変換器を逆変換器運転に
移行することにより、複数台の逆変換器からなる場合に
も直流送電システムを安定に運転を行うことができる。
図7では、2組のペアの一方の番号に「’」を付けて示
している。この場合、同期信号はどこか一カ所を基準と
し他をこれに合わせればよい。このため、各制御装置間
は信号やり取りを行うために信号線により接続する。
FIG. 7 shows another embodiment of the present invention in which the transmission power is large and the inverter is composed of a plurality of inverters. FIG.
As shown in the figure, if the signal consists of four inverters,
A pair of two inverters is formed, and one of the inverters is operated as a forward converter and the other is operated as an inverter as described above. By shifting to the operation, the DC power transmission system can be stably operated even when the inverter includes a plurality of inverters.
In FIG. 7, “′” is added to one of the numbers of the two pairs. In this case, the synchronization signal may be set at one point as a reference, and the others may be adjusted to this. For this reason, the control devices are connected by signal lines in order to exchange signals.

【0017】以上本発明の制御対象として、直流送電シ
ステムについて述べたが、非同期連系システムまたは周
波数変換システムについても本発明を適用できることは
云うまでもない。
Although the DC power transmission system has been described as a control object of the present invention, it is needless to say that the present invention can be applied to an asynchronous interconnection system or a frequency conversion system.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
一つのコンデンサ転流形変換器の制御パルスを制御角指
令に基づいて作成し、もう一つのコンデンサ転流形変換
器の制御パルスを制御角指令の制御によって求めた制御
角指令値に基づいて作成するので、コンデンサ転流形変
換器を適用した直流送電システムを高精度に制御するこ
とができ、また、制御装置の主要素を形成する制御角指
令値制御回路を指令パターン作成回路と最小値選択回路
によって構成するので、コストの低減化を図ることがで
きる。また、順変換器側の電流を制御することによって
負荷側の交流電圧を制御するので、コンデンサ転流形変
換器を適用した直流送電システムを高精度に制御するこ
とができ、電源のない系統に安定に電力を送電すること
ができる。また、負荷側の電力を検出し、負荷側の電力
が指令値と一致するように制御するので、負荷の要求に
あった電力が直流送電システムにより自動調整され、安
定運転が可能となる。また、定電力制御回路により作成
される直流電流指令値を制限する上下限リミッタを設
け、また、負荷側の交流電圧指令値及び制御角指令値制
御回路の制御角指令値においても上下限値を設けること
により、変換器の過電流や不安定動作の発生を防止で
き、装置の信頼度を上げることができる。また、逆変換
器側と同様に順変換器側にもコンデンサ転流形変換器を
使用することにより、順変換器側の調相設備が不要とな
り、順変換所のコストの低減化を図ることができ、ま
た、システム緊急停止時の過電圧の発生を抑制すること
ができる。また、送電電力が大きく、逆変換器が複数台
から構成される場合にも、直流送電システムを安定に運
転することができる。
As described above, according to the present invention,
Creates a control pulse for one capacitor commutation type converter based on the control angle command, and creates a control pulse for another capacitor commutation type converter based on the control angle command value obtained by controlling the control angle command. Therefore, the DC power transmission system using the capacitor commutation type converter can be controlled with high accuracy, and the control angle command value control circuit that forms the main element of the control device is selected from the command pattern creation circuit and the minimum value selection circuit. Since it is constituted by a circuit, the cost can be reduced. In addition, since the AC voltage on the load side is controlled by controlling the current on the forward converter side, it is possible to control the DC power transmission system using the capacitor commutation type converter with high accuracy, and to control the system without power supply. Power can be transmitted stably. Also, since the power on the load side is detected and controlled so that the power on the load side matches the command value, the power required by the load is automatically adjusted by the DC power transmission system, and stable operation is possible. In addition, upper and lower limiters are provided to limit the DC current command value created by the constant power control circuit, and the upper and lower limit values are also set for the AC voltage command value on the load side and the control angle command value of the control angle command value control circuit. With the provision, the occurrence of overcurrent and unstable operation of the converter can be prevented, and the reliability of the device can be increased. Also, by using a capacitor commutation type converter on the forward converter side as well as on the reverse converter side, phase adjustment equipment on the forward converter side becomes unnecessary, and the cost of the forward conversion station is reduced. In addition, the occurrence of overvoltage at the time of an emergency stop of the system can be suppressed. Further, even when the transmission power is large and the inverters are composed of a plurality of inverters, the DC transmission system can be operated stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による直流送電システムの
制御装置
FIG. 1 is a control device of a DC power transmission system according to an embodiment of the present invention.

