JP2000244391A - Transmission power control method in code division multiple access communication system - Google Patents

Transmission power control method in code division multiple access communication system

Info

Publication number
JP2000244391A
JP2000244391A JP5891799A JP5891799A JP2000244391A JP 2000244391 A JP2000244391 A JP 2000244391A JP 5891799 A JP5891799 A JP 5891799A JP 5891799 A JP5891799 A JP 5891799A JP 2000244391 A JP2000244391 A JP 2000244391A
Authority
JP
Japan
Prior art keywords
transmission power
power control
likelihood
mobile terminal
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5891799A
Other languages
Japanese (ja)
Other versions
JP4108858B2 (en
Inventor
Katsuhiko Tsunehara
克彦 恒原
Takashi Yano
隆 矢野
Takamoto Uta
隆基 雅樂
Toshiro Suzuki
俊郎 鈴木
Toshinori Suzuki
利則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
KDDI Corp
Original Assignee
Hitachi Ltd
KDD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, KDD Corp filed Critical Hitachi Ltd
Priority to JP05891799A priority Critical patent/JP4108858B2/en
Publication of JP2000244391A publication Critical patent/JP2000244391A/en
Application granted granted Critical
Publication of JP4108858B2 publication Critical patent/JP4108858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02B60/50

Landscapes

  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmission power control method reducing the influence of erroneous control in a CDMA mobile communication system. SOLUTION: The likelihood of a transmission power control signal is calculated 30 based on the transmission power control signal transmitted from a radio base station and the quality of reception. Based on the likelihood, the varying quantity of transmission power is calculated 31 to control the transmission power of a mobile terminal based on the varying quantity. Thus, the mobile terminal is prevented from transmitting with excessive transmission power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動通信システム
における送信電力制御方法に関し、さらに詳しくは、符
号分割多元接続(CDMA:Code Devision Multiple Acc
ess)方式を適用した移動通信システムにおける送信電力
制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission power control method in a mobile communication system, and more particularly, to a code division multiple access (CDMA) system.
The present invention relates to a transmission power control method in a mobile communication system to which the ess) scheme is applied.

【0002】[0002]

【従来の技術】CDMA方式では、複数の移動端末が同
じ周波数帯域を共有して基地局と通信を行う。従って、
例えば移動端末Aと基地局が通信を行う場合、移動端末
Aが基地局に対して発信した信号(所望信号)にとっ
て、他の移動端末Bが基地局に対して発信した信号(非
所望信号)は干渉となり、移動端末Aと基地局の通信に
妨害を与える。同様に移動端末Aが発信した信号は、移
動端末Bと基地局の通信に妨害を与える。
2. Description of the Related Art In a CDMA system, a plurality of mobile terminals communicate with a base station by sharing the same frequency band. Therefore,
For example, when the mobile terminal A communicates with the base station, a signal transmitted from the mobile terminal A to the base station (desired signal) is a signal transmitted from another mobile terminal B to the base station (undesired signal). Causes interference, which hinders communication between the mobile terminal A and the base station. Similarly, the signal transmitted from mobile terminal A interferes with the communication between mobile terminal B and the base station.

【0003】干渉レベルは基地局が受信する非所望信号
波の受信レベルに比例して大きくなる。非所望信号の受
信レベルは、非所望信号が移動端末から送信される際の
送信電力に比例する。従って干渉レベルを最小限に抑え
るためには、移動端末からの送信電力を基地局が制御
し、基地局での受信レベルが常に必要最小限となるよう
にすることが必要となる。この制御が理想的に行われた
場合、通信可能なチャネル数は最大となり、その状態か
ら外れるにつれて通信可能なチャネル数は減少すること
になる。
[0003] The interference level increases in proportion to the reception level of the undesired signal wave received by the base station. The reception level of the undesired signal is proportional to the transmission power when the undesired signal is transmitted from the mobile terminal. Therefore, in order to minimize the interference level, it is necessary for the base station to control the transmission power from the mobile terminal so that the reception level at the base station is always minimized. When this control is ideally performed, the number of communicable channels becomes the maximum, and the number of communicable channels decreases as the state deviates from that state.

【0004】CDMA移動通信の送信電力制御技術に関
して、例えば電波産業会発行“IMT-2000 Study Committ
ee, Air-interface WG, SWG Document Title: Volume3
Specifications of Air-Interface for 3G Mobile Syst
em, Source: SWG, Version:0-4.0, Date: December 18,
1997”(以下、W−CDMA方式という)に記載された
送信電力制御方法がある。以下にW−CDMA方式の送
信電力制御方法について説明する。なお、説明文中上り
方向とは移動端末から基地局へ信号を送信する方向、下
り方向とは基地局から移動端末へ信号を送信する方向を
表す。
[0004] Regarding the transmission power control technology of CDMA mobile communication, for example, “IMT-2000 Study Committ” issued by the Radio Industry Association.
ee, Air-interface WG, SWG Document Title: Volume3
Specifications of Air-Interface for 3G Mobile Syst
em, Source: SWG, Version: 0-4.0, Date: December 18,
1997 "(hereinafter referred to as a W-CDMA system). A transmission power control method of the W-CDMA system will be described below. The direction in which a signal is transmitted to the mobile station and the downlink direction indicate the direction in which a signal is transmitted from the base station to the mobile terminal.

【0005】基地局は移動端末から送信されてくる上り
方向の信号の信号対干渉電力比(SIR)を測定し、測
定されたSIRに応じた送信電力制御信号を送信する。
従来の基地局の構成図を図29に示す。アンテナ210
で受信された受信信号はサーキュレータ211を介した
後、受信用無線モジュール212においてベースバンド
信号の復調と高/中間周波数での受信処理が行われる。
受信信号には複数の移動端末(MSa〜MSnとする)
からの信号が多重されているため、基地局は各移動端末
用にパラメータを設定した同期捕捉・逆拡散回路213
a〜213nで受信信号の同期捕捉と逆拡散処理を行
う。同期捕捉・逆拡散回路213a〜213nから出力
された信号は、それぞれ検波部214a〜214nへ入
力され、位相回転の補償等の検波処理を行われる。検波
部214a〜214nから出力された信号は、それぞれ
復号部215a〜215nへ入力され、デインターリー
ブやビタビ復号等の誤り制御処理を施された後、受信デ
ータとして使用される。
[0005] A base station measures a signal-to-interference power ratio (SIR) of an uplink signal transmitted from a mobile terminal, and transmits a transmission power control signal according to the measured SIR.
FIG. 29 shows a configuration diagram of a conventional base station. Antenna 210
After passing through the circulator 211, the reception signal received by the wireless communication module 212 is subjected to demodulation of a baseband signal and reception processing at a high / intermediate frequency.
A plurality of mobile terminals (MSa to MSn) are included in the received signal.
Are multiplexed, the base station performs synchronization acquisition / despreading circuit 213 with parameters set for each mobile terminal.
In steps a to 213n, synchronization acquisition and despreading of the received signal are performed. The signals output from the synchronization acquisition / despreading circuits 213a to 213n are input to detectors 214a to 214n, respectively, and are subjected to detection processing such as compensation for phase rotation. The signals output from the detection units 214a to 214n are input to decoding units 215a to 215n, respectively, and subjected to error control processing such as deinterleaving and Viterbi decoding, and then used as reception data.

【0006】一方、同期捕捉・逆拡散回路213a〜2
13nから出力された信号は、それぞれ信号線220a
〜220nを通って上りチャネルSIR測定部221へ
入力される。上りチャネルSIR測定部221は信号線
220a〜220nを介して入力された受信信号のSI
R(SIRa〜SIRnとする)をそれぞれ測定し、S
IRa〜SIRnを信号線230a〜230nを介して
上りチャネル送信電力制御信号作成部222へ入力す
る。
On the other hand, synchronization acquisition / despreading circuits 213a to 213a-2
13n are output from the signal line 220a, respectively.
220220n and input to the upstream channel SIR measurement section 221. The uplink channel SIR measuring section 221 detects the SI of the received signal input through the signal lines 220a to 220n.
R (referred to as SIRa to SIRn), and S
IRa to SIRn are input to uplink channel transmission power control signal creation section 222 via signal lines 230a to 230n.

【0007】上りチャネル送信電力制御信号作成部22
2はSIRa〜SIRnと、MSa〜MSnに対して予
め与えられた目標SIR(T−SIRa〜T−SIRn
とする)を比較し、MSa〜MSnに対する送信電力制
御信号(TPCa〜TPCnとする)を作成する。上り
チャネル送信電力制御信号作成部222の構成を図30
に示す。上りチャネル送信電力制御信号作成部222は
SIRiとT−SIRiを入力とし、TPCiを出力と
する送信電力制御信号作成部222a〜222nから構
成される。ここで添え字iはa〜nのいずれかを表すも
のとする。送信電力制御信号作成部222iの構成図を
図31に示す。比較器223iは信号線230iを介し
て入力されるSIRiとT−SIRiを比較し、SIR
i≧T−SIRiの場合はセレクタ224iで0を選択
する信号を、SIRi<T−SIRiの場合はセレクタ
224iで1を選択する信号を作成する。セレクタ22
4iは比較器223iの出力に従って0または1のいず
れかを選択し、TPCiとして信号線231iを介して
出力する。ここでTPCi=0は移動端末に対して送信
電力減少を指示する信号であり、逆にTPCi=1は移
動端末に対して送信電力の増加を指示する信号である。
[0007] Uplink channel transmission power control signal creation section 22
2 are SIRa to SIRn and target SIRs (T-SIRa to T-SIRn) given to MSa to MSn in advance.
) And creates transmission power control signals (TPCa to TPCn) for MSa to MSn. FIG. 30 shows the configuration of the uplink channel transmission power control signal creation unit 222.
Shown in The uplink channel transmission power control signal generator 222 includes transmission power control signal generators 222a to 222n that receive SIRi and T-SIRi as inputs and output TPCi. Here, the subscript i represents any of a to n. FIG. 31 shows a configuration diagram of the transmission power control signal creation section 222i. The comparator 223i compares SIRi input via the signal line 230i with T-SIRi,
When i ≧ T-SIRi, a signal for selecting 0 is generated by the selector 224i, and when SIRi <T-SIRi, a signal for selecting 1 is generated by the selector 224i. Selector 22
4i selects either 0 or 1 according to the output of the comparator 223i and outputs it as TPCi via the signal line 231i. Here, TPCi = 0 is a signal for instructing the mobile terminal to reduce transmission power, and TPCi = 1 is a signal for instructing the mobile terminal to increase transmission power.

【0008】図29のフレーム構成部225a〜225
nは、符号化部222a〜222nで畳み込み符号化や
インターリーブ等の誤り制御処理を施されたMSa〜M
Sn宛の送信データと、上りチャネル送信電力制御信号
作成部222から入力された送信電力制御信号TPCa
〜TPCnを、システムで定められたフォーマットに従
いフレームを構成する。拡散回路223a〜223nは
MSa〜MSnに対応したパラメータでフレーム作成部
出力のスペクトル拡散処理を行う。加算回路226はM
Sa〜MSnに対する信号を多重して送信するために、
送信信号の加算を行う。加算回路226を出力された送
信信号は、送信用無線モジュール224とサーキュレー
タ211を介した後、アンテナ210から送信される。
[0008] Frame components 225a-225 of FIG.
n are MSa to M that have been subjected to error control processing such as convolutional coding and interleaving in coding sections 222a to 222n.
The transmission data addressed to Sn and the transmission power control signal TPCa input from the uplink channel transmission power control signal creation unit 222
To TPCn constitute a frame according to a format defined by the system. Spreading circuits 223a to 223n perform spread spectrum processing of the output of the frame creation unit using parameters corresponding to MSa to MSn. The addition circuit 226 has M
To multiplex and transmit signals for Sa to MSn,
The transmission signals are added. The transmission signal output from the addition circuit 226 is transmitted from the antenna 210 after passing through the transmission wireless module 224 and the circulator 211.

