JP2000236298A - Automatic dispersion compensating circuit and optical transmission system using the same - Google Patents

Automatic dispersion compensating circuit and optical transmission system using the same

Info

Publication number
JP2000236298A
JP2000236298A JP11037981A JP3798199A JP2000236298A JP 2000236298 A JP2000236298 A JP 2000236298A JP 11037981 A JP11037981 A JP 11037981A JP 3798199 A JP3798199 A JP 3798199A JP 2000236298 A JP2000236298 A JP 2000236298A
Authority
JP
Japan
Prior art keywords
optical
signal
low
frequency pulse
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11037981A
Other languages
Japanese (ja)
Inventor
Naoyuki Chikuma
直行 筑間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11037981A priority Critical patent/JP2000236298A/en
Publication of JP2000236298A publication Critical patent/JP2000236298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable automatic optimum dispersion compensation, even when a necessary dispersion compensation quantity varies when an optical transmission line is switched and to avoid the generation of SSB(simulated Brillouin scattering) which causes a problem when a dispersion compensation fiber is changed. SOLUTION: An optical coupler 32 monitors reflected return light from dispersion compensation fibers 24 and 25 in between an optical amplifier 19 and the preceding stage of the dispersion compensation fibers 24 and 25 and an output control circuit 31 compares the monitor result with the exciting current of an optical amplifier to control the output level of the optical amplifier according to the comparison result. Consequently, the generation of SBS is evaded and optimum dispersion compensation can be performed irrelevantly to the dispersion value of the transmission line.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動分散補償回路及
びそれを用いた光伝送システムに関し、特に光送信部か
ら光伝送路を介して伝送されてきた光信号を中継装置で
増幅する長距離光基幹伝送にあたって中継装置で自動分
散補償をなす自動分散補償式光伝送システムに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic dispersion compensating circuit and an optical transmission system using the same, and more particularly, to a long-distance optical system for amplifying an optical signal transmitted from an optical transmitting unit via an optical transmission line by a repeater. The present invention relates to an automatic dispersion compensation type optical transmission system in which a repeater performs automatic dispersion compensation for trunk transmission.

【0002】[0002]

【従来の技術】この様な光伝送システムの一例が特開平
10−163962号公報に開示されており、図3にそ
のシステム構成図を示す。図3を参照すると、光信号を
伝送路へ送信する光送信部10と、伝送路からの光信号
を直接増幅する線形中継装置11とからなっている。
2. Description of the Related Art An example of such an optical transmission system is disclosed in Japanese Patent Application Laid-Open No. Hei 10-163962, and FIG. Referring to FIG. 3, an optical transmission unit 10 transmits an optical signal to a transmission line, and a linear repeater 11 directly amplifies the optical signal from the transmission line.

【0003】光送信部10は、光主信号aを送信する光
送信器1と、監視制御用光信号bを送信する光送信器2
と、光主信号a及び監視制御用光信号bに対して同期を
取って低周波パルス信号を重畳する低周波重畳回路3
と、光主信号aを直接増幅して増幅光主信号を出力する
光アンプ4と、増幅光主信号及び監視制御用光信号bを
波長合成して光信号として出力するWDMカプラ5とを
有している。
The optical transmitter 10 comprises an optical transmitter 1 for transmitting an optical main signal a and an optical transmitter 2 for transmitting an optical signal b for supervisory control.
And a low-frequency superimposing circuit 3 for superposing a low-frequency pulse signal in synchronization with the optical main signal a and the supervisory control optical signal b
And an optical amplifier 4 for directly amplifying the optical main signal a and outputting an amplified optical main signal, and a WDM coupler 5 for wavelength-synthesizing the amplified optical main signal and the supervisory control optical signal b and outputting as an optical signal. are doing.