【図2】本発明の制御装置の制御角指令値制御回路の詳
細ブロック図
FIG. 2 is a detailed block diagram of a control angle command value control circuit of the control device of the present invention.

【図3】本発明の直流送電システムの起動時の動作を説
明する図
FIG. 3 is a diagram for explaining an operation at the time of starting the DC power transmission system of the present invention.

【図4】本発明の他の実施形態FIG. 4 shows another embodiment of the present invention.

【図5】本発明の他の実施形態FIG. 5 shows another embodiment of the present invention.

【図6】本発明の他の実施形態FIG. 6 shows another embodiment of the present invention.

【図7】逆変換器が複数台のコンデンサ転流形変換器か
ら構成される本発明の他の実施形態
FIG. 7 shows another embodiment of the present invention in which the inverter is composed of a plurality of capacitor commutation type converters.

【符号の説明】[Explanation of symbols]

1a、1b:他励式変換器(順変換器)、2a、2b:
コンデンサ転流形変換器(逆変換器)、3a、3b:電
力用コンデンサ、11、21:交流系統、12、22:
交流母線、13、23:遮断器、14a、14b、24
a、24b:変換用変圧器、15:直流リアクトル、3
0a:直流送電線本線、30b:帰路線 10:他励式変換器1の制御装置、101:定電流制御
回路、16:交流電圧変成器、102:同期信号検出回
路、103a、103b:パルス位相制御回路、18:
直流電流検出器、20:コンデンサ転流形変換器2a、
2bの制御装置、25:交流電圧変成器、201:整流
回路、202:定電圧制御回路、203:制御角指令回
路、204:減算回路、205:制御角指令値制御回
路、206:負荷側同期信号作成回路、207a、20
7b:パルス位相制御回路 104:定電力制御回路、26:交流電流変成器、21
0:電力検出回路
1a, 1b: separately excited converter (forward converter), 2a, 2b:
Capacitor commutation type converter (inverter), 3a, 3b: power capacitor, 11, 21: AC system, 12, 22:
AC buses 13, 23: circuit breakers, 14a, 14b, 24
a, 24b: Transformer for conversion, 15: DC reactor, 3
0a: Main line of DC transmission line, 30b: Return line 10: Control device of separately-excited converter 1, 101: Constant current control circuit, 16: AC voltage transformer, 102: Synchronous signal detection circuit, 103a, 103b: Pulse phase control Circuit, 18:
DC current detector, 20: capacitor commutation type converter 2a,
2b, 25: AC voltage transformer, 201: rectifier circuit, 202: constant voltage control circuit, 203: control angle command circuit, 204: subtraction circuit, 205: control angle command value control circuit, 206: load side synchronization Signal creation circuit, 207a, 20
7b: pulse phase control circuit 104: constant power control circuit, 26: AC current transformer, 21
0: Power detection circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川添 裕成 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 佐野 孝義 東京都中央区築地六丁目19番20号 株式会 社技術綜研内 Fターム(参考) 5G066 CA04 5H007 AA06 BB02 CA03 CB05 CC06 CC12 CC32 CD09 DA03 DA04 DA05 DA06 DB01 DC02 DC05 FA01 FA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hironari Kawazoe 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Takayoshi Sano 6-19, Tsukiji, Chuo-ku, Tokyo No. 20 F-term (reference) in Technology Research Institute of Japan 5G066 CA04 5H007 AA06 BB02 CA03 CB05 CC06 CC12 CC32 CD09 DA03 DA04 DA05 DA06 DB01 DC02 DC05 FA01 FA03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 逆変換器側の変換器が少なくとも2つの
コンデンサ転流形変換器から構成される直流送電システ
ムの制御装置において、交流を直流に変換する順変換器
側には、予め指定された一定値に該変換器電流を制御す
る制御手段を備え、逆変換器側には、負荷側交流系統の
周波数を設定する負荷側同期信号作成手段と、逆変換器
の少なくとも一つを固定の制御角に制御する制御角指令
手段と、負荷側交流系統の電圧を指定値に制御する定電
圧制御手段と、前記制御角指令手段と前記定電圧制御手
段の出力偏差に基づいて残りの逆変換器の制御角を制御
する制御角指令値制御手段からなる制御手段を備え、前
記残りの逆変換器の制御角を負荷側交流系統の電圧が指
定値となるように制御することを特徴とする直流送電シ
ステムの制御装置。
In a control device of a DC power transmission system in which a converter on an inverter side is composed of at least two capacitor commutation type converters, a forward converter for converting AC into DC is provided in advance with a designated converter. Control means for controlling the converter current to a constant value, a load-side synchronization signal generating means for setting the frequency of the load-side AC system, and at least one of the inverters fixed on the inverter side. Control angle command means for controlling the control angle, constant voltage control means for controlling the voltage of the load side AC system to a specified value, and the remaining inverse conversion based on the output deviation between the control angle command means and the constant voltage control means. Control means comprising control angle command value control means for controlling the control angle of the converter, wherein the control angle of the remaining inverter is controlled so that the voltage of the load side AC system becomes a specified value. Control unit for DC power transmission system.
【請求項2】 請求項1において、前記順変換器側の制
御手段に負荷側の交流電圧を指令値に制御する定電圧制