【0009】移動端末MSiは前記送信電力制御信号T
PCiを受信し、復調結果に従って送信電力を変更す
る。従来の移動端末の構成を図32に示す。アンテナ1
0で受信された受信信号は、サーキュレータ11を介し
た後、受信用無線モジュール12においてベースバンド
信号の復調と高/中間周波数での受信処理が行われる。
受信信号には複数のチャネルの信号が多重されているた
め、移動端末は、自端末が使用中のチャネル用にパラメ
ータを設定した同期捕捉・逆拡散回路13で、受信信号
の同期捕捉及びスペクトル逆拡散処理を行う。同期捕捉
・逆拡散回路13から出力された信号は、検波部14で
位相回転の補償等の検波処理を行われ、復号部15にお
いて、デインターリーブやビタビ復号などの誤り制御処
理を施された後、受信データとして利用される。
The mobile terminal MSi receives the transmission power control signal T
PCi is received, and the transmission power is changed according to the demodulation result. FIG. 32 shows a configuration of a conventional mobile terminal. Antenna 1
After the reception signal received at 0 passes through the circulator 11, the reception radio module 12 performs demodulation of the baseband signal and reception processing at a high / intermediate frequency.
Since signals of a plurality of channels are multiplexed in the received signal, the mobile terminal uses the synchronization acquisition / despreading circuit 13 in which parameters are set for the channel used by the own terminal, to acquire synchronization of the received signal and to perform spectrum inverse. Perform diffusion processing. The signal output from the synchronization acquisition / despreading circuit 13 is subjected to detection processing such as phase rotation compensation in a detection section 14 and error control processing such as deinterleaving and Viterbi decoding in a decoding section 15. Is used as received data.

【0010】受信した送信電力制御信号は検波部14を
出力された後、信号線16を通って送信電力制御信号判
定部40に入力される。送信電力制御信号判定部40
は、受信した送信電力制御信号が「0」であるか「1」
であるかの判定を行う。送信電力制御信号判定部40
は、送信電力制御信号の判定結果が「0」の場合、セレ
クタ41出力として例えば「−1dB」を選択するよう
な制御信号を作成し、判定結果が「1」であった場合は
セレクタ41出力として例えば「+1dB」を選択する
ような制御信号を作成してセレクタ41に送出する。
The received transmission power control signal is output from the detection unit 14 and then input to the transmission power control signal determination unit 40 through the signal line 16. Transmission power control signal determination unit 40
Indicates that the received transmission power control signal is “0” or “1”
Is determined. Transmission power control signal determination unit 40
Creates a control signal that selects, for example, “−1 dB” as the output of the selector 41 when the determination result of the transmission power control signal is “0”, and outputs the output signal of the selector 41 when the determination result is “1”. For example, a control signal for selecting “+1 dB” is generated and sent to the selector 41.

【0011】セレクタ41は送信電力制御信号判定部4
0から入力される制御信号に従い、送信電力の変化量と
して、例えば「+1dB」あるいは「−1dB」のいず
れかを出力する。
The selector 41 includes a transmission power control signal determination unit 4
According to the control signal input from 0, for example, either "+1 dB" or "-1 dB" is output as the change amount of the transmission power.

【0012】送信電力算出部19はセレクタ41から入
力される送信電力の変化量と、送信電力保持回路20か
ら入力される現時点での送信電力から、変更後の送信電
力を決定する。すなわち、セレクタから「+1dB」が
入力された場合、変更後の送信電力を現時点の送信電力
より1dB増加したものとし、逆にセレクタから「−1
dB」が入力された場合、変更後の送信電力を現時点の
送信電力より1dB減少させたものとする。
The transmission power calculator 19 determines the changed transmission power from the amount of change in the transmission power input from the selector 41 and the current transmission power input from the transmission power holding circuit 20. That is, when “+1 dB” is input from the selector, it is assumed that the changed transmission power is increased by 1 dB from the current transmission power, and conversely, “−1” is input from the selector.
If "dB" is input, it is assumed that the changed transmission power is reduced by 1 dB from the current transmission power.

【0013】送信信号は、符号化部22で例えば畳込み
符号化やインターリーブ等の誤り制御処理を施され、フ
レーム作成部25でシステムで定められたフォーマット
のフレームを構成し、拡散回路23でスペクトル拡散処
理される。可変利得増幅器21は信号が送信電力算出部
19から指定された送信電力で送信されるように、適切
な利得で送信信号を増幅する。可変利得増幅器21を出
力された送信信号は、送信用無線モジュール24とサー
キュレータ11を介した後、アンテナ10から送信され
る。
The transmission signal is subjected to error control processing such as convolutional coding and interleaving in a coding unit 22, forms a frame of a format determined by the system in a frame forming unit 25, Diffusion processing is performed. The variable gain amplifier 21 amplifies the transmission signal with an appropriate gain so that the signal is transmitted at the transmission power specified by the transmission power calculation unit 19. The transmission signal output from the variable gain amplifier 21 is transmitted from the antenna 10 after passing through the transmission wireless module 24 and the circulator 11.

【0014】移動端末が上記の動作を行った場合の、移
動端末の送信電力の変化の様子の一例を図33の実線6
2に示す。横軸60は時間、縦軸61は移動端末の送信
電力を表す。また横軸60には時刻120〜124に受
信された送信電力制御信号の判定結果83a〜83eも
付してある。図33のように、移動端末は、制御信号判
定結果が「1」である時刻122、124では送信電力
を1dB増加させ、制御信号判定結果が「0」である時
刻120、121、123では送信電力を1dB減少さ
せるよう動作する。
An example of how the transmission power of the mobile terminal changes when the mobile terminal performs the above operation is shown by a solid line 6 in FIG.
It is shown in FIG. The horizontal axis 60 represents time, and the vertical axis 61 represents transmission power of the mobile terminal. The horizontal axis 60 also includes the judgment results 83a to 83e of the transmission power control signals received from the time 120 to 124. As shown in FIG. 33, the mobile terminal increases the transmission power by 1 dB at times 122 and 124 when the control signal determination result is “1”, and transmits at times 120, 121 and 123 when the control signal determination result is “0”. Operate to reduce power by 1 dB.

【0015】[0015]

【発明が解決しようとする課題】発明が解決しようとす
る課題として、以下に示す二点がある。
Problems to be Solved by the Invention There are the following two problems to be solved by the invention.

【0016】第一の課題として、移動端末において送信
電力制御信号の受信品質が悪い場合、受信された送信電
力制御信号は誤りを含む復調結果となる可能性が大きく
なる。この場合、従来の技術のように復調結果を「0」
あるいは「1」のいずれかに判定する方法では、正しい
送信電力制御信号値と異なる値に誤判定する可能性が大
きくなる。
As the first problem, when the reception quality of the transmission power control signal is poor in the mobile terminal, the possibility that the received transmission power control signal becomes a demodulation result including an error increases. In this case, the demodulation result is set to “0” as in the related art.
Alternatively, in the method of determining as “1”, the possibility of erroneously determining a value different from the correct transmission power control signal value increases.

【0017】ここで「1」と判定すべき送信電力制御信
号を誤って「0」と判定した場合、すなわち移動端末が
送信電力を増加すべき時に誤って送信電力を減少した場
合、基地局では前記移動端末からの受信信号の品質が低
下する。この結果、通信品質の劣化、更には通信の切断
が発生する。
If the transmission power control signal to be determined as "1" is erroneously determined to be "0", that is, if the mobile terminal erroneously reduces the transmission power when the transmission power should be increased, the base station performs The quality of the signal received from the mobile terminal is degraded. As a result, the communication quality deteriorates and the communication is disconnected.

【0018】逆に「0」と判定すべき送信電力制御信号
を誤って「1」と判定した場合、すなわち移動端末が送
信電力を減少すべき時に誤って送信電力を増加した場
合、基地局では前記移動端末の信号による他の移動端末
に対する干渉量が増大する。従って他の移動端末の通信
品質の劣化、及び通信の切断が発生する。これは同時に
通信可能な移動端末の数が減少することを意味し、結果
としてシステム全体の通信容量が減少する。
Conversely, if the transmission power control signal to be determined to be "0" is erroneously determined to be "1", that is, if the mobile terminal erroneously increases the transmission power when the mobile terminal should reduce the transmission power, the base station performs The amount of interference with other mobile terminals due to the signal of the mobile terminal increases. Accordingly, the communication quality of the other mobile terminals deteriorates and the communication is disconnected. This means that the number of mobile terminals that can communicate simultaneously decreases, and as a result, the communication capacity of the entire system decreases.

【0019】また、移動端末の受信機に含まれる直流オ
フセット成分等により、受信品質の悪い送信電力制御信
号の判定結果が「0」または「1」のいずれかに偏るよ
うな場合、前記の通信品質の低下やシステムの通信容量
の減少はより顕著に現れることになる。
Further, when the determination result of the transmission power control signal having poor reception quality is biased to either “0” or “1” due to a DC offset component or the like included in the receiver of the mobile terminal, the communication is performed. A decrease in quality and a decrease in the communication capacity of the system will appear more remarkably.

【0020】第二の課題として、通信の切断を行う際、
基地局での制御シーケンスとして受信の動作を送信の動
作より早く停止する場合、すなわち図29の同期捕捉・
逆拡散回路213i(i=1,2,..,n)の動作が
上りチャネルSIR測定部221の動作より早く停止す
る場合、上りチャネルSIR測定部221は動作が停止
した同期捕捉・逆拡散回路213iの出力からSIRi
を得ようとするため、その動作が不安定になると考えら
れる。この場合、不適切な送信電力制御信号TPCiが
作成され、基地局から移動端末MSiに送信される。移
動端末MSiは上記の不適切な送信電力制御信号TPC
iに従って送信電力を制御した結果、過剰な送信電力で
送信を行う可能性がある。この場合、基地局では移動端
末MSiの信号による他の移動端末に対する干渉量が増
大する。従って他の移動端末の通信品質の劣化、及び通
信の切断が発生する。これは第一の課題と同様にシステ
ム全体の通信容量を減少させる。
As a second problem, when disconnecting communication,
When the receiving operation is stopped earlier than the transmitting operation as a control sequence in the base station,
When the operation of the despreading circuit 213i (i = 1, 2,..., N) stops earlier than the operation of the uplink channel SIR measuring unit 221, the uplink channel SIR measuring unit 221 stops the synchronization acquisition / despreading circuit. 213i output to SIRi
Therefore, it is considered that the operation becomes unstable. In this case, an inappropriate transmission power control signal TPCi is created and transmitted from the base station to the mobile terminal MSi. The mobile terminal MSi receives the inappropriate transmission power control signal TPC
As a result of controlling the transmission power according to i, there is a possibility that transmission will be performed with excessive transmission power. In this case, the base station increases the amount of interference with the other mobile terminals due to the signal of the mobile terminal MSi. Accordingly, the communication quality of the other mobile terminals deteriorates and the communication is disconnected. This reduces the communication capacity of the entire system as in the first problem.

【0021】[0021]

【課題を解決するための手段】第一の課題を解決すべく
本願発明は、無線基地局は、移動端末の送信電力を制御
する送信電力制御信号を送信し、移動端末は受信した送
信電力制御信号と受信品質に基づいて前記送信電力制御
信号の尤度を算出し、前記尤度に基づいて送信電力の変
化量を算出し、前記変化量に基づいて移動端末の送信電
力を制御する構成からなる。
In order to solve the first problem, according to the present invention, a radio base station transmits a transmission power control signal for controlling transmission power of a mobile terminal, and the mobile terminal receives the transmission power control signal. From the configuration that calculates the likelihood of the transmission power control signal based on the signal and the reception quality, calculates the amount of change in transmission power based on the likelihood, and controls the transmission power of the mobile terminal based on the amount of change. Become.

