JP2000234818A - Refrigerant supercooling mechanism of air conditioner - Google Patents

Refrigerant supercooling mechanism of air conditioner

Info

Publication number
JP2000234818A
JP2000234818A JP11038746A JP3874699A JP2000234818A JP 2000234818 A JP2000234818 A JP 2000234818A JP 11038746 A JP11038746 A JP 11038746A JP 3874699 A JP3874699 A JP 3874699A JP 2000234818 A JP2000234818 A JP 2000234818A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outlet
cooling
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11038746A
Other languages
Japanese (ja)
Inventor
Kenichi Minami
健一 南
Jiro Fukutome
二朗 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP11038746A priority Critical patent/JP2000234818A/en
Priority to ES99937013T priority patent/ES2265187T3/en
Priority to AT99937013T priority patent/ATE329213T1/en
Priority to PT99937013T priority patent/PT1162414E/en
Priority to PCT/JP1999/004326 priority patent/WO2000049346A1/en
Priority to DE69931816T priority patent/DE69931816D1/en
Priority to EP99937013A priority patent/EP1162414B1/en
Publication of JP2000234818A publication Critical patent/JP2000234818A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling effect by supercooling a refrigerant that is unloaded from a heat exchanger. SOLUTION: In an air-conditioning device 1, a compressor 2, an outdoor heat exchanger 7, a pressure reduction device 20, and an indoor heat exchanger 21 are connected for circulating a refrigerant. The air-conditioning device 1 is provided with the refrigerant supercooling mechanism of the air-conditioning device, where the liquid refrigerant extraction port of a gas/liquid separator 35 in the middle of the outdoor heat exchanger 7 is connected to the inlet of a heat transfer pipe 30, in a cooling receiver 12 that is provided between the outlet of the outdoor heat exchanger 21 and the pressure reduction device 20 via a first throttle valve 37, and the outlet of the heat transfer pipe 30 is connected to the inlet of the compressor 2. A second throttle valve 10 is provided between the outlet of the outdoor heat exchanger 7 and the cooling receiver 12, thus promoting the supercooling of the refrigerant in the receiver 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンプレッサ、室外
熱交換器、減圧装置、室内熱交換器をつなぎ冷媒を循環
させるようにした空調装置の冷媒過冷却機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant supercooling mechanism of an air conditioner which connects a compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger to circulate a refrigerant.

【0002】[0002]

【従来の技術】従来、凝縮器(熱交換器)の途中の気液
分離器を設け、この気液分離器の液冷媒抽出口を熱交換
器の出口に接続して熱交換器の熱交換率の向上と熱交換
器の小型化を図るようにした冷凍装置は既に提案されて
いる(例えば特開平8−327181号)。ところがそ
の場合は、気液分離器で抽出された液冷媒は単に熱交換
器から出る冷媒に混入されるだけである為、冷媒の過冷
却には使用されず、従って冷却効果の一層の向上を期待
することは出来ない。
2. Description of the Related Art Conventionally, a gas-liquid separator is provided in the middle of a condenser (heat exchanger), and a liquid refrigerant extraction port of the gas-liquid separator is connected to an outlet of the heat exchanger. A refrigerating apparatus designed to improve the efficiency and reduce the size of the heat exchanger has already been proposed (for example, Japanese Patent Application Laid-Open No. 8-327181). However, in this case, the liquid refrigerant extracted by the gas-liquid separator is simply mixed into the refrigerant flowing out of the heat exchanger, so that it is not used for supercooling the refrigerant, thus further improving the cooling effect. I can't expect it.

【0003】[0003]

【発明が解決しようとする課題】熱交換器から出る冷媒
を過冷却して冷却効果の一層の向上を図る。
SUMMARY OF THE INVENTION The refrigerant from the heat exchanger is supercooled to further improve the cooling effect.