御手段を設け、順変換器を負荷側の交流電圧に合わせて
制御することを特徴とする直流送電システムの制御装
置。
2. The method according to claim 1, wherein the control means on the side of the forward converter includes constant voltage control means for controlling the AC voltage on the load side to a command value, and controls the forward converter in accordance with the AC voltage on the load side. A control device for a DC power transmission system.
【請求項3】 請求項1において、前記順変換器側の制
御手段に負荷側の電力を指令値に制御する定電力制御手
段を設け、順変換器を負荷側の電力に合わせて制御する
ことを特徴とする直流送電システムの制御装置。
3. The method according to claim 1, wherein the control means on the side of the forward converter includes constant power control means for controlling power on the load side to a command value, and controls the forward converter in accordance with the power on the load side. A control device for a DC power transmission system, comprising:
【請求項4】 請求項1、請求項2または請求項3にお
いて、前記順変換器側の変換器を少なくとも2つのコン
デンサ転流形変換器から構成することを特徴とする直流
送電システムの制御装置。
4. The control device for a DC power transmission system according to claim 1, wherein the converter on the side of the forward converter comprises at least two capacitor commutation type converters. .
【請求項5】 請求項1から請求項4のいずれかにおい
て、前記逆変換器の起動前は、前記残りの逆変換器の制
御角指令値を固定の制御角に制御し、起動後は前記固定
の制御角から時定数をもたせて別の固定の制御角に制御
する直流送電システムの制御装置。
5. The method according to claim 1, wherein a control angle command value of the remaining inverters is controlled to a fixed control angle before starting the inverters, and the control angle command value is controlled after starting the inverters. A control device for a DC power transmission system that provides a time constant from a fixed control angle to another fixed control angle.
【請求項6】 請求項1から請求項4のいずれかにおい
て、前記逆変換器の起動前は、前記残りの逆変換器の制
御角指令値を固定の制御角に制御し、起動後は前記固定
の制御角から時定数をもたせて負荷側交流系統の電圧を
指定値に制御する制御角に切り替えて制御する直流送電
システムの制御装置。
6. The method according to claim 1, wherein a control angle command value of the remaining inverters is controlled to a fixed control angle before starting the inverter, and after starting the inverter, A control device for a DC power transmission system that switches a control angle to control a voltage of a load-side AC system to a specified value with a time constant from a fixed control angle and controls the voltage.
【請求項7】 請求項5または請求項6において、起動
前の固定の制御角から、起動後に時定数を持たせて負荷
側交流系統の電圧を指定値に制御する制御角に切り替え
る際の制御角の移動は、制御角の遅れの方向に移動して
切り替えることを特徴とする直流送電システムの制御装
置。
7. The control according to claim 5, wherein the control angle is switched from a fixed control angle before starting to a control angle for giving a time constant after starting and controlling the voltage of the load side AC system to a specified value. A control device for a DC power transmission system, wherein the movement of an angle is switched by moving in a direction of delay of a control angle.
【請求項8】 請求項1から請求項7のいずれかにおい
て、前記負荷側同期信号作成手段の基準周波数として送
電側の周波数を使用することを特徴とする直流送電シス
テムの制御装置。
8. The control device for a DC power transmission system according to claim 1, wherein a frequency on a power transmission side is used as a reference frequency of said load-side synchronization signal generating means.
【請求項9】 請求項1から請求項8のいずれかにおい
て、前記順変換器側の変換器電流を制御する制御手段に
電流の上限リミッタと下限リミッタ、または、前記逆変
換器側の負荷側交流系統の電圧を指定値に制御する定電
圧制御手段に電圧の上限リミッタと下限リミッタ、また
は、前記逆変換器側の残りの逆変換器の制御角を制御す
る制御角指令値制御手段に制御角指令値の上限リミッタ
と下限リミッタを付けることを特徴とする直流送電シス
テムの制御装置。
9. The method according to claim 1, wherein the control means for controlling the converter current on the forward converter side includes an upper limiter and a lower limiter for the current, or the load side on the inverter side. The upper limiter and the lower limiter of the voltage are controlled by the constant voltage control means for controlling the voltage of the AC system to the specified value, or the control angle command value control means is controlled by the control angle of the remaining inverter on the inverter side. A control device for a DC power transmission system, comprising an upper limiter and a lower limiter for an angle command value.
JP11041248A 1999-02-19 1999-02-19 Control equipment of dc power transmission system Pending JP2000245066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041248A JP2000245066A (en) 1999-02-19 1999-02-19 Control equipment of dc power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041248A JP2000245066A (en) 1999-02-19 1999-02-19 Control equipment of dc power transmission system