【0022】また、第一の課題を解決すべく本願発明
は、前記尤度の算出を、前記無線基地局から送信される
信号のとまり木受信品質をも加えて行うことを特徴と
し、また、前記無線基地局から送信される信号のとまり
木受信品質と、送信電力制御信号の受信品質とを比較
し、受信しているチャネルの受信品質のみが劣化したと
き、受信しているチャネルが呼切断されたと判定し、両
者が同時に劣化したとき、端末が物陰に入った等の事情
で適切な受信状態では無くなったと判定し、これらの判
定結果に基づいて尤度の算出を行うことを特徴とする。
[0022] In order to solve the first problem, the present invention is characterized in that the calculation of the likelihood is performed by also adding perch reception quality of a signal transmitted from the radio base station. The perch reception quality of the signal transmitted from the radio base station is compared with the reception quality of the transmission power control signal, and when only the reception quality of the receiving channel is deteriorated, the call of the receiving channel is disconnected. If both are deteriorated at the same time, it is determined that the terminal is no longer in an appropriate reception state due to circumstances such as the object being in the shade, and the likelihood is calculated based on these determination results.

【0023】また、第一の課題を解決すべく本願発明
は、前記送信電力制御信号の尤度の絶対値が大きいとき
に、移動端末の送信電力の上限値と下限値とを更新して
保持し、前記移動端末の送信電力を前記上限値と下限値
との間に制限することを特徴とする。
In order to solve the first problem, the present invention updates and holds the upper and lower limits of the transmission power of the mobile terminal when the absolute value of the likelihood of the transmission power control signal is large. The transmission power of the mobile terminal is limited between the upper limit and the lower limit.

【0024】また、第一の課題を解決すべく本願発明
は、移動端末の送信電力の平均値を算出し、前記尤度の
大きさに基づいて、前記算出した移動端末の平均送信電
力、あるいは、前記尤度に基づいて算出された移動端末
の送信電力となるように、前記移動端末の送信電力を切
り換えることを特徴とする。
Further, in order to solve the first problem, the present invention calculates an average value of transmission power of a mobile terminal, and calculates the calculated average transmission power of the mobile terminal based on the magnitude of the likelihood, or The transmission power of the mobile terminal is switched so that the transmission power of the mobile terminal is calculated based on the likelihood.

【0025】また、第一の課題を解決すべく本願発明
は、使用中のチャネルとは異なる他のチャネルの受信品
質または受信電力に基づいて開ループ送信電力を算出
し、前記尤度の大きさに基づいて、前記算出した開ルー
プ送信電力、あるいは、前記尤度に基づいて算出された
移動端末の送信電力となるように、前記移動端末の送信
電力を切り換えることを特徴とする。
Further, in order to solve the first problem, the present invention calculates an open-loop transmission power based on reception quality or reception power of another channel different from the channel in use, and calculates the magnitude of the likelihood. , The transmission power of the mobile terminal is switched so as to be the calculated open-loop transmission power or the transmission power of the mobile terminal calculated based on the likelihood.

【0026】また、第一の課題を解決すべく本願発明
は、前記送電電力制御信号は2値からなる信号であり、
前記尤度の計算は、受信品質が良い場合には尤度の絶対
値を大きくし、受信品質が悪い場合には尤度の絶対値を
小さくすることを特徴とする。
[0026] In order to solve the first problem, the present invention provides a transmission power control signal comprising a binary signal;
The calculation of the likelihood is characterized by increasing the absolute value of the likelihood when the reception quality is good, and decreasing the absolute value of the likelihood when the reception quality is bad.

【0027】また、第一の課題を解決すべく本願発明
は、前記尤度が第1の基準値以上の場合は送信電力を上
げ、前記尤度が前記第1の基準値より小さくかつ第2の
基準値以上の場合は送信電力を維持し、前記第2の基準
値より小さい場合は送信電力を下げることを特徴とす
る。
[0027] In order to solve the first problem, the present invention increases transmission power when the likelihood is equal to or more than a first reference value, and increases the transmission power when the likelihood is smaller than the first reference value and the second likelihood is smaller than the first reference value. The transmission power is maintained when the value is equal to or more than the reference value, and the transmission power is reduced when the value is smaller than the second reference value.

【0028】また、第一の課題を解決すべく本願発明
は、前記尤度が第1の基準値以上の場合は送信電力を上
げ、前記尤度が前記第1の基準値より小さくかつ第2の
基準値以上の場合は送信電力をトグル制御し、前記第2
の基準値より小さい場合は送信電力を下げることを特徴
とする。
[0028] In order to solve the first problem, the present invention increases the transmission power when the likelihood is equal to or more than a first reference value, and when the likelihood is smaller than the first reference value and the second likelihood is smaller than the first reference value. When the transmission power is equal to or more than the reference value, the transmission power is toggled, and the second
When the value is smaller than the reference value, the transmission power is reduced.

【0029】また、第一の課題を解決すべく本願発明
は、前記尤度が第1の基準値以上の場合は送信電力を上
げ、前記尤度が前記第1の基準値より小さくかつ第2の
基準値以上の場合は送信電力の変化量を前記尤度に対応
した電力とし、前記第2の基準値より小さい場合は送信
電力を下げることを特徴とする。
Further, in order to solve the first problem, according to the present invention, the transmission power is increased when the likelihood is equal to or more than a first reference value, and the likelihood is smaller than the first reference value and the second likelihood is increased. When the value is equal to or more than the reference value, the change amount of the transmission power is set to the power corresponding to the likelihood, and when the value is smaller than the second reference value, the transmission power is reduced.

【0030】また、第二の課題を解決すべく本願発明
は、無線基地局は前記各移動端末毎のSIRを測定し、
前記測定された各SIRと予め与えられた目標SIRと
を比較し、前記SIRが目標SIR以上の場合はまたは
前記無線基地局が前記移動端末に対し受信動作停止中の
場合は送信電力を減少させる送信電力制御信号を作成
し、前記SIRが目標SIR未満の場合は送信電力を増
加させる送信電力制御信号を作成し、前記作成された送
信電力制御信号を移動端末に送信することを特徴とす
る。
Further, in order to solve the second problem, according to the present invention, the radio base station measures the SIR of each mobile terminal,
The measured SIR is compared with a predetermined target SIR. If the SIR is equal to or larger than the target SIR, or if the radio base station is not receiving data from the mobile terminal, the transmission power is reduced. A transmission power control signal is generated, and if the SIR is less than the target SIR, a transmission power control signal for increasing transmission power is generated, and the generated transmission power control signal is transmitted to a mobile terminal.

【0031】[0031]

【発明の実施の形態】図1に第一の実施形態の移動端末
の構成図を示す。図32に示した従来の移動端末の構成
要素と対応する要素に対しては同一の符号を付してあ
る。
FIG. 1 shows a configuration diagram of a mobile terminal according to a first embodiment. Elements corresponding to those of the conventional mobile terminal shown in FIG. 32 are denoted by the same reference numerals.

【0032】アンテナ10、サーキュレータ11、受信
用無線モジュール12、同期捕捉・逆拡散回路13及び
検波部14でそれぞれ処理を施された受信信号は、信号
線16を介して送信電力制御信号尤度算出部30へ入力
される。
The received signals processed by the antenna 10, the circulator 11, the receiving radio module 12, the synchronization acquisition / despreading circuit 13, and the detector 14 are transmitted via a signal line 16 to calculate a transmission power control signal likelihood. Input to the unit 30.

【0033】送信電力制御信号尤度算出部30は、受信
した送信電力制御信号の受信品質と「0」あるいは
「1」の判定結果から、送信電力制御信号の尤度を算出
する。送信電力制御信号尤度算出部30の構成を図2に
示す。送信電力制御信号0/1判定部40は受信された
送信電力制御信号が「0」または「1」のいずれである
かの判定を行う。
The transmission power control signal likelihood calculating section 30 calculates the likelihood of the transmission power control signal from the reception quality of the received transmission power control signal and the determination result of “0” or “1”. FIG. 2 shows the configuration of transmission power control signal likelihood calculating section 30. The transmission power control signal 0/1 determination unit 40 determines whether the received transmission power control signal is “0” or “1”.

【0034】受信品質算出部50は受信された送信電力
制御信号の受信品質を算出し、尤度算出部51へ出力す
る。受信品質算出部50が算出する受信品質としては、
基本的には送信電力制御信号受信時に瞬時に測定された
受信電力やSIR等を用いるべきである。一方、受信電
力やSIRを正確に観測するためには長時間の積分操作
が必要となる。高速性が要求される送信電力制御に、前
記長時間積分された受信電力あるいはSIR(以下長時
間積分値と呼ぶ)を使用した場合、制御遅延が大きくな
り、適切に送信電力が制御できなくなることが考えられ
る。従って、受信品質算出部50は前記送信電力制御信
号及び、前記送信電力制御信号と時間的に近い時刻に受
信された信号の受信電力やSIRの積分結果(以下短時
間積分値と呼ぶ)から、送信電力制御信号の受信品質を
算出する。
[0034] Reception quality calculation section 50 calculates the reception quality of the received transmission power control signal and outputs it to likelihood calculation section 51. The reception quality calculated by the reception quality calculation unit 50 includes:
Basically, the received power, SIR, etc., measured instantaneously when receiving the transmission power control signal should be used. On the other hand, a long-time integration operation is required to accurately observe the received power and SIR. When the above-described long-time integrated reception power or SIR (hereinafter, referred to as a long-time integration value) is used for transmission power control that requires high speed, control delay becomes large and transmission power cannot be appropriately controlled. Can be considered. Therefore, the reception quality calculation unit 50 calculates the transmission power control signal, the reception power of the signal received at a time that is temporally close to the transmission power control signal, and the integration result of the SIR (hereinafter, referred to as a short-time integration value). The reception quality of the transmission power control signal is calculated.

【0035】また、短時間積分値は誤差が大きいと考え
られるため、短時間積分値をそのまま受信品質の算出に
用いると、誤った受信品質を算出してしまう可能性があ
る。そこで例えば、受信電力算出部50は長時間積分値
と短時間積分値を比較し、両者の差が大きな場合には悪
い受信品質を出力する動作を行っても良い。
Further, since the short-time integrated value is considered to have a large error, if the short-time integrated value is directly used for calculating the reception quality, there is a possibility that an erroneous reception quality may be calculated. Therefore, for example, the reception power calculation unit 50 may compare the long-term integration value and the short-time integration value, and may perform an operation of outputting poor reception quality if the difference between the two is large.

【0036】さらに、受信しているチャネルが呼切断、
あるいは物陰に入った等の事情で適切な受信状態では無
くなった事を推定するため、受信品質算出部50は以下
の動作を行っても良い。移動端末は、例えばW−CDM
A方式におけるとまり木チャネルのように基地局より常
時送信され、且つその送信電力が既知であるチャネルの
受信電力あるいはSIR(以下とまり木受信品質と呼
ぶ)を測定する。この場合の受信品質算出部の構成を図
34に示す。とまり木受信品質測定部300は上記とま
り木受信品質を測定する。比較部301は前記短時間積
分値と、とまり木受信品質測定部300から得られると
まり木受信品質を比較する。受信品質決定部302は比
較部301での比較結果から、受信しているチャネルの
受信品質のみが劣化したときは、受信しているチャネル
が呼切断されたと判定し、あるいは両者が同時に劣化し
たときは端末が物陰に入った等の事情で適切な受信状態
では無くなったと判定し、悪い受信品質を出力する。
Further, when the receiving channel is a call disconnection,
Alternatively, the reception quality calculation unit 50 may perform the following operation in order to estimate that the reception state is no longer appropriate due to circumstances such as being behind a shadow. The mobile terminal is, for example, a W-CDM.
It measures the reception power or SIR (hereinafter, perch reception quality) of a channel that is always transmitted from the base station and whose transmission power is known, such as a perch channel in the A system, and is known. FIG. 34 shows the configuration of the reception quality calculation unit in this case. The perch reception quality measuring section 300 measures the perch reception quality. The comparison unit 301 compares the short-time integration value with the perch reception quality obtained from the perch reception quality measurement unit 300. The reception quality determination unit 302 determines from the comparison result of the comparison unit 301 that only the reception quality of the receiving channel is degraded, that the receiving channel is disconnected, or that both are degraded simultaneously. Determines that the terminal is no longer in an appropriate reception state due to circumstances such as the object being behind a shadow, and outputs poor reception quality.