【0004】線形中継装置11は、光送信部10から伝
送路を介して伝送された光信号の一部を位相差検出用に
分岐する光カプラ12と、分岐した光信号を光主信号a
と監視制御用光信号bとに波長分離するWDMカプラ1
3と、光主信号aと監視制御用光信号bとをそれぞれ光
信号から電気信号へ変換する光/電変換回路14,15
と、光/電変換した光主信号と監視制御用光信号とをそ
れぞれ低域瀘波するロ−パスフィルタ(LPF)16,
17と、低域瀘波した光主信号a´と監視制御用光信号
b´とから光送信部10の低周波重畳回路3で重畳した
低周波パルス信号を抽出することによって位相差φを検
出する位相差検出回路18と、光信号を直接増幅して増
幅光信号を出力する光アンプ19と、増幅光信号を自動
分散補償する分散補償部とを有している。
[0004] The linear repeater 11 includes an optical coupler 12 for branching a part of an optical signal transmitted from the optical transmission unit 10 through a transmission line for detecting a phase difference, and an optical main signal a.
WDM coupler 1 that separates wavelength into optical signal b for monitoring and control
3, and optical / electrical conversion circuits 14 and 15 for converting the optical main signal a and the supervisory control optical signal b from an optical signal to an electrical signal, respectively.
A low-pass filter (LPF) 16 for low-pass filtering the optical main signal and the supervisory control optical signal,
17, a phase difference φ is detected by extracting a low-frequency pulse signal superimposed by the low-frequency superimposing circuit 3 of the optical transmission unit 10 from the optical main signal a ′ subjected to low-pass filtering and the optical signal b ′ for monitoring and control. A phase difference detecting circuit 18 for directly amplifying an optical signal and outputting an amplified optical signal, and a dispersion compensating unit for automatically compensating the amplified optical signal.

【0005】ここで、分散補償部は、一対の対向したN
分岐の光分岐結合設定手段と、N分岐間にそれぞれ接続
されると共に、互いに分散補償量の異なるN種類(ここ
では2種類)のDCF24,25と、位相差に応じてN
分岐(2分岐)の光分岐結合設定手段を制御することで
伝送路距離に応じてN種類、(2種類)のDCF24,
25から最適な分散補償量のものを自動的に選択する制
御回路26とから成っている。N分岐の光分岐結合設定
手段にはN種類(2種類)のDCF24,25における
入力側、出力側にそれぞれ設けられた光マトリクススイ
ッチ22,23が用いられている。
Here, the dispersion compensating section includes a pair of opposed N
N types (here, two types) of DCFs 24 and 25 which are respectively connected between the optical branching / coupling setting means of the branch and the N branches and have different amounts of dispersion compensation from each other.
By controlling the branch (two-branch) optical branch-coupling setting means, N types (two types) of DCFs 24,
25, a control circuit 26 for automatically selecting an optimum dispersion compensation amount from the control circuit 25. Optical matrix switches 22 and 23 provided on the input side and output side of N types (two types) of DCFs 24 and 25 are used as the N-branch optical branching coupling setting means.

【0006】更に、具体的に例示すれば、光送信部10
において、光送信器1には例えば波長1.552μmの
光主信号を送信する光送信盤を用いれば良く、光送信器
2には例えば1.520μmの監視制御用光信号を送信
する光送信盤を用いれば良い。光主信号aや監視制御用
光信号bは低周波パルス信号が重畳された状態を示して
いるが、WDMカプラ5でこれらの信号が波長合成され
た光信号は伝送路を伝送された後、線形中継装置11に
入力される。ここでは一例として、伝送区間を線形中継
で一般に用いられる80kmとし、伝送路には一般的な
1.3μm零分岐ファイバ(18ps/nm/km)を
用いるものとする。
Further, as a specific example, the optical transmission unit 10
, An optical transmitter for transmitting an optical main signal having a wavelength of, for example, 1.552 μm may be used as the optical transmitter 1, and an optical transmitter for transmitting an optical signal for monitoring and controlling, for example, 1.520 μm, for the optical transmitter 2. May be used. The optical main signal a and the supervisory control optical signal b show a state in which the low-frequency pulse signal is superimposed. After the WDM coupler 5 has combined the wavelengths of these signals, the optical signal is transmitted through the transmission path. It is input to the linear repeater 11. Here, as an example, it is assumed that the transmission section is 80 km, which is generally used in linear relay, and a general 1.3 μm zero-branch fiber (18 ps / nm / km) is used for the transmission path.