Publications (1)

Publication Number Publication Date
JP2000245066A true JP2000245066A (en) 2000-09-08

Family

ID=12603148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041248A Pending JP2000245066A (en) 1999-02-19 1999-02-19 Control equipment of dc power transmission system

Country Status (1)

Country Link
JP (1) JP2000245066A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633770B2 (en) 2006-12-08 2009-12-15 General Electric Company Collection and transmission system
KR20100063676A (en) * 2008-12-03 2010-06-11 제너럴 일렉트릭 캄파니 Modular stacked subsea power system architectures
JP2010521955A (en) * 2007-03-19 2010-06-24 シーメンス アクチエンゲゼルシヤフト Controller for power converter station in high voltage DC power transmission equipment.
US7851943B2 (en) 2006-12-08 2010-12-14 General Electric Company Direct current power transmission and distribution system
US7880419B2 (en) 2007-12-11 2011-02-01 General Electric Company MVDC power transmission system for sub-sea loads

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633770B2 (en) 2006-12-08 2009-12-15 General Electric Company Collection and transmission system
US7851943B2 (en) 2006-12-08 2010-12-14 General Electric Company Direct current power transmission and distribution system
JP2010521955A (en) * 2007-03-19 2010-06-24 シーメンス アクチエンゲゼルシヤフト Controller for power converter station in high voltage DC power transmission equipment.
US7880419B2 (en) 2007-12-11 2011-02-01 General Electric Company MVDC power transmission system for sub-sea loads
KR20100063676A (en) * 2008-12-03 2010-06-11 제너럴 일렉트릭 캄파니 Modular stacked subsea power system architectures
JP2010136615A (en) * 2008-12-03 2010-06-17 General Electric Co <Ge> Modular stacked sub-sea power system architecture
US8692408B2 (en) 2008-12-03 2014-04-08 General Electric Company Modular stacked subsea power system architectures
KR101655457B1 (en) 2008-12-03 2016-09-07 제너럴 일렉트릭 캄파니 Modular stacked subsea power system architectures

Similar Documents

Publication Publication Date Title
JP2760666B2 (en) Method and apparatus for controlling PWM converter
JP3265398B2 (en) DC power transmission device control device
KR890004101B1 (en) Power converter for ac load
US5317500A (en) Active no-break power transfer control for a VSCF power generating system
JP3838093B2 (en) Grid interconnection power converter
JP2000245066A (en) Control equipment of dc power transmission system
JP6591064B2 (en) Power conversion system
EP0278491B1 (en) Power converter
JPH10295084A (en) Power converter and its start-up method
JP2005130562A (en) Power converter
JP2000287457A (en) Voltage type self-excitation power converter
JP2830619B2 (en) Static var compensator
JP3700018B2 (en) Control device and method for DC power transmission equipment
JP3364588B2 (en) Control device for hybrid DC power transmission equipment
JP2771937B2 (en) Power converter start-up controller
KR102481563B1 (en) thyristor starting device
JPH09149647A (en) Controller of converter
JPH09163751A (en) Pwm controlled self-excited rectifier
JPH04313108A (en) Reactive power compensating device
JP2866526B2 (en) Reactive power compensator
JPS6112457B2 (en)
JPH05207650A (en) Controller for dc transmission system
JPH0515638U (en) Parallel operation protection device
JPH08237869A (en) Power converter
JPS5926177B2 (en) Reactive power control method for AC systems including DC parts

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325