【0037】尤度算出部51は送信電力制御信号0/1
判定部40の判定結果、及び受信品質算出部50の算出
結果を基に、前記送信電力制御信号の尤度を算出する。
送信電力制御信号0/1判定部40の判定結果、及び受
信品質算出部50の算出結果と尤度の関係の一例を図3
の折線150に示す。以下に図3の場合の尤度算出結果
について説明する。送信電力制御信号の判定結果が1の
場合、尤度は正の値を取るものとする。逆に判定結果が
0の場合、尤度は負の値を取るものとする。さらに受信
品質が良い場合は尤度の絶対値を大きくし、逆に受信品
質が悪い場合は尤度の絶対値を小さくするものとする。
The likelihood calculating section 51 outputs a transmission power control signal 0/1.
The likelihood of the transmission power control signal is calculated based on the determination result of the determination unit 40 and the calculation result of the reception quality calculation unit 50.
FIG. 3 shows an example of the relationship between the determination result of the transmission power control signal 0/1 determination unit 40, the calculation result of the reception quality calculation unit 50, and the likelihood.
Is indicated by a broken line 150. Hereinafter, the result of likelihood calculation in the case of FIG. 3 will be described. When the determination result of the transmission power control signal is 1, the likelihood assumes a positive value. Conversely, when the determination result is 0, the likelihood assumes a negative value. Further, when the reception quality is good, the absolute value of the likelihood is increased, and when the reception quality is bad, the absolute value of the likelihood is reduced.

【0038】上記方法で算出された送信電力制御信号の
尤度は図1の送信電力変化量算出部31へ入力される。
送信電力変化量算出部31は、入力された送信電力制御
信号の尤度を基に送信電力の変化量を算出する。第一の
実施形態の送信電力変化量算出部31の構成を図4に示
す。尤度判定部70は送信電力制御信号尤度算出部30
から入力される送信電力制御信号の尤度を基に、送信電
力の変化量として例えば「+1dB(増加)」、「−1
dB(減少)」、「0dB(変化なし)」のいずれかを
選択する制御信号を作成し、セレクタ71へ出力する。
第一の実施形態での尤度判定部70の動作の一例を図5
に示す。入力される送信電力制御信号の尤度がα+以上
の領域100に存在する場合、尤度判定部70はセレク
タ71において「+1dB」が選択されるような制御信
号をセレクタ71に出力する。同様に、入力される送信
電力制御信号の尤度がα−以上α+未満の領域101に
存在する場合、尤度判定部70は「0dB」が選択され
るような制御信号を、入力される送信電力制御信号の尤
度がα−未満の領域102に存在する場合、尤度判定部
70は「−1dB」が選択されるような制御信号をセレ
クタ71へ出力する。セレクタ71は尤度判定部70か
らの制御信号に従って送信電力変化量を選択し、図1の
送信電力算出部19へ出力する。
The likelihood of the transmission power control signal calculated by the above method is input to the transmission power variation calculator 31 in FIG.
The transmission power variation calculator 31 calculates the variation of the transmission power based on the likelihood of the input transmission power control signal. FIG. 4 shows the configuration of the transmission power change amount calculation unit 31 according to the first embodiment. Likelihood determining section 70 includes transmission power control signal likelihood calculating section 30.
For example, “+1 dB (increase)”, “−1” as the amount of change in transmission power based on the likelihood of the transmission power control signal input from
A control signal for selecting one of “dB (decrease)” and “0 dB (no change)” is generated and output to the selector 71.
FIG. 5 shows an example of the operation of the likelihood determination unit 70 in the first embodiment.
Shown in When the likelihood of the input transmission power control signal is in the region 100 of α + or more, the likelihood determination unit 70 outputs a control signal to the selector 71 such that “+1 dB” is selected by the selector 71. Similarly, when the likelihood of the input transmission power control signal is in the region 101 that is equal to or more than α− and less than α +, the likelihood determination unit 70 transmits a control signal for which “0 dB” is selected to the input transmission signal. When the likelihood of the power control signal exists in the region 102 less than α−, the likelihood determining unit 70 outputs a control signal to select “−1 dB” to the selector 71. The selector 71 selects a transmission power change amount according to the control signal from the likelihood determination unit 70, and outputs it to the transmission power calculation unit 19 in FIG.

【0039】図1の送信電力算出部19は送信電力変化
量算出部31から入力される送信電力の変化量と、送信
電力保持回路20から入力される現時点での送信電力を
基に、従来の移動端末と同様に送信電力を算出する。符
号化部21及び拡散回路23で処理を施された送信信号
は、可変利得増幅器21で前記送信電力で送信されるよ
うに増幅された後、送信用無線モジュール24及びサー
キュレータ11を介してアンテナ10より送信される。
The transmission power calculating section 19 shown in FIG. 1 uses the conventional transmission power inputted from the transmission power holding circuit 20 and the transmission power change amount inputted from the transmission power variation calculating section 31 to obtain the conventional transmission power. The transmission power is calculated similarly to the mobile terminal. The transmission signal processed by the encoding unit 21 and the spreading circuit 23 is amplified by the variable gain amplifier 21 so as to be transmitted at the transmission power, and then transmitted through the transmission wireless module 24 and the circulator 11 to the antenna 10. Sent by

【0040】移動端末が第一の実施形態の動作を行った
場合の移動端末の送信電力の変化の様子の一例を図6の
実線63に示す。図6のように、送信電力制御信号の尤
度がα−以上α+未満の時間103の間は、移動端末は
送信電力の変化量を0dB、すなわち送信電力を変化さ
せないよう動作する。
An example of how the transmission power of the mobile terminal changes when the mobile terminal performs the operation of the first embodiment is shown by a solid line 63 in FIG. As shown in FIG. 6, during the time 103 when the likelihood of the transmission power control signal is equal to or more than α− and less than α +, the mobile terminal operates so that the amount of change in transmission power is 0 dB, that is, the transmission power is not changed.

【0041】次に、第二の実施形態の移動端末の動作に
ついて説明する。第二の実施形態の移動端末の構成は第
一の実施形態と同様に図1となる。第二の実施形態では
送信電力変化量算出部31の構成が第一の実施形態とは
異なる。第二の実施形態の送信電力変化量算出部31の
構成を図7に示す。第一の実施形態の送信電力変化量算
出部31と対応する構成要素に対しては同一の番号を付
してある。
Next, the operation of the mobile terminal according to the second embodiment will be described. The configuration of the mobile terminal of the second embodiment is as shown in FIG. 1 as in the first embodiment. In the second embodiment, the configuration of the transmission power change amount calculation unit 31 is different from that of the first embodiment. FIG. 7 shows the configuration of the transmission power change amount calculation unit 31 according to the second embodiment. The same elements as those of the first embodiment are denoted by the same reference numerals.

【0042】尤度判定部70は送信電力制御信号尤度算
出部30から入力される送信電力制御信号の尤度を基
に、送信電力の変化量として例えば「+1dB(増
加)」、「−1dB(減少)」、「トグル部72(トグ
ル動作)」のいずれを選択するかの制御信号作成し、セ
レクタ71へ出力する。トグル部72の動作を図8に示
す。トグル部72は入力が「+1dB」の場合は「−1
dB」を出力し、入力が「−1dB」の場合は「+1d
B」を出力するものとする。第二の実施形態での尤度判
定部70の動作の一例を図9に示す。入力される送信電
力制御信号の尤度がα+以上の領域100に存在する場
合、尤度判定部70はセレクタ71において「+1d
B」が選択されるような制御信号をセレクタ71に出力
する。同様に、入力される送信電力制御信号の尤度がα
−以上α+未満の領域101に存在する場合、尤度判定
部70は「トグル部72」が選択されるような制御信号
を、入力される送信電力制御信号の尤度がα−未満の領
域102に存在する場合、尤度判定部70は「−1d
B」が選択されるような制御信号をセレクタ71へ出力
する。セレクタ71は尤度判定部70からの制御信号に
従って送信電力変化量を選択し、図1の送信電力算出部
19へ出力する。以下送信信号がアンテナ10から送信
されるまでの動作は第一の実施形態と同様である。
Based on the likelihood of the transmission power control signal input from transmission power control signal likelihood calculating section 30, likelihood determining section 70 determines, for example, “+1 dB (increase)” and “−1 dB” as the amount of change in transmission power. (Decrease) ”, and a control signal for selecting which of the“ toggle unit 72 (toggle operation) ”is selected, and outputs the control signal to the selector 71. The operation of the toggle unit 72 is shown in FIG. When the input is “+1 dB”, the toggle unit 72 sets “−1”.
dB) and outputs “+ 1d” when the input is “−1 dB”.
B "is output. FIG. 9 shows an example of the operation of the likelihood determination unit 70 in the second embodiment. If the likelihood of the input transmission power control signal is in the region 100 of α + or more, the likelihood determination unit 70 determines “+ 1d
A control signal for selecting “B” is output to the selector 71. Similarly, the likelihood of the input transmission power control signal is α
In the case where the likelihood determining unit 70 determines that the likelihood determining unit 70 selects the “toggle unit 72”, the likelihood determining unit 70 converts the control signal into a region 102 in which the likelihood of the input transmission power control signal is less than α−. , The likelihood determination unit 70 determines “−1d
A control signal for selecting “B” is output to the selector 71. The selector 71 selects a transmission power change amount according to the control signal from the likelihood determination unit 70, and outputs it to the transmission power calculation unit 19 in FIG. Hereinafter, the operation until the transmission signal is transmitted from the antenna 10 is the same as that of the first embodiment.

【0043】移動端末が第二の実施形態の動作を行った
場合の移動端末の送信電力の変化の様子の一例を図10
の実線64に示す。図10のように、送信電力制御信号
の尤度がα−以上α+未満の時間103の間は、移動端
末は送信電力の変化量として「+1dB」と「−1d
B」を交互に繰返すように動作する。
FIG. 10 shows an example of how the transmission power of the mobile terminal changes when the mobile terminal performs the operation of the second embodiment.
The solid line 64 of FIG. As shown in FIG. 10, during the time 103 during which the likelihood of the transmission power control signal is equal to or more than α− and less than α +, the mobile terminal determines that the transmission power change amounts are “+1 dB” and “−1d”.
B ”is alternately repeated.