【0004】[0004]

【課題を解決するための手段】請求項1の発明は、コン
プレッサ、室外熱交換器、減圧装置、室内熱交換器をつ
なぎ冷媒を循環させるようにした空調装置において、冷
房運転時に室外熱交換器の途中の気液分離器の液冷媒抽
出口を第1絞り弁を介して、室外熱交換器の出口と減圧
装置との間に設けた冷却レシーバ内の伝熱管の入口に接
続し、伝熱管の出口をコンプレッサの入口に接続したこ
とを特徴とする空調装置の冷媒過冷却機構である。請求
項2の発明は、室外熱交換器の出口と冷却レシーバの間
に第2絞り弁を設けて冷却レシーバ内での冷媒の過冷却
を促進させるようにした請求項1に記載の空調装置の冷
媒過冷却機構である。
According to a first aspect of the present invention, there is provided an air conditioner in which a refrigerant is circulated by connecting a compressor, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger. The liquid refrigerant extraction port of the gas-liquid separator in the middle is connected via a first throttle valve to the inlet of a heat transfer tube in a cooling receiver provided between the outlet of the outdoor heat exchanger and the pressure reducing device. Is connected to an inlet of a compressor. According to a second aspect of the present invention, there is provided the air conditioner according to the first aspect, wherein a second throttle valve is provided between an outlet of the outdoor heat exchanger and the cooling receiver to promote supercooling of the refrigerant in the cooling receiver. This is a refrigerant supercooling mechanism.

【0005】[0005]

【発明の実施の形態】図1は本発明による空調装置1の
冷房運転時の状態を示しており、エンジン等で駆動され
るコンプレッサ2の出口3は通路4、4方弁5、通路6
を経て室外熱交換器7の入口8に接続し、室外熱交換器
7の出口9は途中に第2絞り弁10を有する通路11を
経て冷却レシーバ12の入口13に接続している。冷却
レシーバ12内には上部の気相部分14と下部の液冷媒
15が有り、出口16は通路17を経て室内機18に接
続している。室内機18は減圧装置20(絞り弁)と室
内熱交換器21を有する複数個の通路22を備え、通路
22の合流通路23は4方弁5、通路24、アキュムレ
ータ25、通路26を経てコンプレッサ2の入口27に
接続している。
FIG. 1 shows a state of a cooling operation of an air conditioner 1 according to the present invention. An outlet 3 of a compressor 2 driven by an engine or the like has a passage 4, a four-way valve 5, and a passage 6.
And the outlet 9 of the outdoor heat exchanger 7 is connected to the inlet 13 of the cooling receiver 12 via a passage 11 having a second throttle valve 10 in the middle. The cooling receiver 12 has an upper gas phase portion 14 and a lower liquid refrigerant 15, and an outlet 16 is connected to an indoor unit 18 via a passage 17. The indoor unit 18 includes a plurality of passages 22 having a pressure reducing device 20 (throttle valve) and an indoor heat exchanger 21, and a merging passage 23 of the passages 22 passes through a four-way valve 5, a passage 24, an accumulator 25, a passage 26, and a compressor 2 is connected to the inlet 27 of the second.

【0006】第2絞り弁10は、図示の冷房運転時に上
流側通路11を絞り、室外熱交換器7出口で冷媒を完全
に液化させることにより冷却レシーバ12内での液相冷
媒の冷却即ち過冷却作用を促進させる機能を備えてお
り、従来はこの場所に暖房用膨張弁(冷房時には全開)
が配置されていたのに対して、図示の第2絞り弁10は
従来の暖房用膨張弁の機能も備えた双方向型である。
The second throttle valve 10 throttles the upstream passage 11 during the cooling operation shown in the drawing, and completely liquefies the refrigerant at the outlet of the outdoor heat exchanger 7 to cool or cool the liquid-phase refrigerant in the cooling receiver 12. It has a function to promote the cooling action. Conventionally, a heating expansion valve is provided at this location (fully open during cooling)
Is arranged, the illustrated second throttle valve 10 is a two-way type which also has the function of a conventional heating expansion valve.

【0007】冷却レシーバ12は、内部の液冷媒15内
に後述する伝熱管30を備えているが、従来、この場所
には伝熱管30を持たないレシーバが配置されており、
室内機18の内の熱交換器21の使用個数が減少した時
に余剰冷媒をプールし得る機能を備えていたものを例え
ば活用して冷却レシーバ12を形成している。
[0007] The cooling receiver 12 is provided with a heat transfer tube 30 described later in the liquid refrigerant 15 therein. Conventionally, a receiver having no heat transfer tube 30 is disposed at this location.
The cooling receiver 12 is formed by, for example, utilizing a function of pooling surplus refrigerant when the number of heat exchangers 21 used in the indoor units 18 decreases.