【0007】一方、線形中継装置11に関しては、80
kmの1.3μm零分散ファイバを伝送した光が1.5
μm帯で波長分散を生じるため、光送信器1から送信さ
れた光信号と光送信器2から送信された監視制御用光信
号とに関しては、ここでは(18psec/nm/k
m)×32nm×80km=46nsecの位相差φを
生じる。そこで、位相差検出回路18ではこの位相差φ
を検出し、分散補償部においては制御回路26で対向す
る光マトリクススイッチ22,23を制御することで、
伝送路の分散補償量に適した方のDCF24,25を選
択する。ここで、DCF24を80km用とし、DCF
25を60km用とすれば、伝送距離が80kmから6
0kmに切り替わった場合でも自動的に最適な分散補償
が可能となる。
On the other hand, regarding the linear repeater 11,
km transmitted through a 1.3 μm zero-dispersion fiber of 1.5 km.
Since chromatic dispersion occurs in the μm band, the optical signal transmitted from the optical transmitter 1 and the optical signal for monitoring and control transmitted from the optical transmitter 2 are (18 psec / nm / k) here.
m) × 32 nm × 80 km = 46 nsec. Therefore, in the phase difference detection circuit 18, the phase difference φ
In the dispersion compensating unit, the control circuit 26 controls the opposing optical matrix switches 22 and 23 so that
The DCFs 24 and 25 that are more suitable for the dispersion compensation amount of the transmission path are selected. Here, the DCF 24 is used for 80 km,
If 25 is for 60 km, the transmission distance will be 6 km from 80 km.
Even when switching to 0 km, optimal dispersion compensation is automatically possible.

【0008】[0008]

【発明が解決しようとする課題】上述した自動分散補償
式光伝送システムでは、分散補償ファイバが切り替わっ
たときに、場合によっては分散補償ファイバに入力され
る光信号が大きすぎて、SBS(Stimulated Brillouin
Scattering )を引き起こし、信号を正しく伝送できな
いという問題があり、また逆に、入力される光信号が小
さすぎて所望の特性が得られないという問題がある。
In the above-mentioned automatic dispersion compensating type optical transmission system, when the dispersion compensating fiber is switched, the optical signal input to the dispersion compensating fiber is sometimes too large, and the SBS (Stimulated Brillouin) is changed.
However, there is a problem that signals cannot be transmitted correctly, and conversely, there is a problem that a desired characteristic cannot be obtained because the input optical signal is too small.

【0009】本発明の目的は、伝送路が切り替わって必
要な分散補償量が変化した場合でも、自動的に最適な分
散補償を可能とし、また分散補償ファイバが変更された
場合に問題となるSBSの発生を回避可能な自動分散補
償回路及びそれを用いた光伝送システムを提供すること
である。
It is an object of the present invention to automatically enable optimum dispersion compensation even when the required amount of dispersion compensation changes due to switching of the transmission line, and to cause a problem when the dispersion compensating fiber is changed. It is an object of the present invention to provide an automatic dispersion compensating circuit capable of avoiding the generation of an optical signal and an optical transmission system using the same.

【0010】[0010]

【課題を解決するための手段】本発明によれば、光主信
号と監視制御用光信号とに夫々低周波パルス信号を重畳
して波長合成することにより伝送されてきた信号を受信
し、この受信信号の分散補償をなす自動分散補償回路で
あって、前記受信信号の光主信号を増幅する光増幅手段
と、前記受信信号から前記低周波パルス信号が重畳され
た光主信号と監視制御用光信号とを夫々分離する波長分
離手段と、これ等分離された信号から前記低周波パルス
信号を夫々抽出する低周波パルス信号抽出手段と、これ
等低周波パルス信号の位相を比較してこの位相差に応じ
て前記光増幅手段の出力を自動分散補償する分散補償手
段と、前記分散補償手段からの反射戻り光を検出してこ
の検出結果に応じて前記光増幅手段の出力レベル制御を
なす出力制御手段と、を含むことを特徴とする自動分散
補償回路が得られる。
According to the present invention, a signal transmitted by superimposing a low-frequency pulse signal on each of an optical main signal and an optical signal for monitoring and control and performing wavelength synthesis is received. An automatic dispersion compensating circuit for compensating dispersion of a received signal, comprising: an optical amplifying unit for amplifying an optical main signal of the received signal; and an optical main signal on which the low-frequency pulse signal is superimposed from the received signal. Wavelength separating means for separating the optical signals from each other, low-frequency pulse signal extracting means for extracting the low-frequency pulse signals from the separated signals, and comparing the phases of these low-frequency pulse signals with each other. A dispersion compensating means for automatically dispersion-compensating the output of the optical amplifying means in accordance with the phase difference; and an output for detecting reflected return light from the dispersion compensating means and controlling an output level of the optical amplifying means in accordance with the detection result. Control means , Automatic dispersion compensation circuit, which comprises a can be obtained.

【0011】そして、前記出力制御手段は、前記反射戻
り光に応じた電流と前記光増幅手段の励起電流とを比較
してこの比較結果に応じて前記出力レベル制御をなすよ
う構成されていることを特徴とし、また前記出力制御手
段は、前記反射戻り光に応じた電流と前記光増幅手段の
励起電流との比が一定になるよう前記励起電流の制御を
なすことを特徴とする。
The output control means is configured to compare a current corresponding to the reflected return light with an excitation current of the optical amplifying means and perform the output level control in accordance with a result of the comparison. The output control means controls the excitation current so that the ratio between the current according to the reflected return light and the excitation current of the optical amplification means becomes constant.