【0044】次に、第三の実施形態の移動端末の動作に
ついて説明する。第三の実施形態の移動端末の構成は第
一の実施形態及び第二の実施形態と同様に図1となる。
第三の実施形態では送信電力変化量算出部31の構成が
第一の実施形態及び第二の実施形態とは異なる。第三の
実施形態の送信電力変化量算出部31の構成を図11に
示す。尤度−送信電力変化量変換部73は送信電力制御
信号尤度算出部30から入力される送信電力制御信号の
尤度を、送信電力変化量に変換する。尤度−送信電力変
化量変換部73の動作の一例を図12の折線74に示
す。図12では、入力される送信電力制御信号の尤度が
α+以上の場合、尤度−送信電力変化量変換部73は送
信電力変化量として例えば「+1dB」を送信電力算出
部19へ出力する。同様に入力される送信電力制御信号
の尤度がα−未満の場合、尤度−送信電力変化量変換部
73は送信電力変化量として例えば「−1dB」を送信
電力算出部19へ出力する。ここで、入力される送信電
力制御信号の尤度がα−以上α+未満の場合、尤度−送
信電力変化量変換部73は送信電力制御信号の尤度に応
じて、例えば、図12の折線74のように変化する送信
電力変化量を送信電力算出部19へ出力する。以下送信
信号がアンテナ10から送信されるまでの動作は第一の
実施形態と同様である。
Next, the operation of the mobile terminal according to the third embodiment will be described. The configuration of the mobile terminal according to the third embodiment is as shown in FIG. 1 as in the first embodiment and the second embodiment.
In the third embodiment, the configuration of the transmission power change amount calculation unit 31 is different from the first embodiment and the second embodiment. FIG. 11 shows the configuration of the transmission power change amount calculation unit 31 according to the third embodiment. The likelihood-transmission power change amount conversion unit 73 converts the likelihood of the transmission power control signal input from the transmission power control signal likelihood calculation unit 30 into a transmission power change amount. An example of the operation of the likelihood-transmission power change amount conversion unit 73 is shown by a broken line 74 in FIG. In FIG. 12, when the likelihood of the input transmission power control signal is equal to or more than α +, likelihood-transmission power change amount conversion section 73 outputs, for example, “+1 dB” to transmission power calculation section 19 as the transmission power change amount. Similarly, when the likelihood of the input transmission power control signal is less than α−, the likelihood-transmission power variation converter 73 outputs, for example, “−1 dB” as the transmission power variation to the transmission power calculator 19. Here, when the likelihood of the input transmission power control signal is equal to or more than α− and less than α +, the likelihood-transmission power change amount conversion unit 73 responds to the likelihood of the transmission power control signal by, for example, the broken line in FIG. The transmission power change amount that changes like 74 is output to the transmission power calculation unit 19. Hereinafter, the operation until the transmission signal is transmitted from the antenna 10 is the same as that of the first embodiment.

【0045】移動端末が第三の実施形態の動作を行った
場合の移動端末の送信電力の変化の様子の一例を図13
の実線65に示す。図13のように、送信電力制御信号
の尤度がα−以上α+未満の時間103の間は、移動端
末は送信電力の変化量が「+1dB」や「−1dB」よ
りも小さな値となるように移動端末は送信電力を制御す
る。
FIG. 13 shows an example of how the transmission power of the mobile terminal changes when the mobile terminal performs the operation of the third embodiment.
The solid line 65 of FIG. As shown in FIG. 13, during the time 103 during which the likelihood of the transmission power control signal is equal to or more than α− and less than α +, the mobile terminal changes the transmission power to a value smaller than “+1 dB” or “−1 dB”. The mobile terminal controls the transmission power.

【0046】第四の実施形態の移動端末の構成を図14
に示す。図32及び図1に示した移動端末の構成と対応
する構成要素には同一の番号を付してある。第一の実施
形態と同様に送信電力制御信号尤度算出部30で算出さ
れた送信電力制御信号の尤度は送信電力変化量算出部3
1へ入力される。
FIG. 14 shows the configuration of the mobile terminal according to the fourth embodiment.
Shown in Components corresponding to the configuration of the mobile terminal shown in FIG. 32 and FIG. 1 are denoted by the same reference numerals. As in the first embodiment, the likelihood of the transmission power control signal calculated by the transmission power control signal likelihood calculation unit 30 is calculated by the transmission power change amount calculation unit 3.
1 is input.

【0047】第四の実施形態の送信電力変化量算出部3
1の構成を図15に示す。尤度判定部130は送信電力
制御信号尤度算出部30から入力される送信電力制御信
号の尤度を基に、送信電力の変化量として例えば「+1
dB(増加)」あるいは「−1dB(減少)」のいずれ
かを選択する制御信号作成し、セレクタ131へ出力す
る。第四の実施形態での尤度判定部130の動作の一例
を図16に示す。入力される送信電力制御信号の尤度が
0以上の領域に存在する場合、尤度判定部130はセレ
クタ131において「+1dB」が選択されるような制
御信号をセレクタ131に出力する。逆に入力される送
信電力制御信号の尤度が0未満の領域に存在する場合、
尤度判定部130は「−1dB」が選択されるような制
御信号をセレクタ131へ出力する。セレクタ131は
尤度判定部130からの制御信号に従って送信電力変化
量を選択し、図14の送信電力算出部19へ出力する。
送信電力算出部19は第一の実施形態と同様に移動端末
の送信電力を算出する。
Transmission power variation calculating section 3 of the fourth embodiment
1 is shown in FIG. Based on the likelihood of the transmission power control signal input from transmission power control signal likelihood calculating section 30, likelihood determining section 130 calculates, for example, “+1” as the amount of change in transmission power.
A control signal for selecting either “dB (increase)” or “−1 dB (decrease)” is generated and output to the selector 131. FIG. 16 illustrates an example of the operation of the likelihood determination unit 130 according to the fourth embodiment. If the likelihood of the input transmission power control signal is in an area of 0 or more, likelihood determination section 130 outputs a control signal to selector 131 to select “+1 dB”. Conversely, when the likelihood of the input transmission power control signal is in a region where it is less than 0,
Likelihood determining section 130 outputs a control signal to selector 131 such that “−1 dB” is selected. The selector 131 selects the transmission power change amount according to the control signal from the likelihood determination unit 130, and outputs it to the transmission power calculation unit 19 in FIG.
The transmission power calculator 19 calculates the transmission power of the mobile terminal as in the first embodiment.

【0048】送信電力制限部32は送信電力算出部19
で算出された送信電力と送信電力制限部32内部で算出
される送信電力制限値とを比較し、移動端末の送信電力
の制限を行う。送信電力制限部32の構成を図17に示
す。送信電力算出部19より入力された送信電力は送信
電力制限値算出部90と比較部91に入力される。送信
電力制限値算出部90の動作の一例を図18に示す。送
信電力制限値算出部90では、まず送信電力制御信号尤
度算出部30より入力される送信電力制御信号の尤度と
閾値β−及びβ+との比較が行われる。ここで送信電力
制御信号の尤度がβ−≦(尤度)<β+の関係が成立し
ない場合、すなわち送信電力制御信号の尤度の絶対値が
大きな場合、送信電力の上限値TXPU及び送信電力の
下限値TXPLの値を更新する。この動作により、送信
電力制御信号の尤度の絶対値が大きな場合、すなわち送
信電力制御信号の受信品質が良い場合、に移動端末の送
信電力の上限値と下限値を算出し、逆に送信電力制御信
号の尤度の絶対値が小さな場合、すなわち送信電力制御
信号の受信品質が悪い場合、には移動端末の送信電力の
上限値と下限時を保持することになる。
The transmission power limiting section 32 includes a transmission power calculating section 19
Is compared with the transmission power limit value calculated inside the transmission power limiting unit 32 to limit the transmission power of the mobile terminal. FIG. 17 shows the configuration of transmission power limiting section 32. The transmission power input from transmission power calculation section 19 is input to transmission power limit value calculation section 90 and comparison section 91. FIG. 18 shows an example of the operation of the transmission power limit value calculation section 90. The transmission power limit value calculation unit 90 first compares the likelihood of the transmission power control signal input from the transmission power control signal likelihood calculation unit 30 with the thresholds β− and β +. Here, when the likelihood of the transmission power control signal does not satisfy the relationship of β− ≦ (likelihood) <β +, that is, when the absolute value of the likelihood of the transmission power control signal is large, the upper limit value TXPU of the transmission power and the transmission power Is updated. By this operation, when the absolute value of the likelihood of the transmission power control signal is large, that is, when the reception quality of the transmission power control signal is good, the upper limit value and the lower limit value of the transmission power of the mobile terminal are calculated. When the absolute value of the likelihood of the control signal is small, that is, when the reception quality of the transmission power control signal is poor, the upper limit and the lower limit of the transmission power of the mobile terminal are held.

【0049】図17の比較部91は送信電力算出部19
から入力された送信電力と、送信電力制限値算出部90
から入力された送信電力の上限値及び下限値との比較を
行う。ここで送信電力算出部19から入力された送信電
力が、送信電力制限値算出部90から入力された送信電
力の上限値TXPUより大きな場合、比較部91は送信
電力をTXPUに変更して図14の送信電力保持回路2
0及び可変利得増幅器21へ出力する。逆に送信電力算
出部19から入力された送信電力が、送信電力制限値算
出部90から入力された送信電力の下限値TXPLより
小さな場合、比較部91は送信電力をTXPLに変更し
て図14の送信電力保持回路20及び可変利得増幅器2
1へ出力する。また、送信電力算出部19から入力され
た送信電力が、TXPUとTXPLの間に存在する場
合、送信電力算出部19から入力された送信電力をその
まま図14の送信電力保持回路20及び可変利得増幅器
21へ出力する。以下送信信号がアンテナ10から送信
されるまでの動作は第一の実施形態と同様である。
The comparing section 91 in FIG.
And the transmission power limit value calculation unit 90
Is compared with the upper limit value and the lower limit value of the transmission power input from. Here, when the transmission power input from transmission power calculation section 19 is larger than upper limit value TXPU of the transmission power input from transmission power limit value calculation section 90, comparison section 91 changes the transmission power to TXPU and changes to FIG. Transmission power holding circuit 2
0 and output to the variable gain amplifier 21. Conversely, when the transmission power input from the transmission power calculation unit 19 is smaller than the lower limit value TXPL of the transmission power input from the transmission power limit value calculation unit 90, the comparison unit 91 changes the transmission power to TXPL and returns to FIG. Transmission power holding circuit 20 and variable gain amplifier 2
Output to 1. Further, when the transmission power input from the transmission power calculation unit 19 exists between TXPU and TXPL, the transmission power input from the transmission power calculation unit 19 is used as it is in the transmission power holding circuit 20 and the variable gain amplifier in FIG. 21. Hereinafter, the operation until the transmission signal is transmitted from the antenna 10 is the same as that of the first embodiment.

【0050】移動端末が第四の実施形態の動作を行った
場合の移動端末の送信電力の変化の様子の一例を図19
の実線66に示す。図19のように、送信電力制御信号
の尤度がα−以上α+未満の時間103の間は、移動端
末の送信電力の上限値TXPU及び下限値TXPLの値
は一定に保たれている。また図19の例では時間103
の間、移動端末の送信電力は送信電力の下限値TXPL
を下回ることの無いように制限される。
FIG. 19 shows an example of how the transmission power of the mobile terminal changes when the mobile terminal performs the operation of the fourth embodiment.
The solid line 66 of FIG. As shown in FIG. 19, during the time 103 during which the likelihood of the transmission power control signal is equal to or more than α− and less than α +, the upper limit value TXPU and the lower limit value TXPL of the transmission power of the mobile terminal are kept constant. In the example of FIG.
, The transmission power of the mobile terminal is equal to the lower limit TXPL of the transmission power.
It is limited so that it does not fall below.

【0051】なお第四の実施形態において、送信電力変
化量算出部31は第一〜第三の実施形態で示した構成で
あってもよい。
In the fourth embodiment, the transmission power variation calculator 31 may have the configuration shown in the first to third embodiments.

【0052】第五の実施形態の移動端末の構成を図20
に示す。図32及び図1に示した移動端末の構成と対応
する構成要素には同一の番号を付してある。第一の実施
形態と同様に送信電力制御信号尤度算出部30で算出さ
れた送信電力制御信号の尤度は送信電力変化量算出部3
1へ入力される。送信電力変化量算出部31は第一〜第
四の実施形態において説明した送信電力変化量算出部3
1のいずれの構成及び動作であっても良い。送信電力変
化量算出部31で算出された送信電力の変化量は、送信
電力算出部19へ入力される。
FIG. 20 shows the configuration of the mobile terminal according to the fifth embodiment.
Shown in Components corresponding to the configuration of the mobile terminal shown in FIG. 32 and FIG. 1 are denoted by the same reference numerals. As in the first embodiment, the likelihood of the transmission power control signal calculated by the transmission power control signal likelihood calculation unit 30 is calculated by the transmission power change amount calculation unit 3.
1 is input. The transmission power variation calculator 31 is the transmission power variation calculator 3 described in the first to fourth embodiments.
Any one of the configurations and operations may be used. The change amount of the transmission power calculated by the transmission power change amount calculation unit 31 is input to the transmission power calculation unit 19.

