JP2000231928A - Solid polymer electrolyte fuel cell - Google Patents

Solid polymer electrolyte fuel cell

Info

Publication number
JP2000231928A
JP2000231928A JP11033109A JP3310999A JP2000231928A JP 2000231928 A JP2000231928 A JP 2000231928A JP 11033109 A JP11033109 A JP 11033109A JP 3310999 A JP3310999 A JP 3310999A JP 2000231928 A JP2000231928 A JP 2000231928A
Authority
JP
Japan
Prior art keywords
cation exchange
polymer electrolyte
exchange membrane
fuel cell
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11033109A
Other languages
Japanese (ja)
Inventor
Ichiro Terada
一郎 寺田
Yoshiaki Higuchi
義明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11033109A priority Critical patent/JP2000231928A/en
Publication of JP2000231928A publication Critical patent/JP2000231928A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte fuel cell having high strength even if the membrane is thin, and capable of maintaining high performance for a long time, by using a cation exchange membrane comprising per- fluorocarbon copolymer containing a sulfonic acid group as a solid high polymer electrolyte, including a reinforcement material of polyethylene fiber having a weight average molecular weight of not less than a specific value. SOLUTION: A woven cloth having 10-200 warps and 10-200 wefts/inch independently for each and a thickness of 10-80 μm is obtained by using polyethylene fabric with ultrahigh molecular weight and high density having weight average molecular weight of not less than 1 million, and the number of deniers of 0.8-50. After a gamma ray is radiated to a woven cloth flattened by applying pressure to this woven cloth, an operation to impregnate it in a solution of per-fluorocarbon copolymer containing a sulfonic acid group with concentration of 8% and dry it is repeated. A cation exchange membrane reinforced by this woven cloth consequently obtained has high tensile strength of 8.5 kg/cm and a low specific resistance of 5 Ω.cm and is used for a solid polymer electrolyte. Thereby, high performance can be maintained for a long time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
型燃料電池に関する。
The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年、プロトン伝導性の高分子膜を電解
質として用いる固体高分子電解質型燃料電池の研究が進
んでいる。固体高分子電解質型燃料電池は、作動温度が
低く出力密度が高くかつ小型化が可能なため、車載用電
源等の用途に対し有望視されている。
2. Description of the Related Art In recent years, research on a solid polymer electrolyte fuel cell using a proton conductive polymer membrane as an electrolyte has been advanced. Solid polymer electrolyte fuel cells are promising for applications such as in-vehicle power supplies because of their low operating temperature, high output density, and compact size.

【0003】[0003]

【発明が解決しようとする課題】固体高分子型燃料電池
に使用される高分子膜は、通常厚さ100〜200μm
のプロトン伝導性イオン交換膜であり、特にスルホン酸
基を含有するパーフルオロカーボン重合体からなる陽イ
オン交換膜が、基本特性に優れるため広く検討されてい
る。しかし、燃料電池が例えば車載用電源の用途に使用
できるほど高出力密度を得るためには、現在提案されて
いる陽イオン交換膜は抵抗が充分には低くない。
The polymer membrane used for the polymer electrolyte fuel cell usually has a thickness of 100 to 200 μm.
In particular, a cation exchange membrane comprising a perfluorocarbon polymer containing a sulfonic acid group has been widely studied because of its excellent basic characteristics. However, in order to obtain a high output density so that the fuel cell can be used for, for example, a power supply for a vehicle, the cation exchange membrane proposed at present has a resistance not sufficiently low.

【0004】上記陽イオン交換膜の抵抗を低減するに
は、スルホン酸基濃度を増加する方法と膜厚を薄くする
方法があるが、スルホン酸基濃度が著しく増加すると膜
の機械的強度が低下したり、燃料電池の長期運転により
膜がクリープしやすくなり燃料電池の耐久性が低下する
などの問題が生じる。一方、膜厚を薄くすると膜の機械
的強度が低下し、ガス拡散電極と接合させるときなどに
加工しにくかったり取扱いが困難になるなどの問題が生
じる。
In order to reduce the resistance of the cation exchange membrane, there are a method of increasing the sulfonic acid group concentration and a method of reducing the film thickness. However, when the sulfonic acid group concentration is significantly increased, the mechanical strength of the membrane decreases. In addition, there is a problem that the membrane is easily creeped due to long-term operation of the fuel cell and the durability of the fuel cell is reduced. On the other hand, when the film thickness is reduced, the mechanical strength of the film decreases, and problems such as difficulty in processing and handling when joining the gas diffusion electrode occur.

【0005】上記の問題を解決する方法として、スルホ
ン酸基を含有するパーフルオロカーボン重合体からなる
フィルムとポリテトラフルオロエチレン(以下、PTF
Eという)からなる多孔体とを複合化した陽イオン交換
膜が提案されている(マーク.W.バーブルッジら、A
IChE ジャーナル、1992年,38,93)。し
かしこの膜は、膜厚は薄くできるものの、多孔体状のP
TFEの存在により抵抗が充分には低下しない。
As a method for solving the above problem, a film made of a perfluorocarbon polymer containing a sulfonic acid group and polytetrafluoroethylene (hereinafter, PTF) are used.
A cation exchange membrane in which a porous body made of E (hereinafter referred to as E) is composited has been proposed (Mark W. Barbrudge et al., A.
IChE Journal, 1992, 38, 93). However, although the thickness of this film can be reduced, the porous P
The resistance does not decrease sufficiently due to the presence of TFE.

【0006】そこで本発明は、膜厚が薄くても強度が高
くかつ抵抗が低い陽イオン交換膜を固体高分子電解質と
して有することにより、長期にわたって出力密度が高い
固体高分子型燃料電池を提供することを目的とする。
Accordingly, the present invention provides a polymer electrolyte fuel cell having a high power density over a long period of time by using a cation exchange membrane having a high strength and a low resistance even though the film thickness is small as a solid polymer electrolyte. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明は、重量平均分子
量が100万以上の超高分子量高密度ポリエチレン繊維
を用いて補強されたスルホン酸基を含有するパーフルオ
ロカーボン重合体からなる陽イオン交換膜を固体高分子
電解質とする固体高分子電解質型燃料電池を提供する。
SUMMARY OF THE INVENTION The present invention provides a cation exchange membrane comprising a sulfonic acid group-containing perfluorocarbon polymer reinforced with ultrahigh molecular weight high density polyethylene fibers having a weight average molecular weight of 1,000,000 or more. The present invention provides a solid polymer electrolyte fuel cell having a solid polymer electrolyte.

【0008】本発明における補強材であるポリエチレン
繊維は、重量平均分子量が100万以上、好ましくは3
00万以上である。重量平均分子量が100万より小さ
いと、陽イオン交換膜の強度を高められない。
[0008] The polyethylene fiber as a reinforcing material in the present invention has a weight average molecular weight of 1,000,000 or more, preferably 3
It is over one million. If the weight average molecular weight is less than 1,000,000, the strength of the cation exchange membrane cannot be increased.

【0009】本発明におけるポリエチレン繊維のデニー
ル数は0.8〜50が好ましい。デニール数が0.8よ
り小さいと繊維強度が低いため、加工の際に切れやす
い。デニール数が50より大きいと、スルホン酸基を含
有するパーフルオロカーボン重合体と複合化して製膜す
ると陽イオン交換膜の膜厚が厚くなり、抵抗が高くな
る。デニール数は特に5〜30が好ましい。
The denier of the polyethylene fiber in the present invention is preferably 0.8 to 50. When the denier number is smaller than 0.8, the fiber strength is low, and thus it is easy to break during processing. If the denier number is larger than 50, the cation-exchange membrane becomes thicker and more resistant when formed into a composite with a sulfonic acid group-containing perfluorocarbon polymer. The denier number is particularly preferably 5 to 30.

【0010】本発明における補強材の形態は、ポリエチ
レン繊維からなるフィラメントを織った織布又は該フィ
ラメントを撚り合わせた糸を織った織布でもよいし、不
織布でもよい。また、ポリエチレン繊維からなるフィラ
メントを陽イオン交換膜中に分散させて補強してもよ
い。ポリエチレン繊維からなる補強材は、PTFE多孔
体と比較して網目構造のコントロールにより補強の程度
の自由度が高いこと、開口率が高くても補強効果が高い
ため抵抗の上昇を少なくできること、及び寸法安定性に
優れていること等の利点がある。
The form of the reinforcing material in the present invention may be a woven fabric in which filaments made of polyethylene fibers are woven, a woven fabric in which yarns obtained by twisting the filaments are woven, or a nonwoven fabric. Further, a filament made of polyethylene fiber may be dispersed in a cation exchange membrane to reinforce it. The reinforcing material made of polyethylene fiber has a higher degree of freedom in the degree of reinforcement by controlling the network structure as compared with the porous PTFE material, and the increase in resistance can be reduced because the reinforcing effect is high even if the aperture ratio is high, and the dimensions There are advantages such as excellent stability.

【0011】補強材が織布からなる場合は、縦糸及び横
糸のデニール数がそれぞれ独立に0.8〜50、特に5
〜30であることが好ましい。縦糸、横糸のデニール数
が0.8より小さいと膜の補強効果が不充分となり、5
0より大きいと縦糸と横糸の交点にピンホールやクラッ
クが発生しやすい。縦糸及び横糸としては、デニール数
が0.8〜50であればモノフィラメント、マルチフィ
ラメントのいずれも使用できる。マルチフィラメント
は、糸断面を偏平化できるため、織布の開口率を減少さ
せても陽イオン交換膜の抵抗の上昇を抑えられるので好
ましい。
When the reinforcing material is made of a woven fabric, the deniers of the warp and the weft are independently 0.8 to 50, especially 5
It is preferably from 30 to 30. If the denier number of the warp and weft is less than 0.8, the reinforcing effect of the membrane becomes insufficient and the
If it is larger than 0, pinholes and cracks are likely to occur at the intersections between the warp and the weft. As the warp and weft, any monofilament or multifilament can be used as long as the denier number is 0.8 to 50. The multifilament is preferable because the cross section of the yarn can be flattened, so that the resistance of the cation exchange membrane can be suppressed from increasing even if the opening ratio of the woven fabric is reduced.

【0012】織布の縦糸及び横糸の密度は、10〜20
0本/インチ、特に50〜150本/インチが好まし
い。10本/インチより少ないと目ずれが生じやすく、
また織布の強度が低下する。200本/インチより多い
と織布の開口面積が小さくなり、同時に陽イオン交換膜
の厚さが厚くなる。
[0012] The density of the warp and the weft of the woven fabric is 10-20.
0 / inch, particularly preferably 50 to 150 / inch. If less than 10 lines / inch, misalignment tends to occur,
Also, the strength of the woven fabric decreases. If the number is more than 200 / inch, the opening area of the woven fabric becomes small, and at the same time, the thickness of the cation exchange membrane becomes large.

【0013】また、上記織布は、120℃以下の温度に
て平板プレスやロールプレス等により偏平化されること
が好ましく、織布の厚さは10〜80μm、特に15〜
40μmであることが好ましい。10μmより薄いと陽
イオン交換膜に対する補強効果が顕著に現れない。また
80μmより厚いと陽イオン交換膜の厚さが厚くなり膜
抵抗が増大する。
The woven fabric is preferably flattened by a flat plate press or a roll press at a temperature of 120 ° C. or less, and the thickness of the woven fabric is 10 to 80 μm, particularly 15 to 80 μm.
It is preferably 40 μm. If the thickness is less than 10 μm, the reinforcing effect on the cation exchange membrane does not appear remarkably. On the other hand, if the thickness is more than 80 μm, the thickness of the cation exchange membrane is increased and the membrane resistance is increased.

【0014】補強材が不織布からなる場合は、目付量が
5〜50g/m2、特に20〜40g/m2であることが
好ましい。目付量が5g/m2より小さいと不織布の強
度が低下し、50g/m2より大きいと不織布の開口面
積が小さくなり厚さが厚くなる。また、不織布の厚さは
10〜80μm、特に15〜40μmが好ましい。10
μmより薄いと陽イオン交換膜に対する補強効果が顕著
に現れない。また80μmより厚いと陽イオン交換膜の
厚さが厚くなり膜抵抗が増大する。
[0014] If the reinforcing material is made of non-woven fabric, basis weight 5 to 50 g / m 2, it is particularly preferably 20 to 40 g / m 2. If the basis weight is less than 5 g / m 2 , the strength of the nonwoven fabric decreases, and if it is more than 50 g / m 2 , the opening area of the nonwoven fabric becomes small and the thickness becomes thick. The thickness of the nonwoven fabric is preferably from 10 to 80 μm, particularly preferably from 15 to 40 μm. 10
If the thickness is less than μm, the reinforcing effect on the cation exchange membrane does not significantly appear. On the other hand, if the thickness is more than 80 μm, the thickness of the cation exchange membrane is increased and the membrane resistance is increased.

【0015】陽イオン交換膜中にポリエチレン繊維を分
散させて補強する場合には、ポリエチレン繊維は陽イオ
ン交換膜1m2あたりに1〜30g、特に10〜25g
/m2分散されていることが好ましい。陽イオン交換膜
中のポリエチレン繊維の密度が1g/m2より低いと補
強効果が顕著に現れない。また30g/m2より高いと
スルホン酸基を含有するパーフルオロカーボン重合体と
補強材を複合製膜する場合に、膜を平坦化できない。
When polyethylene fibers are dispersed and reinforced in the cation exchange membrane, the polyethylene fibers weigh 1 to 30 g, preferably 10 to 25 g, per m 2 of the cation exchange membrane.
/ M 2 . If the density of the polyethylene fibers in the cation exchange membrane is lower than 1 g / m 2 , the reinforcing effect does not appear remarkably. On the other hand, if it is higher than 30 g / m 2 , the film cannot be flattened when a composite film is formed from a sulfonic acid group-containing perfluorocarbon polymer and a reinforcing material.

【0016】本発明で使用するポリエチレン繊維からな
る補強材の表面は、放射線処理、放電処理、薬品処理又
はグラフト重合法処理されていることが好ましい。補強
材にこれらの処理が施されていると、スルホン酸基を含
有するパーフルオロカーボン重合体と補強材を複合製膜
する際に該重合体と補強材との接着性が向上し、強度の
高い陽イオン交換膜が得られる。
The surface of the reinforcing material made of polyethylene fibers used in the present invention is preferably subjected to a radiation treatment, a discharge treatment, a chemical treatment, or a graft polymerization treatment. When the reinforcing material is subjected to these treatments, the adhesion between the polymer and the reinforcing material is improved when a composite film is formed from the sulfonic acid group-containing perfluorocarbon polymer and the reinforcing material, and the strength is high. A cation exchange membrane is obtained.

【0017】放射線処理の方法としては、γ線や電子線
が用いられる。放射線の照射線量は1〜200kGy、
特には10〜100kGyが好ましい。照射線量が1k
Gyより小さいと表面処理効果が小さく、また200k
Gyより大きいとポリエチレン分子鎖の切断が進行し、
ポリエチレン繊維自体の強度が低下する。照射線量が1
〜200kGyの場合には繊維の強度低下は著しくな
く、カルボン酸基や水酸基などの官能基やラジカル等、
スルホン酸基を含有するパーフルオロカーボン重合体と
の接着性を向上させうる活性種が補強材に効率的に導入
される。
As a radiation treatment method, γ-rays or electron beams are used. The irradiation dose of radiation is 1 to 200 kGy,
Particularly, 10 to 100 kGy is preferable. Irradiation dose is 1k
If it is smaller than Gy, the surface treatment effect is small, and 200 k
If it is larger than Gy, cleavage of the polyethylene molecular chain proceeds,
The strength of the polyethylene fiber itself decreases. Irradiation dose is 1
In the case of ~ 200 kGy, the fiber strength is not significantly reduced, and functional groups such as carboxylic acid groups and hydroxyl groups, radicals, etc.
Active species capable of improving the adhesion to the perfluorocarbon polymer containing a sulfonic acid group are efficiently introduced into the reinforcing material.

【0018】放電処理の方法としては、常圧下でのコロ
ナ放電処理や減圧下でのプラズマ放電処理が挙げられ
る。コロナ放電の処理条件としては、出力が1〜3k
W、処理速度が3〜30m/分であることが好ましい。
出力が1kWより小さいと放電できず、また3kWより
大きいと発熱量が大きくなり補強材の強度が低下する。
処理速度が3m/分より遅いと、処理が過度に行われる
ため補強材の強度が低下する。30m/分より速いと充
分に処理できないおそれがある。
Examples of the discharge treatment include a corona discharge treatment under normal pressure and a plasma discharge treatment under reduced pressure. As the processing conditions for corona discharge, the output is 1-3 k
W, the processing speed is preferably 3 to 30 m / min.
If the output is less than 1 kW, discharge cannot be performed. If the output is more than 3 kW, the calorific value increases and the strength of the reinforcing material decreases.
If the processing speed is lower than 3 m / min, the processing is performed excessively, and the strength of the reinforcing material is reduced. If the speed is higher than 30 m / min, there is a possibility that the treatment cannot be performed sufficiently.

【0019】プラズマ放電の処理条件としては、圧力5
〜100Paの空気、酸素、アルゴン等の気体の存在下
で、出力0.01〜0.5kW、処理速度0.01〜5
m/分で処理するのが好ましい。圧力が5Paより低か
ったり100Paより高いと放電できない。使用する気
体は特に限定されないが、カルボン酸基や水酸基などの
官能基を補強材に導入するためには酸素を含む気体が好
ましい。またアルゴンはプラズマを安定させる効果があ
るので好ましい。気体は単独で用いてもよいが2種以上
の気体を混合して用いてもよい。
The processing conditions for the plasma discharge include a pressure of 5
In the presence of a gas such as air, oxygen, or argon at a pressure of ~ 100 Pa, an output of 0.01 to 0.5 kW and a processing speed of 0.01 to 5
Processing at m / min is preferred. If the pressure is lower than 5 Pa or higher than 100 Pa, discharge cannot be performed. The gas used is not particularly limited, but a gas containing oxygen is preferable for introducing a functional group such as a carboxylic acid group or a hydroxyl group into the reinforcing material. Argon is preferable because it has an effect of stabilizing plasma. The gas may be used alone, or a mixture of two or more gases may be used.

【0020】出力が0.01kWより低いと処理効果が
小さく、また0.5kWより高いと発熱が大きく補強材
の強度が低下する。処理速度は0.01m/分より遅い
と処理が過度となり補強材の強度が低下し、また5m/
分より速いと充分に処理できないおそれがある。
When the output is lower than 0.01 kW, the processing effect is small. When the output is higher than 0.5 kW, heat generation is large and the strength of the reinforcing material is reduced. If the processing speed is lower than 0.01 m / min, the processing becomes excessive and the strength of the reinforcing material is reduced.
If it is faster than this, it may not be possible to process sufficiently.

【0021】薬品処理の方法としては、クロロスルホン
酸、硫酸、発煙硫酸、発煙硫酸/りん酸トリエチル錯体
等に補強材を浸漬する方法が挙げられる。なかでもクロ
ロスルホン酸を使用すると、低温でも効率的にスルホニ
ルクロリド基を導入でき、さらに加水分解によりスルホ
ン酸基を導入できるため、スルホン酸型パーフルオロカ
ーボン重合体との接着性が向上できるので好ましい。ク
ロロスルホン酸を用いる場合は、そのまま用いてもよい
が、補強材への官能基導入の反応を制御するために、テ
トラクロロエタンやトリクロロエタン等の溶媒で10〜
50重量%程度に希釈して使用することが好ましい。
Examples of the method of chemical treatment include a method of immersing a reinforcing material in chlorosulfonic acid, sulfuric acid, fuming sulfuric acid, fuming sulfuric acid / triethyl phosphate complex, or the like. Of these, chlorosulfonic acid is preferred because sulfonyl chloride groups can be efficiently introduced even at a low temperature, and sulfonic acid groups can be introduced by hydrolysis, so that adhesiveness with a sulfonic acid-type perfluorocarbon polymer can be improved. When chlorosulfonic acid is used, it may be used as it is, but in order to control the reaction of introducing a functional group into the reinforcing material, a solvent such as tetrachloroethane or trichloroethane is used.
It is preferable to use it after diluting it to about 50% by weight.

【0022】放射線グラフト重合法による処理方法とし
ては、補強材に官能基を含有するモノマー又は官能基を
導入可能なモノマー(以下、まとめて官能基導入モノマ
ーという)を浸漬させながら放射線照射しグラフト重合
させてもよいし、補強材に放射線を照射した後に官能基
導入モノマーを浸漬させてグラフト重合させてもよい。
しかし、補強材に官能基導入モノマーを浸漬させながら
放射線照射する方法は取り扱いが煩雑であるので、後者
の方法が好ましい。
As a treatment method by the radiation graft polymerization method, the reinforcing polymer is irradiated with radiation while immersing a monomer having a functional group or a monomer capable of introducing a functional group (hereinafter collectively referred to as a monomer having a functional group) into the reinforcing material. Alternatively, the functional group-introduced monomer may be immersed in the reinforcing material after being irradiated with radiation, and then subjected to graft polymerization.
However, the method of irradiating radiation while immersing the functional group-introduced monomer in the reinforcing material is complicated, so the latter method is preferable.

【0023】放射線グラフト重合法における放射線処理
は、上述した放射線処理と同様の条件にての処理が好ま
しい。さらにここでの放射線照射は、照射中に発生する
ラジカルを保護するため、減圧下又は窒素等の不活性ガ
ス雰囲気中で行うことが好ましい。また、放射線を照射
してから補強材を官能基導入モノマーに浸漬するまでの
間は、ラジカル濃度の低下を防ぐために補強材を低温で
保持することが好ましい。補強材の官能基導入モノマー
への浸漬も、減圧下又は不活性ガス雰囲気中で行うこと
が好ましく、グラフト重合の温度は40〜90℃が好ま
しい。
The radiation treatment in the radiation graft polymerization method is preferably performed under the same conditions as the above-described radiation treatment. Further, the radiation irradiation here is preferably performed under reduced pressure or in an atmosphere of an inert gas such as nitrogen in order to protect radicals generated during the irradiation. In addition, it is preferable to keep the reinforcing material at a low temperature in order to prevent a reduction in radical concentration between the irradiation of the radiation and the immersion of the reinforcing material in the functional group-introduced monomer. The immersion of the reinforcing material in the functional group-introduced monomer is also preferably performed under reduced pressure or in an inert gas atmosphere, and the graft polymerization temperature is preferably 40 to 90 ° C.

【0024】官能基導入モノマーとしては、スチレン、
α−メチルスチレン、クロロメチルスチレン、アルキル
メタクリレート、アルキルアクリレート、アクリロニト
リル、アクロレイン、グリシジルメタクリレート、グリ
シジルアクリレート、ビニルアセテート、スチレンスル
ホン酸又はその塩、アクリル酸又はその塩、メタクリル
酸又はその塩、クロトン酸、イタコン酸、2−アクリル
アミド−2−メチルプロパンスルホン酸、パーフルオロ
スルホニルフルオリド、ビニルベンジルトリメチルアン
モニウムクロリド、アリールアミン又はその塩、4−ビ
ニルピリジン、2−ビニルピリジン、1−ビニルイミダ
ゾール、2−ビニルピラジン、4−(3−ブテニル)ピ
リジン、アクリルアミド、N,N−ジメチルアクリルア
ミド、N−(3−(N,N−ジメチル)アミノプロピ
ル)アクリルアミド、2−(N,N−ジメチルアミノエ
チル)アクリレート、2−ヒドロキシエチルアクリレー
ト、2−ヒドロキシエチルメタクリレート、ビニル基と
スルホン酸基を有する化合物又はその塩、CF2=CF
−O−(CF2−CF(CF3))v−(CF2w−CO
OCH3等で表されるメトキシカルボニル基を有する含
フッ素化合物(ただし、v、wは0以上の整数であり、
v=w=0ではない。)等が挙げられる。
As the functional group-introducing monomer, styrene,
α-methylstyrene, chloromethylstyrene, alkyl methacrylate, alkyl acrylate, acrylonitrile, acrolein, glycidyl methacrylate, glycidyl acrylate, vinyl acetate, styrene sulfonic acid or a salt thereof, acrylic acid or a salt thereof, methacrylic acid or a salt thereof, crotonic acid, Itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, perfluorosulfonyl fluoride, vinylbenzyltrimethylammonium chloride, arylamine or a salt thereof, 4-vinylpyridine, 2-vinylpyridine, 1-vinylimidazole, 2-vinyl Pyrazine, 4- (3-butenyl) pyridine, acrylamide, N, N-dimethylacrylamide, N- (3- (N, N-dimethyl) aminopropyl) acrylamide 2- (N, N- dimethylamino-ethyl) acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, a compound or a salt thereof having a vinyl group and a sulfonic acid group, CF 2 = CF
-O- (CF 2 -CF (CF 3 )) v - (CF 2) w -CO
A fluorine-containing compound having a methoxycarbonyl group represented by OCH 3 or the like (where v and w are integers of 0 or more;
v = w = 0 is not satisfied. ) And the like.

【0025】上記官能基導入モノマーは液体である場合
は補強材を直接浸漬してもよいし、溶媒を用いて希釈し
てから補強材を浸漬してもよい。また、補強材を官能基
導入モノマーに浸漬する方法以外に、減圧下で官能基導
入モノマーを気体にして補強材に導入する方法も採用で
き、この場合は窒素等の不活性ガスで気体を希釈するこ
ともできる。官能基導入モノマーが固体である場合は、
官能基導入モノマーが溶解する溶媒に溶解させて使用す
る。
When the functional group-introduced monomer is a liquid, the reinforcing material may be immersed directly, or may be diluted with a solvent and then immersed in the reinforcing material. In addition to the method in which the reinforcing material is immersed in the functional group-introduced monomer, a method in which the functional group-introduced monomer is converted into a gas under reduced pressure and introduced into the reinforcing material can be adopted.In this case, the gas is diluted with an inert gas such as nitrogen. You can also. When the functional group-introduced monomer is a solid,
It is used after being dissolved in a solvent in which the functional group-introduced monomer is dissolved.

【0026】上記の放射線処理、放電処理、薬品処理及
びグラフト重合法処理は、いずれか1種の処理を行って
もよいし、2種以上の処理を併用してもよい。
The above-described radiation treatment, discharge treatment, chemical treatment, and graft polymerization treatment may be carried out by any one of the treatments, or may be carried out by using two or more treatments in combination.

【0027】本発明におけるスルホン酸型パーフルオロ
カーボン重合体としては、従来より公知の重合体が広く
採用される。特にCF2=CF−(OCF2CFX)m
q−(CF2n−SO3Hで表されるフルオロビニル化
合物に基づく重合単位(ただし、Xはフッ素原子又はト
リフルオロメチル基であり、mは0〜3の整数、nは0
〜12の整数、qは0又は1であり、m=q=n=0で
はない。)と、テトラフルオロエチレンやヘキサフルオ
ロプロピレン等のパーフルオロオレフィン、クロロトリ
フルオロエチレン、又はパーフルオロ(アルキルビニル
エーテル)等に基づく重合単位と、を含む共重合体が好
ましい。なかでも上記フルオロビニル化合物に基づく重
合単位とテトラフルオロエチレンに基づく重合単位とを
含む共重合体が好ましい。
As the sulfonic acid type perfluorocarbon polymer in the present invention, conventionally known polymers are widely used. In particular, CF 2 = CF- (OCF 2 CFX) m-
O q - (CF 2) n -SO 3 polymerized units based on fluorovinyl compound represented by H (provided that, X is fluorine atom or a trifluoromethyl group, m is an integer of from 0 to 3, n represents 0
Integer of 1212, q is 0 or 1, and m = q = n = 0. ) And a polymerization unit based on perfluoroolefin such as tetrafluoroethylene or hexafluoropropylene, chlorotrifluoroethylene, or perfluoro (alkyl vinyl ether). Among them, a copolymer containing a polymerized unit based on the fluorovinyl compound and a polymerized unit based on tetrafluoroethylene is preferable.

【0028】上記フルオロビニル化合物に基づく重合単
位のスルホン酸型官能基は、通常、フルオロビニル化合
物がテトラフルオロエチレンと共重合される際は−SO
2Fであり、共重合された後に加水分解により−SO3
に変換される。
The sulfonic acid type functional group of the polymerized unit based on the above fluorovinyl compound is usually -SO when the fluorovinyl compound is copolymerized with tetrafluoroethylene.
It is 2 F, -SO 3 by hydrolysis after being copolymerized H
Is converted to

【0029】共重合されるフルオロビニル化合物の好ま
しい例としては、下記のものが挙げられる。ただし、式
中rは1〜8の整数であり、sは1〜8の整数であり、
tは0〜8の整数であり、uは1〜3の整数である。
Preferred examples of the fluorovinyl compound to be copolymerized include the following. However, in the formula, r is an integer of 1 to 8, s is an integer of 1 to 8,
t is an integer of 0 to 8, and u is an integer of 1 to 3.

【0030】CF2=CFO(CF2rSO2F、 CF2=CFOCF2CF(CF3)O(CF2sSO
2F、 CF2=CF(CF2tSO2F、 CF2=CF(OCF2CF(CF3))uO(CF22
2F。
CF 2 CFCFO (CF 2 ) r SO 2 F, CF 2 CFCFOCF 2 CF (CF 3 ) O (CF 2 ) s SO
2 F, CF 2 = CF ( CF 2) t SO 2 F, CF 2 = CF (OCF 2 CF (CF 3)) u O (CF 2) 2 S
O 2 F.

【0031】スルホン酸型パーフルオロカーボン重合体
中のスルホン酸基の濃度、すなわちイオン交換容量は
0.5〜2.0ミリ当量/グラム乾燥樹脂、特に0.7
〜1.6ミリ当量/グラム乾燥樹脂が好ましい。イオン
交換容量が0.5ミリ当量/グラム乾燥樹脂より小さい
と陽イオン交換膜の抵抗が大きくなる。一方、2.0ミ
リ当量/グラム乾燥樹脂より大きいと陽イオン交換膜の
機械的強度が弱いおそれがある。
The concentration of sulfonic acid groups in the sulfonic acid type perfluorocarbon polymer, that is, the ion exchange capacity, is 0.5 to 2.0 meq / g dry resin, especially 0.7
~ 1.6 meq / gram dry resin is preferred. If the ion exchange capacity is smaller than 0.5 meq / g dry resin, the resistance of the cation exchange membrane increases. On the other hand, if it is larger than 2.0 meq / g dry resin, the mechanical strength of the cation exchange membrane may be weak.