【0012】本発明によれば、光信号を伝送路に送信す
る光送信装置と、前記伝送路から伝送されてきた前記光
信号を増幅する中継装置とを含む光伝送システムであっ
て、前記光送信装置は、光主信号と監視制御用光信号と
に夫々低周波パルス信号を重畳して波長合成して送信す
る手段を有し、前記中継装置は、前記伝送路からの受信
信号の光主信号を増幅する光増幅手段と、前記受信信号
から前記低周波パルス信号が重畳された光主信号と監視
制御用光信号とを夫々分離する波長分離手段と、これ等
分離された信号から前記低周波パルス信号を夫々抽出す
る低周波パルス信号抽出手段と、これ等低周波パルス信
号の位相を比較してこの位相差に応じて前記光増幅手段
の出力を自動分散補償する分散補償手段と、前記分散補
償手段からの反射戻り光を検出してこの検出結果に応じ
て前記光増幅手段の出力レベル制御をなす出力制御手段
と、を含むことを特徴とする光伝送システムが得られ
る。
According to the present invention, there is provided an optical transmission system including an optical transmission device for transmitting an optical signal to a transmission line, and a relay device for amplifying the optical signal transmitted from the transmission line. The transmitting device has means for superimposing a low-frequency pulse signal on the optical main signal and the supervisory control optical signal, respectively, and wavelength-synthesizing the signal, and the relay device transmits the optical signal of the signal received from the transmission line. Optical amplifying means for amplifying a signal; wavelength separating means for separating an optical main signal on which the low-frequency pulse signal is superimposed from the received signal and a monitoring control optical signal, respectively; Low-frequency pulse signal extraction means for extracting frequency pulse signals, and dispersion compensation means for comparing the phases of these low-frequency pulse signals and automatically compensating the output of the optical amplification means according to the phase difference; Reflection from dispersion compensation means Ri and output control means for forming the output level control of the optical amplification means in accordance with the detection result by detecting the light, the optical transmission system which comprises a obtained.

【0013】本発明の作用を述べる。分散補償ファイバ
の前段と光増幅器との間において、この分散補償ファイ
バからの反射戻り光を監視してこの監視結果と光増幅器
の励起電流とを比較し、この比較結果に従って光増幅器
の出力レベルを制御する機能を設けることにより、SB
Sの発生を回避し、また伝送路の分散値によらず最適な
分散補償をなすことができる。
The operation of the present invention will be described. Between the upstream stage of the dispersion compensating fiber and the optical amplifier, the reflected return light from the dispersion compensating fiber is monitored, the monitored result is compared with the pumping current of the optical amplifier, and the output level of the optical amplifier is adjusted according to the comparison result. By providing a control function, SB
It is possible to avoid occurrence of S, and to perform optimal dispersion compensation regardless of the dispersion value of the transmission path.

【0014】[0014]

【発明の実施の形態】以下に、図面を参照しつつ本発明
の実施例を説明する。図1は本発明の実施例の構成を示
す図であり、図3と同等部分は同一符号にて示してい
る。ここでは、冗長な説明を避けるために、図3の従来
例の構成と相違する部分についてのみ説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of an embodiment of the present invention, and the same parts as those in FIG. 3 are denoted by the same reference numerals. Here, in order to avoid redundant description, only the portions different from the configuration of the conventional example of FIG. 3 will be described.

【0015】図1において、線形中継装置11内の光ア
ンプ19と分散補償部の光マトリクススイッチ22との
間に、光カプラ32が設けられており、この光カプラ3
2により分散補償部のDCF(Dispersion Compensatin
g Fiber )24や25からの反射戻り光が分岐されるよ
うになっている。この分岐された反射戻り光を検出して
光アンプ19の出力レベルを制御するために、出力制御
回路31が設けられている。その他の構成及び機能は図
3の例と同一である。
In FIG. 1, an optical coupler 32 is provided between the optical amplifier 19 in the linear repeater 11 and the optical matrix switch 22 of the dispersion compensator.
2, DCF (Dispersion Compensatin)
g Fiber) The reflected return light from 24 and 25 is branched. An output control circuit 31 is provided for detecting the branched reflected return light and controlling the output level of the optical amplifier 19. Other configurations and functions are the same as those in the example of FIG.

【0016】ここでは、一例として、前述と同様に、伝
送区間を線形中継で一般に用いられる80km、伝送路
を一般的な1.3μm零分散ファイバ(18ps/nm
/km)とした場合を例に、動作の説明をおこなう。8
0kmの1.3μm零分散ファイバを伝送した光信号
は、1.5μm帯で波長分散を生じるため、光送信器1
から送信された光信号と、光送信器2から送信された監
視制御用信号は、この例の場合、線形中継装置11で
は、18psec/nm/km×32nm×18km=
46nsecの位相差を生じる(図1のa´,b´参
照)。この位相差を検出し、制御回路26で、分散補償
部の対向する光マトリクススイッチ22,23を制御す
ることで、伝送路の分散に適したDCFを選択する。こ
こで、DCF24を80km用として、またDCF25
を60km用とすれば、伝送距離が80kmから60k
mに切り替わった場合でも自動的に最適な分散補償が可
能となる。
Here, as an example, as described above, the transmission section is 80 km, which is generally used for linear relay, and the transmission path is a general 1.3 μm zero dispersion fiber (18 ps / nm).
/ Km) will be described as an example. 8
Since an optical signal transmitted through a 0-km 1.3 μm zero-dispersion fiber causes chromatic dispersion in a 1.5 μm band, the optical transmitter 1
In this example, the optical signal transmitted from the optical transmitter 2 and the supervisory control signal transmitted from the optical transmitter 2 are 18 psec / nm / km × 32 nm × 18 km =
A phase difference of 46 nsec occurs (see a 'and b' in FIG. 1). The phase difference is detected, and the control circuit 26 controls the opposing optical matrix switches 22 and 23 of the dispersion compensator, thereby selecting a DCF suitable for dispersion of the transmission path. Here, the DCF 24 is used for 80 km, and the DCF 25
For 60 km, transmission distance from 80 km to 60 km
Even when switching to m, optimal dispersion compensation can be automatically performed.

【0017】また、DCFからの反射戻り光を光カプラ
32で分岐して、その戻り光を出力制御回路31で検出
し、光アンプ19の出力を制御することで、DCFが変
わった場合でも光アンプ19の出力レベルを最適とし、
SBSの発生を回避することが可能である。
The return light reflected from the DCF is branched by the optical coupler 32, the return light is detected by the output control circuit 31, and the output of the optical amplifier 19 is controlled. Optimize the output level of the amplifier 19,
It is possible to avoid the occurrence of SBS.

【0018】次に、図2を用いて光アンプの制御の詳細
について説明する。まずファイバに入力される光信号と
反射戻り光について説明する。光ファイバに入力された
光信号は、通常、光信号の入力レベルに比例して反射戻
り光を生じる。ところが、入力があるレベルを超える
と、ファイバにそれ以上光信号が入っていかず、過剰な
反射戻り光となってしまう。この過剰な反射戻り光を生
じるレベルを一般的にSBS発生閾値といい、このレベ
ルを超えて光信号を入力すると正しく信号を伝送できな
くなる。またこのレベルは使用されるファイバ長、ファ
イバのコア径に左右される。
Next, the control of the optical amplifier will be described in detail with reference to FIG. First, the optical signal input to the fiber and the reflected return light will be described. The optical signal input to the optical fiber usually generates reflected return light in proportion to the input level of the optical signal. However, if the input exceeds a certain level, the optical signal does not enter the fiber any more, resulting in excessive reflected return light. The level at which this excessive reflected return light occurs is generally referred to as the SBS generation threshold, and if an optical signal is input beyond this level, the signal cannot be transmitted correctly. This level depends on the length of the fiber used and the core diameter of the fiber.

【0019】DCFではコア径が通常ファイバと比較し
て半分以下となっていることから、SBSに対してその
閾値が低くなり、通常の光ファイバでは問題とならない
光入力レベルでSBSを生じ、光信号を正しく伝送でき
なくなる場合がある。そこで、本発明では、光アンプの
励起電流とDCFからの反射戻り光により生じる光電流
とを比較することで、SBSの発生を回避する。通常、
入力光に対し、反射戻り光は比例関係にある。しかし、
SBSを生じると、反射戻り光が過剰に増加することに
なる。
Since the core diameter of the DCF is less than half of that of the ordinary fiber, the threshold value is lower than that of the SBS, and the SBS is generated at an optical input level which is not a problem in the ordinary optical fiber. The signal may not be transmitted correctly. Therefore, in the present invention, the occurrence of SBS is avoided by comparing the excitation current of the optical amplifier with the photocurrent generated by the reflected return light from the DCF. Normal,
The reflected return light is proportional to the input light. But,
If SBS occurs, the reflected return light will increase excessively.

【0020】従って、光アンプの出力と反射戻り光を比
較して、光アンプの制御をおこなう。光アンプの出力
は、当然、励起電流によってきまり、この励起電流と反
射戻り光により生じる光電流とを比較し、その比が常に
一定となるように、出力制御回路31で励起電流を制御
することで、光アンプの出力を制御し、SBSの発生を
回避することができることになる。
Therefore, the output of the optical amplifier is compared with the reflected return light to control the optical amplifier. The output of the optical amplifier is naturally determined by the excitation current, and the output control circuit 31 controls the excitation current by comparing this excitation current with the photocurrent generated by the reflected return light so that the ratio is always constant. Thus, the output of the optical amplifier can be controlled, and the occurrence of SBS can be avoided.

【0021】[0021]

【発明の効果】本発明によれば、分散補償部からの反射
戻り光を監視してこの監視結果に従って光アンプの出力
制御を行うようにしたので、伝送経路が切り替わり必要
な分散補償量が変化した場合でも、自動的に最適な分散
補償が可能となるという効果がある。また、DCFが変
更された際に問題となるSBSの発生を回避することが
出来るという効果もある。
According to the present invention, since the reflected return light from the dispersion compensator is monitored and the output of the optical amplifier is controlled according to the monitoring result, the transmission path is switched and the required dispersion compensation amount changes. Even in this case, there is an effect that optimal dispersion compensation can be automatically performed. Further, there is also an effect that occurrence of SBS which is a problem when the DCF is changed can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】本発明の実施例における光アンプの制御を説明
するための図である。
FIG. 2 is a diagram for explaining control of an optical amplifier according to the embodiment of the present invention.

【図3】従来技術の例を示すブロック図である。FIG. 3 is a block diagram showing an example of the related art.

【符号の説明】[Explanation of symbols]