【0053】送信電力算出部19は第一の実施形態と同
様に移動端末の送信電力を算出する。
The transmission power calculator 19 calculates the transmission power of the mobile terminal as in the first embodiment.

【0054】送信電力算出部19で算出された送信電力
は、送信電力選択部33へ入力される。送信電力選択部
33は、送信電力制御信号尤度算出部30より入力され
る送信電力制御信号の尤度に応じて、送信電力の選択を
行う。
The transmission power calculated by transmission power calculation section 19 is input to transmission power selection section 33. The transmission power selection unit 33 selects transmission power according to the likelihood of the transmission power control signal input from the transmission power control signal likelihood calculation unit 30.

【0055】第五の実施形態における送信電力選択部3
3の構成を図21に示す。尤度判定部140は送信電力
制御信号尤度算出部30から入力される送信電力制御信
号の尤度を基に、送信電力として送信電力算出部19よ
り入力される送信電力、あるいは送信電力平均化部14
2から入力される送信電力のいずれかを選択する制御信
号作成し、セレクタ141へ出力する。第五の実施形態
での尤度判定部140の動作の一例を図22に示す。入
力される送信電力制御信号の尤度がγ+以上の領域10
4あるいはγ−未満の領域106に存在する場合、すな
わち受信した送信電力制御信号の受信品質が良い場合、
尤度判定部140はセレクタ141において送信電力算
出部19より入力される送信電力が選択されるような制
御信号をセレクタ141に出力する。逆に、入力される
送信電力制御信号の尤度がγ−以上γ+未満の領域10
5に存在する場合、すなわち受信した送信電力制御信号
の受信品質が悪い場合、尤度判定部140は送信電力平
均化部142から入力される送信電力が選択されるよう
な制御信号をセレクタ141へ出力する。セレクタ14
1は尤度判定部140からの制御信号に従って送信電力
を選択し、図20の送信電力保持回路20及び可変利得
増幅器21へ送信電力を出力する。ここで、送信電力平
均化部142は入力される送信電力の平均値を計算し、
セレクタ142へ出力するものとする。
Transmission power selecting section 3 in fifth embodiment
3 is shown in FIG. Based on the likelihood of the transmission power control signal input from transmission power control signal likelihood calculation section 30, likelihood determination section 140 transmits transmission power input from transmission power calculation section 19 as transmission power or transmission power averaging. Part 14
A control signal for selecting any one of the transmission powers input from 2 is generated and output to the selector 141. FIG. 22 shows an example of the operation of the likelihood determination unit 140 in the fifth embodiment. Area 10 in which the likelihood of the input transmission power control signal is γ + or more
4 or less than γ−, that is, when the reception quality of the received transmission power control signal is good,
Likelihood determination section 140 outputs a control signal to selector 141 such that selector 141 selects the transmission power input from transmission power calculation section 19. Conversely, the region 10 in which the likelihood of the input transmission power control signal is not less than γ− and less than
5, that is, if the received transmission power control signal has poor reception quality, the likelihood determining section 140 sends a control signal to the selector 141 such that the transmission power input from the transmission power averaging section 142 is selected. Output. Selector 14
1 selects the transmission power according to the control signal from the likelihood determination section 140 and outputs the transmission power to the transmission power holding circuit 20 and the variable gain amplifier 21 in FIG. Here, the transmission power averaging unit 142 calculates an average value of the input transmission power,
It is to be output to the selector 142.

【0056】以下送信信号がアンテナ10から送信され
るまでの動作は第一の実施形態と同様である。
The operation until the transmission signal is transmitted from the antenna 10 is the same as in the first embodiment.

【0057】次に第六の実施形態の移動端末の動作につ
いて説明する。第六の実施形態の移動端末の構成は第五
の実施形態と同様に図20となる。第六の実施形態では
送信電力選択部33の構成が第五の実施形態とは異な
る。第六の実施形態の送信電力選択部33の構成を図2
3に示す。尤度判定部150は送信電力制御信号尤度算
出部30から入力される送信電力制御信号の尤度を基
に、送信電力として送信電力算出部19より入力される
送信電力、あるいは開ループ送信電力算出部152から
入力される送信電力のいずれかを選択する制御信号作成
し、セレクタ151へ出力する。第六の実施形態での尤
度判定部150の動作の一例を図24に示す。入力され
る送信電力制御信号の尤度がδ+以上の領域107ある
いはδ−未満の領域109に存在する場合、すなわち受
信した送信電力制御信号の受信品質が良い場合、尤度判
定部150はセレクタ151において送信電力算出部1
9より入力される送信電力が選択されるような制御信号
をセレクタ151に出力する。逆に、入力される送信電
力制御信号の尤度がδ−以上δ+未満の領域108に存
在する場合、すなわち受信した送信電力制御信号の受信
品質が悪い場合、尤度判定部150は開ループ送信電力
算出部152から入力される送信電力が選択されるよう
な制御信号をセレクタ151へ出力する。セレクタ15
1は尤度判定部150からの制御信号に従って送信電力
を選択し、図20の送信電力保持回路20及び可変利得
増幅器21へ送信電力を出力する。
Next, the operation of the mobile terminal according to the sixth embodiment will be described. The configuration of the mobile terminal according to the sixth embodiment is as shown in FIG. 20 as in the fifth embodiment. In the sixth embodiment, the configuration of the transmission power selection unit 33 is different from that of the fifth embodiment. FIG. 2 shows the configuration of the transmission power selection unit 33 according to the sixth embodiment.
3 is shown. Based on the likelihood of the transmission power control signal input from transmission power control signal likelihood calculation section 30, likelihood determination section 150 transmits transmission power input from transmission power calculation section 19 as transmission power or open-loop transmission power. A control signal for selecting one of the transmission powers input from calculation section 152 is created and output to selector 151. FIG. 24 shows an example of the operation of the likelihood determining section 150 in the sixth embodiment. If the likelihood of the input transmission power control signal is in region 107 equal to or more than δ + or in region 109 less than δ−, that is, when the reception quality of the received transmission power control signal is good, likelihood determination section 150 selects selector 151. Transmission power calculation unit 1
A control signal for selecting the transmission power input from the selector 9 is output to the selector 151. Conversely, if the likelihood of the input transmission power control signal is in the region 108 of δ− or more and less than δ +, that is, if the reception quality of the received transmission power control signal is poor, likelihood determination section 150 performs open-loop transmission. A control signal for selecting the transmission power input from power calculation section 152 is output to selector 151. Selector 15
1 selects the transmission power in accordance with the control signal from the likelihood determination section 150 and outputs the transmission power to the transmission power holding circuit 20 and the variable gain amplifier 21 in FIG.

【0058】開ループ送信電力算出部152は通信に使
用中のチャネルとは異なるチャネル、例えばW−CDM
A方式におけるとまり木チャネル等、の受信品質や受信
電力等を使用することにより、移動端末と基地局の間の
減衰量を見積り、基地局において所要の受信品質を満た
すような移動端末の送信電力を算出する。開ループ送信
電力算出部152は算出された送信電力をセレクタ15
2へ出力する。
The open-loop transmission power calculation section 152 uses a channel different from the channel used for communication, for example, W-CDM
By using the reception quality and reception power of the perch channel and the like in the A scheme, the amount of attenuation between the mobile terminal and the base station is estimated, and the transmission power of the mobile terminal that satisfies the required reception quality at the base station is estimated. calculate. The open-loop transmission power calculator 152 calculates the calculated transmission power by the selector 15.
Output to 2.

【0059】以下送信信号がアンテナ10から送信され
るまでの動作は第一の実施形態と同様である。
The operation until the transmission signal is transmitted from the antenna 10 is the same as in the first embodiment.

【0060】第七の実施形態の基地局の構成を図25に
示す。図29に示した従来の基地局の構成と対応する構
成要素には同一の番号を付してある。受信された信号
は、従来の基地局と同様に上りチャネルSIR測定部2
21において各移動端末(MSa〜MSn)毎のSIR
(SIRa〜SIRn)を測定され、信号線230a〜
230nを介して、上りチャネル送信電力制御信号作成
部250に入力される。上りチャネル送信電力制御信号
作成部250はSIRa〜SIRnと、MSa〜MSn
に対して予め与えられた目標SIR(T−SIRa〜T
−SIRnとする)との比較結果、及びMSa〜MSn
から送信されてくる信号に対して受信動作を行っている
か否かを示す制御信号RXa〜RXnを基に、MSa〜
MSnに対する送信電力制御信号(TPCa〜TPCn
とする)を作成する。
FIG. 25 shows the configuration of the base station according to the seventh embodiment. Components corresponding to the configuration of the conventional base station shown in FIG. 29 are denoted by the same reference numerals. The received signal is transmitted to the uplink channel SIR measurement unit 2 in the same manner as the conventional base station.
SIR for each mobile terminal (MSa to MSn) at 21
(SIRa to SIRn) are measured, and the signal lines 230a to 230
The signal is input to the uplink channel transmission power control signal creation section 250 via 230n. Uplink channel transmission power control signal creation section 250 includes SIRa to SIRn and MSa to MSn
The target SIR (T-SIRa to T-T
-SIRn) and MSa to MSn
Based on control signals RXa to RXn indicating whether or not a reception operation is being performed on a signal transmitted from MSa to RXa.
Transmission power control signals (TPCa to TPCn) for MSn
To be created).

【0061】上りチャネル送信電力制御信号作成部25
0の構成を図26に示す。上りチャネル送信電力制御信
号作成部250はSIRi、T−SIRi及びRXiを
入力とし、TPCiを出力とする送信電力制御信号作成
部250a〜250nから構成される。ここで添え字i
はa〜nのいずれかを表すものとする。送信電力制御信
号作成部250iの構成図を図27に示す。比較器25
4iは信号線230iを介して入力されるSIRiとT
−SIRiを比較し、SIRi≧T−SIRiの場合は
セレクタ251iで0(送信電力減少を指示する信号)
を選択する信号を、SIRi<T−SIRiの場合はセ
レクタ251iで1(送信電力増加を指示する信号)を
選択する信号を作成する。セレクタ251iは比較器2
54iの出力に従って0または1のいずれかを選択し、
信号線252iを介してセレクタ253iへ出力する。
セレクタ253iは受信動作を行っているか否かを制御
する信号RXiに従い、送信電力制御信号TPCiを決
定する。セレクタ253iの動作を図28に示す。RX
iが受信動作中であることを示す信号の場合、セレクタ
253iは送信電力制御信号TPCiとして信号線25
2iを介して入力された信号を選択する。逆にRXiが
受信停止中であることを示す信号の場合、セレクタ25
3iは送信電力制御信号TPCiとして0(送信電力減
少を指示する信号)を選択する。
Uplink channel transmission power control signal creation section 25
0 is shown in FIG. The uplink channel transmission power control signal creation section 250 includes transmission power control signal creation sections 250a to 250n that receive SIRi, T-SIRi, and RXi as inputs and output TPCi. Where the subscript i
Represents one of a to n. FIG. 27 shows a configuration diagram of transmission power control signal creation section 250i. Comparator 25
4i are SIRi and T input through a signal line 230i.
-SIRi is compared, and when SIRi ≧ T-SIRi, 0 is selected by the selector 251i (signal instructing reduction of transmission power).
In the case of SIRi <T-SIRi, the selector 251i creates a signal for selecting 1 (a signal instructing an increase in transmission power). The selector 251i is the comparator 2
Select either 0 or 1 according to the output of 54i,
The signal is output to the selector 253i via the signal line 252i.
The selector 253i determines the transmission power control signal TPCi according to the signal RXi for controlling whether or not the reception operation is being performed. FIG. 28 shows the operation of the selector 253i. RX
If i is a signal indicating that the receiving operation is being performed, the selector 253i outputs the transmission power control signal TPCi to the signal line 25i.
Select the signal input via 2i. Conversely, if the signal indicates that RXi is stopping reception, the selector 25
3i selects 0 (signal instructing a decrease in transmission power) as the transmission power control signal TPCi.