【0008】室内機18の室内熱交換器21の入口側と
出口側(冷房運転時)の温度センサー31,32は絞り
弁20に接続されており、温度センサー31,32から
同一温度信号が供給されることは、室内熱交換器21の
出口を液冷媒が通過していること、即ち室内熱交換器2
1内で冷媒が室内から充分熱を吸収して気化(室内を冷
房)していないことに相当するから、絞り弁20がより
絞られ、温度センサー32からの温度信号が温度センサ
ー31からの温度信号より高い場合は室内熱交換器21
内で冷媒が室内から充分熱を吸収して気化したことを意
味しており、差が所定値より大き過ぎる場合は絞り弁2
0の開度を増して通過冷媒量を増し、冷房効果を高める
ように制御する。この制御は過熱度制御方式として従来
から採用されており、通路23を常時低圧ガスが通過す
るように制御されている。又、絞り弁20は図示の冷房
運転時のみに絞りとして作用し、暖房時(逆流時)には
全開する従来型のものである。
The temperature sensors 31, 32 on the inlet side and the outlet side (during cooling operation) of the indoor heat exchanger 21 of the indoor unit 18 are connected to the throttle valve 20, and the same temperature signals are supplied from the temperature sensors 31, 32. This means that the liquid refrigerant passes through the outlet of the indoor heat exchanger 21, that is, the indoor heat exchanger 2
1 corresponds to the fact that the refrigerant has not sufficiently absorbed heat from the room and vaporized (cooling the room), so the throttle valve 20 is further throttled, and the temperature signal from the temperature sensor 32 is If higher than the signal, the indoor heat exchanger 21
Means that the refrigerant has sufficiently absorbed heat from the room and vaporized, and if the difference is too large, the throttle valve 2
Control is performed so as to increase the amount of passing refrigerant by increasing the opening degree of 0, thereby enhancing the cooling effect. This control is conventionally employed as a superheat control method, and is controlled so that the low-pressure gas always passes through the passage 23. The throttle valve 20 is a conventional type that acts as a throttle only in the illustrated cooling operation, and is fully opened during heating (during reverse flow).

【0009】本発明において更に採用された機構に付き
説明する。室外熱交換器7の途中に設けた気液分離器3
5の液冷媒抽出口34は途中に開閉弁36と第1絞り弁
37を有する通路38を経て前述の伝熱管30の入口3
9に接続し、伝熱管30の出口40は通路41を経て通
路24に接続している。温度センサー42、43は第1
絞り弁37に電気的に接続され、過熱度制御機構が形成
されている。これにより通路41には常時気体冷媒が通
る。
The mechanism further employed in the present invention will be described. Gas-liquid separator 3 provided in the middle of the outdoor heat exchanger 7
5 through a passage 38 having an on-off valve 36 and a first throttle valve 37 on the way.
9, and the outlet 40 of the heat transfer tube 30 is connected to the passage 24 via the passage 41. The temperature sensors 42 and 43 are the first
It is electrically connected to the throttle valve 37 to form a superheat control mechanism. As a result, the gas refrigerant always passes through the passage 41.

【0010】気液分離器35の縦断部分正面を示す図2
において、気液分離Uベンド45(伝熱管)の外周面に
は多数のフィン46が固着されており、例えば上方のフ
ァンから冷却風が供給される。47は分離管であり、各
分離管47が集合して図1の液冷媒抽出口34を介して
通路38に接続される。図2では左側の分離管は図示さ
れていないが、左側の分離管も同様に図1の液冷媒抽出
口34に接続される。図2において、Uベンド45の入
口48と出口49は夫々直接に又は複数の気液分離Uベ
ンドを介して図1の入口8と出口9に接続する。
FIG. 2 is a front view of a vertical section of the gas-liquid separator 35.
, A large number of fins 46 are fixed to the outer peripheral surface of the gas-liquid separation U-bend 45 (heat transfer tube), and cooling air is supplied from, for example, an upper fan. Reference numeral 47 denotes a separation tube, and the separation tubes 47 are assembled and connected to the passage 38 via the liquid refrigerant extraction port 34 in FIG. Although the left separation pipe is not shown in FIG. 2, the left separation pipe is similarly connected to the liquid refrigerant extraction port 34 in FIG. 1. 2, the inlet 48 and outlet 49 of the U-bend 45 are connected to the inlet 8 and outlet 9 of FIG. 1 directly or through a plurality of gas-liquid separation U-bends, respectively.