【0032】ポリエチレン繊維からなる補強材による陽
イオン交換膜の補強方法は、スルホン酸型パーフルオロ
カーボン重合体の溶液又は分散液を用いたキャスト法が
好ましい。織布又は不織布からなる補強材は、例えば上
記溶液に含浸させた後、乾燥、製膜を行い陽イオン交換
膜を得る方法が好ましい。ポリエチレン繊維を陽イオン
交換膜中に分散させる場合は、例えばポリエチレンテレ
フタレート等の支持体フィルム上にスルホン酸型パーフ
ルオロカーボン重合体の溶液又は分散液を塗布した後、
ポリエチレン繊維を散布し乾燥させ陽イオン交換膜を得
る方法が好ましい。
As a method for reinforcing the cation exchange membrane with a reinforcing material composed of polyethylene fibers, a casting method using a solution or dispersion of a sulfonic acid type perfluorocarbon polymer is preferable. The reinforcing material made of a woven or non-woven fabric is preferably impregnated with the above solution, for example, and then dried and formed into a membrane to obtain a cation exchange membrane. When dispersing polyethylene fibers in a cation exchange membrane, for example, after applying a solution or dispersion of a sulfonic acid type perfluorocarbon polymer on a support film such as polyethylene terephthalate,
A method in which polyethylene fibers are sprayed and dried to obtain a cation exchange membrane is preferred.

【0033】上記したキャスト法以外の製膜方法として
は、加熱加圧プレスやロールプレスなどの溶融熱成形に
よる製膜も考えられるが、補強材とスルホン酸型パーフ
ルオロカーボン重合体を充分に接着するためには、ポリ
エチレン繊維の劣化する温度である140℃以上の高温
処理が必要となるため好ましくない。
As a film-forming method other than the above-mentioned casting method, a film-forming method by melt-thermoforming such as a heat-pressing press or a roll press can be considered. However, the reinforcing material and the sulfonic acid type perfluorocarbon polymer are sufficiently bonded. For this purpose, a high-temperature treatment of 140 ° C. or higher, which is a temperature at which the polyethylene fibers deteriorate, is required, which is not preferable.

【0034】上記のキャスト法で得られる補強された陽
イオン交換膜の厚さは、15〜100μm、特に20〜
80μmが好ましい。
The thickness of the reinforced cation exchange membrane obtained by the above-mentioned casting method is 15 to 100 μm, especially 20 to 100 μm.
80 μm is preferred.

【0035】本発明における補強された陽イオン交換膜
は、その両面にガス拡散電極(燃料極及び空気極)が密
着して配置され、さらにその外側にセパレータが配置さ
れ燃料電池が構成される。
The cation exchange membrane reinforced in the present invention has a gas diffusion electrode (a fuel electrode and an air electrode) closely attached to both surfaces thereof, and a separator arranged outside the gas diffusion electrodes to constitute a fuel cell.

【0036】ガス拡散電極は、通常白金等の触媒微粒子
を担持させた導電性のカーボンブラック粉末をPTFE
等の疎水性樹脂からなる結着材を用いて成形された多孔
質シートからなるが、該多孔質シートにはスルホン酸型
パーフルオロカーボン重合体が含まれていてもよく、前
記カーボンブラック粉末は該重合体で被覆された微粒子
として含まれていてもよい。
The gas diffusion electrode is generally made of PTFE made of conductive carbon black carrying catalyst fine particles such as platinum.
And the like, a porous sheet formed using a binder made of a hydrophobic resin such as a sulfonic acid type perfluorocarbon polymer may be contained in the porous sheet. It may be contained as fine particles coated with a polymer.

【0037】ガス拡散電極は、陽イオン交換膜に対して
例えば溶媒接着法や加熱プレス法等により密着される。
本発明では、加熱プレスすると補強材の強度が低下する
ため、溶媒接着法を採用することが好ましい。溶媒接着
法は、フッ素が含まれないアルコール類及び含フッ素溶
媒の1種以上の溶媒に、0.1〜50重量%のパーフル
オロカーボン重合体からなるイオン交換樹脂を溶解させ
た溶液を接着剤とし、この接着剤をガス拡散電極又は陽
イオン交換膜の少なくとも一方に塗布してガス拡散電極
と陽イオン交換膜を接合する方法である(特開平07−
220741参照)。
The gas diffusion electrode is adhered to the cation exchange membrane by, for example, a solvent bonding method or a hot pressing method.
In the present invention, since the strength of the reinforcing material is reduced by hot pressing, it is preferable to employ a solvent bonding method. The solvent bonding method uses a solution obtained by dissolving 0.1 to 50% by weight of an ion-exchange resin composed of a perfluorocarbon polymer in one or more solvents including a fluorine-free alcohol and a fluorine-containing solvent as an adhesive. This adhesive is applied to at least one of a gas diffusion electrode and a cation exchange membrane to bond the gas diffusion electrode and the cation exchange membrane (Japanese Patent Application Laid-Open No. 07-2007).
220741).

【0038】セパレータには燃料ガス又は空気等の酸化
剤ガスの通路となる溝が形成されていてガス拡散電極に
ガスを供給しており、例えば導電性カーボン板等が用い
られる。
The separator is formed with a groove serving as a passage for an oxidizing gas such as fuel gas or air, and supplies gas to the gas diffusion electrode. For example, a conductive carbon plate or the like is used.

【0039】[0039]

【実施例】[例1]アゾビスイソブチロニトリルを開始
剤として、0.2モルのテトラフルオロエチレンと0.
045モルのCF2=CFOCF2CF(CF3)O(C
22SO3Fとを、70℃にて、5時間共重合し、イ
オン交換容量1.1ミリ当量/グラム乾燥樹脂の共重合
体を得た。これを20%KOH水溶液中で90℃にて1
6時間かけて加水分解した後、1Nの塩酸に室温にて1
6時間浸漬して酸型に変換し、水洗乾燥後エタノールに
溶解することにより、濃度8%のスルホン酸基を含有す
るパーフルオロカーボン重合体の溶液を得た。
EXAMPLES Example 1 0.2 mol of tetrafluoroethylene and 0.1 mol of azobisisobutyronitrile were used as initiators.
045 mol CF 2 2CFOCF 2 CF (CF 3 ) O (C
F 2 ) 2 SO 3 F was copolymerized at 70 ° C. for 5 hours to obtain a copolymer having an ion exchange capacity of 1.1 meq / g dry resin. This is placed in a 20% aqueous KOH solution at 90 ° C. for 1 hour.
After hydrolysis for 6 hours, 1N hydrochloric acid was added at room temperature for 1 hour.
It was converted into an acid form by immersion for 6 hours, washed with water, dried and dissolved in ethanol to obtain a solution of a perfluorocarbon polymer containing a sulfonic acid group at a concentration of 8%.

【0040】一方、径が12μmのフィラメントを9本
撚った10デニールのポリエチレン繊維(商品名:ダイ
ニーマSK−60、東洋紡社製、重量平均分子量400
万)を用いて縦糸、横糸ともに密度が80本/インチの
織布を織った。該織布を100℃にて加圧プレスして扁
平化し、厚さを20μmとした。
On the other hand, 10-denier polyethylene fiber (trade name: Dyneema SK-60, manufactured by Toyobo Co., Ltd., weight-average molecular weight 400) obtained by twisting nine filaments having a diameter of 12 μm.
Woven fabric having a density of 80 yarns / inch for both warp and weft yarns. The woven fabric was flattened by pressing under a pressure of 100 ° C. to have a thickness of 20 μm.

【0041】上記織布に30kGyのγ線を照射した
後、上記スルホン酸基を含有するパーフルオロカーボン
重合体の溶液に含浸させ乾燥する操作を繰り返し、厚さ
30μmの補強された陽イオン交換膜を得た。
After irradiating the woven fabric with 30 kGy γ-rays, the operation of impregnating with the solution of the perfluorocarbon polymer containing sulfonic acid group and drying was repeated to form a reinforced cation exchange membrane having a thickness of 30 μm. Obtained.

【0042】(強度測定)この陽イオン交換膜を90℃
の純水中に浸漬した後、引張り強度を測定したところ、
8.5kg/cm幅であった。
(Measurement of Strength) The cation exchange membrane was heated at 90 ° C.
After immersion in pure water, the tensile strength was measured.
The width was 8.5 kg / cm.

【0043】(膜抵抗測定)この陽イオン交換膜を25
℃にて1Mの硫酸に24時間浸漬した後、交流で比抵抗
を測定した。なお、測定において電解液は1Mの硫酸を
使用し、電極には白金を使用した。有効膜面積は1.8
7cm2であり、LCRメータ(横河ヒューレッドパッ
カー社製)を用いて25℃にて比抵抗を測定した結果
は、5Ω・cmであった。
(Measurement of membrane resistance)
After immersion in 1 M sulfuric acid at 24 ° C. for 24 hours, the specific resistance was measured by alternating current. In the measurement, 1 M sulfuric acid was used as an electrolyte and platinum was used as an electrode. The effective membrane area is 1.8
7 cm 2 , and the specific resistance was measured at 25 ° C. using an LCR meter (manufactured by Yokogawa Hured Packer Co., Ltd.). The result was 5 Ω · cm.

【0044】[例2(比較例)]例1で得られたスルホ
ン酸基を含有するパーフルオロカーボン重合体の溶液を
ポリエチレンテレフタレートフィルム上に流延させて乾
燥し、厚さ30μmの補強されていない陽イオン交換膜
を得た。
Example 2 (Comparative Example) The solution of the sulfonic acid group-containing perfluorocarbon polymer obtained in Example 1 was cast on a polyethylene terephthalate film and dried to obtain a 30 μm-thick unreinforced resin. A cation exchange membrane was obtained.

【0045】この陽イオン交換膜を用いた以外は例1と
同様にして引張り強度及び比抵抗を測定したところ、引
張り強度は0.3kg/cm、比抵抗は4.8Ω・cm
であった。
When the tensile strength and the specific resistance were measured in the same manner as in Example 1 except that this cation exchange membrane was used, the tensile strength was 0.3 kg / cm and the specific resistance was 4.8 Ω · cm.
Met.

【0046】[例3]例1で得られた織布に減圧下で2
0kGyのγ線を照射した後、該織布をスチレンモノマ
ーに浸漬し、60℃にて96時間グラフト重合を行っ
た。次いでトルエンで洗浄、乾燥した後、30重量%の
濃度のクロロスルホン酸のテトラクロロエタン溶液に2
5℃にて16時間浸漬し、グラフト重合により得られた
重合体のスチレンに基づく重合単位部にスルホニルクロ
リド基を導入した。次に2Mの水酸化カリウム水溶液に
90℃で2時間浸漬して加水分解した後、1Mの塩酸水
溶液に90℃で2時間浸漬しスルホニルクロリド基をス
ルホン酸基に変換した。グラフト率(100×(スルホ
ン化後の織布乾燥重量−原料織布の重量)/原料織布の
重量)は62%で、グラフト重合後の織布の厚さは30
μmであった。
Example 3 The woven fabric obtained in Example 1 was applied under reduced pressure for 2 hours.
After irradiation with 0 kGy γ-rays, the woven fabric was immersed in a styrene monomer, and graft polymerization was performed at 60 ° C for 96 hours. Then, after washing with toluene and drying, a 2% solution of chlorosulfonic acid in tetrachloroethane at a concentration of 30% by weight was added.
The polymer was immersed at 5 ° C. for 16 hours to introduce a sulfonyl chloride group into a polymerized unit based on styrene of the polymer obtained by graft polymerization. Next, it was immersed in a 2M aqueous solution of potassium hydroxide at 90 ° C. for 2 hours for hydrolysis, and then immersed in a 1M aqueous solution of hydrochloric acid at 90 ° C. for 2 hours to convert the sulfonyl chloride group into a sulfonic acid group. The graft ratio (100 × (dry weight of woven fabric after sulfonation−weight of raw woven fabric) / weight of raw woven fabric) is 62%, and the thickness of the woven fabric after graft polymerization is 30%.
μm.

【0047】上記織布を用いた以外は例1と同様にして
補強された厚さ35μmの陽イオン交換膜を得た。この
陽イオン交換膜を用いた以外は例1と同様にして引張り
強度及び比抵抗を測定したところ、引張り強度は8.9
kg/cm、膜抵抗は5.2Ω・cmであった。
A reinforced cation exchange membrane having a thickness of 35 μm was obtained in the same manner as in Example 1 except that the above-mentioned woven fabric was used. When the tensile strength and the specific resistance were measured in the same manner as in Example 1 except that this cation exchange membrane was used, the tensile strength was 8.9.
kg / cm and the membrane resistance was 5.2 Ω · cm.

【0048】[例4]燃料極及び酸素極のガス拡散電極
としては、カーボンブラックとPTFE(重量比で6:
4)とからなり、白金が担持された厚さ約200μm、
面積10cm 2のシート(白金担持量0.5mg/c
2)を使用した。接着剤としては、エタノールとジク
ロロペンタフルオロプロパンの重量比が1:1の混合溶
媒に、例1で合成したスルホン酸基を含有するパーフル
オロカーボン重合体を溶解し、5重量%の溶液を作製し
た。
[Example 4] Gas diffusion electrodes for fuel electrode and oxygen electrode
As carbon black and PTFE (weight ratio: 6:
4) a thickness of about 200 μm on which platinum is supported,
Area 10cm TwoSheet (platinum loading 0.5mg / c
mTwo)It was used. As an adhesive, ethanol and jig
A mixed solution in which the weight ratio of lolopentafluoropropane is 1: 1
The medium containing sulfonic acid groups synthesized in Example 1
Dissolve the orocarbon polymer to make a 5% by weight solution
Was.

【0049】常温において、2枚のガス拡散電極に対し
それぞれ0.05gの接着剤を塗布し、塗布面を内側に
向けて例1で得られた補強された陽イオン交換膜を挟ん
だ。次いで、これを手押しローラーで押し付け、常温で
2時間乾燥した後、60℃で2時間乾燥して膜電極接合
体を得た。
At room temperature, 0.05 g of an adhesive was applied to each of the two gas diffusion electrodes, and the reinforced cation exchange membrane obtained in Example 1 was sandwiched with the application surfaces facing inward. Next, this was pressed with a hand roller and dried at room temperature for 2 hours, and then dried at 60 ° C. for 2 hours to obtain a membrane electrode assembly.

【0050】次に上記膜電極接合体を2枚のチタン製の
集電体で挟み、さらにその外側に2組のPTFE製のガ
ス供給室を配置し、さらにその外側にヒーターを配置
し、有効膜面積10cm2の燃料電池を組み立てた。
Next, the above-mentioned membrane electrode assembly is sandwiched between two titanium current collectors, two sets of PTFE gas supply chambers are disposed outside the current collector, and a heater is further disposed outside the PTFE gas supply chamber. A fuel cell having a membrane area of 10 cm 2 was assembled.

【0051】燃料電池の温度を80℃に保ち、酸素極に
酸素、燃料極に水素をそれぞれ2気圧で供給し、電流密
度1A/cm2のときの端子間電圧を測定したところ
0.60Vであった。この条件で1500時間連続して
運転したところ、1500時間後も端子間電圧はかわら
なかった。
The temperature of the fuel cell was maintained at 80 ° C., oxygen was supplied to the oxygen electrode and hydrogen was supplied to the fuel electrode at 2 atm, and the voltage between terminals was measured at a current density of 1 A / cm 2. there were. When the device was continuously operated under these conditions for 1500 hours, the terminal voltage did not change even after 1500 hours.

【0052】[例5(比較例)]例2で製造した補強さ
れていない陽イオン交換膜を用いた以外は例4と同様に
して燃料電池を組み立てた。この燃料電池を用いて例4
と同様にして電流密度1A/cm2のときの端子間電圧
を測定したところ0.60Vであった。例4と同様に連
続運転したところ、1000時間後に端子間電圧は0.
4Vに低下した。そこで、燃料電池を解体してみると、
膜電極接合体のエッジの部分で陽イオン交換膜にしわが
生じていた。
Example 5 (Comparative Example) A fuel cell was assembled in the same manner as in Example 4 except that the unreinforced cation exchange membrane produced in Example 2 was used. Example 4 using this fuel cell
When the voltage between terminals was measured at a current density of 1 A / cm 2 in the same manner as in the above, it was 0.60 V. When the continuous operation was carried out in the same manner as in Example 4, the voltage between the terminals became 0.1 after 1000 hours.
It dropped to 4V. So, when you disassemble the fuel cell,
The cation exchange membrane was wrinkled at the edge of the membrane electrode assembly.

【0053】[0053]

【発明の効果】本発明では、従来に比べ抵抗が低くかつ
機械的強度が高い陽イオン交換膜を固体高分子電解質と
して使用しているため、長期にわたって高性能の固体高
分子電解質型燃料電池が得られる。
According to the present invention, a cation exchange membrane having lower resistance and higher mechanical strength than the conventional one is used as a solid polymer electrolyte. can get.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F071 AA26 AA27 AA27X AA30 AA30X FA05 FB01 FC01 FC06 FD02 5H026 AA06 BB00 BB10 CX02 CX03 CX05 EE18 EE19 HH00 HH03 HH05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F071 AA26 AA27 AA27X AA30 AA30X FA05 FB01 FC01 FC06 FD02 5H026 AA06 BB00 BB10 CX02 CX03 CX05 EE18 EE19 HH00 HH03 HH05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】スルホン酸基を含有するパーフルオロカー
ボン重合体からなる陽イオン交換膜を固体高分子電解質
として有し、前記陽イオン交換膜は、重量平均分子量が
100万以上のポリエチレン繊維からなる補強材を含有
することを特徴とする固体高分子電解質型燃料電池。
1. A cation exchange membrane comprising a perfluorocarbon polymer containing a sulfonic acid group as a solid polymer electrolyte, wherein the cation exchange membrane is made of a polyethylene fiber having a weight average molecular weight of 1,000,000 or more. A solid polymer electrolyte fuel cell characterized by containing a material.
【請求項2】前記ポリエチレン繊維は、デニール数が
0.8〜50である請求項1に記載の固体高分子電解質
型燃料電池。
2. The solid polymer electrolyte fuel cell according to claim 1, wherein the polyethylene fiber has a denier of 0.8 to 50.
【請求項3】前記陽イオン交換膜は、前記ポリエチレン
繊維からなる織布により補強されており、該織布は、縦
糸及び横糸のデニール数がそれぞれ独立に0.8〜50
であり、縦糸及び横糸の密度がそれぞれ独立に10〜2
00本/インチであり、かつ厚さ10〜80μmである
請求項1に記載の固体高分子電解質型燃料電池。
3. The cation exchange membrane is reinforced with a woven fabric made of the polyethylene fiber, and the woven fabric has a denier of warp and weft independently of 0.8 to 50.
And the warp and weft densities are independently 10 to 2
2. The solid polymer electrolyte fuel cell according to claim 1, wherein the number of the cells is 00 / inch and the thickness is 10 to 80 μm. 3.
【請求項4】前記陽イオン交換膜は、前記ポリエチレン
繊維からなる不織布により補強されており、該不織布
は、目付量5〜50g/m2かつ厚さ10〜80μmで
ある請求項1又は2に記載の固体高分子電解質型燃料電
池。
4. The cation exchange membrane according to claim 1, wherein the cation exchange membrane is reinforced by a nonwoven fabric made of the polyethylene fiber, and the nonwoven fabric has a basis weight of 5 to 50 g / m 2 and a thickness of 10 to 80 μm. The solid polymer electrolyte fuel cell according to the above.
【請求項5】前記ポリエチレン繊維が、1m2あたりに
1〜30g分散されていることにより前記陽イオン交換
膜が補強されている請求項2に記載の固体高分子電解質
型燃料電池。
5. The solid polymer electrolyte fuel cell according to claim 2, wherein the cation exchange membrane is reinforced by dispersing 1 to 30 g of the polyethylene fiber per 1 m 2 .
【請求項6】前記ポリエチレン繊維の表面は、放射線処
理、放電処理、薬品処理又は放射線グラフト重合法処理
により処理されている請求項1、2、3、4又は5に記
載の固体高分子電解質型燃料電池。
6. The solid polymer electrolyte type according to claim 1, wherein the surface of said polyethylene fiber is treated by radiation treatment, electric discharge treatment, chemical treatment or radiation graft polymerization method treatment. Fuel cell.
【請求項7】スルホン酸基を含有するパーフルオロカー
ボン重合体が、CF2=CF2に基づく重合単位とCF2
=CF−(OCF2CFX)m−Oq−(CF2n−SO3
Hに基づく重合単位(ただし、Xはフッ素原子又はトリ
フルオロメチル基であり、mは0〜3の整数、nは0〜
12の整数、qは0又は1であり、m=q=n=0では
ない。)とを含む共重合体である請求項1、2、3、
4、5又は6に記載の固体高分子電解質型燃料電池。
7. A perfluorocarbon polymer containing a sulfonic acid group, polymer units and CF 2 based on CF 2 = CF 2
= CF- (OCF 2 CFX) m -O q - (CF 2) n -SO 3
A polymerized unit based on H (where X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is 0 to 0)
An integer of 12, q is 0 or 1, and m = q = n = 0. And a copolymer comprising:
7. The solid polymer electrolyte fuel cell according to 4, 5, or 6.
【請求項8】前記陽イオン交換膜は、スルホン酸基を含
有するパーフルオロカーボン重合体の溶液又は分散液を
キャスト法により製膜されてなる請求項1、2、3、
4、5、6又は7に記載の固体高分子電解質型燃料電
池。
8. The cation exchange membrane is formed by casting a solution or dispersion of a sulfonic group-containing perfluorocarbon polymer by a casting method.
8. The solid polymer electrolyte fuel cell according to 4, 5, 6, or 7.
JP11033109A 1999-02-10 1999-02-10 Solid polymer electrolyte fuel cell Pending JP2000231928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11033109A JP2000231928A (en) 1999-02-10 1999-02-10 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11033109A JP2000231928A (en) 1999-02-10 1999-02-10 Solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2000231928A true JP2000231928A (en) 2000-08-22

Family

ID=12377504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11033109A Pending JP2000231928A (en) 1999-02-10 1999-02-10 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2000231928A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216797A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and its producing method
JP2002237315A (en) * 2001-02-07 2002-08-23 Kanegafuchi Chem Ind Co Ltd Polymer membrane for membrane-electrode junction and membrane-electrode junction as well as fuel cell composed of the same
WO2003075385A1 (en) * 2002-03-07 2003-09-12 Japan Science And Technology Agency Electrolyte film and solid polymer fuel cell using the same
JP2004186120A (en) * 2002-12-06 2004-07-02 Toyota Motor Corp Solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell
US6926984B2 (en) 2001-01-19 2005-08-09 Honda Giken Kabushiki Kaisha Polymer electrolyte membrane, method for producing same, and membrane electrode assembly and polymer electrolyte fuel cell comprising same
US6933068B2 (en) 2001-01-19 2005-08-23 Honda Giken Kogyo Kabushiki Kaisha Polymer electrolyte membrane and solid polymer electrolyte fuel cell using same
WO2005124911A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
WO2005124912A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
WO2006006357A1 (en) * 2004-07-12 2006-01-19 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
EP1691440A1 (en) 2005-02-07 2006-08-16 Fuji Photo Film Co., Ltd. Solid electrolyte, method for producing the solid electrolyte, membrane, membrane electrode assembly and fuel cell comprising the solid electrolyte
JP2006286631A (en) * 2005-03-31 2006-10-19 Samsung Sdi Co Ltd Polyelectrolyte film for fuel cell, manufacturing method of the same, film-electrode assembly, and fuel cell system
JP2006338912A (en) * 2005-05-31 2006-12-14 Toyota Central Res & Dev Lab Inc Solid polyelectrolyte, as well as solid polymer fuel cell, and its manufacturing method
WO2008041622A1 (en) 2006-09-29 2008-04-10 Fujifilm Corporation Membrane electrode assembly and method for producing the same
CN100466348C (en) * 2004-06-22 2009-03-04 旭硝子株式会社 Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
EP2037525A1 (en) 2007-09-11 2009-03-18 FUJIFILM Corporation Electrolyte membrane, membrane and electrode assembly and fuel cell using membrane and electrode assembly
EP2036927A1 (en) 2007-09-11 2009-03-18 Fujifilm Corporation Ionic polymer particle dispersion liquid and method for producing the same
WO2009034684A1 (en) 2007-09-10 2009-03-19 Fujifilm Corporation Membrane electrode assembly and fuel cell
JP2019510342A (en) * 2016-02-26 2019-04-11 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University Composite membrane for flow battery
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749630B2 (en) 2001-01-19 2010-07-06 Honda Giken Kogyo Kabushiki Kaisha Polymer electrolyte membrane and polymer electrolyte fuel cell comprising same
US6926984B2 (en) 2001-01-19 2005-08-09 Honda Giken Kabushiki Kaisha Polymer electrolyte membrane, method for producing same, and membrane electrode assembly and polymer electrolyte fuel cell comprising same
US6933068B2 (en) 2001-01-19 2005-08-23 Honda Giken Kogyo Kabushiki Kaisha Polymer electrolyte membrane and solid polymer electrolyte fuel cell using same
JP2002216797A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and its producing method
JP2002237315A (en) * 2001-02-07 2002-08-23 Kanegafuchi Chem Ind Co Ltd Polymer membrane for membrane-electrode junction and membrane-electrode junction as well as fuel cell composed of the same
WO2003075385A1 (en) * 2002-03-07 2003-09-12 Japan Science And Technology Agency Electrolyte film and solid polymer fuel cell using the same
JP2004186120A (en) * 2002-12-06 2004-07-02 Toyota Motor Corp Solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell
US9331354B2 (en) 2004-06-22 2016-05-03 Asahi Glass Company, Limited Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
KR100971640B1 (en) 2004-06-22 2010-07-22 아사히 가라스 가부시키가이샤 Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
US10916790B2 (en) 2004-06-22 2021-02-09 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US10153506B2 (en) 2004-06-22 2018-12-11 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US9455465B2 (en) 2004-06-22 2016-09-27 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
WO2005124911A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
CN100466348C (en) * 2004-06-22 2009-03-04 旭硝子株式会社 Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
US8546004B2 (en) 2004-06-22 2013-10-01 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US7943249B2 (en) 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
WO2005124912A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
WO2006006357A1 (en) * 2004-07-12 2006-01-19 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
EP1691440A1 (en) 2005-02-07 2006-08-16 Fuji Photo Film Co., Ltd. Solid electrolyte, method for producing the solid electrolyte, membrane, membrane electrode assembly and fuel cell comprising the solid electrolyte
JP2006286631A (en) * 2005-03-31 2006-10-19 Samsung Sdi Co Ltd Polyelectrolyte film for fuel cell, manufacturing method of the same, film-electrode assembly, and fuel cell system
JP2006338912A (en) * 2005-05-31 2006-12-14 Toyota Central Res & Dev Lab Inc Solid polyelectrolyte, as well as solid polymer fuel cell, and its manufacturing method
WO2008041622A1 (en) 2006-09-29 2008-04-10 Fujifilm Corporation Membrane electrode assembly and method for producing the same
WO2009034684A1 (en) 2007-09-10 2009-03-19 Fujifilm Corporation Membrane electrode assembly and fuel cell
EP2036927A1 (en) 2007-09-11 2009-03-18 Fujifilm Corporation Ionic polymer particle dispersion liquid and method for producing the same
EP2037525A1 (en) 2007-09-11 2009-03-18 FUJIFILM Corporation Electrolyte membrane, membrane and electrode assembly and fuel cell using membrane and electrode assembly
JP2019510342A (en) * 2016-02-26 2019-04-11 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University Composite membrane for flow battery
JP7261586B2 (en) 2016-02-26 2023-04-20 ケース ウェスタン リザーブ ユニバーシティ Composite membrane for flow battery
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer

Similar Documents

Publication Publication Date Title
JP2000231928A (en) Solid polymer electrolyte fuel cell
JP5011567B2 (en) Nano-inorganic particle composite cross-linked polymer electrolyte membrane, method for producing the same, and membrane / electrode assembly using the same
JP2001035510A (en) Solid high polymer electrolyte fuel cell
US8153329B2 (en) Proton conducting electrolyte membrane and production method thereof and solid polymer fuel cell using the same
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
JPH11135137A (en) Solid polyelectrolyte type methanol fuel cell
US20090004548A1 (en) Electrolyte Membrane, Method for Producing Membrane Electrode Assembly, and Fuel Cell
JPH07135004A (en) Solid high molecular electrolytic film and fuel cell
CN113571836A (en) Solid composite fluoropolymer membranes
US7482388B2 (en) Polymer electrolyte membrane having excellent durability
JPH06231779A (en) Solid high polymer electrolytic type fuel cell
JPH11204121A (en) Solid polyelectrolyte fuel cell
JPH11310649A (en) Cation exchange membrane and its use
JP2003203648A (en) Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam
JP2003077494A (en) Solid polymer electrolyte reinforcing material and solid polymer electrolyte reinforcement using the same
JP2001029800A (en) Ion exchange film, ion exchange film/electrode conjugate and production of them
JPWO2005076396A1 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
WO2001022510A1 (en) Bonded electrode/film for solid polymer fuel cell and method for producing the same
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
WO2005091409A1 (en) Electrolyte film and fuel cell
JP4899238B2 (en) Composite cross-linked electrolyte
JP2000260443A (en) Solid high polymer electrolyte fuel cell
JP2001313057A (en) Manufacturing method of ion-exchange filter for solid polymer fuel cell
JP4062755B2 (en) Method for producing solid polymer electrolyte membrane
JP5044894B2 (en) Proton conducting electrolyte membrane for polymer electrolyte fuel cell, method for producing proton conducting electrolyte membrane, and polymer electrolyte fuel cell