【0062】上記方法によって作成されたMSa〜MS
nに対する送信電力制御信号TPCa〜TPCnは信号
線231a〜231nを介してフレーム作成部225a
〜225nへ入力され、従来の基地局と同様の処理を施
された後、アンテナ210から送信される。
MSa to MS prepared by the above method
The transmission power control signals TPCa to TPCn for n are transmitted through signal lines 231a to 231n.
To 225n, subjected to the same processing as the conventional base station, and then transmitted from the antenna 210.

【0063】[0063]

【発明の効果】本発明によれば、移動端末は受信誤りを
含む送信電力制御信号による送信電力制御の誤制御の影
響を少なくすることが可能となる。また基地局が受信動
作停止後に不適切な送信電力制御信号の送信を行わない
よう制御することにより、移動端末が過剰な送信電力で
送信を行うことを防ぐことが可能となる。従って、誤制
御による通信品質の劣化及びシステム全体の容量の低下
を回避することが可能となる。
According to the present invention, it is possible for a mobile terminal to reduce the influence of erroneous control of transmission power control by a transmission power control signal including a reception error. Further, by controlling the base station not to transmit an inappropriate transmission power control signal after the reception operation is stopped, it is possible to prevent the mobile terminal from transmitting with excessive transmission power. Therefore, it is possible to avoid a deterioration in communication quality and a decrease in the capacity of the entire system due to erroneous control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の移動端末の構成図である。FIG. 1 is a configuration diagram of a mobile terminal of the present invention.

【図2】本発明の送信電力制御信号尤度算出部の構成図
である。
FIG. 2 is a configuration diagram of a transmission power control signal likelihood calculation unit of the present invention.

【図3】本発明の尤度算出方法を示す図である。FIG. 3 is a diagram illustrating a likelihood calculation method according to the present invention.

【図4】本発明の送信電力変化量算出部の構成図であ
る。
FIG. 4 is a configuration diagram of a transmission power change amount calculation unit of the present invention.

【図5】本発明の尤度判定部の動作の一例を示す図であ
る。
FIG. 5 is a diagram illustrating an example of an operation of a likelihood determination unit according to the present invention.

【図6】本発明の移動端末の送信電力の変化の一例を示
す図である。
FIG. 6 is a diagram illustrating an example of a change in transmission power of a mobile terminal according to the present invention.

【図7】本発明の送信電力変化量算出部の構成図であ
る。
FIG. 7 is a configuration diagram of a transmission power change amount calculation unit according to the present invention.

【図8】本発明のトグル部の動作説明図である。FIG. 8 is an explanatory diagram of the operation of the toggle unit of the present invention.

【図9】本発明の尤度判定部の動作説明図である。FIG. 9 is an explanatory diagram of the operation of the likelihood determination unit of the present invention.

【図10】本発明の移動端末の送信電力の変化の一例を
示す図である。
FIG. 10 is a diagram illustrating an example of a change in transmission power of a mobile terminal according to the present invention.

【図11】本発明の送信電力変化量算出部の構成図であ
る。
FIG. 11 is a configuration diagram of a transmission power change amount calculation unit according to the present invention.

【図12】本発明の送信電力変化量算出部の動作説明図
である。
FIG. 12 is an explanatory diagram of an operation of a transmission power change amount calculating section of the present invention.

【図13】本発明の移動端末の送信電力の変化の一例を
示す図である。
FIG. 13 is a diagram illustrating an example of a change in transmission power of a mobile terminal according to the present invention.

【図14】本発明の移動端末の構成図である。FIG. 14 is a configuration diagram of a mobile terminal of the present invention.

【図15】本発明の送信電力変化量算出部の構成図であ
る。
FIG. 15 is a configuration diagram of a transmission power change amount calculation unit of the present invention.

【図16】本発明の尤度判定部の動作説明図である。FIG. 16 is an explanatory diagram of the operation of the likelihood determination section of the present invention.

【図17】本発明の送信電力制御部の構成図である。FIG. 17 is a configuration diagram of a transmission power control unit of the present invention.

【図18】本発明の送信電力制限値算出部の構成図であ
る。
FIG. 18 is a configuration diagram of a transmission power limit value calculation unit according to the present invention.

【図19】本発明の送信電力変化の一例を示す図であ
る。
FIG. 19 is a diagram illustrating an example of a change in transmission power according to the present invention.

【図20】本発明の移動端末の構成図である。FIG. 20 is a configuration diagram of a mobile terminal of the present invention.

【図21】本発明の送信電力選択部の構成図である。FIG. 21 is a configuration diagram of a transmission power selection unit of the present invention.

【図22】本発明の尤度判定部の動作説明図である。FIG. 22 is an explanatory diagram of the operation of the likelihood determination unit of the present invention.

【図23】本発明の送信電力選択部の構成図である。FIG. 23 is a configuration diagram of a transmission power selection unit of the present invention.

【図24】本発明の尤度選択部の構成図である。FIG. 24 is a configuration diagram of a likelihood selection unit of the present invention.

【図25】本発明の基地局の構成図である。FIG. 25 is a configuration diagram of a base station of the present invention.

【図26】本発明の上りチャネル送信電力制御信号作成
部の構成図である。
FIG. 26 is a configuration diagram of an uplink channel transmission power control signal creation unit of the present invention.

【図27】本発明の送信電力制御信号作成部の構成図で
ある。
FIG. 27 is a configuration diagram of a transmission power control signal creation unit of the present invention.

【図28】本発明のセレクタ235iの動作説明図であ
る。
FIG. 28 is an explanatory diagram of the operation of the selector 235i of the present invention.

【図29】従来の基地局の構成図である。FIG. 29 is a configuration diagram of a conventional base station.

【図30】本発明の上りチャネル送信電力制御信号作成
部の構成図である。
FIG. 30 is a configuration diagram of an uplink channel transmission power control signal creation unit of the present invention.

【図31】従来の送信電力制御信号作成部の構成図であ
る。
FIG. 31 is a configuration diagram of a conventional transmission power control signal creation unit.

【図32】従来の移動端末の構成図である。FIG. 32 is a configuration diagram of a conventional mobile terminal.

【図33】従来の送信電力変化の様子を示す図である。FIG. 33 is a diagram showing a state of conventional transmission power change.

【図34】とまり木受信品質を用いた受信品質算出部の
構成図である。
FIG. 34 is a configuration diagram of a reception quality calculation unit using perch reception quality.

【符号の説明】[Explanation of symbols]

10 アンテナ 11 サーキュレータ 12 受信高周波部 14 検波部 15 復号部 19 送信電力算出部 20 送信電力保持回路 22 符号化 23 拡散回路 24 送信高周波部 25 フレーム作成部 30 送信電力制御信号尤度算出部 31 送信電力変化量算出部 Reference Signs List 10 antenna 11 circulator 12 reception high frequency unit 14 detection unit 15 decoding unit 19 transmission power calculation unit 20 transmission power holding circuit 22 encoding 23 spreading circuit 24 transmission high frequency unit 25 frame creation unit 30 transmission power control signal likelihood calculation unit 31 transmission power Change amount calculation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 隆 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 雅樂 隆基 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 鈴木 俊郎 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 (72)発明者 鈴木 利則 東京都新宿区西新宿二丁目3番2号 ケイ ディディ株式会社内 Fターム(参考) 5K022 EE01 EE21 5K060 BB07 CC04 CC12 DD04 HH06 HH13 JJ18 KK08 LL01 5K067 AA23 CC10 DD27 DD45 EE02 EE10 GG08 HH21  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Yano 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Takara Garaku 1-1-280 Higashi Koigakubo, Kokubunji, Tokyo Inside the Central Research Laboratory of the Works (72) Inventor Toshiro Suzuki 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside the Information and Communication Business Department, Hitachi, Ltd. F-term (reference) in Diddy Corporation 5K022 EE01 EE21 5K060 BB07 CC04 CC12 DD04 HH06 HH13 JJ18 KK08 LL01 5K067 AA23 CC10 DD27 DD45 EE02 EE10 GG08 HH21