【0011】図2の入口48から流入した高圧の気液2
相冷媒は上記の冷却風により冷却されて液相冷媒50と
気相冷媒51に分離され、且つベンド部(湾曲部)では
遠心力により液相冷媒50が分離管47に圧送される。
出口49を出た気液2相冷媒は最終的には全て高圧の液
相冷媒となり図1の出口9から通路11へ排出される。
The high-pressure gas-liquid 2 flowing from the inlet 48 in FIG.
The phase refrigerant is cooled by the cooling air to be separated into the liquid phase refrigerant 50 and the gas phase refrigerant 51, and the liquid phase refrigerant 50 is sent to the separation pipe 47 by centrifugal force at the bend portion (curved portion).
All the gas-liquid two-phase refrigerant that has exited the outlet 49 eventually becomes a high-pressure liquid-phase refrigerant and is discharged from the outlet 9 in FIG.

【0012】冷房運転時に図1のコンプレッサ2で圧縮
された気相冷媒(高圧ガス)は通路4、4方弁5、通路
6、入口8を経て室外熱交換器7に入り、そこで冷却さ
れ、高圧液(R32/R125リッチ)の状態で出口
9、通路11、絞り弁10、入口13から冷却レシーバ
12に入り、後述するように伝熱管30により過冷却さ
れ、出口16、通路17を経て室内機18の減圧装置2
0(絞り弁)で膨張し、室内熱交換器21で室内から熱
を奪い(冷房し)、低圧ガスの状態で通路23、4方弁
5、通路24、アキュムレータ25、通路26を経てコ
ンプレッサ2の入口27に戻される。
During the cooling operation, the gas-phase refrigerant (high-pressure gas) compressed by the compressor 2 shown in FIG. 1 enters the outdoor heat exchanger 7 through the passage 4, the four-way valve 5, the passage 6, and the inlet 8, where it is cooled. The high-pressure liquid (R32 / R125 rich) enters the cooling receiver 12 through the outlet 9, the passage 11, the throttle valve 10, and the inlet 13 and is supercooled by the heat transfer tube 30 as described later. Pressure reducing device 2 of the machine 18
0 (throttle valve), the heat is removed from the room by the indoor heat exchanger 21 (cooling), and the compressor 2 passes through the passage 23, the four-way valve 5, the passage 24, the accumulator 25, and the passage 26 in a low-pressure gas state. Is returned to the entrance 27.

【0013】室外熱交換器7の途中の気液分離器35の
部分でそれまでに液化した冷媒(例えば10%)が液冷
媒抽出口34から抽出され、この分離高圧液(R134
aリッチ)は通路38、開放した開閉弁36を経て第1
絞り弁37の部分で膨張し、伝熱管30を通過する間に
液冷媒15を過冷却し、出口40から低圧ガスとして通
路41に入り、通路24内の低圧ガスと合流する。即
ち、通路38、伝熱管30、通路41は冷却バイパス回
路を形成している。
In the gas-liquid separator 35 in the middle of the outdoor heat exchanger 7, the refrigerant (eg, 10%) liquefied so far is extracted from the liquid refrigerant extraction port 34, and the separated high-pressure liquid (R134) is extracted.
a rich) passes through the passage 38 and the open / close valve 36,
The liquid refrigerant 15 expands at the portion of the throttle valve 37, supercools the liquid refrigerant 15 while passing through the heat transfer tube 30, enters the passage 41 as a low-pressure gas from the outlet 40, and merges with the low-pressure gas in the passage 24. That is, the passage 38, the heat transfer tube 30, and the passage 41 form a cooling bypass circuit.

【0014】図3の実線枠は冷却バイパス回路を持たな
い通常サイクルであり、白抜き太線は本発明によるサイ
クルである。又、CP入はコンプレッサ入口、CP出は
コンプレッサ出口、外HEx入、外HEx出は夫々室外
熱交換器入口、出口、EV入、EV出は夫々減圧装置入
口、出口、内HEx出は室内熱交換器出口を示してい
る。図3のL1は図1の絞り弁10による圧力低下を示
し、L2は抽出分離高圧液を冷却バイパス回路に流して
冷却レシーバ12内の液冷媒15を冷却したことによる
比エンタルピの低下を示しており、結局、本発明による
と、L2だけ冷却効果が向上することがわかる。
The solid line frame in FIG. 3 is a normal cycle having no cooling bypass circuit, and the thick white line is a cycle according to the present invention. Also, CP inlet is the compressor inlet, CP outlet is the compressor outlet, outer HEx inlet, outer HEx outlet is the outdoor heat exchanger inlet, outlet, EV input, EV outlet are the decompression device inlet, outlet, and inner HEx outlet is the indoor heat, respectively. Shows the exchanger outlet. L1 in FIG. 3 indicates a pressure drop by the throttle valve 10 in FIG. 1, and L2 indicates a decrease in specific enthalpy due to cooling of the liquid refrigerant 15 in the cooling receiver 12 by flowing the extracted and separated high-pressure liquid to the cooling bypass circuit. In conclusion, according to the present invention, it is understood that the cooling effect is improved by L2.

【0015】[0015]

【発明の効果】請求項1の発明によると、室外熱交換器
7の途中の気液分離器35から一部の高圧液冷媒を抽出
し、これを第1絞り弁37で膨張させて冷却レシーバ1
2内の液冷媒15の冷却に使用するようにしたので、室
外熱交換器7の熱交換率の向上の他に、空調装置全体と
しての冷却性能の向上(例えば5%)を期待出来る。請
求項2の発明によると、第2絞り弁10で通路11の抵
抗が増すことにより、冷房運転時に室外熱交換器7出口
において冷媒が完全に液化し、冷却レシーバでの冷却能
力が効率的に過冷却に利用され、冷却性能向上が達成さ
れる。
According to the first aspect of the present invention, a part of the high-pressure liquid refrigerant is extracted from the gas-liquid separator 35 in the middle of the outdoor heat exchanger 7, and is expanded by the first throttle valve 37 to cool the refrigerant. 1
Since it is used to cool the liquid refrigerant 15 in the inside 2, the improvement of the cooling performance (for example, 5%) of the entire air conditioner can be expected in addition to the improvement of the heat exchange rate of the outdoor heat exchanger 7. According to the invention of claim 2, the resistance of the passage 11 is increased by the second throttle valve 10, so that the refrigerant is completely liquefied at the outlet of the outdoor heat exchanger 7 during the cooling operation, and the cooling capacity of the cooling receiver is efficiently increased. It is used for supercooling to achieve improved cooling performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 冷房運転時の本発明による空調装置の構造略
図である。
FIG. 1 is a schematic structural diagram of an air conditioner according to the present invention during a cooling operation.

【図2】 図1の気液分離器内の気液分離Uベンドの縦
断正面図である。
FIG. 2 is a vertical sectional front view of a gas-liquid separation U-bend in the gas-liquid separator of FIG.

【図3】 冷媒圧力と比エンタルピの関係を示すグラフ
である。
FIG. 3 is a graph showing a relationship between refrigerant pressure and specific enthalpy.

【符号の説明】[Explanation of symbols]

1 空調装置 2 コンプレッサ 7 室外熱交換器 9 出口 10 第2絞り弁 12 冷却レシーバ 20 減圧装置 21 室内熱交換器 27 入口 30 伝熱管 34 液冷媒抽出口 35 気液分離器 37 第1絞り弁 39 入口 40 出口 REFERENCE SIGNS LIST 1 air conditioner 2 compressor 7 outdoor heat exchanger 9 outlet 10 second throttle valve 12 cooling receiver 20 pressure reducing device 21 indoor heat exchanger 27 inlet 30 heat transfer tube 34 liquid refrigerant extraction port 35 gas-liquid separator 37 first throttle valve 39 inlet Exit 40

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コンプレッサ、室外熱交換器、減圧装
置、室内熱交換器をつなぎ冷媒を循環させるようにした
空調装置において、冷房運転時に室外熱交換器の途中の
気液分離器の液冷媒抽出口を第1絞り弁を介して、室外
熱交換器の出口と減圧装置との間に設けた冷却レシーバ
内の伝熱管の入口に接続し、伝熱管の出口をコンプレッ
サの入口に接続したことを特徴とする空調装置の冷媒過
冷却機構。
1. An air conditioner in which a refrigerant is circulated by connecting a compressor, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger to extract a liquid refrigerant from a gas-liquid separator in the middle of the outdoor heat exchanger during a cooling operation. That the outlet was connected to the inlet of the heat transfer tube in the cooling receiver provided between the outlet of the outdoor heat exchanger and the pressure reducing device via the first throttle valve, and that the outlet of the heat transfer tube was connected to the inlet of the compressor. A refrigerant supercooling mechanism for air conditioners.
【請求項2】 室外熱交換器の出口と冷却レシーバの間
に第2絞り弁を設けて冷却レシーバ内での冷媒の過冷却
を促進させるようにした請求項1に記載の空調装置の冷
媒過冷却機構。
2. The air conditioner according to claim 1, wherein a second throttle valve is provided between an outlet of the outdoor heat exchanger and the cooling receiver to promote supercooling of the refrigerant in the cooling receiver. Cooling mechanism.
JP11038746A 1999-02-17 1999-02-17 Refrigerant supercooling mechanism of air conditioner Pending JP2000234818A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11038746A JP2000234818A (en) 1999-02-17 1999-02-17 Refrigerant supercooling mechanism of air conditioner
ES99937013T ES2265187T3 (en) 1999-02-17 1999-08-09 COOLING CIRCUIT WITH REFRIGERANT.
AT99937013T ATE329213T1 (en) 1999-02-17 1999-08-09 CIRCUIT WITH REFRIGERANT SUBCOOLING
PT99937013T PT1162414E (en) 1999-02-17 1999-08-09 CIRCUIT FOR SUPER REFRIGERATION OF A REFRIGERANT
PCT/JP1999/004326 WO2000049346A1 (en) 1999-02-17 1999-08-09 Refrigerant supercooling circuit
DE69931816T DE69931816D1 (en) 1999-02-17 1999-08-09 CIRCUIT WITH REFRIGERANT COOLING
EP99937013A EP1162414B1 (en) 1999-02-17 1999-08-09 Refrigerant supercooling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11038746A JP2000234818A (en) 1999-02-17 1999-02-17 Refrigerant supercooling mechanism of air conditioner

Publications (1)

Publication Number Publication Date
JP2000234818A true JP2000234818A (en) 2000-08-29

Family

ID=12533886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11038746A Pending JP2000234818A (en) 1999-02-17 1999-02-17 Refrigerant supercooling mechanism of air conditioner

Country Status (1)

Country Link
JP (1) JP2000234818A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524478A2 (en) * 2003-10-16 2005-04-20 LG Electronics Inc. System and method for controlling temperature of refrigerant in air conditioner
JP2009024939A (en) * 2007-07-19 2009-02-05 Fujitsu General Ltd Refrigerant tank and heat pump system
CN102252466A (en) * 2011-05-09 2011-11-23 广东美的电器股份有限公司 Secondary throttle pipe-in-pipe recooling device for air conditioner
CN114838535A (en) * 2022-05-18 2022-08-02 广东开利暖通空调股份有限公司 Air conditioning system with bypass heating gas-liquid separator and heating method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524478A2 (en) * 2003-10-16 2005-04-20 LG Electronics Inc. System and method for controlling temperature of refrigerant in air conditioner
EP1524478A3 (en) * 2003-10-16 2011-02-23 LG Electronics, Inc. System and method for controlling temperature of refrigerant in air conditioner
JP2009024939A (en) * 2007-07-19 2009-02-05 Fujitsu General Ltd Refrigerant tank and heat pump system
CN102252466A (en) * 2011-05-09 2011-11-23 广东美的电器股份有限公司 Secondary throttle pipe-in-pipe recooling device for air conditioner
CN114838535A (en) * 2022-05-18 2022-08-02 广东开利暖通空调股份有限公司 Air conditioning system with bypass heating gas-liquid separator and heating method thereof
CN114838535B (en) * 2022-05-18 2023-09-12 广东开利暖通空调股份有限公司 Air conditioning system with bypass heating gas-liquid separator and heating method thereof

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP4321095B2 (en) Refrigeration cycle equipment
EP3650764B1 (en) Air conditioner
KR102198311B1 (en) Air conditioning system
US20060123834A1 (en) Air conditioner
CN103597296A (en) Freezing cycle
JP2011112233A (en) Air conditioning device
JPH0814710A (en) Cooling and heating air conditioner
CN101344335B (en) Refrigeration circulation device
EP2568232A2 (en) Air conditioner
KR101737365B1 (en) Air conditioner
CN1328548C (en) Air conditioner and outdoor unit therefor
EP1607696A2 (en) Refrigerating machine
KR100225636B1 (en) Airconditioner for both cooling and warming
KR20100032200A (en) Air conditioner
US9267716B2 (en) Heat exchanger and an air conditioning system having the same
JPH0420764A (en) Air conditioner
JP2000234818A (en) Refrigerant supercooling mechanism of air conditioner
JP2000292016A (en) Refrigerating cycle
JP4352327B2 (en) Ejector cycle
JP2877552B2 (en) Air conditioner
JP2002277066A (en) Air conditioning equipment for vehicle
EP1672299A2 (en) Air conditioner and method for controlling the same
EP1260776B1 (en) A heat exchanger for an air conditioning system
JPH10196984A (en) Air conditioner