1,2 光送信器 3 低周波重畳回路 4,19 光アンプ 5,13 WDMカプラ 10 光送信部 11 線形中継装置 12,32 光カプラ 14,15 光−電気変換回路 16,17 LPF 22,23 光マトリクススイッチ 24,25 DCF 26 制御回路 31 出力制御回路 1, 2 optical transmitter 3 low frequency superposition circuit 4, 19 optical amplifier 5, 13 WDM coupler 10 optical transmitter 11 linear repeater 12, 32 optical coupler 14, 15 optical-electrical conversion circuit 16, 17 LPF 22, 23 optical Matrix switch 24, 25 DCF 26 Control circuit 31 Output control circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04B 10/17 10/16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04B 10/17 10/16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光主信号と監視制御用光信号とに夫々低
周波パルス信号を重畳して波長合成することにより伝送
されてきた信号を受信し、この受信信号の分散補償をな
す自動分散補償回路であって、 前記受信信号の光主信号を増幅する光増幅手段と、 前記受信信号から前記低周波パルス信号が重畳された光
主信号と監視制御用光信号とを夫々分離する波長分離手
段と、 これ等分離された信号から前記低周波パルス信号を夫々
抽出する低周波パルス信号抽出手段と、 これ等低周波パルス信号の位相を比較してこの位相差に
応じて前記光増幅手段の出力を自動分散補償する分散補
償手段と、 前記分散補償手段からの反射戻り光を検出してこの検出
結果に応じて前記光増幅手段の出力レベル制御をなす出
力制御手段と、を含むことを特徴とする自動分散補償回
路。
1. An automatic dispersion compensator for receiving a signal transmitted by superimposing a low-frequency pulse signal on each of an optical main signal and an optical signal for monitoring and control and wavelength-combining the signals, and compensating for dispersion of the received signal. A circuit, comprising: an optical amplification unit that amplifies an optical main signal of the reception signal; and a wavelength separation unit that separates an optical main signal on which the low-frequency pulse signal is superimposed from the reception signal, and a monitoring control optical signal. And low-frequency pulse signal extracting means for respectively extracting the low-frequency pulse signals from the separated signals; comparing the phases of these low-frequency pulse signals; and outputting the output of the optical amplifying means in accordance with the phase difference. Dispersion compensating means for automatically compensating for dispersion, and output control means for detecting the reflected return light from the dispersion compensating means and controlling the output level of the optical amplifying means in accordance with the detection result. Self Dispersion compensation circuit.
【請求項2】 前記出力制御手段は、前記反射戻り光に
応じた電流と前記光増幅手段の励起電流とを比較してこ
の比較結果に応じて前記出力レベル制御をなすよう構成
されていることを特徴とする請求項1記載の自動分散補
償回路。
2. The output control means is configured to compare a current corresponding to the reflected return light with an excitation current of the optical amplification means and perform the output level control according to a result of the comparison. The automatic dispersion compensation circuit according to claim 1, wherein:
【請求項3】 前記出力制御手段は、前記反射戻り光に
応じた電流と前記光増幅手段の励起電流との比が一定に
なるよう前記励起電流の制御をなすことを特徴とする請
求項2記載の自動分散補償回路。
3. The pump control device according to claim 2, wherein the output control unit controls the pump current such that a ratio between a current corresponding to the reflected return light and a pump current of the optical amplifying unit becomes constant. Automatic dispersion compensation circuit as described.
【請求項4】 光伝送システムにおける中継装置に使用
されることを特徴とする請求項1〜3いずれか記載の自
動分散補償回路。
4. The automatic dispersion compensating circuit according to claim 1, wherein the automatic dispersion compensating circuit is used for a relay device in an optical transmission system.
【請求項5】 光信号を伝送路に送信する光送信装置
と、前記伝送路から伝送されてきた前記光信号を増幅す
る中継装置とを含む光伝送システムであって、前記光送
信装置は、 光主信号と監視制御用光信号とに夫々低周波パルス信号
を重畳して波長合成して送信する手段を有し、 前記中継装置は、 前記伝送路からの受信信号の光主信号を増幅する光増幅
手段と、 前記受信信号から前記低周波パルス信号が重畳された光
主信号と監視制御用光信号とを夫々分離する波長分離手
段と、 これ等分離された信号から前記低周波パルス信号を夫々
抽出する低周波パルス信号抽出手段と、 これ等低周波パルス信号の位相を比較してこの位相差に
応じて前記光増幅手段の出力を自動分散補償する分散補
償手段と、 前記分散補償手段からの反射戻り光を検出してこの検出
結果に応じて前記光増幅手段の出力レベル制御をなす出
力制御手段と、を含むことを特徴とする光伝送システ
ム。
5. An optical transmission system comprising: an optical transmission device that transmits an optical signal to a transmission line; and a relay device that amplifies the optical signal transmitted from the transmission line, wherein the optical transmission device includes: Means for superimposing a low-frequency pulse signal on the optical main signal and the supervisory control optical signal, respectively, and wavelength-synthesizing and transmitting the same; the relay device amplifies the optical main signal of the signal received from the transmission line Optical amplifying means, wavelength separating means for separating an optical main signal on which the low-frequency pulse signal is superimposed from the received signal and a supervisory control optical signal, respectively, and converting the low-frequency pulse signal from these separated signals. Low-frequency pulse signal extracting means for extracting, respectively, a dispersion compensating means for comparing the phases of these low-frequency pulse signals and automatically compensating the output of the optical amplifying means according to the phase difference; and Of reflected light An optical transmission system which comprises to an output control unit which forms an output level control of the optical amplification means in accordance with the detection result.
【請求項6】 前記出力制御手段は、前記反射戻り光に
応じた電流と前記光増幅手段の励起電流とを比較してこ
の比較結果に応じて前記出力レベル制御をなすよう構成
されていることを特徴とする請求項5記載の光伝送シス
テム。
6. The output control means is configured to compare a current corresponding to the reflected return light with an excitation current of the optical amplifying means, and to perform the output level control in accordance with a result of the comparison. The optical transmission system according to claim 5, wherein:
【請求項7】 前記出力制御手段は、前記反射戻り光に
応じた電流と前記光増幅手段の励起電流との比が一定に
なるよう前記励起電流の制御をなすことを特徴とする請
求項6記載の自動分散補償回路。
7. The pump control device according to claim 6, wherein the output control unit controls the pump current such that a ratio between a current corresponding to the reflected return light and a pump current of the optical amplifier unit becomes constant. Automatic dispersion compensation circuit as described.
JP11037981A 1999-02-17 1999-02-17 Automatic dispersion compensating circuit and optical transmission system using the same Pending JP2000236298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11037981A JP2000236298A (en) 1999-02-17 1999-02-17 Automatic dispersion compensating circuit and optical transmission system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11037981A JP2000236298A (en) 1999-02-17 1999-02-17 Automatic dispersion compensating circuit and optical transmission system using the same

Publications (1)

Publication Number Publication Date
JP2000236298A true JP2000236298A (en) 2000-08-29

Family

ID=12512755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11037981A Pending JP2000236298A (en) 1999-02-17 1999-02-17 Automatic dispersion compensating circuit and optical transmission system using the same

Country Status (1)

Country Link
JP (1) JP2000236298A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048705A (en) * 2002-05-15 2004-02-12 Matsushita Electric Ind Co Ltd Catv up optical transmission system
JP2005033584A (en) * 2003-07-07 2005-02-03 Nec Corp Stimulated brillouin scattering suppressor and optical fiber transmission system using the same
JP2006014055A (en) * 2004-06-28 2006-01-12 Nec Corp Multiple wavelength transmitting device and its wavelength additional method
JP2006101436A (en) * 2004-09-30 2006-04-13 Sumitomo Osaka Cement Co Ltd Optical transmission apparatus and method
US7536108B2 (en) 2001-06-29 2009-05-19 Nippon Telegraph & Telephone Corporation High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
US9887778B2 (en) 2015-04-24 2018-02-06 Fujitsu Limited Optical amplifier, optical transmission apparatus, and optical repeating apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536108B2 (en) 2001-06-29 2009-05-19 Nippon Telegraph & Telephone Corporation High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
JP2004048705A (en) * 2002-05-15 2004-02-12 Matsushita Electric Ind Co Ltd Catv up optical transmission system
JP4559039B2 (en) * 2002-05-15 2010-10-06 パナソニック株式会社 CATV upstream optical transmission system
JP2005033584A (en) * 2003-07-07 2005-02-03 Nec Corp Stimulated brillouin scattering suppressor and optical fiber transmission system using the same
JP4654570B2 (en) * 2003-07-07 2011-03-23 日本電気株式会社 Stimulated Brillouin scattering suppression device and optical fiber transmission system using the same
JP2006014055A (en) * 2004-06-28 2006-01-12 Nec Corp Multiple wavelength transmitting device and its wavelength additional method
JP4517747B2 (en) * 2004-06-28 2010-08-04 日本電気株式会社 Wavelength multiplexing transmission apparatus and wavelength extension method thereof
JP2006101436A (en) * 2004-09-30 2006-04-13 Sumitomo Osaka Cement Co Ltd Optical transmission apparatus and method
JP4510576B2 (en) * 2004-09-30 2010-07-28 住友大阪セメント株式会社 Optical transmission apparatus and optical transmission method
US9887778B2 (en) 2015-04-24 2018-02-06 Fujitsu Limited Optical amplifier, optical transmission apparatus, and optical repeating apparatus

Similar Documents

Publication Publication Date Title
JP2748908B2 (en) Optical transmission line characteristic measuring method and apparatus, and optical wavelength multiplex transmission method and apparatus
JP3320452B2 (en) Monitoring and control method for optical repeaters
JP3391341B2 (en) Optical transmission line monitoring system, its monitoring device and its monitoring method
JP5001698B2 (en) Signal input detection device for detecting presence / absence of optical signal input
EP3703281B1 (en) Wavelength converter and method of performing wavelength conversion
US7174108B2 (en) Transmission device and repeater
JP2809132B2 (en) Optical amplification monitoring device
JPH04241328A (en) Control method for optical amplifier and optical amplifier
JPH10163962A (en) Automatic dispersion compensation optical transmission system
US7016609B2 (en) Receiver transponder for protected networks
JP3232625B2 (en) Optical repeater and monitoring information transfer method
JP2000236298A (en) Automatic dispersion compensating circuit and optical transmission system using the same
JP3370595B2 (en) Preset type automatic equalizer
JPH05292036A (en) Optical amplifier repeater
US20010022684A1 (en) Optical amplifier and wavelength multiplexing optical transmission system
JP2771968B2 (en) Optical amplification bidirectional transmission device
JP3582488B2 (en) Optical receiver and optical receiving method
JPH11271818A (en) Optical transmitting device and optical repeating device
JP3221431B2 (en) Optical transmitting apparatus and monitoring information transmitting method
JP3503600B2 (en) Optical transmitting device and optical receiving device
JP3503615B2 (en) Optical repeater and monitoring information processor
JP3503616B2 (en) Optical repeater monitoring information transfer method
JP3503617B2 (en) Optical transmitting apparatus and monitoring information transfer method
JP3235585B2 (en) Optical receiving device and monitoring information receiving method
JP3463674B2 (en) Optical receiving device and transfer method of monitoring information