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 無線基地局と移動端末からなる符号分割
多元接続通信システムにおける送信電力制御方法におい
て、前記無線基地局は、移動端末の送信電力を制御する
送信電力制御信号を送信し、前記移動端末は受信した送
信電力制御信号と受信品質に基づいて前記送信電力制御
信号の尤度を算出し、前記尤度に基づいて送信電力の変
化量を算出し、前記変化量に基づいて移動端末の送信電
力を制御することを特徴とする符号分割多元接続通信シ
ステムにおける送信電力制御方法。
1. A transmission power control method in a code division multiple access communication system comprising a radio base station and a mobile terminal, wherein the radio base station transmits a transmission power control signal for controlling transmission power of a mobile terminal, The terminal calculates a likelihood of the transmission power control signal based on the received transmission power control signal and the reception quality, calculates a change amount of the transmission power based on the likelihood, and calculates a likelihood of the mobile terminal based on the change amount. A transmission power control method in a code division multiple access communication system, comprising controlling transmission power.
【請求項2】 請求項1記載の符号分割多元接続通信シ
ステムにおける送信電力制御方法において、前記尤度の
算出は、前記無線基地局から送信される信号のとまり木
受信品質をも加えて行われることを特徴とする符号分割
多元接続通信システムにおける送信電力制御方法。
2. The transmission power control method in a code division multiple access communication system according to claim 1, wherein the calculation of the likelihood is performed by adding perch reception quality of a signal transmitted from the radio base station. A transmission power control method in a code division multiple access communication system, comprising:
【請求項3】 請求項1記載の符号分割多元接続通信シ
ステムにおける送信電力制御方法において、前記無線基
地局から送信される信号のとまり木受信品質と、送信電
力制御信号の受信品質とを比較し、受信しているチャネ
ルの受信品質のみが劣化したとき、受信しているチャネ
ルが呼切断されたと判定し、両者が同時に劣化したと
き、端末が物陰に入った等の事情で適切な受信状態では
無くなったと判定し、これらの判定結果に基づいて尤度
の算出を行うことを特徴とする符号分割多元接続通信シ
ステムにおける送信電力制御方法。
3. The transmission power control method in a code division multiple access communication system according to claim 1, wherein perch reception quality of a signal transmitted from the radio base station is compared with reception quality of a transmission power control signal. When only the reception quality of the receiving channel deteriorates, it is determined that the call of the receiving channel has been disconnected, and when both deteriorate at the same time, the terminal is not in an appropriate receiving state due to circumstances such as the terminal being in the shadow. A transmission power control method in a code division multiple access communication system, wherein the likelihood is calculated based on these determination results.
【請求項4】 請求項1記載の符号分割多元接続通信シ
ステムにおける送信電力制御方法において、前記送信電
力制御信号の尤度の絶対値が大きいときに、移動端末の
送信電力の上限値と下限値とを更新して保持し、前記移
動端末の送信電力を前記上限値と下限値との間に制限す
ることを特徴とする符号分割多元接続通信システムにお
ける送信電力制御方法。
4. The transmission power control method for a code division multiple access communication system according to claim 1, wherein an upper limit value and a lower limit value of the transmission power of the mobile terminal when the absolute value of the likelihood of the transmission power control signal is large. The transmission power control method in the code division multiple access communication system, wherein the transmission power of the mobile terminal is limited between the upper limit and the lower limit.
【請求項5】 請求項1記載の符号分割多元接続通信シ
ステムにおける送信電力制御方法において、移動端末の
送信電力の平均値を算出し、前記尤度の大きさに基づい
て、前記算出した移動端末の平均送信電力、あるいは、
前記尤度に基づいて算出された移動端末の送信電力とな
るように、前記移動端末の送信電力を切り換えることを
特徴とする符号分割多元接続通信システムにおける送信
電力制御方法。
5. The transmission power control method in a code division multiple access communication system according to claim 1, wherein an average value of transmission power of the mobile terminal is calculated, and the calculated mobile terminal is calculated based on the likelihood. The average transmit power of
A transmission power control method in a code division multiple access communication system, wherein the transmission power of the mobile terminal is switched so that the transmission power of the mobile terminal is calculated based on the likelihood.
【請求項6】 請求項1記載の符号分割多元接続通信シ
ステムにおける送信電力制御方法において、使用中のチ
ャネルとは異なる他のチャネルの受信品質または受信電
力に基づいて開ループ送信電力を算出し、前記尤度の大
きさに基づいて、前記算出した開ループ送信電力、ある
いは、前記尤度に基づいて算出された移動端末の送信電
力となるように、前記移動端末の送信電力を切り換える
ことを特徴とする符号分割多元接続通信システムにおけ
る送信電力制御方法。
6. A transmission power control method in a code division multiple access communication system according to claim 1, wherein an open-loop transmission power is calculated based on reception quality or reception power of another channel different from the channel being used. Based on the magnitude of the likelihood, the calculated open-loop transmission power, or, switching the transmission power of the mobile terminal, so that the transmission power of the mobile terminal calculated based on the likelihood, Transmission power control method in a code division multiple access communication system.
【請求項7】 請求項3記載の符号分割多元接続通信シ
ステムにおける送信電力制御方法において、前記送信電
力制御信号は2値からなる信号であり、前記尤度の計算
は、受信品質が良い場合には尤度の絶対値を大きくし、
受信品質が悪い場合には尤度の絶対値を小さくすること
を特徴とする符号分割多元接続通信システムにおける送
信電力制御方法。
7. The transmission power control method in a code division multiple access communication system according to claim 3, wherein the transmission power control signal is a binary signal, and the likelihood calculation is performed when reception quality is good. Increases the absolute value of the likelihood,
A transmission power control method in a code division multiple access communication system, wherein the absolute value of likelihood is reduced when reception quality is poor.
【請求項8】 請求項7記載の符号分割多元接続通信シ
ステムにおける送信電力制御方法において、前記尤度が
第1の基準値以上の場合は送信電力を上げ、前記尤度が
前記第1の基準値より小さくかつ第2の基準値以上の場
合は送信電力を維持し、前記第2の基準値より小さい場
合は送信電力を下げることを特徴とする符号分割多元接
続通信システムにおける送信電力制御方法。
8. The transmission power control method in a code division multiple access communication system according to claim 7, wherein the transmission power is increased when the likelihood is equal to or more than a first reference value, and the likelihood is set to the first reference value. A transmission power control method in a code division multiple access communication system, wherein the transmission power is maintained when the value is smaller than the second reference value and the transmission power is maintained when the value is smaller than the second reference value.
【請求項9】 請求項7記載の符号分割多元接続通信シ
ステムにおける送信電力制御方法において、前記尤度が
第1の基準値以上の場合は送信電力を上げ、前記尤度が
前記第1の基準値より小さくかつ第2の基準値以上の場
合は送信電力をトグル制御し、前記第2の基準値より小
さい場合は送信電力を下げることを特徴とする符号分割
多元接続通信システムにおける送信電力制御方法。
9. The transmission power control method in a code division multiple access communication system according to claim 7, wherein the transmission power is increased when the likelihood is equal to or more than a first reference value, and the likelihood is increased by the first reference value. A transmission power control method in a code division multiple access communication system, wherein the transmission power is toggled when it is smaller than a second reference value and lower than the second reference value. .
【請求項10】 請求項7記載の符号分割多元接続通信
システムにおける送信電力制御方法において、前記尤度
が第1の基準値以上の場合は送信電力を上げ、前記尤度
が前記第1の基準値より小さくかつ第2の基準値以上の
場合は送信電力の変化量を前記尤度に対応した電力と
し、前記第2の基準値より小さい場合は送信電力を下げ
ることを特徴とする符号分割多元接続通信システムにお
ける送信電力制御方法。
10. The transmission power control method in a code division multiple access communication system according to claim 7, wherein the transmission power is increased when the likelihood is equal to or more than a first reference value, and the likelihood is set to the first reference value. A code division multiple unit characterized in that when the value is smaller than the second reference value and is equal to or greater than a second reference value, the amount of change in transmission power is set to power corresponding to the likelihood, and when the value is smaller than the second reference value, the transmission power is reduced. A transmission power control method in a connection communication system.
【請求項11】 無線基地局と移動端末からなる符号分
割多元接続通信システムにおける送信電力制御方法にお
いて、前記無線基地局は前記各移動端末毎のSIRを測
定し、前記測定された各SIRと予め与えられた目標S
IRとを比較し、前記SIRが目標SIR以上の場合ま
たは前記無線基地局が前記移動端末に対し受信動作停止
中の場合は送信電力を減少させる送信電力制御信号を作
成し、前記SIRが目標SIR未満の場合は送信電力を
増加させる送信電力制御信号を作成し、前記作成された
送信電力制御信号を移動端末に送信することを特徴とす
る符号分割多元接続通信システムにおける送信電力制御
方法。
11. A transmission power control method in a code division multiple access communication system comprising a radio base station and a mobile terminal, wherein the radio base station measures an SIR for each of the mobile terminals, and determines the measured SIR with each of the measured SIRs in advance. Given goal S
If the SIR is greater than or equal to the target SIR or if the radio base station is not receiving data from the mobile terminal, a transmission power control signal for reducing transmission power is generated. A transmission power control method for a code division multiple access communication system, characterized in that a transmission power control signal for increasing transmission power is generated when the value is less than the above, and the generated transmission power control signal is transmitted to a mobile terminal.
JP05891799A 1998-12-21 1999-03-05 Transmission power control method in code division multiple access communication system Expired - Fee Related JP4108858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05891799A JP4108858B2 (en) 1998-12-21 1999-03-05 Transmission power control method in code division multiple access communication system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-362871 1998-12-21
JP36287198 1998-12-21
JP05891799A JP4108858B2 (en) 1998-12-21 1999-03-05 Transmission power control method in code division multiple access communication system

Publications (2)

Publication Number Publication Date
JP2000244391A true JP2000244391A (en) 2000-09-08
JP4108858B2 JP4108858B2 (en) 2008-06-25

Family

ID=26399930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05891799A Expired - Fee Related JP4108858B2 (en) 1998-12-21 1999-03-05 Transmission power control method in code division multiple access communication system

Country Status (1)

Country Link
JP (1) JP4108858B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051876A1 (en) * 2002-12-02 2004-06-17 Nec Corporation Power limit device and digital radio transmitter using the same
EP1691491A1 (en) * 2005-02-14 2006-08-16 NEC Corporation Uplink transmission power control in a CDMA base station
WO2007023654A1 (en) * 2005-08-22 2007-03-01 Nec Corporation Mobile communication system, mobile communication terminal and mobile communication method
US7603135B2 (en) 2004-07-13 2009-10-13 Nec Corporation Mobile communications system, method of controlling the transmission power in the system, and mobile station in the system
US7643845B2 (en) 2001-07-24 2010-01-05 Ntt Docomo, Inc. Transmission power control device and method, mobile station, and communication device in mobile communication system
JP2012199926A (en) * 2000-11-16 2012-10-18 Sony Corp Communication apparatus and method, and information processing apparatus and method
JP2013042394A (en) * 2011-08-17 2013-02-28 Fujitsu Ltd Wireless communication device, portable telephone and wireless communication device control method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199926A (en) * 2000-11-16 2012-10-18 Sony Corp Communication apparatus and method, and information processing apparatus and method
US9319998B2 (en) 2000-11-16 2016-04-19 Sony Corporation Information processing apparatus and communication apparatus
US9173175B2 (en) 2000-11-16 2015-10-27 Sony Corporation Information processing apparatus and communication apparatus
US7643845B2 (en) 2001-07-24 2010-01-05 Ntt Docomo, Inc. Transmission power control device and method, mobile station, and communication device in mobile communication system
WO2004051876A1 (en) * 2002-12-02 2004-06-17 Nec Corporation Power limit device and digital radio transmitter using the same
US7603135B2 (en) 2004-07-13 2009-10-13 Nec Corporation Mobile communications system, method of controlling the transmission power in the system, and mobile station in the system
US7684819B2 (en) 2005-02-14 2010-03-23 Nec Corporation Uplink transmission power control in a CDMA base station
EP1691491A1 (en) * 2005-02-14 2006-08-16 NEC Corporation Uplink transmission power control in a CDMA base station
JPWO2007023654A1 (en) * 2005-08-22 2009-02-26 日本電気株式会社 Mobile communication system, mobile communication terminal, and mobile communication method
US8270339B2 (en) 2005-08-22 2012-09-18 Nec Corporation Mobile communication system, mobile communication terminal, and mobile communication method
CN101243626A (en) * 2005-08-22 2008-08-13 日本电气株式会社 Mobile communication system, mobile communication terminal and mobile communication method
WO2007023654A1 (en) * 2005-08-22 2007-03-01 Nec Corporation Mobile communication system, mobile communication terminal and mobile communication method
JP2013042394A (en) * 2011-08-17 2013-02-28 Fujitsu Ltd Wireless communication device, portable telephone and wireless communication device control method

Also Published As

Publication number Publication date
JP4108858B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4440784B2 (en) Power control for mobile station in CDMA-TDD system
KR100559805B1 (en) Cdma mobile communication system in which updating of a reference value for controlling closed-loop transmission power is realized in a base transceiver station
EP1882315B1 (en) Method and apparatus for transmit power control
US6034971A (en) Method and apparatus for controlling communication system capacity
CN101453254B (en) Power control in mobile radio telephone system when transmission is interrupted
US20070298798A1 (en) Method and System of Radio Communications
ZA200005440B (en) Downlink power control n a cellular mobile radio communications system.
KR20050099643A (en) Downlink power control for multiple downlink time slots in tdd communication systems
JP2007500975A (en) Downlink power control to limit dynamic range using detection of downlink transmit power
JP2002539707A (en) Adaptive power control for wireless communication systems
JP2002158618A (en) Mobile communication control method and its system, and mobile station
US20020001292A1 (en) Downlink power control method and CDMA communication system incorporating the control method
US20080108315A1 (en) Method and arrangement for controlling transmission power and a network element
WO2002025836A2 (en) Downlink power control in a cellular telecommunications network
EP1821431B1 (en) Method for controlling transmit power in a communication system
US7603135B2 (en) Mobile communications system, method of controlling the transmission power in the system, and mobile station in the system
US20030156554A1 (en) Method for regulating transmission power in a radiocommunications system
EP2143211B1 (en) Wireless transmission power control method and system
EP1188255A1 (en) Method for controlling the transmission power
US9030954B2 (en) Reducing load in a communications network
JP4240726B2 (en) Wireless communication system, base station control station, base station, and transmission power control method
JP4108858B2 (en) Transmission power control method in code division multiple access communication system
EP1501217A2 (en) A radio communication system with transmission power control
EP1081875A2 (en) Aggregate power measurement and control
JP2005318327A (en) Communication terminal device and method for controlling transmitted power

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees